AMENABILITY OF $A \oplus_T X$ AS AN EXTENSION OF BANACH ALGEBRA

M. GHORBAI, D. E. BAGHA*

Department of Mathematics, Central Tehran Branch, Islamic Azad university, Tehran, Iran. *Corresponding author. E-mail: e bagha@yahoo.com

DOI: 10.20948/mathmontis-2020-49-3

Summary. Let A, X, \mathfrak{U} be Banach algebras and A be a Banach \mathfrak{U} -bimodule also X be a Banach $A-\mathfrak{U}$ -module. In this paper we study the relation between module amenability, weak module amenability and module approximate amenability of Banach algebra $A \oplus_T X$ and that of Banach algebras A, X. Where $T: A \times A \to X$ is a bounded bi-linear mapping with specific conditions.

1 INTRODUCTION

The notation of amenability of Banach algebras was introduced by B.Johnson in [9]. A Banach algebra A is amenable if every bounded derivation from A into any dual Banach A-bimodule is inner, equivalently if $H(A, X^*) = \{0\}$ for any Banach A-bimodule X, where $H(A, X^*)$ is the first Hochschild co-homology group of A with coefficient in X^* . Also, a Banach algebra A is weakly amenable if $H(A, A^*) = \{0\}$. Bade, Curtis and Dales introduced the notion of weak amenability on Banach algebras in [5]. They considered this concept only for commutative Banach algebras. After a while, Johnson defined the weak amenability for arbitrary Banach algebras [8].

For a morphism $T: B \to A$ from a Banach algebra B to a commutative Banach algebra A. The notion of module amenability of Banach algebras was introduced by Amini in [1]. Amini and Ebrahimi Bagha in [3] studied the concept of weak module amenability. In [10] the notation of module approximate amenability and contractibility as modules over of another Banach algebra was introduced for the notion of Banach algebras.

M. Sangani-Monfared in [11] defined a product on $A \times B$ and obtained the Banach algebra $A \times_{\theta} B$ using a character $\theta \in \sigma(B)$, for Banach algebras in a fairly general setting.

Later, S.J. Bhatt and P.A. Dabhi in [6] defined a product on $A \times B$ and obtained a Banach algebra $A \times_T B$ for a morphism $T : B \to A$ from a Banach algebra B to a commutative Banach algebra A.

The first and the second authors generalized all these constructions, and defined the module Lau product $A \times_{\alpha} B$ for Banach algebras A and B such that A is a Banach B-bimodule. They studied the ideal amenability of $A \times_{\alpha} B$ in [4].

T.Yazdan panah in [12] studied the concept of expanded modular of Banach algebra denoted by $A \oplus_T X$. He showed that $A \oplus_T X$ is amenable if and only if A is amenable and $X = \{0\}$. In this paper, we define a new Banach algebra different from of all above Banach algebras, named $A \oplus_T X$ in section 2. Then, some required basic properties of the following part are studied. In section 3, as the main section of paper, we study the relationship between module amenability of $A \oplus_T X$ and module amenability of A and X. We show that If T(A, 0) = X and $A^2 = A$, then the module amenability of A implies module amenability of $A \oplus_T X$. Furthermore, it's

2010 Mathematics Subject Classification: 46H20,46H25.

Key words and Phrases: Banach module, module amenability, weak module amenability, module approximate amenability, module derivation, Expanded Banach algebra.

conversly obtained that the module amenability of $A \oplus_T X$ implies module amenability of A and moreover if T(A, 0) = X, then X also is module amenable. In sectiones 4 and 5 respectively we study the relationship between weak mod- ule amenability (based as definition in [1] and [2]) and module approximate amenability of $A \oplus_T X$ and weak module amenability and module approximate amenability of A, X.

2 DEFINITIONS AND BASIC PROPERTIES

Throughout this paper it's assumed that $\mathfrak U$ be a Banach algebra, A be a Banach $\mathfrak U$ -bimodule and X be a Banach A-U-bimodule. Module actions are assumed as follow too:

$$A \times \mathfrak{U} \to A; (a, \quad \alpha) \mapsto a \circ \alpha, \mathfrak{U} \times A \to A; (\alpha, \quad a) \mapsto \alpha \cdot a.$$

 $X \times \mathfrak{U} \to X; (x, \quad \alpha) \mapsto x \vartriangle \alpha, \mathfrak{U} \times X \to X; (\alpha, \quad x) \mapsto \alpha \nabla x.$
 $X \times A \to X; (x, \quad a) \mapsto x \circ a, A \times X \to X; (a, \quad x) \mapsto a \cdot x.$

Consider the bounded bilinear map $T: A \times A \to X$, which has the following properties:

$$\begin{array}{l} a \cdot T(a_1 a_2, 0) = T(a a_1, 0) \circ a_2, T(a_1 a_2, 0) = T(a_1, 0) T(a_2, 0) \; , \\ T(\alpha \cdot a, \quad \alpha \nabla x) = \alpha \cdot T(a, \quad x), T(a \circ \alpha, \quad x \vartriangle \alpha) = T(a, \quad x) \cdot \alpha, \\ \parallel T(a, \ 0) \parallel = \parallel a \parallel \text{, for all } a, a_1, a_2 \in A, x \in X, \alpha \in \mathfrak{U}. \end{array}$$

Module extension $A \oplus X$, with the product

$$(a, x)(a_1, x_1) = (aa_1, a \cdot x_1 + x \circ a_1 + T(aa_1, 0))$$

and the norm $\| (a, x) \| = \| a \| + \| x \|$ is a Banach algebra denoted by $A \bigoplus_T X$.

Definition 2.1 The bounded map $D: A \to X^*$ with D(a+b) = D(a) + D(b), $D(ab) = a \cdot D(b) + D(a) \cdot b$ for all $a, b \in A$, and $D(\alpha \cdot a) = \alpha \cdot D(a)$, $D(a \cdot \alpha) = D(a) \cdot \alpha (\alpha \in \mathfrak{U}, a \in A)$, is called module derivation.

Note that X^* is also Banach module over A and $\mathfrak U$ with compatible actions under the canonical actions of A and $\mathfrak U$, $\alpha \cdot (a \cdot f) = (\alpha \cdot a) \cdot f$, $(a \in A, \alpha \in \mathfrak U, f \in X^*)$, and the same for right action. Here the canonical actions of A and $\mathfrak U$ on X^* are defined by $(\alpha \cdot f)(x) = f(x \triangle \alpha)$, $(a \cdot f)(x) = f(x \circ a)$, $(\alpha \in \mathfrak U, \alpha \in A, f \in X^*, x \in X)$ and it's the same for right actions. As in [1] we call A- module X which have a compatible $\mathfrak U$ -action as above, a $A - \mathfrak U$ modules, above assertion is to say that if X is an $A - \mathfrak U$ - module, then so is X^* . Also we use the notation $Z_{\mathfrak U}(A, X^*)$ for the set of all module derivations $D: A \to X^*$, and $N_{\mathfrak U}(A, X^*)$ for those which are inner and $H_{\mathfrak U}(A, X^*)$ for the quotient group.

Proposition 2.2 $A \oplus_T X$ is a Banach \mathfrak{U} - bimodule.

Proof. Consider the module actions as follow:

```
\mathfrak{U} \times (A \oplus_T X) \to A \oplus_T X; \alpha \cdot (a, x) = (\alpha \cdot a, \alpha \nabla x), and (A \oplus_T X) \times \mathfrak{U} \to A \oplus_T X; (a, x) \cdot \alpha = (\alpha \circ a, \alpha \Delta x). It is easy to check the satisfication of the properties.
```

Proposition 2.3 If Y is an A-U-module, then $Y \oplus \{0\}$ is a Banach $A \oplus_T X - \mathfrak{U}$ -bimodule.

Proof. Assume that the module actions on Y, are as follows:

$$\mathfrak{U} \times Y \to Y$$
; $(\alpha, y) \mapsto \alpha \triangle y$, $Y \times \mathfrak{U} \to Y$; $(y, \alpha) \mapsto y \bullet \alpha$. And $A \times Y \to Y$; $(a, y) \mapsto a \cdot y$, $Y \times A \to Y$; $(y, \alpha) \mapsto y$. a . Define the module actions as: $(Y \oplus \{0\}) \times \mathfrak{U} \to Y \oplus Y$

$$\{0\}; (y, 0) \bullet \alpha = (y \bullet \alpha, 0), \mathfrak{U} \times (Y \oplus \{0\}) \to Y \oplus \{0\}; \quad \alpha \bullet (y, 0) = (\alpha \triangle y, 0) \quad . \text{ And } (A \oplus_T X) \times (Y \oplus \{0\}) \to Y \oplus \{0\}; (a, x).(y, 0) = (a.y, 0), (Y \oplus \{0\}) \times (A \oplus_T X) \to Y \oplus \{0\}; (y, 0) \circ (a, x) = (y. a, 0) \quad . \text{We only need to show that the actions are compatible.}$$

$$1)\alpha. \quad ((a, x).(y, 0)) = \alpha. \quad (a.y, 0)$$

$$= (\alpha \triangle (a.y), 0) = ((\alpha \cdot a) \cdot y, 0)$$

$$= ((\alpha \cdot a, \alpha \nabla x) \cdot (y, 0)) \bullet \alpha$$

$$= ((\alpha \cdot y) \bullet \alpha, 0) = (\alpha \cdot (a, x)).(y, 0) \bullet \alpha$$

$$= ((a \cdot y) \bullet \alpha, 0) = (a \cdot (y \bullet \alpha), 0)$$

$$= (a, x) \cdot (y \bullet \alpha, 0) = (a, x) \cdot ((y, 0) \bullet \alpha) \quad .$$

$$3)(\alpha. (y, 0)) \cdot (a, x) = (\alpha \triangle y, 0) \cdot (a, x)$$

Proposition 2.4 Let $M \oplus N$ be a Banach $A \oplus_T X - \mathfrak{U}$ -bimodule, then M is a Banach $A - \mathfrak{U}$ -bimodule.

= $((\alpha \triangle y). \ a, \ 0) = (\alpha \triangle (y. \ a), \ 0))$ = $\alpha. \ (y. \ a, \ 0) = \alpha. \ ((y, \ 0) \circ (a, \ x))$

Proof. Consider the map $Q_M: M \oplus N \to M$; $(m, n) \mapsto m$ and define the module actions as: $M \times \mathfrak{U} \to M$; $(m, n) \mapsto m \cdot \alpha = Q_M((m, 0) \bullet \alpha), \mathfrak{U} \times M \to M$; $(\alpha, m) \mapsto \alpha \circ m = Q_M(\alpha \cdot (m, 0 \ M \times A \to M; (m, a) \mapsto m. \ a = Q_M((m, 0) \circ (a, 0)) \ and \ A \times M \to A$; $(a, m) \mapsto \alpha \bullet m = Q_M((a, 0) \cdot (m, 0)) \blacksquare$

Proposition 2.5 Let M be a Banach $A - \mathfrak{U}$ -module and N be a Banach $X - \mathfrak{U}$ -bimodule, $M \oplus N$ is a Banach $A \oplus_T X - \mathfrak{U}$ -bimodule.

Proof. Given module actions on $M \oplus N$ as follows:

 $(M \oplus N) \times \mathfrak{U} \to M \oplus N; (m, n) \cdot \alpha = (m. \alpha, n \nabla \alpha), \mathfrak{U} \times (M \oplus N) \to M \oplus N; \quad \alpha \bullet (m, n) = (\alpha \bullet m, \alpha \triangle m), (M \oplus N) \times (A \oplus_T X) \to (M \oplus N); (m, n) \cdot (a, x) = (m \alpha, n. T(a, 0) (A \oplus_T X) \times (M \oplus N) \to M \oplus N; (a, x) \bullet (m, n) = (a \bullet m, T(a, 0) \odot n)$

Proposition 2.6 For each $(f, g) \in M^* \oplus N^*$, $(a, x) \in A \oplus_T X$, $(m, n) \in M \oplus N$ we have $(f, g) \cdot (a, x) = (f \cdot a, g \cdot T(a, 0))$ and $(a, x) \cdot (f, g) = (a.f, T(a, 0).g)$.

Proof.

$$\langle (f, g). (a, x), (m, n) \rangle = \langle (f, g), (a, x) \bullet (m, n) \rangle$$

$$= \langle (f, g), (a \circ m, T(a, 0) \odot n) \rangle$$

$$= \langle f, a \circ m \rangle + \langle g, T(a, 0) \odot n \rangle$$

$$= \langle f.a, m \rangle + \langle g.T(a, 0), n \rangle$$

$$= \langle (f.a, g.T(a, 0 (m, n)))$$

Proposition 2.7 If N is a Banach $X - \mathfrak{U}$ -bimodule, then is a Banach $A - \mathfrak{U}$ -bimodule. *Proof.* The module actions are defined as follow:

$$A \times N \rightarrow N$$
; $a.n = T(a, 0) \odot n$ and $N \times A \rightarrow N$; $n \cdot a = n.T(a, \odot)$.

3 MODULE AMENABILITY

Lemma 3.1 $D \in Z_{\mathfrak{U}}(A \oplus_{T} X, M^* \oplus N^*)$ if and only if there are $D_1 \in Z_{\mathfrak{U}}(A, M^*), D_3 \in Z_{\mathfrak{U}}(X, N^*), R \in Z_{\mathfrak{U}}(A, N^*)$ and linear map $D_2 : X \to M^*$ such that

1)
$$D(a, x) = (D_1(a) + D_2(x), R(a) + D_3(x))$$
,

$$2) D_2(a \bullet x) = a \cdot D_2(x) ,$$

3)
$$D_2(x \circ a) = D_2(x) \cdot a$$
,

4)
$$R(bd) = R(b) \cdot T(d, 0) + T(b, 0) \cdot R(d) = R(b) \cdot d + b \cdot R(d)$$
,

5)
$$D_2(T(ab, 0)) = 0$$
,

6)
$$D_3(a.x) = T(a, 0).D_3(x)$$
,

7)
$$D_3(x \circ a) = D_3(x).T(a, 0)$$
,

8)
$$D_3(T(ab, 0)) = 0.$$

Proof. Suppose that $D \in Z_{\mathfrak{U}}(A \oplus_{T} X, M^{*} \oplus N^{*})$ then there are $d_{1} : A \oplus \tau X \to M^{*}$, $d_{2} : A \oplus_{T} X \to N^{*}$ such that $D = (d_{1}, d_{2})$, Set

$$D_1: A \to M^*; D_1(a) = d_1(a, 0),$$

$$D_2: X \to N^*; D_2(x) = d_1(0, x),$$

$$D_3: X \to N^*; D_3(x) = d_2(0, x), R: A \to N^*; R(a) = d_2(a, 0).$$

Now

$$D(a, x) = (d_1, d_2)((a, 0) + (0, x)) = (d_1, d_2)(a, 0) + (d_1, d_2)(0, x)$$

$$= (d_1(a, 0), d_2(a, 0)) + ((d_1(0, x), d_2(0, x)))$$

$$= (d_1(a, 0) + d_1(0, x)) + (d_2(a, 0) + d_2(0, x))$$

$$= (D_1(a) + D_2(x), R(a) + D_3(x)),$$
(1)

Now

$$D((a, x)(m, x')) = D(am, a \cdot x' + x \circ m + T(am, 0))$$

$$= (D_1(am) + D_2(a \cdot x') + D_2(x \circ m) + D_2(T(am, 0)), R(am) + D_3(a \cdot x')$$

$$+ D_3(x \circ m) + D_3(T(am, 0)), \qquad (2)$$

since *D* is module derivation so

$$D((a, x)(m, x')) = D(a, x) \cdot (m, x') + (a, x) \cdot D(m, x')$$

$$= (D_1(a) + D_2(x), R(a) + D_3(x)) \cdot (m, x')$$

$$+ (a, x) \cdot (D_1(m) + D_2(x), R(m) + D_3(x'))$$

$$= ((D_1(a) \cdot m + D_2(x)) \cdot m + a \cdot D_2(x') + D_2(x) \cdot m, R(a) \cdot T(m, 0)$$

$$+ T(a, 0) \cdot R(m) + D_3(x) \cdot T(m, 0) + T(a, 0) \cdot D_3(x')). \tag{3}$$

In 3, 2 Take x = x' = 0 to get $D_1 \in Z_{\mathfrak{U}}(A, M^*)$, (5), (4) and (8). Take a = 0 to get (3) and (6). Take m = 0 to get (2), (7). And in a similar way we can get other parameters. Conversely is in a same way.

Corollary 3.2 Let $X = \{0\}$ and D, D_1 and R be as in perivious lemma, then $D = \delta_{(f,g)}$ if and only if $D_1 = \delta_f$ and $g = \overline{\delta}_g$. Where $\overline{\delta}_g(a) = gT(a, 0) - T(a, 0) \cdot g$.

Proof. Since $X = \{0\}$ and $D(a, x) = (D_1(a) + D_2(x), R(a) + D(x))$ so $D(a, 0) = (D_1(a), R(a))$. If $D = \delta_{(f,g)}$ then

$$\begin{array}{ll} D(a, & 0) & = \delta_{(f,g)}(a, & 0) \\ & = (f, g) \cdot (a, 0) - (a, 0) \cdot (f, g) \\ & = (f \cdot a, g \cdot T(a, 0)) - (a \cdot f, T(a, 0) \cdot g) \\ & = (f \cdot a - a \cdot f, g \cdot T(a, 0) - T(a, 0) \cdot g) = (\delta_f(a), \overline{\delta}_g(a)) \ . \end{array}$$

So
$$D_1 = \delta_f$$
 and $R = \overline{\delta}_g$. Conversely
$$D(a, 0) = (D_1(a), R(a))$$

$$= (\delta_f(a), \overline{\delta}_g(a))$$

$$= (f \cdot a - a \cdot f, g \cdot T(a, 0) - T(a, 0) \cdot g)$$

$$= (f, g) \cdot (a, 0) - (a, 0) \cdot (f, g)$$

$$= \delta_{(f,g)}(a, 0) .$$

Theorem 3.3 The module amenability of $A \oplus_T X$ implies module amenability of A. Moreover if T(A, 0) = X, then X is also module amenable.

Proof. Assume that M, N are Banach $A - \mathfrak{U}$ -bimodule and Banach $X - \mathfrak{U}$ -bimodule respectively. Let $D_1: A \to M^*$ and $D_2: X \to N^*$ be module derivations. By Proposition 2.5, $M \oplus N$ is a Banach $A \oplus_T X - \mathfrak{U}$ - bimodule. Define $D': A \oplus_T X \to M^* \oplus N^*; D'(a, x) = (D_1(a), D_2(T(a, 0)))$. Now

$$\begin{split} &D'((a, x)(m, x')) &= D'(am, a.x' + x \circ m + T(am, 0)) \\ &= (D_1(am), D_2(T(am, 0))) \\ &= (D_1(a).m + a.D_1(m), D_2(T(a, 0)).T(m, 0) + T(a, 0).D_2(T(m, 0))) \\ &= (D_1(a), D_2(T(a, 0))).(m, x') + (a, x).(D_1(m), D_2(T(m, 0))) \\ &= D'(a, x).(m, x') + (a, x).D'(m, x)). \end{split}$$

Also

$$D'(\alpha \cdot (a, \quad x)) = D'(\alpha \cdot a, \quad \alpha \nabla x)$$

$$= ((D_1(\alpha \cdot a), D_2(T(\alpha \cdot a, 0)))$$

$$= ((\alpha \cdot D_1(a), \alpha \cdot D_2(T(a, 0)))$$

$$= (\alpha \cdot D'(a, x) .$$

And

$$D'((a, x) + (m, x') = D'((a + m, x + x'))$$

$$= (D_1(a + m), D_2(T(a + m), 0))$$

$$= (D_1(a) + D_1(m), D_2(T(a, 0)) + D_2(T(m, 0))$$

$$= (D_1(a), D_2(T(a, 0)) + (D_1(m), D_2(T(m, 0))$$

$$= D'(a, x) + D'(m, x').$$

So D' is a module derivation. Sice $A \oplus_T X$ is module amenable, there exists $(f, g) \in M^* \oplus N^*$ such that $D' = \delta_{(f,g)}$. Thus

$$D'(a, x) = \delta_{(f,g)}(a, x)$$

$$= (f, g) \cdot (a, x) - (a, x) \cdot (f, g)$$

$$= (f \cdot a + g \cdot T(a, 0)) - (a \cdot f, T(a, 0) \cdot g)$$

$$= (f \cdot a - a \cdot f, g \cdot T(a, 0) - T(a, 0) \cdot g) .$$

Consequently $D_1(a) = f \cdot a - a \cdot f$ i.e. $D_1 = \delta_f$ and $D_2(T(a, 0)) = \delta_g(T(a, 0))$. Since T(A, 0) = X, $D_2(x) = \delta_g(x)$ for all $x \in X$.

Theorem 3.4 *The module amenability of A implies module amenability of A* \bigoplus_{T} {0}.

Proof. Let $M \oplus N$ be a Banch $A \oplus_T X - \mathfrak{U}$ -bimodule and $D: A \oplus_T X \to M^* \oplus N^*$ be a module derivation. By lemma 3.1, there are D_1, D_2, D_3 and R such that $D(a, x) = (D_1(a) + D_2(x), R(a) + D_3(x))$. Since here $X = \{0\}$ so $D(a, 0) = (D_1(a), R(a))$. Module amenability of A implies there exist $f \in M^*$ such that $D_1 = \delta_f$ and since N^* is an A-U- bimodule and R is module derivation, there exist $g \in N^*$ such that $R = \delta_g$. Thus $D = \delta_{(f,g)}$.

Theorem 3.5 If T(A, 0) = X and $A^2 = A$, then the module amenability of A implies module amenability of $A \bigoplus_T X$.

Proof. Let $M \oplus N$ be a Banch $A \oplus_T X - \mathfrak{U}$ -bimodule and $D: A \oplus_T X \to M^* \oplus N^*$ be a module derivation. By lemma 3.1, there are D_1, D_2, D_3 and R such that $D(a, x) = (D_1(a) + D_2(x), R(a) + D_3(x))$. Since here T(A, 0) = X and $A^2 = A$ so $D(a, x) = (D_1(a), R(a))$. Module amenability of A implies there exist $f \in M^*$ such that $D_1 = \delta_f$ and since N^* is an $A - \mathfrak{U}$ -bimodule and R is module derivation, there exist $g \in N^*$ such that $R = \delta_g$. Thus $D = \delta_{(f,g)}$.

Example 3.6 Let \mathbb{N} be the set of positive integers. Consider $S = (\mathbb{N}, \mathbb{V})$ with the maximum operation $m \vee n = \max\{m, n\}$, then S is a amenable countable, abelian inverse semigroup with the identity I. Clearly $E_S = S$. This semigroup is denoted by \mathbb{N}_{\vee} . $l^1(\mathbb{N}_{\vee})$ is unital with unit δ_1 . Since \mathbb{N}_{\vee} is amenable and $l^1(\mathbb{N}_{\vee})$ is unital so $l^1(\mathbb{N}_{\vee})$ is module amenable (as an $l^1(\mathbb{N}_{\vee}) - l^1(\mathbb{N}_{\vee})$)-bimodule. Define $T: l^1(S) \times l^1(S) \to l^1(S)$; $T(\delta_x, \delta_y) = \begin{cases} \delta_x, & \delta_y = 0 \\ \delta_{x\vee y}, & \delta_y \neq 0. \end{cases}$ Then $l^1(\mathbb{N}_{\vee}) \oplus_T l^1(\mathbb{N}_{\vee})$ is module amenable.

4 WEAK MODULE AMENABILITY

The Banach algebra A is called weak module amenable (as an \mathfrak{U} -bimodule), if $H_{\mathfrak{U}}(A, X) = \{0\}$, where X is a commutative \mathfrak{U} -submodule of $A^*([2])$.

Theorem 4.1 The weak module amenability of $A \oplus_T X$ implies weak module amenability of A. In addition if T(A, 0) = X then X is also weak module amenable.

Proof. Assume that M, N are commutative \mathfrak{U} -submodule of A^* and X^* , respectively. we can show that $M \oplus N$ is a commutative \mathfrak{U} -submodule of $(A \oplus_T X)^*$. Let $D_1 \in Z_{\mathfrak{U}}(A, M)$ and $D_2 \in Z_{\mathfrak{U}}(X, N)$. Define $D: A \oplus_T X \to M \oplus N$; $D(a, x) = (D_1(a), D_2(T(a, 0)))$, it is easy to see that $D \in Z_{\mathfrak{U}}(A \oplus \tau X, M \oplus N)$. Since $A \oplus_T X$ is weak module amenable there is $(f, g) \in M \oplus N$ such that $D = \delta_{(f,g)}$ and

$$(D_1(a), D_2(T(a, 0))) = D(a, x)$$

= $\delta_{(f,g)}(a, x)$

=
$$(f, g) \cdot (a, x) - (a, x) \cdot (f, g)$$

= $(f \cdot a - a \cdot f, g \cdot T(a, 0) - T(a, 0) \cdot g)$
= $(\delta_f(a), \delta_g(T(a, 0)))$

Hence A, X are weak module amenable.

Theorem 4.2 *The weak module amenability of A implies the weak module amenability of A* $\bigoplus_{T} \{0\}$.

Proof. Suppose that $M \oplus N$ is a commutative Banach \mathfrak{U} -submodule of $(A \oplus \tau\{0\})^*$, and $D \in Z_{\mathfrak{U}}(A \oplus \tau\{0\}, M \oplus N)$. Then M and N are commutative \mathfrak{U} -submodule of A^* . Since $D \in Z_{\mathfrak{U}}(A \oplus \tau\{0\}, M \oplus N)$, by lemma 3.1 there are $D_1 \in Z_{\mathfrak{U}}(A, M)$, and $R \in Z_{\mathfrak{U}}(A, N)$, such that $D(a, 0) = (D_1(a), R(a))$. Since A is weak module amenable so there are $m \in M$ and $n \in N$ such that $D_1 = \delta_m$, $R = \delta_n$, where $\delta_n(a) = a \cdot n - n \cdot a = T(a, 0) \odot n - n$. T(a, 0)

Now

$$\begin{array}{ll} D(a, & x) & = (D_1(a), & R(a)) \\ & = (\delta_m(a), \; \delta_n(a)) \\ & = (a \cdot m - a \cdot m, \; T(a, \; 0) \odot n - n. \; T(a, \; 0)) \\ & = (a, \; 0) \cdot (m, \; n) - (m, \; n) \circ (a, \; 0) \\ & = \delta_{(m,n)}(a, \; 0) \; . \end{array}$$

Theorem 4.3 If T(A, 0) = X and $A^2 = A$, then the weak module amenability of A implies the weak module amenability of $A \oplus_T X$.

Proof. The proof is as above theorem. ■

Example 4.4 Let $S = \mathbb{N}_{V}$ be as in Example 3.6, since $l^{1}(S)$ is $l^{1}(S) - l^{1}(S)$ — module and $l^{1}(S)$ is weak module amenable. Let $T: l^{1}(S) \times l^{1}(S) \to l^{1}(S)$ have the properties as above theorems, then $l^{1}(S) \bigoplus_{T} l^{1}(S)$ is weak module amenable.

5 MODULE APPROXIMATE AMENABILITY

Let A be as above, then A is module approximately amenable (as an \mathfrak{U} - bimodule), if for any commutative Banach $A - \mathfrak{U}$ -bimodule X, each module derivation $D: A \to X^*$ is approximately inner.

A derivation $D: A \to X$ is said to be approximately inner if there exists a net $(x_i)_i \subseteq X$ such that $D(a) = \lim_i (a \cdot x_i - x_i \cdot a), a \in A.([10])$.

Lemma 5.1 Let D_1 , R, D_3 and D_2 are such as in the Lemma 3.1, and $D(a, b) = (D_1(a) + D_2(b), R(a) + D_3(b))$. If T(A, 0) = X and $A^2 = A$ then: D is approximately inner if and only if D_1 and R are approximately inner.

Proof. Assume that M is a commutative $A - \mathfrak{U}$ -bimodule and also N is commutative $X - \mathfrak{U}$ -bimodule, then $M \oplus N$ is a commutative $A \oplus_T X - \mathfrak{U}$ -bimodule. Let D be approximately inner so there is $(f_i, g_i)_i \subseteq M^* \oplus N^*$ such that

$$D(a, x) = T(a', 0)$$

$$= \lim_{i} ((a, x) \cdot (f_i, g_i) - (f_i, g_i) \cdot (a, x))$$

$$= \lim_{i} ((a \cdot f_i, T(a, 0) \cdot g_i) - (f_i \cdot a, g_i, T(a, 0)))$$

$$= \lim_{i} (a \cdot f_i - f_i \cdot a, T(a, 0) \cdot g_i - g_i \cdot T(a, 0)),$$

i.e. $D(a) = \lim_i (a \cdot f_i - f_i \cdot a)$ and $R(a) = \lim_i (T(a, 0) \cdot g_i - g_i \cdot T(a, 0))$. Conversely, let $D_1(a) = \lim_{i \in I} (a \cdot f_i - f_i \cdot a)$ and $R(a) = \lim_{j \in J} (T(a, 0) \cdot g_j - g_j \cdot T(a, 0))$

Since the index sets (I, \leq) , (J, \leq) are ordered sets, so the set $\Lambda = I \times J = \{(i, j) : i \in I, j \in J\}$ is ordered as follows

$$(i, j) \le (i', j') \Leftrightarrow (i \le i', j \le j).$$

For $\lambda = (i, j) \in \Lambda$ set $t_{\lambda} = (f_i, g_j)$. Let $\epsilon > 0$ be given. Since $D_1(a) = \lim_i (a \cdot f_i - f_i \cdot a)$ and $R(a) = \lim_j (T(a, 0) \cdot g_j - g_j \cdot T(a, 0))$ there are $i_0 \in I, j_0 \in J$ such that

- 1) For all $i \ge i_0$, $||D_1(a) (a \cdot f_i f_i \cdot a)|| \le \frac{\epsilon}{3}$.
- 2) For all $j \ge j_0$, $|| R(a) (T(a, 0) \cdot g_j g_j \cdot T(a, 0)) || \le \frac{\epsilon}{3}$.

Now set $\lambda_0=(i_0,\ j_0)$, then for all $\lambda\geq\lambda_0$, since $D(a,\ T(a',\ 0))=(D_1(a),\ R(a))$, we have

$$\| D(a, x) - ((a, x) \cdot t_{\lambda} - t_{\lambda} \cdot (a, x)) \| = \| D(a, x) - ((a, x) \cdot (f_i, g_j) - (f_i, g_j) \cdot (a, x)) \|$$

$$= \| D(a, x) - (a \cdot f_i - f_i \cdot a, T(a, 0) \cdot g_j - g_j \cdot T(a, 0)) \|$$

$$= \| (D_1(a), R(a)) - (a \cdot f_i - f_i \cdot a, T(a, 0) \cdot g_j - g_j \cdot T(a, 0)) \|$$

$$= \| ((D_1(a) - (a \cdot f_i - f_i \cdot a)), R(a) - (T(a, 0) \cdot g_j - g_j \cdot T(a, 0))) \|$$

$$\leq \| D_1(a) - (a \cdot f_i - f_i \cdot a) \| + \| R(a) - (T(a, 0) \cdot g_j - g_j \cdot T(a, 0)) \|$$

$$\leq \epsilon$$

Hence $D(a, x) = \lim_{\lambda} ((a, x) \cdot t_{\lambda} - t_{\lambda}(a, x \text{ where } x = T(a', 0) \text{ i.e. } D \text{ is approximately inner.} \blacksquare$

Theorem 5.2 If $A \oplus \tau X$ is module approximately amenable then A is module approximately amenable. Furthermore, if T(A, 0) = X also X is module approximately amenable.

Proof. In an argument as in the proof of Theorem 3.3 and the application, the usage of above lemma. ■

Theorem 5.3 If T(A.O) = X and $A^2 = A$ then the module approximate amenability of A implies the module approximate amenability of $A \oplus_T X$.

Proof. Let $M \oplus N$ be a commutative $A \oplus_T X - \mathfrak{U}$ -bimodule and $D \in Z_{\mathfrak{U}}(A \oplus \tau X, M^* \oplus N^*)$. There are $D_1 \in Z_{\mathfrak{U}}(A, M^*), D_3 \in Z_{\mathfrak{U}}(X, N^*), R \in Z_{\mathfrak{U}}(A, N^*)$ and $D_2 : X \to N^*$ such that $D(a, x) = (D_1(a) + D_2(x), R(a) + D(x))$ and since T(A, 0) = X and $A^2 = A$ we have $D(a, x) = (D_1(a), R(a))$. Since A, X are module approximate amenable, so D_1 and R are approximatly inner. Thus by the above lemma, D is approximately inner.

Example 5.4 Let S be an amenable inverse semigroup such that the set of idempotents E_S be equal to S and $l^1(S)$ has approximately unit. Since S is amenable, $l^1(S)$ is module approximately amenable, [10]. Also $l^1(S)$ is $l^1(S) - l^1(S)$ -bimodule, thus $l^1(S) \oplus_T l^1(S)$ is module approximately amenable. Where $T: l^1(S) \times l^1(S) \to l^1(S)$ is defined by

$$T(\delta_x, \ \delta_y) = \begin{cases} \delta_x, & \delta_y = 0\\ \delta_{xy}, & \delta_y \neq 0. \end{cases}$$

6 CONCLUSIONS

The module amenability of $A \oplus_T X$ implies module amenability of A and The module amenability of A implies module amenability of $A \oplus_T \{0\}$. Also If T(A, 0) = X and $A^2 = A$, then the module amenability of A implies module amenability of $A \oplus_T X$. meanwhile, The weak module amenability of $A \oplus_T X$ implies weak module amenability of A. On the contrary, if T(A, 0) = X and $A^2 = A$, then the weak module amenability of A implies the weak module amenability of $A \oplus_T X$.

Considering approximately, if $A \oplus \tau X$ is module approximately amenable then A is module approximately amenable. On the contrary, if T(A, 0) = X and $A^2 = A$ then the module approximate amenability of A implies the module approximate amenability of $\bigoplus_T X$. For example, we have S be an amenable inverse semigroup such that the set of idempotents E_S be equal to S and $I^1(S)$ has approximately unit. Since S is amenable, $I^1(S)$ is module approximately amenable.

Acknowledgements: The authors would like to thank the referees for their careful reading and constructive comments which improved the paper.

REFERENCES

- [1] M. Amini, "Module amenability for semigroup algebras", *Semigroup Forum*, **69**, 243-254 (2004).
- [2] M.Amini and A.Bodaghi, "Module amenability and weak module amenability for second dual of Banach algebras", *Chamchuri Journal of Math*, 57-71 (2010).
- [3] M.Amini and D.Ebrahimi Bagha, "Weak module amenability for semigroup algebras", *Semigroup Forum.* **71**, 18-26 (2005).
- [4] H.Azaraien and D.Ebrahimi Bagha, "Ideal amenability of module Lau Banach algebra", *Indagationes Mathematicae*, **29**(2), 738-745 (2018).
- [5] W. G. Bade, P. C. Curtis and H. G. Dales, "Amenability and weak amenability for Beurling and Lipschits algebra", *Proc. London Math. Soc.*, **55**(3), 359-377 (1987).
- [6] S.J. Bhatt and P.A. Dabhi, "Arens regularity and amenability of Lau product of Banach algebras defined by a Banach algebra morphism", *Bull. Aust. Math. Soc.* **87**, 195-206 (2013).
- [7] B. E. Johnson, "Weak amenability of group Algebras", *Bull. London Math. Soc.*, **23**, 281-284 (1991).
- [8] B. E. Johnson, "Derivation from $L^1(G)$ into $L^1(G)$ and $L^{\infty}(G)$ ", Lecture Note in Math, 191-198 (1988).
- [9] B.E.Johnson," Cohomology in Banach algebras", Memoirs Amer. Math. Soc., 127 (1972).
- [10] H.Pourmahmood-Aghababa and A.Bodaghi, "Module approximate amenability of Banach algebras", *Bulletin of Iranian Mathematical Soc.*, **39**, 1137-1158 (2013).
- [11] M.Sangani-Monfared, "On certain products of Banach algebras with applications to

harmonic analysis", *Studia Math.*, **178**(3), 277 – 294 (2007).

[12] T.Yazdan Panah, "Amenability and Weak amenability of module extension of Banach algebra by 2-cocycles", *Far East.Math. Sci.*, 357-374 (2004).

Received March 16, 2020