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Summary. Let 𝐴𝐴,𝑋𝑋,𝔘𝔘 be Banach algebras and 𝐴𝐴 be a Banach 𝔘𝔘-bimodule also 𝑋𝑋 be a Banach 
𝐴𝐴 − 𝔘𝔘-module. In this paper we study the relation between module amenability, weak module 
amenability and module approximate amenability of Banach algebra 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 and that of 
Banach algebras 𝐴𝐴,𝑋𝑋. Where 𝑇𝑇: 𝐴𝐴 × 𝐴𝐴 → 𝑋𝑋 is a bounded bi-linear mapping with specific 
conditions. 

1 INTRODUCTION 
     The notation of amenability of Banach algebras was introduced by B.Johnson in [9]. A 
Banach algebra 𝐴𝐴 is amenable if every bounded derivation from 𝐴𝐴 into any dual Banach 𝐴𝐴-
bimodule is inner, equivalently if 𝐻𝐻(𝐴𝐴, 𝑋𝑋∗) = {0} for any Banach 𝐴𝐴-bimodule 𝑋𝑋, where 𝐻𝐻(𝐴𝐴,
𝑋𝑋∗) is the first Hochschild co- homology group of 𝐴𝐴 with coefficient in 𝑋𝑋∗. Also, a Banach 
algebra A is weakly amenable if 𝐻𝐻(𝐴𝐴, 𝐴𝐴∗) = {0}. Bade, Curtis and Dales introduced the notion 
of weak amenability on Banach algebras in [5]. They considered this concept only for 
commutative Banach algebras. After a while, Johnson defined the weak amenability for 
arbitrary Banach algebras [8]. 
     For a morphism 𝑇𝑇:𝐵𝐵 → 𝐴𝐴 from a Banach algebra 𝐵𝐵 to a commutative Banach algebra 𝐴𝐴. 
The notion of module amenability of Banach algebras was introduced by Amini in [1]. Amini 
and Ebrahimi Bagha in [3] studied the concept of weak module amenability. In [10] the notation 
of module approximate amenability and contractibility as modules over of another Ba- nach 
algebra was introduced for the notion of Banach algebras. 
     M. Sangani-Monfared in [11] defined a product on 𝐴𝐴 × 𝐵𝐵 and obtained the Banach algebra 
𝐴𝐴 ×𝜃𝜃 𝐵𝐵 using a character 𝜃𝜃 ∈ 𝜎𝜎(𝐵𝐵) , for Banach algebras in a fairly general setting. 
     Later, S.J. Bhatt and P.A. Dabhi in [6] defined a product on 𝐴𝐴 × 𝐵𝐵 and obtained a Banach 
algebra 𝐴𝐴 ×𝑇𝑇 𝐵𝐵 for a morphism 𝑇𝑇 : 𝐵𝐵 → 𝐴𝐴 from a Banach algebra 𝐵𝐵 to a commutative Banach 
algebra 𝐴𝐴. 
     The first and the second authors generalized all these constructions, and de- fined the module 
Lau product 𝐴𝐴 ×𝛼𝛼 𝐵𝐵 for Banach algebras 𝐴𝐴 and 𝐵𝐵 such that 𝐴𝐴 is a Banach 𝐵𝐵-bimodule. They 
studied the ideal amenability of 𝐴𝐴 ×𝛼𝛼 𝐵𝐵 in [4]. 
     T.Yazdan panah in [12] studied the concept of expanded modular of Banach algebra denoted 
by 𝐴𝐴⊕𝑇𝑇 𝑋𝑋. He showed that 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 is amenable if and only if 𝐴𝐴 is amenable and 𝑋𝑋 = {0}. In 
this paper, we define a new Banach algebra different from of all above Banach algebras, named 
𝐴𝐴⊕𝑇𝑇 𝑋𝑋 in section 2. Then, some required basic properties of the following part are studied. In 
section 3, as the main section of paper, we study the relationship between module amenability 
of 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 and module amenability of 𝐴𝐴 and  X. We show that If 𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋 and 𝐴𝐴2 = 𝐴𝐴, 
then the module amenability of 𝐴𝐴 implies module amenability of 𝐴𝐴⊕𝑇𝑇 𝑋𝑋. Furthermore, it’s 
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conversly obtained that the module amenability of 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 implies module amenability of 𝐴𝐴 
and moreover if 𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋, then 𝑋𝑋 also is module amenable. In sectiones 4 and 5 respectively 
we study the relationship between weak mod- ule amenability (based as definition in [1] and 
[2]) and module approximte amenability of 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 and weak module amenability and module 
approximte amenability of 𝐴𝐴,𝑋𝑋. 

 
2   DEFINITIONS AND BASIC PROPERTIES 

 
     Throughout this paper it’s assumed that 𝔘𝔘 be a Banach algebra, 𝐴𝐴 be a Banach 𝔘𝔘-bimodule 
and 𝑋𝑋 be a Banach A-U-bimodule. Module actions are assumed as follow too: 

𝐴𝐴 × 𝔘𝔘 → 𝐴𝐴; (𝑎𝑎, 𝛼𝛼) ⟼ 𝑎𝑎 ∘ 𝛼𝛼,𝔘𝔘 × 𝐴𝐴 → 𝐴𝐴; (𝛼𝛼, 𝑎𝑎) ⟼ 𝛼𝛼 ⋅ 𝑎𝑎. 
𝑋𝑋 × 𝔘𝔘 → 𝑋𝑋; (𝑥𝑥, 𝛼𝛼) ⟼ 𝑥𝑥 △ 𝛼𝛼,𝔘𝔘 × 𝑋𝑋 → 𝑋𝑋; (𝛼𝛼, 𝑥𝑥) ⟼ 𝛼𝛼∇𝑥𝑥. 
𝑋𝑋 × 𝐴𝐴 → 𝑋𝑋; (𝑥𝑥, 𝑎𝑎) ⟼ 𝑥𝑥 ∘ 𝑎𝑎,𝐴𝐴 × 𝑋𝑋 → 𝑋𝑋; (𝑎𝑎, 𝑥𝑥) ⟼ 𝑎𝑎 ⋅ 𝑥𝑥. 

     Consider the bounded bilinear map 𝑇𝑇 : 𝐴𝐴 × 𝐴𝐴 → 𝑋𝑋, which has the following properties: 
𝑎𝑎 ⋅ 𝑇𝑇(𝑎𝑎1𝑎𝑎2, 0) = 𝑇𝑇(𝑎𝑎𝑎𝑎1, 0) ∘ 𝑎𝑎2,𝑇𝑇(𝑎𝑎1𝑎𝑎2, 0) = 𝑇𝑇(𝑎𝑎1, 0)𝑇𝑇(𝑎𝑎2, 0) , 
𝑇𝑇(𝛼𝛼 ⋅ 𝑎𝑎, 𝛼𝛼∇𝑥𝑥) = 𝛼𝛼 ⋅ 𝑇𝑇(𝑎𝑎, 𝑥𝑥),𝑇𝑇(𝑎𝑎 ∘ 𝛼𝛼, 𝑥𝑥 △ 𝛼𝛼) = 𝑇𝑇(𝑎𝑎, 𝑥𝑥) ⋅ 𝛼𝛼, 
∥ 𝑇𝑇(𝑎𝑎, 0) ∥=∥ 𝑎𝑎 ∥, for all 𝑎𝑎,𝑎𝑎1,𝑎𝑎2 ∈ 𝐴𝐴, 𝑥𝑥 ∈ 𝑋𝑋,𝛼𝛼 ∈ 𝔘𝔘. 

     Module extension 𝐴𝐴⊕ 𝑋𝑋, with the product  
 (𝑎𝑎, 𝑥𝑥)(𝑎𝑎1, 𝑥𝑥1) = (𝑎𝑎𝑎𝑎1, 𝑎𝑎 ⋅ 𝑥𝑥1 + 𝑥𝑥 ∘ 𝑎𝑎1 + 𝑇𝑇(𝑎𝑎𝑎𝑎1, 0)) 

and the norm ∥ (𝑎𝑎, 𝑥𝑥) ∥=∥ 𝑎𝑎 ∥ +∥ 𝑥𝑥 ∥ is a Banach algebra denoted by 𝐴𝐴⊕𝑇𝑇 𝑋𝑋. 
 

     Definition 2.1 The bounded map 𝐷𝐷:𝐴𝐴 → 𝑋𝑋∗ with 𝐷𝐷(𝑎𝑎 + 𝑏𝑏) = 𝐷𝐷(𝑎𝑎) + 𝐷𝐷(𝑏𝑏),𝐷𝐷(𝑎𝑎𝑎𝑎) = 𝑎𝑎 ⋅
𝐷𝐷(𝑏𝑏) + 𝐷𝐷(𝑎𝑎) ⋅ 𝑏𝑏 for all 𝑎𝑎, 𝑏𝑏 ∈ 𝐴𝐴, and 𝐷𝐷(𝛼𝛼 ⋅ 𝑎𝑎) = 𝛼𝛼 ⋅ 𝐷𝐷(𝑎𝑎),𝐷𝐷(𝑎𝑎 ⋅ 𝛼𝛼) = 𝐷𝐷(𝑎𝑎) ⋅ 𝛼𝛼(𝛼𝛼 ∈ 𝔘𝔘, 𝑎𝑎 ∈
𝐴𝐴) , is called module derivation.  

 
     Note that 𝑋𝑋∗ is also Banach module over 𝐴𝐴 and 𝔘𝔘 with compatible actions under the 
canonical actions of 𝐴𝐴 and 𝔘𝔘, 𝛼𝛼 ⋅ (𝑎𝑎 ⋅ 𝑓𝑓) = (𝛼𝛼 ⋅ 𝑎𝑎) ⋅ 𝑓𝑓, (𝑎𝑎 ∈ 𝐴𝐴, 𝛼𝛼 ∈ 𝔘𝔘, 𝑓𝑓 ∈ 𝑋𝑋∗) , and the same 
for right action. Here the canonical actions of 𝐴𝐴 and 𝔘𝔘 on 𝑋𝑋∗ are defined by (𝛼𝛼 ⋅ 𝑓𝑓)(𝑥𝑥) = 𝑓𝑓(𝑥𝑥 △
𝛼𝛼), (𝑎𝑎 ⋅ 𝑓𝑓)(𝑥𝑥) = 𝑓𝑓(𝑥𝑥 ∘ 𝑎𝑎), (𝛼𝛼 ∈ 𝔘𝔘, 𝑎𝑎 ∈ 𝐴𝐴, 𝑓𝑓 ∈ 𝑋𝑋∗, 𝑥𝑥 ∈ 𝑋𝑋) and it’s the same for right actions. 
As in [1] we call  A- module 𝑋𝑋 which have a compatible 𝔘𝔘-action as above, a 𝐴𝐴 − 𝔘𝔘 modules, 
above assertion is to say that if 𝑋𝑋 is an 𝐴𝐴 − 𝔘𝔘- module, then so is 𝑋𝑋∗. Also we use the notation 
𝑍𝑍𝔘𝔘(𝐴𝐴, 𝑋𝑋∗) for the set of all module derivations 𝐷𝐷:𝐴𝐴 → 𝑋𝑋∗, and 𝑁𝑁𝔘𝔘(𝐴𝐴, 𝑋𝑋∗) for those which are 
inner and 𝐻𝐻𝔘𝔘(𝐴𝐴, 𝑋𝑋∗) for the quotient group. 

 
     Proposition 2.2  𝐴𝐴⊕𝑇𝑇 𝑋𝑋 is a Banach 𝔘𝔘- bimodule.  

 
      Proof. Consider the module actions as follow: 

𝔘𝔘 × (𝐴𝐴⊕𝑇𝑇 𝑋𝑋) → 𝐴𝐴⊕𝑇𝑇 𝑋𝑋;𝛼𝛼 ⋅ (𝑎𝑎, 𝑥𝑥) = (𝛼𝛼 ⋅ 𝑎𝑎, 𝛼𝛼∇𝑥𝑥) , and (𝐴𝐴⊕𝑇𝑇 𝑋𝑋) × 𝔘𝔘 →
𝐴𝐴⊕𝑇𝑇 𝑋𝑋; (𝑎𝑎, 𝑥𝑥) • 𝛼𝛼 = (𝛼𝛼 ∘ 𝑎𝑎, 𝛼𝛼 △ 𝑥𝑥) . It is easy to check the satification of the properties. ∎ 

 
     Proposition 2.3  If 𝑌𝑌 is an A-U-module, then 𝑌𝑌 ⊕ {𝑂𝑂} is a Banach 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 − 𝔘𝔘-bimodule.  

 
      Proof. Assume that the module actions on 𝑌𝑌, are as follows: 

𝔘𝔘 × 𝑌𝑌 → 𝑌𝑌; (𝛼𝛼, 𝑦𝑦) ⟼ 𝛼𝛼 △ 𝑦𝑦,𝑌𝑌 × 𝔘𝔘 → 𝑌𝑌; (𝑦𝑦, 𝛼𝛼) ⟼ 𝑦𝑦 • 𝛼𝛼. And 𝐴𝐴 × 𝑌𝑌 → 𝑌𝑌; (𝑎𝑎,
𝑦𝑦) ⟼ 𝑎𝑎 ⋅ 𝑦𝑦,𝑌𝑌 × 𝐴𝐴 → 𝑌𝑌; (𝑦𝑦, 𝑎𝑎) ⟼ 𝑦𝑦. 𝑎𝑎. Define the module actions as: (𝑌𝑌 ⊕ {O}) × 𝔘𝔘 → 𝑌𝑌⊕
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{O}; (𝑦𝑦, 0) • 𝛼𝛼 = (𝑦𝑦 • 𝛼𝛼, 0),𝔘𝔘 × (𝑌𝑌 ⊕ {O}) → 𝑌𝑌⊕ {O}; 𝛼𝛼 • (𝑦𝑦, 0) = (𝛼𝛼 △ 𝑦𝑦, 0) . And 
(𝐴𝐴⊕𝑇𝑇 𝑋𝑋) × (𝑌𝑌 ⊕ {O}) → 𝑌𝑌⊕ {O}; (𝑎𝑎, 𝑥𝑥). (𝑦𝑦, 0) = (𝑎𝑎. 𝑦𝑦, O), (𝑌𝑌 ⊕ {O}) × (𝐴𝐴⊕𝑇𝑇 𝑋𝑋) →
𝑌𝑌⊕ {0}; (𝑦𝑦, 0) ∘ (𝑎𝑎, 𝑥𝑥) = (𝑦𝑦.  𝑎𝑎, O) . We only need to show that the actions are compatible. 

1)𝛼𝛼.  ((𝑎𝑎, 𝑥𝑥). (𝑦𝑦, 0))     = 𝛼𝛼.  (𝑎𝑎. 𝑦𝑦, 0)
= (𝛼𝛼 △ (𝑎𝑎.𝑦𝑦), 0) = ((𝛼𝛼 ⋅ 𝑎𝑎) ⋅ 𝑦𝑦, 0) 
= ((𝛼𝛼 ⋅ 𝑎𝑎, 𝛼𝛼∇𝑥𝑥) ⋅ (𝑦𝑦, 0) = (𝛼𝛼 ⋅ (𝑎𝑎, 𝑥𝑥)). (𝑦𝑦, 0)  . 

2)((𝑎𝑎, 𝑥𝑥) ⋅ (𝑦𝑦, 0)) • 𝛼𝛼    = (𝑎𝑎 ⋅ 𝑦𝑦, 0) • 𝛼𝛼 
= ((𝑎𝑎 ⋅ 𝑦𝑦) • 𝛼𝛼, 0)) = (𝑎𝑎 ⋅ (𝑦𝑦 • 𝛼𝛼), 0) 
= (𝑎𝑎, 𝑥𝑥) ⋅ (𝑦𝑦  •   𝛼𝛼, 0) = (𝑎𝑎, 𝑥𝑥) ⋅ ((𝑦𝑦, 0)   •   𝛼𝛼)  . 

3)(𝛼𝛼.  (𝑦𝑦, 0)) ⋅ (𝑎𝑎, 𝑥𝑥)     = (𝛼𝛼 △ 𝑦𝑦, 0) ⋅ (𝑎𝑎, 𝑥𝑥) 
= ((𝛼𝛼 △ 𝑦𝑦).  𝑎𝑎, 0) = (𝛼𝛼 △ (𝑦𝑦.  𝑎𝑎), 0)) 
= 𝛼𝛼.  (𝑦𝑦.  𝑎𝑎, 0) = 𝛼𝛼.  ((𝑦𝑦, 0) ∘ (𝑎𝑎, 𝑥𝑥)) 

 ∎ 
     Proposition 2.4  Let 𝑀𝑀⊕𝑁𝑁 be a Banach 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 − 𝔘𝔘-bimodule, then 𝑀𝑀 is a Banach 𝐴𝐴 −
𝔘𝔘-bimodule. 
      Proof. Consider the map 𝑄𝑄𝑀𝑀 : 𝑀𝑀⊕𝑁𝑁 → 𝑀𝑀; (𝑚𝑚, 𝑛𝑛) ⟼𝑚𝑚 and define the module actions 
as: 𝑀𝑀 × 𝔘𝔘 → 𝑀𝑀; (𝑚𝑚, 𝑛𝑛) ⟼𝑚𝑚 ⋅ 𝛼𝛼 = 𝑄𝑄𝑀𝑀((𝑚𝑚, 0) • 𝛼𝛼),𝔘𝔘 × 𝑀𝑀 → 𝑀𝑀; (𝛼𝛼, 𝑚𝑚) ⟼ 𝛼𝛼 ∘𝑚𝑚 =
𝑄𝑄𝑀𝑀(𝛼𝛼 ⋅ (𝑚𝑚, 0  𝑀𝑀 × 𝐴𝐴 → 𝑀𝑀; (𝑚𝑚, 𝑎𝑎) ⟼𝑚𝑚. 𝑎𝑎 = 𝑄𝑄𝑀𝑀((𝑚𝑚, 0) ∘ (𝑎𝑎, 0)) and 𝐴𝐴 × 𝑀𝑀 → 𝐴𝐴; (𝑎𝑎,
𝑚𝑚) ⟼ 𝑎𝑎 • 𝑚𝑚 = 𝑄𝑄𝑀𝑀((𝑎𝑎, 0) ⋅ (𝑚𝑚, 0)) ∎  
     Proposition 2.5  Let 𝑀𝑀 be a Banach 𝐴𝐴 − 𝔘𝔘-module and 𝑁𝑁 be a Banach 𝑋𝑋 − 𝔘𝔘-bimodule, 
𝑀𝑀⊕𝑁𝑁 is a Banach 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 − 𝔘𝔘-bimodule.  

 Proof. Given module actions on 𝑀𝑀⊕𝑁𝑁 as follows: 
(𝑀𝑀⊕𝑁𝑁) × 𝔘𝔘 → 𝑀𝑀⊕𝑁𝑁; (𝑚𝑚, 𝑛𝑛) ⋅ 𝛼𝛼 = (𝑚𝑚.𝛼𝛼, 𝑛𝑛∇𝛼𝛼),𝔘𝔘 × (𝑀𝑀⊕𝑁𝑁) → 𝑀𝑀⊕𝑁𝑁; 𝛼𝛼 •

(𝑚𝑚, 𝑛𝑛) = (𝛼𝛼 • 𝑚𝑚, 𝛼𝛼 △𝑚𝑚), (𝑀𝑀⊕𝑁𝑁) × (𝐴𝐴⊕𝑇𝑇 𝑋𝑋) → (𝑀𝑀⊕𝑁𝑁); (𝑚𝑚, 𝑛𝑛) ⋅ (𝑎𝑎, 𝑥𝑥) = (𝑚𝑚  𝛼𝛼,
𝑛𝑛.  𝑇𝑇(𝑎𝑎, 0  (𝐴𝐴⊕𝑇𝑇 𝑋𝑋) × (𝑀𝑀⊕𝑁𝑁) → 𝑀𝑀⊕𝑁𝑁; (𝑎𝑎, 𝑥𝑥) • (𝑚𝑚, 𝑛𝑛) = (𝑎𝑎  •   𝑚𝑚, 𝑇𝑇(𝑎𝑎, 0) ⊚𝑛𝑛) . 
∎  
     Proposition 2.6  For each (𝑓𝑓, 𝑔𝑔) ∈ 𝑀𝑀∗ ⊕ 𝑁𝑁∗, (𝑎𝑎, 𝑥𝑥) ∈ 𝐴𝐴⊕𝑇𝑇 𝑋𝑋, (𝑚𝑚, 𝑛𝑛) ∈ 𝑀𝑀⊕𝑁𝑁 we 
have (𝑓𝑓, 𝑔𝑔) ⋅ (𝑎𝑎, 𝑥𝑥) = (𝑓𝑓 ⋅ 𝑎𝑎, 𝑔𝑔 ⋅ 𝑇𝑇(𝑎𝑎, 0)) and (𝑎𝑎, 𝑥𝑥). (𝑓𝑓, 𝑔𝑔) = (𝑎𝑎.𝑓𝑓, 𝑇𝑇(𝑎𝑎, 0).𝑔𝑔) . 

 Proof. 
〈(𝑓𝑓, 𝑔𝑔). (𝑎𝑎, 𝑥𝑥), (𝑚𝑚, 𝑛𝑛)〉 = 〈(𝑓𝑓, 𝑔𝑔), (𝑎𝑎, 𝑥𝑥) • (𝑚𝑚, 𝑛𝑛)〉 

= 〈(𝑓𝑓, 𝑔𝑔), (𝑎𝑎 ∘ 𝑚𝑚, 𝑇𝑇(𝑎𝑎, 0) ⊚𝑛𝑛)〉 

= 〈𝑓𝑓, 𝑎𝑎 ∘ 𝑚𝑚〉 + 〈𝑔𝑔, 𝑇𝑇(𝑎𝑎, 0) ⊚𝑛𝑛〉 

= 〈𝑓𝑓.𝑎𝑎, 𝑚𝑚〉 + 〈𝑔𝑔.𝑇𝑇(𝑎𝑎, 0), 𝑛𝑛〉 

 = 〈(𝑓𝑓. 𝑎𝑎, 𝑔𝑔.𝑇𝑇(𝑎𝑎, 0  (𝑚𝑚, 𝑛𝑛))) 
∎ 
     Proposition 2.7  If 𝑁𝑁 is a Banach 𝑋𝑋 − 𝔘𝔘- bimodule, then is a Banach 𝐴𝐴 − 𝔘𝔘-bimodule. 

  Proof. The module actions are defined as follow: 
𝐴𝐴 × 𝑁𝑁 → 𝑁𝑁;𝑎𝑎.𝑛𝑛 = 𝑇𝑇(𝑎𝑎, 0) ⊚𝑛𝑛 and 𝑁𝑁 × 𝐴𝐴 → 𝑁𝑁;𝑛𝑛 • 𝑎𝑎 = 𝑛𝑛.𝑇𝑇(𝑎𝑎, ⊚) . ∎ 
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3  MODULE AMENABILITY 

     Lemma 3.1  𝐷𝐷 ∈ 𝑍𝑍𝔘𝔘(𝐴𝐴⊕𝑇𝑇 𝑋𝑋, 𝑀𝑀∗ ⊕𝑁𝑁∗)  if and only if there are 𝐷𝐷1 ∈ 𝑍𝑍𝔘𝔘(𝐴𝐴, 𝑀𝑀∗),𝐷𝐷3 ∈
𝑍𝑍𝔘𝔘(𝑋𝑋, 𝑁𝑁∗),𝑅𝑅 ∈ 𝑍𝑍𝔘𝔘(𝐴𝐴, 𝑁𝑁∗)  and linear map 𝐷𝐷2 : 𝑋𝑋 → 𝑀𝑀∗  such that 

1) 𝐷𝐷(𝑎𝑎, 𝑥𝑥) = (𝐷𝐷1(𝑎𝑎) + 𝐷𝐷2(𝑥𝑥), 𝑅𝑅(𝑎𝑎) + 𝐷𝐷3(𝑥𝑥)) ,
2) 𝐷𝐷2(𝑎𝑎 • 𝑥𝑥) = 𝑎𝑎 ⋅ 𝐷𝐷2(𝑥𝑥) ,
3) 𝐷𝐷2(𝑥𝑥 ∘ 𝑎𝑎) = 𝐷𝐷2(𝑥𝑥) ⋅ 𝑎𝑎,
4) 𝑅𝑅(𝑏𝑏𝑏𝑏) = 𝑅𝑅(𝑏𝑏) ⋅ 𝑇𝑇(𝑑𝑑, 0) + 𝑇𝑇(𝑏𝑏, 0) ⋅ 𝑅𝑅(𝑑𝑑) = 𝑅𝑅(𝑏𝑏).𝑑𝑑 + 𝑏𝑏.𝑅𝑅(𝑑𝑑) ,
5) 𝐷𝐷2(𝑇𝑇(𝑎𝑎𝑎𝑎, 0)) = 0,
6) 𝐷𝐷3(𝑎𝑎. 𝑥𝑥) = 𝑇𝑇(𝑎𝑎, 0).𝐷𝐷3(𝑥𝑥) ,
7) 𝐷𝐷3(𝑥𝑥 ∘ 𝑎𝑎) = 𝐷𝐷3(𝑥𝑥).𝑇𝑇(𝑎𝑎, 0) ,
8) 𝐷𝐷3(𝑇𝑇(𝑎𝑎𝑎𝑎, 0)) = 0.
  Proof. Suppose that 𝐷𝐷 ∈ 𝑍𝑍𝔘𝔘(𝐴𝐴⊕𝑇𝑇 𝑋𝑋, 𝑀𝑀∗ ⊕𝑁𝑁∗) then there are 𝑑𝑑1 : 𝐴𝐴⊕ 𝜏𝜏𝜏𝜏 → 𝑀𝑀∗, 

𝑑𝑑2 : 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 → 𝑁𝑁∗ such that D = (𝑑𝑑1, 𝑑𝑑2) , Set  
𝐷𝐷1:𝐴𝐴 → 𝑀𝑀∗;𝐷𝐷1(𝑎𝑎) = 𝑑𝑑1(𝑎𝑎, 0), 

𝐷𝐷2:𝑋𝑋 → 𝑁𝑁∗;𝐷𝐷2(𝑥𝑥) = 𝑑𝑑1(0, 𝑥𝑥), 

𝐷𝐷3:𝑋𝑋 → 𝑁𝑁∗;𝐷𝐷3(𝑥𝑥) = 𝑑𝑑2(0, 𝑥𝑥),𝑅𝑅:𝐴𝐴 → 𝑁𝑁∗;𝑅𝑅(𝑎𝑎) = 𝑑𝑑2(𝑎𝑎, 0). 
     Now 
𝐷𝐷(𝑎𝑎, 𝑥𝑥) = (𝑑𝑑1, 𝑑𝑑2)((𝑎𝑎, 0) + (0, 𝑥𝑥))     = (𝑑𝑑1, 𝑑𝑑2)(𝑎𝑎, 0) + (𝑑𝑑1,

𝑑𝑑2)(0, 𝑥𝑥) 
= (𝑑𝑑1(𝑎𝑎, 0), 𝑑𝑑2(𝑎𝑎, 0)) + ((𝑑𝑑1(0, 𝑥𝑥), 𝑑𝑑2(0, 𝑥𝑥)) 
= (𝑑𝑑1(𝑎𝑎, 0) + 𝑑𝑑1(0, 𝑥𝑥)) + (𝑑𝑑2(𝑎𝑎, 0) + 𝑑𝑑2(0, 𝑥𝑥)) 
= (𝐷𝐷1(𝑎𝑎) + 𝐷𝐷2(𝑥𝑥), 𝑅𝑅(𝑎𝑎) + 𝐷𝐷3(𝑥𝑥)), (1) 

     Now 
𝐷𝐷((𝑎𝑎, 𝑥𝑥)(𝑚𝑚, 𝑥𝑥′))     = 𝐷𝐷(𝑎𝑎𝑎𝑎, 𝑎𝑎 ⋅ 𝑥𝑥′ + 𝑥𝑥 ∘ 𝑚𝑚 + 𝑇𝑇(𝑎𝑎𝑎𝑎, 0)) 

= (𝐷𝐷1(𝑎𝑎𝑎𝑎) + 𝐷𝐷2(𝑎𝑎 ⋅ 𝑥𝑥′) + 𝐷𝐷2(𝑥𝑥 ∘ 𝑚𝑚) + 𝐷𝐷2(𝑇𝑇(𝑎𝑎𝑎𝑎, 0)),𝑅𝑅(𝑎𝑎𝑎𝑎) + 𝐷𝐷3(𝑎𝑎. 𝑥𝑥′) 
 +𝐷𝐷3(𝑥𝑥 ∘ 𝑚𝑚) + 𝐷𝐷3(𝑇𝑇(𝑎𝑎𝑎𝑎, 0))), (2) 

 since 𝐷𝐷 is module derivation so 

𝐷𝐷((𝑎𝑎, 𝑥𝑥)(𝑚𝑚, 𝑥𝑥′))     = 𝐷𝐷(𝑎𝑎, 𝑥𝑥) ⋅ (𝑚𝑚, 𝑥𝑥′) + (𝑎𝑎, 𝑥𝑥) ⋅ 𝐷𝐷(𝑚𝑚, 𝑥𝑥′) 
= (𝐷𝐷1(𝑎𝑎) + 𝐷𝐷2(𝑥𝑥), 𝑅𝑅(𝑎𝑎) + 𝐷𝐷3(𝑥𝑥)). (𝑚𝑚, 𝑥𝑥′) 
 +(𝑎𝑎, 𝑥𝑥). (𝐷𝐷1(𝑚𝑚) + 𝐷𝐷2(𝑥𝑥), 𝑅𝑅(𝑚𝑚) + 𝐷𝐷3(𝑥𝑥′)) 
= ((𝐷𝐷1(𝑎𝑎) ⋅ 𝑚𝑚 + 𝐷𝐷2(𝑥𝑥)) ⋅ 𝑚𝑚 + 𝑎𝑎 ⋅ 𝐷𝐷2(𝑥𝑥′) + 𝐷𝐷2(𝑥𝑥).𝑚𝑚, 𝑅𝑅(𝑎𝑎) ⋅ 𝑇𝑇(𝑚𝑚, 0) 
 +𝑇𝑇(𝑎𝑎, 0).𝑅𝑅(𝑚𝑚) + 𝐷𝐷3(𝑥𝑥).𝑇𝑇(𝑚𝑚, 0) + 𝑇𝑇(𝑎𝑎, 0).𝐷𝐷3(𝑥𝑥′)). (3) 

     In 3, 2 Take 𝑥𝑥 = 𝑥𝑥′ = 0 to get 𝐷𝐷1 ∈ 𝑍𝑍𝔘𝔘(𝐴𝐴, 𝑀𝑀∗), (5), (4) and (8). Take a = 0 to get (3) and 
(6). Take m = 0 to get (2), (7). And in a similar way we can get other parameters. Conversely 
is in a same way. ∎ 

     Corollary 3.2 Let 𝑋𝑋 = {0} and 𝐷𝐷,𝐷𝐷1 and 𝑅𝑅 be as in perivious lemma, then 𝐷𝐷 = 𝛿𝛿(𝑓𝑓,𝑔𝑔) if 
and only if 𝐷𝐷1 = 𝛿𝛿𝑓𝑓 and 𝑔𝑔 = 𝛿𝛿𝑔𝑔. Where 𝛿𝛿𝑔𝑔(𝑎𝑎) = 𝑔𝑔𝑔𝑔(𝑎𝑎, 0) − 𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔.  
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     Proof. Since 𝑋𝑋 = {0} and 𝐷𝐷(𝑎𝑎, 𝑥𝑥) = (𝐷𝐷1(𝑎𝑎) + 𝐷𝐷2(𝑥𝑥), 𝑅𝑅(𝑎𝑎) + 𝐷𝐷(𝑥𝑥)) so 𝐷𝐷(𝑎𝑎, 0) =
(𝐷𝐷1(𝑎𝑎), 𝑅𝑅(𝑎𝑎)) . If 𝐷𝐷 = 𝛿𝛿(𝑓𝑓,𝑔𝑔) then  
𝐷𝐷(𝑎𝑎, 0) = 𝛿𝛿(𝑓𝑓,𝑔𝑔)(𝑎𝑎, 0)

= (𝑓𝑓, 𝑔𝑔) ⋅ (𝑎𝑎, 0) − (𝑎𝑎, 0) ⋅ (𝑓𝑓, 𝑔𝑔)
= (𝑓𝑓 ⋅ 𝑎𝑎, 𝑔𝑔 ⋅ 𝑇𝑇(𝑎𝑎, 0)) − (𝑎𝑎 ⋅ 𝑓𝑓, 𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔)
= (𝑓𝑓 ⋅ 𝑎𝑎 − 𝑎𝑎 ⋅ 𝑓𝑓, 𝑔𝑔 ⋅ 𝑇𝑇(𝑎𝑎, 0) − 𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔) = (𝛿𝛿𝑓𝑓(𝑎𝑎), 𝛿𝛿𝑔𝑔(𝑎𝑎))  .

     So 𝐷𝐷1 = 𝛿𝛿𝑓𝑓 and 𝑅𝑅 = 𝛿𝛿𝑔𝑔. Conversely 
𝐷𝐷(𝑎𝑎, 0) = (𝐷𝐷1(𝑎𝑎), 𝑅𝑅(𝑎𝑎))

= (𝛿𝛿𝑓𝑓(𝑎𝑎), 𝛿𝛿𝑔𝑔(𝑎𝑎))
= (𝑓𝑓 ⋅ 𝑎𝑎 − 𝑎𝑎 ⋅ 𝑓𝑓, 𝑔𝑔 ⋅ 𝑇𝑇(𝑎𝑎, 0) − 𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔)
= (𝑓𝑓, 𝑔𝑔) ⋅ (𝑎𝑎, 0) − (𝑎𝑎, 0) ⋅ (𝑓𝑓, 𝑔𝑔)
= 𝛿𝛿(𝑓𝑓,𝑔𝑔)(𝑎𝑎, 0)  .

 ∎ 

     Theorem 3.3  The module amenability of 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 implies module amenability of A. 
Moreover if 𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋, then 𝑋𝑋 is also module amenable.  
       Proof. Assume that 𝑀𝑀,𝑁𝑁 are Banach 𝐴𝐴 − 𝔘𝔘-bimodule and Banach 𝑋𝑋 − 𝔘𝔘-bimodule 
respectively. Let 𝐷𝐷1:𝐴𝐴 → 𝑀𝑀∗ and 𝐷𝐷2:𝑋𝑋 → 𝑁𝑁∗ be module derivations. By Proposition 2.5, 𝑀𝑀⊕
𝑁𝑁 is a Banach 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 − 𝔘𝔘- bimodule. Define 𝐷𝐷′ : 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 → 𝑀𝑀∗ ⊕𝑁𝑁∗;𝐷𝐷′(𝑎𝑎, 𝑥𝑥) =
(𝐷𝐷1(𝑎𝑎),𝐷𝐷2(𝑇𝑇(𝑎𝑎, 0)). Now  

𝐷𝐷′((𝑎𝑎, 𝑥𝑥)(𝑚𝑚, 𝑥𝑥′))     = 𝐷𝐷′  (𝑎𝑎𝑎𝑎, 𝑎𝑎. 𝑥𝑥′ + 𝑥𝑥 ∘ 𝑚𝑚 + 𝑇𝑇(𝑎𝑎𝑎𝑎, 0)) 
= (𝐷𝐷1(𝑎𝑎𝑎𝑎),𝐷𝐷2(𝑇𝑇(𝑎𝑎𝑎𝑎, 0))) 
= (𝐷𝐷1(𝑎𝑎).𝑚𝑚 + 𝑎𝑎.𝐷𝐷1(𝑚𝑚), 𝐷𝐷2(𝑇𝑇(𝑎𝑎, 0)).𝑇𝑇(𝑚𝑚, 0) + 𝑇𝑇(𝑎𝑎, 0).𝐷𝐷2(𝑇𝑇(𝑚𝑚, 0))) 
= (𝐷𝐷1(𝑎𝑎), 𝐷𝐷2(𝑇𝑇(𝑎𝑎, 0))). (𝑚𝑚, 𝑥𝑥′) + (𝑎𝑎, 𝑥𝑥). (𝐷𝐷1(𝑚𝑚), 𝐷𝐷2(𝑇𝑇(𝑚𝑚, 0))) 
= 𝐷𝐷′(𝑎𝑎, 𝑥𝑥). (𝑚𝑚, 𝑥𝑥′) + (𝑎𝑎, 𝑥𝑥).𝐷𝐷′(𝑚𝑚, 𝑥𝑥)). 

     Also 
𝐷𝐷′(𝛼𝛼 ⋅ (𝑎𝑎, 𝑥𝑥))     = 𝐷𝐷′(𝛼𝛼 ⋅ 𝑎𝑎, 𝛼𝛼∇𝑥𝑥) 

    = ((𝐷𝐷1(𝛼𝛼 ⋅ 𝑎𝑎), 𝐷𝐷2(𝑇𝑇(𝛼𝛼 ⋅ 𝑎𝑎, 0))) 
    = ((𝛼𝛼 ⋅ 𝐷𝐷1(𝑎𝑎), 𝛼𝛼 ⋅ 𝐷𝐷2(𝑇𝑇(𝑎𝑎, 0))) 
    = (𝛼𝛼 ⋅ 𝐷𝐷′(𝑎𝑎, 𝑥𝑥)  . 

     And 
𝐷𝐷′((𝑎𝑎, 𝑥𝑥) + (𝑚𝑚, 𝑥𝑥′)     = 𝐷𝐷′((𝑎𝑎 + 𝑚𝑚, 𝑥𝑥 + 𝑥𝑥′)) 

            = (𝐷𝐷1(𝑎𝑎 + 𝑚𝑚), 𝐷𝐷2(𝑇𝑇(𝑎𝑎 + 𝑚𝑚), 0)) 
            = (𝐷𝐷1(𝑎𝑎) + 𝐷𝐷1(𝑚𝑚), 𝐷𝐷2(𝑇𝑇(𝑎𝑎, 0)) + 𝐷𝐷2(𝑇𝑇(𝑚𝑚, 0)) 
            = (𝐷𝐷1(𝑎𝑎), 𝐷𝐷2(𝑇𝑇(𝑎𝑎, 0)) + (𝐷𝐷1(𝑚𝑚), 𝐷𝐷2(𝑇𝑇(𝑚𝑚, 0)) 
            = 𝐷𝐷′(𝑎𝑎, 𝑥𝑥) + 𝐷𝐷′(𝑚𝑚, 𝑥𝑥′). 

      So 𝐷𝐷′ is a module derivation. Sice 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 is module amenable, there exists (𝑓𝑓, 𝑔𝑔) ∈ 𝑀𝑀∗ ⊕
𝑁𝑁∗ such that 𝐷𝐷′ = 𝛿𝛿(𝑓𝑓,𝑔𝑔). Thus  
𝐷𝐷′(𝑎𝑎, 𝑥𝑥)     = 𝛿𝛿(𝑓𝑓,𝑔𝑔)(𝑎𝑎, 𝑥𝑥) 

= (𝑓𝑓, 𝑔𝑔) ⋅ (𝑎𝑎, 𝑥𝑥) − (𝑎𝑎, 𝑥𝑥) ⋅ (𝑓𝑓, 𝑔𝑔) 
= (𝑓𝑓 ⋅ 𝑎𝑎 + 𝑔𝑔 ⋅ 𝑇𝑇(𝑎𝑎, 0)) − (𝑎𝑎 ⋅ 𝑓𝑓, 𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔) 
= (𝑓𝑓 ⋅ 𝑎𝑎 − 𝑎𝑎 ⋅ 𝑓𝑓, 𝑔𝑔 ⋅ 𝑇𝑇(𝑎𝑎, 0) − 𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔)  . 
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     Consequently 𝐷𝐷1(𝑎𝑎) = 𝑓𝑓 ⋅ 𝑎𝑎 − 𝑎𝑎 ⋅ 𝑓𝑓 i.e. 𝐷𝐷1 = 𝛿𝛿𝑓𝑓 and 𝐷𝐷2(𝑇𝑇(𝑎𝑎, 0)) = 𝛿𝛿𝑔𝑔(𝑇𝑇(𝑎𝑎, 0)). Since 
𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋, 𝐷𝐷2(𝑥𝑥) = 𝛿𝛿𝑔𝑔(𝑥𝑥) for all 𝑥𝑥 ∈ 𝑋𝑋. ∎ 

 
     Theorem 3.4  The module amenability of 𝐴𝐴 implies module amenability of 𝐴𝐴⊕𝑇𝑇 {0}.  
      Proof. Let 𝑀𝑀⊕𝑁𝑁 be a Banch 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 − 𝔘𝔘-bimodule and 𝐷𝐷:𝐴𝐴⊕𝑇𝑇 𝑋𝑋 → 𝑀𝑀∗ ⊕𝑁𝑁∗ be a 
module derivation. By lemma 3.1, there are 𝐷𝐷1,𝐷𝐷2,𝐷𝐷3 and 𝑅𝑅 such that 𝐷𝐷(𝑎𝑎, 𝑥𝑥) = (𝐷𝐷1(𝑎𝑎) +
𝐷𝐷2(𝑥𝑥), 𝑅𝑅(𝑎𝑎) + 𝐷𝐷3(𝑥𝑥)) . Since here 𝑋𝑋 = {0} so 𝐷𝐷(𝑎𝑎, 0) = (𝐷𝐷1(𝑎𝑎), 𝑅𝑅(𝑎𝑎)) . Module 
amenability of 𝐴𝐴 implies there exist 𝑓𝑓 ∈ 𝑀𝑀∗ such that 𝐷𝐷1 = 𝛿𝛿𝑓𝑓 and since 𝑁𝑁∗ is an 𝐴𝐴-U- bimodule 
and 𝑅𝑅 is module derivation, there exist 𝑔𝑔 ∈ 𝑁𝑁∗ such that 𝑅𝑅 = 𝛿𝛿𝑔𝑔. Thus 𝐷𝐷 = 𝛿𝛿(𝑓𝑓,𝑔𝑔). ∎ 

 
     Theorem 3.5  If 𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋 and 𝐴𝐴2 = 𝐴𝐴, then the module amenability of 𝐴𝐴 implies 
module amenability of 𝐴𝐴⊕𝑇𝑇 𝑋𝑋.  
      Proof. Let 𝑀𝑀⊕𝑁𝑁 be a Banch 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 − 𝔘𝔘-bimodule and 𝐷𝐷:𝐴𝐴⊕𝑇𝑇 𝑋𝑋 → 𝑀𝑀∗ ⊕𝑁𝑁∗ be a 
module derivation. By lemma 3.1, there are 𝐷𝐷1,𝐷𝐷2,𝐷𝐷3 and 𝑅𝑅 such that 𝐷𝐷(𝑎𝑎, 𝑥𝑥) = (𝐷𝐷1(𝑎𝑎) +
𝐷𝐷2(𝑥𝑥), 𝑅𝑅(𝑎𝑎) + 𝐷𝐷3(𝑥𝑥)) . Since here 𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋 and 𝐴𝐴2 = 𝐴𝐴 so 𝐷𝐷(𝑎𝑎, 𝑥𝑥) = (𝐷𝐷1(𝑎𝑎), 𝑅𝑅(𝑎𝑎)) . 
Module amenability of 𝐴𝐴 implies there exist 𝑓𝑓 ∈ 𝑀𝑀∗ such that 𝐷𝐷1 = 𝛿𝛿𝑓𝑓 and since 𝑁𝑁∗ is an 𝐴𝐴 −
𝔘𝔘-bimodule and 𝑅𝑅 is module derivation, there exist 𝑔𝑔 ∈ 𝑁𝑁∗ such that 𝑅𝑅 = 𝛿𝛿𝑔𝑔. Thus 𝐷𝐷 = 𝛿𝛿(𝑓𝑓,𝑔𝑔). 
∎ 

 
     Example 3.6  Let ℕ be the set of positive integers. Consider 𝑆𝑆 = (ℕ, ∨) with the 
maximum operation 𝑚𝑚 ∨ 𝑛𝑛 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑚𝑚, 𝑛𝑛}, then 𝑆𝑆 is a amenable countable, abelian inverse 
semigroup with the identity 1. Clearly 𝐸𝐸𝑆𝑆 = 𝑆𝑆. This semigroup is denoted by ℕ∨. 𝑙𝑙1(ℕ∨) is 
unital with unit 𝛿𝛿1. Since ℕ∨ is amenable and 𝑙𝑙1(ℕ∨) is unital so 𝑙𝑙1(ℕ∨) is module amenable 
(as an 𝑙𝑙1(ℕ∨) − 𝑙𝑙1(ℕ∨))-bimodule. Define 𝑇𝑇: 𝑙𝑙1(𝑆𝑆) × 𝑙𝑙1(𝑆𝑆) → 𝑙𝑙1(𝑆𝑆) ; 𝑇𝑇(𝛿𝛿𝑥𝑥, 𝛿𝛿𝑦𝑦) =

�
𝛿𝛿𝑥𝑥, 𝛿𝛿𝑦𝑦 = 0
𝛿𝛿𝑥𝑥∨𝑦𝑦, 𝛿𝛿𝑦𝑦 ≠ 0. Then 𝑙𝑙1(ℕ∨) ⊕𝑇𝑇 𝑙𝑙1(ℕ∨) is module amenable.  

 
 

4  WEAK MODULE AMENABILITY 
 

     The Banach algebra 𝐴𝐴 is called weak module amenable (as an 𝔘𝔘-bimodule), if 𝐻𝐻𝔘𝔘(𝐴𝐴, 𝑋𝑋) =
{0}, where 𝑋𝑋 is a commutative 𝔘𝔘-submodule of 𝐴𝐴∗([2]). 

 
     Theorem 4.1  The weak module amenability of 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 implies weak module amenability 
of A. In addition if 𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋 then 𝑋𝑋 is also weak module amenable.  
     Proof. Assume that 𝑀𝑀,𝑁𝑁 are commutative 𝔘𝔘-submodule of 𝐴𝐴∗ and 𝑋𝑋∗, respectively. we can 
show that 𝑀𝑀⊕𝑁𝑁 is a commutative 𝔘𝔘-submodule of (𝐴𝐴⊕𝑇𝑇 𝑋𝑋)∗. Let 𝐷𝐷1 ∈ 𝑍𝑍𝔘𝔘(𝐴𝐴, 𝑀𝑀) and 𝐷𝐷2 ∈
𝑍𝑍𝔘𝔘(𝑋𝑋, 𝑁𝑁) . Define 𝐷𝐷 : 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 → 𝑀𝑀⊕𝑁𝑁;𝐷𝐷(𝑎𝑎, 𝑥𝑥) = (𝐷𝐷1(𝑎𝑎),𝐷𝐷2(𝑇𝑇(𝑎𝑎, 0))), it is easy to see 
that 𝐷𝐷 ∈ 𝑍𝑍𝔘𝔘(𝐴𝐴⊕ 𝜏𝜏𝜏𝜏,𝑀𝑀⊕𝑁𝑁) . Since 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 is weak module amenable there is (𝑓𝑓, 𝑔𝑔) ∈
𝑀𝑀⊕𝑁𝑁 such that 𝐷𝐷 = 𝛿𝛿(𝑓𝑓,𝑔𝑔) and  
 (𝐷𝐷1(𝑎𝑎),𝐷𝐷2(𝑇𝑇(𝑎𝑎, 0)))    = 𝐷𝐷(𝑎𝑎, 𝑥𝑥) 

           = 𝛿𝛿(𝑓𝑓,𝑔𝑔)(𝑎𝑎, 𝑥𝑥) 
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          = (𝑓𝑓, 𝑔𝑔) ⋅ (𝑎𝑎, 𝑥𝑥) − (𝑎𝑎, 𝑥𝑥) ⋅ (𝑓𝑓, 𝑔𝑔) 
          = (𝑓𝑓 ⋅ 𝑎𝑎 − 𝑎𝑎 ⋅ 𝑓𝑓, 𝑔𝑔 ⋅ 𝑇𝑇(𝑎𝑎, 0) − 𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔) 
          = (𝛿𝛿𝑓𝑓(𝑎𝑎), 𝛿𝛿𝑔𝑔(𝑇𝑇(𝑎𝑎, 0))) 

 Hence 𝐴𝐴,𝑋𝑋 are weak module amenable. ∎ 

     Theorem 4.2  The weak module amenability of 𝐴𝐴 implies the weak module amenability of 
𝐴𝐴⊕𝑇𝑇 {0}.  
      Proof. Suppose that 𝑀𝑀⊕𝑁𝑁 is a commutative Banach 𝔘𝔘-submodule of (𝐴𝐴⊕ 𝜏𝜏{0})∗, and 
𝐷𝐷 ∈ 𝑍𝑍𝔘𝔘(𝐴𝐴⊕ 𝜏𝜏{0}, 𝑀𝑀⊕𝑁𝑁) . Then 𝑀𝑀 and 𝑁𝑁 are commutative 𝔘𝔘-submodule of 𝐴𝐴∗. Since 𝐷𝐷 ∈
𝑍𝑍𝔘𝔘(𝐴𝐴⊕ 𝜏𝜏{0}, 𝑀𝑀⊕𝑁𝑁) , by lemma 3.1 there are 𝐷𝐷1 ∈ 𝑍𝑍𝔘𝔘(𝐴𝐴, 𝑀𝑀) , and 𝑅𝑅 ∈ 𝑍𝑍𝔘𝔘(𝐴𝐴, 𝑁𝑁) , such 
that 𝐷𝐷(𝑎𝑎, 0) = (𝐷𝐷1(𝑎𝑎), 𝑅𝑅(𝑎𝑎)) . Since 𝐴𝐴 is weak module amenable so there are 𝑚𝑚 ∈ 𝑀𝑀 and 
𝑛𝑛 ∈ 𝑁𝑁 such that 𝐷𝐷1 = 𝛿𝛿𝑚𝑚,𝑅𝑅 = 𝛿𝛿𝑛𝑛, where 𝛿𝛿𝑛𝑛(𝑎𝑎) = 𝑎𝑎 ⋅ 𝑛𝑛 − 𝑛𝑛 • 𝑎𝑎 = 𝑇𝑇(𝑎𝑎, 0) ⊚𝑛𝑛 − 𝑛𝑛.𝑇𝑇(𝑎𝑎, 0) 
. 
     Now 
𝐷𝐷(𝑎𝑎, 𝑥𝑥)     = (𝐷𝐷1(𝑎𝑎), 𝑅𝑅(𝑎𝑎)) 

= (𝛿𝛿𝑚𝑚(𝑎𝑎), 𝛿𝛿𝑛𝑛(𝑎𝑎)) 
= (𝑎𝑎 ⋅ 𝑚𝑚 − 𝑎𝑎 • 𝑚𝑚, 𝑇𝑇(𝑎𝑎, 0) ⊚𝑛𝑛 − 𝑛𝑛.  𝑇𝑇(𝑎𝑎, 0)) 
= (𝑎𝑎, 0) ⋅ (𝑚𝑚, 𝑛𝑛) − (𝑚𝑚, 𝑛𝑛) ∘ (𝑎𝑎, 0) 
= 𝛿𝛿(𝑚𝑚,𝑛𝑛)(𝑎𝑎, 0)  . 

 ∎ 

     Theorem 4.3  If 𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋 and 𝐴𝐴2 = 𝐴𝐴, then the weak module amenability of 𝐴𝐴 implies 
the weak module amenability of 𝐴𝐴⊕𝑇𝑇 𝑋𝑋.  

 Proof. The proof is as above theorem. ∎ 

     Example 4.4  Let 𝑆𝑆 = ℕ∨ be as in Example 3.6, since 𝑙𝑙1(𝑆𝑆) is 𝑙𝑙1(𝑆𝑆) − 𝑙𝑙1(𝑆𝑆) − module and 
𝑙𝑙1(𝑆𝑆) is weak module amenable. Let 𝑇𝑇: 𝑙𝑙1(𝑆𝑆) × 𝑙𝑙1(𝑆𝑆) → 𝑙𝑙1(𝑆𝑆) have the properties as above 
theorems, then 𝑙𝑙1(𝑆𝑆) ⊕𝑇𝑇 𝑙𝑙1(𝑆𝑆) is weak module amenable.  

5  MODULE APPROXIMATE AMENABILITY 

     Let 𝐴𝐴 be as above, then 𝐴𝐴 is module approximately amenable (as an 𝔘𝔘- bimodule), if for any 
commutative Banach 𝐴𝐴 − 𝔘𝔘-bimodule 𝑋𝑋, each module derivation 𝐷𝐷:𝐴𝐴 → 𝑋𝑋∗ is approximately 
inner. 
     A derivation 𝐷𝐷: 𝐴𝐴 → 𝑋𝑋 is said to be approximately inner if there exists a net (𝑥𝑥𝑖𝑖)𝑖𝑖 ⊆ 𝑋𝑋 such 
that 𝐷𝐷(𝑎𝑎) = lim𝑖𝑖(𝑎𝑎 ⋅ 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖 ⋅ 𝑎𝑎), 𝑎𝑎 ∈ 𝐴𝐴.([10]) . 

     Lemma 5.1  Let 𝐷𝐷1,𝑅𝑅,𝐷𝐷3 and 𝐷𝐷2 are such as in the Lemma 3.1, and 𝐷𝐷(𝑎𝑎, 𝑏𝑏) = (𝐷𝐷1(𝑎𝑎) +
𝐷𝐷2(𝑏𝑏), 𝑅𝑅(𝑎𝑎) + 𝐷𝐷3(𝑏𝑏)). If 𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋 and 𝐴𝐴2 = 𝐴𝐴 then: 𝐷𝐷 is approximately inner if and 
only if 𝐷𝐷1 and 𝑅𝑅 are approximately inner.  
     Proof. Assume that 𝑀𝑀 is a commutative 𝐴𝐴 − 𝔘𝔘-bimodule and also 𝑁𝑁 is com- mutative 𝑋𝑋 −
𝔘𝔘-bimodule, then 𝑀𝑀⊕𝑁𝑁 is a commutative 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 − 𝔘𝔘-bimodule. Let 𝐷𝐷 be approximately 
inner so there is (𝑓𝑓𝑖𝑖 , 𝑔𝑔𝑖𝑖)𝑖𝑖 ⊆ 𝑀𝑀∗ ⊕ 𝑁𝑁∗ such that  
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𝐷𝐷(𝑎𝑎, 𝑥𝑥)     = 𝑇𝑇(𝑎𝑎′, 0) 
= lim

𝑖𝑖
((𝑎𝑎, 𝑥𝑥) ⋅ (𝑓𝑓𝑖𝑖 , 𝑔𝑔𝑖𝑖) − (𝑓𝑓𝑖𝑖 , 𝑔𝑔𝑖𝑖) ⋅ (𝑎𝑎, 𝑥𝑥)) 

= lim
𝑖𝑖

((𝑎𝑎 ⋅ 𝑓𝑓𝑖𝑖 , 𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔𝑖𝑖) − (𝑓𝑓𝑖𝑖 ⋅ 𝑎𝑎, 𝑔𝑔𝑖𝑖 .𝑇𝑇(𝑎𝑎, 0))) 
= lim

𝑖𝑖
(𝑎𝑎 ⋅ 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖 ⋅ 𝑎𝑎, 𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔𝑖𝑖 − 𝑔𝑔𝑖𝑖 ⋅ 𝑇𝑇(𝑎𝑎, 0)), 

i.e. 𝐷𝐷(𝑎𝑎) = lim𝑖𝑖(𝑎𝑎 ⋅ 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖 ⋅ 𝑎𝑎) and 𝑅𝑅(𝑎𝑎) = lim𝑖𝑖(𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔𝑖𝑖 − 𝑔𝑔𝑖𝑖 ⋅ 𝑇𝑇(𝑎𝑎, 0)). 
     Conversely, let 𝐷𝐷1(𝑎𝑎) = lim𝑖𝑖∈𝐼𝐼(𝑎𝑎 ⋅ 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖 ⋅ 𝑎𝑎) and 𝑅𝑅(𝑎𝑎) = lim𝑗𝑗∈𝐽𝐽(𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔𝑗𝑗 − 𝑔𝑔𝑗𝑗 ⋅
𝑇𝑇(𝑎𝑎, 0)) 

Since the index sets (𝐼𝐼, ≤), (𝐽𝐽, ≤) are ordered sets, so the set Λ = 𝐼𝐼 × 𝐽𝐽 = {(𝑖𝑖, 𝑗𝑗)  ∶   𝑖𝑖 ∈ 𝐼𝐼,
𝑗𝑗 ∈ 𝐽𝐽} is ordered as follows  

(𝑖𝑖, 𝑗𝑗) ≤ (𝑖𝑖′, 𝑗𝑗′) ⇔ (𝑖𝑖 ≤ 𝑖𝑖′, 𝑗𝑗 ≤ 𝑗𝑗). 
     For 𝜆𝜆 = (𝑖𝑖, 𝑗𝑗) ∈ Λ set 𝑡𝑡𝜆𝜆 = (𝑓𝑓𝑖𝑖 , 𝑔𝑔𝑗𝑗) . Let 𝜖𝜖 > 0 be given. Since 𝐷𝐷1(𝑎𝑎) = lim𝑖𝑖(𝑎𝑎 ⋅ 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖 ⋅
𝑎𝑎) and 𝑅𝑅(𝑎𝑎) = lim𝑗𝑗(𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔𝑗𝑗 − 𝑔𝑔𝑗𝑗 ⋅ 𝑇𝑇(𝑎𝑎, 0)) there are 𝑖𝑖0 ∈ 𝐼𝐼, 𝑗𝑗0 ∈ 𝐽𝐽 such that 

1) For all 𝑖𝑖 ≥ 𝑖𝑖0, ∥ 𝐷𝐷1(𝑎𝑎) − (𝑎𝑎 ⋅ 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖 ⋅ 𝑎𝑎) ∥≤ 𝜖𝜖
3
.

2) For all 𝑗𝑗 ≥ 𝑗𝑗0, ∥ 𝑅𝑅(𝑎𝑎) − (𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔𝑗𝑗 − 𝑔𝑔𝑗𝑗 ⋅ 𝑇𝑇(𝑎𝑎, 0)) ∥≤ 𝜖𝜖
3
.

     Now set 𝜆𝜆0 = (𝑖𝑖0, 𝑗𝑗0) , then for all 𝜆𝜆 ≥ 𝜆𝜆0, since 𝐷𝐷(𝑎𝑎, 𝑇𝑇(𝑎𝑎′, 0)) = (𝐷𝐷1(𝑎𝑎), 𝑅𝑅(𝑎𝑎)) , we 
have  
∥ 𝐷𝐷(𝑎𝑎, 𝑥𝑥) − ((𝑎𝑎, 𝑥𝑥) ⋅ 𝑡𝑡𝜆𝜆 − 𝑡𝑡𝜆𝜆 ⋅ (𝑎𝑎, 𝑥𝑥)) ∥    =∥ 𝐷𝐷(𝑎𝑎, 𝑥𝑥) − ((𝑎𝑎, 𝑥𝑥) ⋅ (𝑓𝑓𝑖𝑖 ,

𝑔𝑔𝑗𝑗) − (𝑓𝑓𝑖𝑖 , 𝑔𝑔𝑗𝑗) ⋅ (𝑎𝑎, 𝑥𝑥)) ∥ 
=∥ 𝐷𝐷(𝑎𝑎, 𝑥𝑥) − (𝑎𝑎 ⋅ 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖 ⋅ 𝑎𝑎, 𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔𝑗𝑗 − 𝑔𝑔𝑗𝑗 ⋅ 𝑇𝑇(𝑎𝑎, 0)) ∥ 
=∥ (𝐷𝐷1(𝑎𝑎), 𝑅𝑅(𝑎𝑎)) − (𝑎𝑎 ⋅ 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖 ⋅ 𝑎𝑎, 𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔𝑗𝑗 − 𝑔𝑔𝑗𝑗 ⋅ 𝑇𝑇(𝑎𝑎, 0)) ∥ 
=∥ ((𝐷𝐷1(𝑎𝑎) − (𝑎𝑎 ⋅ 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖 ⋅ 𝑎𝑎)),𝑅𝑅(𝑎𝑎) − (𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔𝑗𝑗 − 𝑔𝑔𝑗𝑗 ⋅ 𝑇𝑇(𝑎𝑎, 0))) ∥ 
≤∥ 𝐷𝐷1(𝑎𝑎) − (𝑎𝑎 ⋅ 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖 ⋅ 𝑎𝑎) ∥ +∥ 𝑅𝑅(𝑎𝑎) − (𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔𝑗𝑗 − 𝑔𝑔𝑗𝑗 ⋅ 𝑇𝑇(𝑎𝑎, 0)) ∥ 
< 𝜖𝜖. 

      Hence 𝐷𝐷(𝑎𝑎, 𝑥𝑥) = lim𝜆𝜆((𝑎𝑎, 𝑥𝑥) ⋅ 𝑡𝑡𝜆𝜆 − 𝑡𝑡𝜆𝜆(𝑎𝑎, 𝑥𝑥 where 𝑥𝑥 = 𝑇𝑇(𝑎𝑎′, 0) i.e. 𝐷𝐷 is approximately 
inner. ∎ 

     Theorem 5.2  If 𝐴𝐴⊕ 𝜏𝜏𝜏𝜏 is module approximately amenable then 𝐴𝐴 is module 
approximately amenable. Furthermore, if 𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋 also 𝑋𝑋 is module approximately 
amenable.  
      Proof. In an argument as in the proof of Theorem 3.3 and the application, the usage of above 
lemma. ∎ 

     Theorem 5.3  If 𝑇𝑇(𝐴𝐴.𝑂𝑂) = 𝑋𝑋 and 𝐴𝐴2 = 𝐴𝐴 then the module approximate amenability of 𝐴𝐴 
implies the module approximate amenability of 𝐴𝐴⊕𝑇𝑇 𝑋𝑋.  
       Proof. Let 𝑀𝑀⊕𝑁𝑁 be a commutative 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 − 𝔘𝔘-bimodule and 𝐷𝐷 ∈ 𝑍𝑍𝔘𝔘(𝐴𝐴⊕ 𝜏𝜏𝜏𝜏,𝑀𝑀∗ ⊕
𝑁𝑁∗) . There are 𝐷𝐷1 ∈ 𝑍𝑍𝔘𝔘(𝐴𝐴, 𝑀𝑀∗),𝐷𝐷3 ∈ 𝑍𝑍𝔘𝔘(𝑋𝑋, 𝑁𝑁∗),𝑅𝑅 ∈ 𝑍𝑍𝔘𝔘(𝐴𝐴, 𝑁𝑁∗) and 𝐷𝐷2 : 𝑋𝑋 → 𝑁𝑁∗ such that 
𝐷𝐷(𝑎𝑎, 𝑥𝑥) = (𝐷𝐷1(𝑎𝑎) + 𝐷𝐷2(𝑥𝑥), 𝑅𝑅(𝑎𝑎) + 𝐷𝐷(𝑥𝑥)) and since 𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋 and 𝐴𝐴2 = 𝐴𝐴 we have 𝐷𝐷(𝑎𝑎,
𝑥𝑥) = (𝐷𝐷1(𝑎𝑎), 𝑅𝑅(𝑎𝑎)) . Since 𝐴𝐴,𝑋𝑋 are module approximate amenable, so 𝐷𝐷1 and 𝑅𝑅 are 
approximatly inner. Thus by the above lemma, 𝐷𝐷 is approximately inner. ∎ 
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     Example 5.4  Let 𝑆𝑆 be an amenable inverse semigroup such that the set of idempotents 𝐸𝐸𝑆𝑆 
be equal to 𝑆𝑆 and 𝑙𝑙1(𝑆𝑆) has approximately unit. Since 𝑆𝑆 is amenable, 𝑙𝑙1(𝑆𝑆) is module 
approximately amenable, [10]. Also 𝑙𝑙1(𝑆𝑆) is 𝑙𝑙1(𝑆𝑆) − 𝑙𝑙1(𝑆𝑆)-bimodule, thus 𝑙𝑙1(𝑆𝑆) ⊕𝑇𝑇 𝑙𝑙1(𝑆𝑆) is 
module approximately amenable. Where 𝑇𝑇: 𝑙𝑙1(𝑆𝑆) × 𝑙𝑙1(𝑆𝑆) → 𝑙𝑙1(𝑆𝑆) is defined by 

𝑇𝑇(𝛿𝛿𝑥𝑥, 𝛿𝛿𝑦𝑦) = �
𝛿𝛿𝑥𝑥, 𝛿𝛿𝑦𝑦 = 0
𝛿𝛿𝑥𝑥𝑥𝑥, 𝛿𝛿𝑦𝑦 ≠ 0. 

6 CONCLUSIONS 

     The module amenability of 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 implies module amenability of 𝐴𝐴 and The module 
amenability of 𝐴𝐴 implies module amenability  of 𝐴𝐴⊕𝑇𝑇 {0}. Also If 𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋 and 𝐴𝐴2 = 𝐴𝐴, 
then the module amenability of 𝐴𝐴 implies module amenability of 𝐴𝐴⊕𝑇𝑇 𝑋𝑋. 
meanwhile, The weak module amenability of 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 implies weak module amenability of 𝐴𝐴. 
On the contrary, if 𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋 and 𝐴𝐴2 = 𝐴𝐴, then the weak module amenability of 𝐴𝐴 implies 
the weak module amenability of 𝐴𝐴⊕𝑇𝑇 𝑋𝑋. 
     Considering approximately, if 𝐴𝐴⊕ 𝜏𝜏𝜏𝜏 is module approximately amenable then 𝐴𝐴 is module 
approximately amenable. On the contrary, if 𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋 and 𝐴𝐴2 = 𝐴𝐴 then the module 
approximate amenability of 𝐴𝐴 implies the module approximate amenability of ⊕𝑇𝑇 𝑋𝑋. 
For example, we have 𝑆𝑆 be an amenable inverse semigroup such that the set of idempotents 
𝐸𝐸𝑆𝑆 be equal to 𝑆𝑆 and 𝑙𝑙1(𝑆𝑆) has approximately unit. Since 𝑆𝑆 is amenable, 𝑙𝑙1(𝑆𝑆) is module 
approximately amenable. 

     Acknowledgements: The authors would like to thank the referees for their careful reading 
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