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Summary. A family of weighted two-layer finite-difference schemes is presented. Using the 

example of the numerical solution of model problems on the propagation of a single soliton 

and the interaction of two solitons, the high quality of explicit-implicit schemes of the Crank-

Nichols type with the parameter σ = 0.5 and the order of approximation O(Δt
2
 + Δx

2
) is

shown. Completely implicit two-layer difference schemes with the parameter σ = 1 and O (Δt 

+ Δx
2
) are characterized by absolute stability with a low solution accuracy due to a high

approximation error. The family of explicitly implicit difference schemes is absolutely 

unstable if the explicitness parameter σ <0.5 prevails. Analysis of the structure of the 

approximation error, performed using the modified equation method, confirmed the results of 

numerical simulation. 

1 INTRODUCTION 

The theory of nonlinear waves was originally associated with the study of problems in gas 

and hydrodynamics, which include a number of varied and striking problems of applied and 

fundamental nature [1], which lead to the need to analyze the huge and growing data 

associated with multidimensional nonlinear dynamics. 

Initially, the Korteweg de Vries equation (KdV) arose from the needs of hydrodynamics 

[2], [3] associated with the propagation of nonlinear solitary waves in shallow water [4, 5], 

which ended with the discovery of solitons [6]. The KdV equation was the first nonlinear 

wave equation to have soliton solutions. Note that the discovery of solitons [6] was carried 

out on the basis of a computational experiment. As it turned out, solitons, which are stable 

formations, have a number of amazing properties. Thus, the propagation of a soliton in the 

form of a nonlinear solitary wave allows it to maintain its shape and speed during its motion. 

In addition, solitons are characterized by elastic interaction with each other. In the course of a 

collision, they first deform and then restore their original parameters and their original shape. 

Taking into account that the propagation of a soliton is described by a nonlinear equation, 

then the principle of superposition, as it is understood in linear systems, according to which 

the sum of particular solutions is also a solution, does not hold for it. Solitons exactly interact 

with each other, first deforming, and then, restoring their original parameters, in contrast to 

linear solution systems, which pass through each other. The only result of the interaction of 

solitons may be some phase shift. This confirms that solitons are precisely nonlinear 

solutions. 

Due to the rapid development of high-performance computing technology, computational 

algorithms and methods of modern mathematical modeling, it became possible to study more 
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and more complex problems of hydrodynamics [7], nonlinear optics [8], plasma physics [9, 

10] and solids [11]. However, since the complexity of the problems under study is ahead of 

the development of the used computer technology, the problem of increasing the efficiency of 

mathematical methods and approaches remains relevant. 

The active use of solitons in the study and solution of nonlinear wave equations [12] 

describing physical phenomena in many areas [13] stimulated interest in methods for solving 

the KdV equation. The KdV equation was solved numerically by various methods, such as the 

Galerkin method [14-16], the collocation method [17, 18], the finite element method [19-21], 

the finite-difference method [22-30], etc. The choice of one or another numerical solution 

method largely determines the quality of numerical modeling. It should also be kept in mind 

that it is far from being indifferent, at the expense of what costs the final result of modeling is 

achieved. Therefore, it is quite natural to impose on computational algorithms the requirement 

not only of stability and efficiency, but also of simplicity of implementation. Finite-difference 

methods possess the greatest combination of these properties. 

Earlier, in [24, 25], the results of the analysis of two-layer difference schemes for the KdV 

equation from the point of view of integral conservation laws were reported. The concept of 

L2-conservatism of a difference scheme was used as the ability of its solution to satisfy the 

grid analogue of conservation laws [31, 32]. The L2-conservatism principle makes it possible, 

when constructing efficient algorithms, to ensure that they satisfy the grid analogs of the basic 

properties of the differential problem. 

Based on the L2-conservatism principle for the Korteweg-de Vries equation, it was shown 

that explicit two-layer difference schemes do not satisfy the L2-conservatism condition and, 

moreover, are absolutely unstable even in the weakest L2 norm. In the same papers, this 

principle was applied to construct a family of three-layer completely conservative 

(conservative and L2-conservative) weighted difference schemes. 

In this paper, we numerically and analytically study a family of two-layer difference 

schemes for the KdV equation, which includes both explicit and implicit schemes. 

2 STATEMENT OF THE PROBLEM 

KdV equation in the divergence form 
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includes nonlinear and dispersion terms, the competition of which determines the behavior of 

the solution. The solution of equation (1) is represented in the form of a moving soliton. 

The soliton is a stationary unipolar pulse traveling in the positive direction of the X axis 

with a speed Q 

 20 )(ch
),(
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Qtxx

A
txu ,       (2) 

where  QA 3  is the amplitude and Q 4  is the half-width (at the level of 0.42A) of 

the soliton. The analytical representation of the soliton will be used to test the computational 

method. 
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To complete the formulation of the Cauchy problem, it is necessary to set the boundary 

conditions. As the initial condition, the grid representation of the soliton (2) is specified. 

Equation (1) requires the setting of three boundary conditions on two boundaries of the final 

computational domain. 

At the left boundary: 0
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3 FINITE-DIFFERENCE APPROXIMATION 

In the space of variables ),( tx , we construct a difference grid uniform in x 
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on which the grid function is defined ),( k
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Fig. 1. Grid patterns, implemented by the scheme (5), for different values of . (a) σ=0, i.e. u
k+σ

 = u
k
 

(explicit scheme); (b) 0<σ<1, empty circles are fictional nodes at the intermediate time layer (k+σ); 

(c) σ=1, i.e. u
k+σ

 = u
k+1

. 

Using (4), we construct a family of finite-difference schemes for the approximation of the 

equation (1): 
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where 1)1(   k

m

k

m

k

m uuu ,  is the weight coefficient, which values σ є [0 – 1] determine 

the degree of “implicitness” of the difference scheme. The value σ = 0 corresponds to a 

completely explcit scheme, while σ = 1 – to a completely implicit one. 

In all finite-difference schemes (5), the second order of approximation in spatial x is 

implemented for the derivatives of both the 1st and the 3rd order. With respect to the time 

variable t for all values σ≠0.5, the schemes (5) have the 1st order of approximation. For, σ = 

0.5, the expression (5) is an implicit difference scheme of the Crank-Nichols type with the 

second order of approximation in time. Fig. 1. shows grid patterns for different values of σ. 

4 COMPUTATIONAL ALGORITHM 

The difference approximation (5), applied to the interior points of the computational 

domain, generates a system of nonlinear equations with respect to quantities u~  on a new time 

layer. This system is solved at each time step by the Newton iterative method, for which the 

procedure of its linearization is performed, after which it is transformed into a linear system 

of equations with a 5-diagonal (band) matrix. In the only case of σ=0, the matrix degenerates 

into the identity one, and the scheme becomes explicit. 

5 COMPUTATIONAL EXPERIMENT 

For numerical testing, the following parameters of the equation 1  ,6   and soliton (2) 

presented in Fig. 2(a) were used: 1  ,2    4  ,100  AQx ; 

In the computational domain with the size 420L , a computational grid was constructed 

containing 2100M  intervals with a spatial step size 2.0x . The total width of the soliton 

2 contained 10 intervals. 

For implicit schemes σ≠0, a mechanism for automatic time step selection was 

implemented, based on the following parameters: the maximum allowable number of 

iterations at each time step was 3-4, the criterion of convergence of the iterative process 

includes the relative and absolute errors, the values of which were taken equal to 10
-9

. For an 

explicit scheme (σ=0), the time step is discussed below. 

Figure 2(b) shows the solution using the Crank-Nichols-type scheme (σ=0.5) at the time 

t=100 when the soliton has moved from the initial position to a distance of 400δ. The transfer 

speed determined from the numerical solution turned out to be 1.1% less than the analytical 

value (i.e., the lag was about 4δ). In this case, the amplitude of the soliton fluctuates around 

the average value with a standard deviation of 0.3%, and the average value itself is only 

0.011% greater than the analytical one (Fig. 4(a)). That is, it can be assumed that the 

numerical solution preserves the amplitude of the soliton with good accuracy during the entire 

calculation process. 

The time step during the entire computational process fluctuated with a small amplitude 

around a constant value (Fig. 4(b)). These small fluctuations were associated with the 

organization of the automatic step selection mechanism. 
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Fig.2 (a). Spatial profile of soliton at the initial time t=0.  
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Fig.2 (b). Comparison of the numerical solution obtained using a scheme of Crank-Nichols type 

(σ=0.5) with the analytical one at the time t=100. 

The solution using a completely implicit scheme (σ=1) leads to significantly worse results 

(Fig. 3). This is due to the high schematic viscosity, which in this case is the reason for a 

strong drop in the amplitude of the soliton with time, which in turn decreases its velocity (Fig. 

4(a)). In this case, as the amplitude decreases, the integration step increases (Fig.4(b)). 

However, at the initial moments of time, when the amplitude is not yet very different from the 

initial value, the time step turns out to be about 2 times less than for the Crank-Nichols type 

scheme. 

Figure 5 shows a numerical solution using an explicit difference scheme (σ=0). Figure (a) 

shows the solution with a time step 0001.0t . By the moment of time t=3, a loss of 

stability occurs and further calculation becomes impossible. Note that a decrease in the 

integration step pushes further in time the moment of stability loss.  

(a) 

(b) 
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Fig.3. Comparison of numerical solution using a completely implicit scheme (σ=1) with the analytical 

one at the time t=100. 
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Thus, decreasing the step by a factor of 2 to 5105 t leads to the fact that the 

destruction of the solution occurs at about time t=6. Figure (b) shows the loss stability at the 

time of t=30 when integrating with a step 5101 t . According to the results obtained in 

theoretical works [24, 25], explicit two-layer difference schemes for the KdV equation are 

absolutely unstable. Our results are in complete agreement with this conclusion. 
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Fig .5. Numerical solution using an explicit difference scheme (σ=0) with different integeration steps 

(by an order) 

6 ANALYTICAL STUDY 

When using the finite difference method, it is not the original partial differential equation 

that is solved numerically, but a modified equation called the differential approximation of the 

difference scheme [33–35]. The right side of this approximation is the approximation error 

and is equal to the difference between the original partial differential equation and its finite-

difference analogue. Investigation of the right-hand sides of differential approximations 

makes it possible to establish the predominant contribution to the approximation error of the 

highest derivatives and the related properties of difference schemes such as dissipation and 

dispersion. It is known that if the main term in the expression for the approximation error 

contains derivatives of an even order, then the dominant properties of difference schemes will 

be dissipative, and if derivatives of an odd order, then the dominant properties will be 

dispersive. 

Let us analyze the family of schemes (5) using the method of the modified equation [33-

35]. To do this, first we replace the sought function ),( txu  by ),(),( txutxf  . This allows 

one to get rid of the coefficient α as in both the original equation 
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and in the finite-difference approximation 
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That is, the factor α is simply the scaling factor for the ordinate. 
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Fig.6. Numerical solution of the problem of collision of solitons: (a) initial condition, (b) comparison 

with the analytical solution at the time t=1. 

Next, we expand the two-dimensional function ),( txf  in a Taylor series at a point 

),( 2/1k

m tx  and substitute it into scheme (7). Leaving the terms in the resulting expression not 

higher than the second order of smallness, we can write 

 
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In this expression (8), to simplify notation, the indices m and k + 1/2 for the function f and 

all its derivatives are omitted. We focus our attention on the first-order term in Δt. Using the 

original equation (6), we get rid of the time derivatives: 
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In addition, for simplicity, we use the boundedness of the function f and all its derivatives 

in the domain of definition, and we replace the coefficients of the second-order terms by the 

constants K1 K2. As a result, we finally get: 
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Now let's analyze the resulting expression (10). In the term of the 1st order with respect to 

Δt, the square brackets contain two groups of terms: in the 1st curly bracket there are even 
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derivatives with respect to x, in the 2nd - odd ones. I.e. the 1st curly bracket corresponds to 

the schematic viscosity, and the 2nd - to the schematic dispersion. In this case, the sign of the 

coefficient in front of the dispersion terms is insignificant, while in front of the diffusion 

terms it is very important. This sign is determined by the difference (σ-1/2). 

When σ>1/2, the coefficient in front of the first-order diffusion terms is positive, and 

scheme (7) implements equation (6) with an additional viscosity proportional to the first 

power of the time step. This provides, on the one hand, stable behavior in the calculation 

process, on the other hand, distortion of the solution; over time, the initial perturbation is 

smeared out. It is this effect that we observed in the numerical solution using a completely 

implicit scheme (see Fig. 3). 

When σ<1/2, the coefficient in front of the first-order diffusion terms is negative. That is, 

equation (10) gets negative viscosity. This means that scheme (7) becomes absolutely 

unstable. And since the absolute value of the coefficient is still proportional to the 1st power 

of the time step, the destruction of the solution occurs the earlier, the larger the time step is. 

This is precisely what we observed when experimenting with an explicit difference scheme 

(see Fig. 5). 

In addition, now the assertion of theoretical works [24, 25] about the absolute instability of 

explicit two-layer difference schemes for the KdV equation can be extended for the family of 

schemes (7): all schemes (7) are absolutely unstable for σ<1/2, i.e. with “any prevalence of 

explicitness”. 

The highlighted value of σ is 1/2. For this single value, the first-order term in (10) 

vanishes, and thus scheme (7) receives the second-order approximation in both variables, 

)( 22 xtO  . In addition, the effects of the scheme viscosity and 1st order dispersion are 

nullified. It is precisely because of this that, in a numerical solution on a somewhat coarse 

grid, it was possible to obtain the transport of a soliton with practically no distortions over 

considerable distances (see Fig. 2). 

So, scheme (5) with σ=1/2 showed the best results in modeling of the problem of the 

soliton transfer. 

7 VERIFICATION OF THE APPROXIMATION ORDER 

Using the example of the problem of collision of solitons, we numerically verify the order 

of approximation of scheme (5) at σ=0.5. For equation (1) with parameters 1  ,6  , there 

is the following analytical solution to this problem [36]: 
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We will use this solution to set the initial condition (Fig.6a) and then estimate the error of 

the numerical solution. For this, we use the following definitions of the error of the numerical 

solution at the time 
kt : 

 

 ),(max )2

),(
1

1
 )1

0

0

2

2

k

mexact

k

m
Mm

C

M

m

k

mexact

k

mL

txUu

txUu
M













 (12) 

65



V.I. Mazhukin, A.V. Shapranov, E.N. Bykovskaya. 

 

At the first stage, we choose the size of the spatial step 2.0)(  Ix , as in the previous 

problem on the transfer of a soliton. We solve the problem in the computational domain 

]20 ,0[x  in the time interval ]1 ,0[t  (Fig.6b) with automatic selection of the time step in 

order to determine the maximum allowable time step. It turned out 3

max 104 t . Then we 

make calculations by disabling the automatic selection mechanism and decreasing the time 

step until the errors at the end of the calculation 1endt , calculated by formulas (12), stop 

decreasing. This means that in the approximation error 

)()(),( xEtExt xt    (13) 

the part related to the time step became negligible compared to the part related to the space 

step: )()( )(0 Ixt xEtE   . It turned out for our problem 6

0 102 t . Wherein 

1)  )( )(2 IL xE 0.21359560124 

2)  )( )( IC xE 0.89613301323 
(14) 

We do the calculation again, leaving the step 0t unchanged, but reducing the step in space 

by 2 times:. We get 

1)  )2( )(2 IL xE 0.05356903839 

2)  )2( )( IC xE 0.22397163990 

Thus, with good accuracy 

00.4
)2(

)(
  ,99.3

)2(

)(

)(

)(

)(2

)(2











IC

IC

IL

IL

xE

xE

xE

xE
 

That is, with a 2-fold decrease in the spatial step, the associated approximation error 

decreased by a factor of 4. This means that the scheme has a 2nd order of approximation in 

space and an error )( 2xO  . 

To determine the order of approximation in time, we find the ratio: 

)(),2(

)(),(

)2(

)(

)()(max

)()(max

max

max

IxI

IxI

t

t

xExt

xExt

tE

tE
















  (15) 

As the spatial part of the error )( )( Ix xE  , we can use the previously obtained values (14). 

Let us calculate the total error again: 

1)  ),( )(max2 IL xt 0.21931557047 ,   ),2( )(max2 IL xt 0.2150291787 

2)  ),( )(max IC xt 0.91958522470 ,   ),2( )(max IC xt 0.90208673036 

Substituting all values into (15) we obtain  

94.3
)2(

)(
  ,99.3

)2(

)(

max

max

max2

max2 
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L

L  
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This means that the scheme has a 2nd order of approximation in time and an error )( 2tO  . 

8 CONCLUSIONS 

In this paper, we investigated a family of weighted two-layer difference schemes for the 

Korteweg-de Vries equation on an Eulerian difference grid. 

It is shown numerically that the best results are obtained using an explicit-implicit 

difference scheme of the Crank-Nichols type of the second order of approximation 

)( 22 xtO  . This scheme is capable of stably reproducing a stationary solution with good 

accuracy for a long time. The second order of approximation in both variables is numerically 

confirmed by the example of the problem of collision of solitons. 

A completely implicit two-layer scheme of the 1st order in time and 2nd in space 

)( 2xtO  , although absolutely stable, nevertheless, due to the high scheme viscosity, 

significantly distorts the solution. 

The calculation with the use of an explicit two-layer scheme has never been completed. 

There always came a moment of loss of stability, even with a very small time step. Although, 

up to this point, the solution was quite acceptable. 

An analytical study of the family of finite-difference schemes (5) using the modified 

equation method fully confirmed the results of numerical experiments. The analysis of the 

structure of the approximation error for a family of two-layer finite-difference schemes made 

it possible to explicitly show the reasons for the success of explicitly implicit Crank– Nichols 

type schemes with )( 2xtO  and the absolute instability of the family of schemes (5) in the 

case of “prevalence of explicitness” with a parameter σ<0.5. High scheme viscosity of 

absolutely stable fully implicit two-layer schemes of the 1st order )( 2xtO   indicate the 

need to improve the accuracy of the space-time approximation. 

An important advantage of the considered schemes is their simplicity and transparency of 

the basic mathematical constructions. 
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