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Summary. This paper deals with non-self-adjoint second-order differential operators with two
constant delays. We consider four boundary value problems D; ;,i = 0,1,k = 1,2

=" () + q1(0)y(x — 1) + (—1)'q2 (X)y(x — 75) = Ay(x), x € [0,7]
y'(0) —hy(0) =0, y'(m)+ Hyy(m) =0,

where g <17, < g < 2t, <1 <m, hHy H, € R\{0}and 1 is a spectral parameter. We assume

that q,, q, are real-valued potential functions from L,[0, ] such that q; (x) = 0,x € [0,7,) and

q,(x) =0, x € [0,7,). The inverse spectral problem of recovering operators from their spectra has
been studied. We prove that delays t,, T, and parameters h, H;, H, are uniquely determined from the
spectra. Then we prove that potentials are uniquely determined by Volterra linear integral equations.

1 INTRODUCTION

The theory of differential equations with delays is a very important branch of the theory of
ordinary differential equations and has been studied in detail in [1] and the references therein.
For a number of results relating to the inverse spectral problems for classical Sturm-Liuville
operators we refer the reader to [2], while some aspects of the direct and inverse problems for
operators with a delay can be found in [3] - [13]. While there are a number results about both
direct and inverse problems for operators with one delay, there are just a few results related to
the operators with two or more delays (see [14]-[18]). The motivation behind this paper is to
initiate further research in the inverse spectral theory for differential operators with delays. In
what follows, we always take i = 0,1 and k = 1,2. In this paper we consider the boundary
value problems D;

—y"(x) + g1 ()Y (x — 11) + (~Digy )y (x — 73) = Ay(x), x € [0, 7] @
¥'(0) — hy(0) = 0, @
y'(1) + Hey(m) = 0 3)

where = < 7, <> <27, <7, <7, hH;, H, € R\{0} and 4 is a spectral parameter.
We assume that q,, g, are real-valued potential functions from L, [0, r] such that
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q1(x) =0, x €[0,7,) and g,(x) = 0, x € [0,7,). We study the inverse spectral problem of
recovering operators from the spectra of D; ;. Let (ﬂn,i,k):;o be the eigenvalues of D; , .
The inverse problem is formulated as follows.

Inverse problem: Given (An,i,k)j;o, determine delays 74, t,, parameters h, H,, H, and potential
functions g4, q5.

To solve this inverse problem, we use the method of Fourier coefficients. This method based
on determination of direct relations between Fourier coefficients of the potentials or some
functions containing the potentials, and Fourier coefficients of some known functions.

In Section 2, we study the spectral properties of the boundary value problems D; ;. In Section
3, we prove that delays and parameters are uniquely determined from the spectra. Then we
prove that potentials are uniquely determined by the system of two Volterra linear integral
equations.

2 SPECTRAL PROPERTIES

One can easily show that differential equation (1) under the initial condition (2) and
conditions q;(x) = 0,x € [0,7;) and g,(x) =0, x € [0,7,) is eqgivalent to the integral
equation

h 1r*
yi(x,z) = cosxz + ;sinzx + ;f q1 (O)sinz(x — t)y(t — 74, z)dt +
T1

+ (—1)‘5[2 q, ()sinz(x — t)y(t — 1,,z)dt )

Here and in the sequel A = z2. By the method of steps it can be easily verified that the solution
of integral equation (4) on (t,, 7] is

h &) i@
yi(x,z) = coszx + — smzx + bs.’ (x, Z) + (=1)'bg; (x z) |+

+Z£2(b§? (x,2) + (—1)%5? (x, z)) L D7) t— " b®(x,2) ®)

Zsc

where
X
bgf) (x,2) = f qr (t)sinz(x — t)cosz(t — 1y )dt,

Tk

) X
bs(? (x,2) = f qr (t)sinz(x — t)sinz(t — 13 )dt,

Tk

X
bg) (x,2) = f q, (t)sinz(x — t)bs(f)(t —1,,2)dt,

27,

X
bs(gz(x, z) = f q, (t)sinz(x — t)bg)(t —1T,,z)dt.

2T,
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Denote
Ai (1) = Fi(2) = y;'(m,2) + Hiy(m, 2). 1

From (5) we obtain

hHyy o) (@)
Fuu(z) = (—z += )Slnnz + (h+ Hy)costz + bP (@) + (1P (2) +
hi @ i@ He (@ e
+; bcs (Z) + (_1) bcs (Z) + ~ bsc (Z) + (_1) bsc (Z) +

h .
P (59@ + DL @) +- b + 5B + bR + 35D (2)

where

T
b®) (7 = f 0 (D)cosz(x — D)sinz(t — 1)dt,

Tk

bg) (2) = fﬂqk (t)cosz(x — t)cosz(t — 1y )dt

Tk

Y
b2 = |4z @sinax — 02— 102,

27,

T
bP(2) = f 4 (Dcosz(x — b (t — 1,2 )dt,
27,

T
bg% (z) = f q, (t)cosz(x — t)bs(g)(t —1,,7 )dt.

27,

To simplify further consideration we define so called the transitional functions g; as follows

(ql(t+ )+( 1! qz(t+ 2) te [Tz—ln—TZ—I]
00 = { (~Dig (t+2) e [Zm) u (r -3 m -2,
0,te [O,TZ—Z)U(H—%Z,N] (6)
Let us also define functions K and U® by
KO =g+ 1) | 42(5)ds — 42(0) : 42 (s)ds — ft ” 425 — D, (5)ds,

te [TZlT[ - TZ]: K(Z)(t) = O,t € [01 TZ) U (T[ - TZ,T[],
and

1 Below, instead of the argument (7, z) we write argument (z)
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t T

q2(s)ds — q2(¢)

T

42(s)ds + f 42(s — D> (s)ds,

t+7,
t € [1,,m—1y], UP(t) =0,t € [0,7,) U (1 — 1y, 7]

UD() = gy(t + 1) f

T t+71,

and introduce notations

© = qod P=] ao ( [ (s)ds)dt

Tk T2 2

and functions

1 s

G o(2) = fo Gi(O)cosz(n —20dt, d;s(2) = fo G.(O)sinz(r — 2 )dt,
ky(2) = fo "KO(©) sinz(n - 20)de, ko(z) = fo "KO(©) cosz(n — 20)dt,
1y (2) = fo "UO(@) sinz(n — 20)de, uy(z) = fo "UO@) cosz(n — 20)dr.

One can easily show that folowing relations hold

=T T—T,
f K@ () dt = — ;2)’ f U(z)(t) dt = 152). @)
T2

T2
Using aforementioned tags and relations (7), we can rewrite characteristic functions F; . (z) as
follows

hHy\ . 1,
Fix(2) = (—z + 7) sinnz + (h + Hy)cosmz + 5 (ailc(z) +]i,c(z)) +

h H hH
5 (45D +Ji5(D) + 5 (85@) +15(@) + 55 (016 ~ i)
1 h H
(25 ~w@) = 15 (2@ + k(@) = 5 (J2c(2) — ue(@)

hH
— 25 (252 T k(@) @®)
where
Jie(@) = JPcosz(m — 1) + (=1 P cosz(m — 1),
Jis(2) = ]fl)sinz(n —79) + (—1)"]§2)sinz(n —T5)

Joc(@) = JPcosz(m — 21),  Jo5(2) = [P sinz(n — 215).
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The functions F, (z) are entire in 4 of order 1/2. Using (8), by the well known method (see

[2]), we obtain the asymptotic formulas for (An,i,k):):() of D
) 1) @ )
Anir =n%+ p- (h+ Hy) + 71r cosnt; + (—1)‘17cosnrz +0(1),n = oo.

Now, by Hadamard's factorization theorem, from the spectra of D, ,, we can construct the
characteristic functions F; .. The next lemma holds.

Lemma 2.1. The specification of spectrum (An_i_k):;o of the boundary value problems D;
uniquely determines the characteristic functions F; , (z) by the formulas

P A i — 22
Fi,k (Z) — T[(Ao,i,k _ ZZ) 1_[% (10)
n=1

3 MAIN RESULTS

Lemma 3.1. The delays 7, integrals jl(k) and sums h + H,, are uniquely determined by
eigenvalues ()ln,i,k):zo.

Proof. Let us consider the sequences

Pnk = %(An,o,k + An,l,k)

and

1
Op = 2 (An,O,l - An,l,l)-

From (9) we obtain the next asymptotic formulas
2 &
Pk =n%+ - (h+ Hp) + %cosnrl + 0(1)

and
2
Op = %cosnrz + 0(1).

Obviously, the delays t,, 7, and integrals ]fl), fz) can be determined from sequences

(pn,k):jzo and (a,)5m=¢ inthe same way as for the operators with one delay (see [13]).
Lemma 3.1. is proved. O

Lemma 3.2. Parameters h and H,, are uniquely determined by eigenvalues (An,o,k)zzo.
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Proof. By virtue of Lemma 3.1., functions J, .(z) and J, ;(z) are known. Since the

2
characteristic functions are uniquely determined by the spectra, putting A = (4";“) into
functions F;, from (10), we can define functions

4m+1>+4m+1 1 (4m+1> Hy +h (4m+1)

F* =F, — _
o,k(m) o,k( 2 5 am+ 1705 )

2 2]0,C
Then, using the form of the characteristic functions F; , from (8), we get

1 4m+1

h== lim ——
2 mos H, — Hy

(F*o,z(m) - F*0,1(m))

At the end, we determine H, from h + H,, thus proving Lemma 3.2. O

In order to recover the potential functions from the spectra by the method of Fourier

coefficients, we should transform the characteristic functions (8). For this purpose, we use the

method of partial integration in (8), once in integrals a; ;(z), @; .(z), us(z) and u.(z), and
twice in the integrals k.(z) and k¢(z). This is where the next function appears

t
K®*(t) = LZK(Z)(u) du,t € [, m — Tz].
0,t €[0,72) U (T — 1y, 7]

One can show that following relation holds

T—T, t
T r—

T2

Then we obtain the characteristic functions in the form

Hi.h\ 1/_ Hy
Fir(2) = <—Z + 7) sinnz + (h + Hy)cosmz + 5 a;c(z) + ~ as(z) | —

(020 + Fa, 0@ ) -3 (1@ + @ ) + a0+ Fi o)

]i,C(Z) 2h+Hk 1 Hkh h @) .
St Jis(2) + Z(l - Z_z)]Z.S(Z) + Z(n — 21,)J,” sinz(m — 27,)

+HLh (mr— Zrz)j(z)cosz(r[ —217,)
2,2 2
where
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and

In order to recover the potential functions from the spectra, at the beginning we define

functions
Ai(z) =

2@

and
Bi(2) =

From (11) we obtain

H, — Hy

HZ—ZHl(

t
(ﬁ Gi(s)ds | cosz(m — 2t)dLt,
L2
Ty ¢
(ﬁ Gi(s)ds |sinz(mw — 2t)dt,
L2
2

uz(z) = fﬂ " <ftU(2)(s) ds) cosz(m — 2t)dt,

—T, t
ui(z) = f <j U@(s) ds> sinz(mw — 2t)dt

T2

T—T, t
ki*(z) = f <j K®*(s) ds) cosz(m — 2t)dt,

T2

ki (2) = f i ( f KD (s) ds> sinz(m — 26)dt.

T2

(HZFM(Z) — HF;, (Z)) + 2zsinmz — 2hcosnz — J; (z) —

sinz(mt — 1)

Fi(2) — Fi4 (z)) — 2hsinnz — 2zcosnz — J; s(2).

Ai(2) = @0 (2) — 2hG; D (2) — ui(2) + 2hkE (2) + a(2)

Bi(2) = d;5(2) — 2h{; s (2) — ui(2) + 2hkZ*(2) + B(2)

where

and

B(z) =

(2)
a(z) = 27 (h(mr — 21,) + 1)sinz(m — 21,)

P

2 (Z(T[ — 21,)cosz(m — 21,) — sinz(mw — 212)).

34

(12)

(13)

(14)

(15)



B. Vojvodi¢ and N. Pavlovi¢ Komazec

One can easily show that

limpB(z) =0,

z-0

and
llm a(z) = ](2)(h(n —27,) + 1) (m — 21,).

Putz = m, m € N into (14) and (15) and denote
2 m 2 m+1
Aym,i = p (=D™A;(m), Bym; = p (=1)™*B;(m).

Then we obtain

)
2 4 2
Apmi = EQZm,i hqu)uc u2mc += thmc (16)
2. 4 2 4 2h)?
Bom = —bam,i — Eth}‘r)l,lS —Uzms + —hkoms — L (m(r — 27,)cos2mr, + sinzmr,) (17
where
T ~ T
dym,i = f gi(t)cos2mtdt,  bypy; = f g;(t)sin2mtdt,
0 0
n-2( ot
Upm,s = fr f U@ (s)ds | sin2mtdt,
72
Upm,c = fT U (2)(5) ds | cos2mtdt
72
-7,
k3mc = ( K(Z)*(s) ds> cos2mtdt,.
T
T,
kms = f < K(z)*(s) ds) sin2mtdt.
T2
Denote Ay ; = = lim 4; (m).
’ T m-0
Then we obtain
2 o 2. 4 . 2P (18)
AO,i =—0y; — hq - Euo,c + Ehko,c +

T 0,i,c

Since sequences {Az;,;} and {Bs,,;} belong to the space [,, by virtue of Riesz-Fischer
theorem, there exist functions f; from L, [0, ] such that
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Aoi N
() =—+ amicosZmt + By, isinZmt,t € |0,
) ;’" Agn OS2 By iSin2 [0, 7]
m=1

Now multiplying (18) with % , (16) with cos2mt and (17) with sin2mt, and then
summing-up fromm = 1 to m = oo, we get the system of integral equations

t
G;(t) — 2h fr Gi(s)dty - f U@ (s)ds + 2h f K@*(s)ds + ®(¢) = f;(t) (19)
2

T2

where

2@
®(t) = — L (h(r — 212)+1)Z

2h](2) cos2mt, h](z) sinZmt, |
(n—ZTZ)Z sin2mt — Z 3 sin2mt.

sin2mrt,

cos2mt —

m=1

After summing and subtracting integral equations (19), and then introducing substitution of
variables, we get the system of integral equations

ql(x>—2h£xq1(u>du—fx

T
T2+2

U@ (u —Tz—l)du+ ZthJrr_lK(Z)* (u _1'2_1) du +

ro(e-2) =3(n (- D)+ (- D)) (20)

and

020~ 20 [ 4y() du = —<f0 (x=2)= £ (x- T2_2)> (1)

T2

Finally, we come to our main result.

Theorem 3.1. Let gy € Ly[1;, ], qx(x) = 0 for x € [0, 7y).
If % <7,< g < 21, < 7; < m, then integral equations (20) and (21) have unique solutions
q, € L,[t,, ] and q, € L,[t,, ], respectively.

Proof. Obviously, the integral equation (21) has a unique solution g, on (z,, 7). Then we
i i x @ (-4 x @)=, =4
obtain that integrals fTZ i U (u 2) du and sz i K (u . ) du are known too, as

well as the integral ]2(2). For sums appearing in the function ®, we have
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{ —T,, tE€ (T, T —Ty),
[00] R T[
sinzmt t _
Z 2 cos2mt = 5 T t € (0,72) U (m — 13,7),
m=1 ——Tz, t:TZIt:T[_TZ
4
—t, t e (0, Tz)
T
__t, tE(Tz,T[—TZ)
[e%) ? 2
cos2mrt _ _
Z 2 sin2mt =+ 77Tr t, (Tt —73,m)
m
m=1 Z — Ty, t = Ty,
T
- Z + TZ) t =T — Tz
and
{ (T — 275)¢, t € (0,15)
b - [—
sin2mt, To(m — 21), t € (1,,m—1y)
Z 5 sin2mt = (7 — 27,)(t — m), (m—1,,m)
m
m=1 (r — 275)7,, t=1,
_(T[ - 27'-2)7'—2! t=m— TZ

Then for x € (74,7) we obtain linear integral equation

ql(x>—2hfq1(u)du=f

2+%1
BRILE| (I IVACEE)

which has a unique solution g, on (t4, ). Theorem is proved. O

u® (u _1'2_1) du — ZhL;T_lK(Z)* (u _1'2_1) du

4 CONCLUSION

Inverse spectral problems for classical Sturm-Liouville operators have been studied
completely, while the inverse problems for differential operators with delays have not been
studied enough. The main results for classical Sturm-Liouville operators is presented in [2]
while some of the results for differential operators with delay can be found in
([31.[41.[5].[10],[11],[12],[13]). The class of operators with two delays has been least studied,
but some of the results for this class of operators are presented in ([16], [17]). The motivation
behind this paper is to initiate further research in the inverse spectral theory for differential
operators with delays. We studied the inverse spectral problem of recovering operators from
the spectra of D; . To solved this inverse problem, we used the method of Fourier coefficients.
This method is based on determination of direct relations between Fourier coefficients of the
potentials or some functions containing the potentials, and Fourier coefficients of some known
functions. We studied the spectral properties of the boundary value problems and proved that
delays and parameters are uniquely determined from the spectra. Then we proved that potentials
are uniquely determined by the system of two Volterra linear integral equations.
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