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AND SOME APPLICATIONS. PART II 

 Ž. PAVIĆEVIĆ1,2, J. ŠUŠIĆ1 and M. MARKOVIĆ*1 
1Faculty of Natural Sciences and Mathematics, University of Montenegro, 

Podgorica, Montenegro; 
1National Research Nuclear University MEPhI 

     (Moscow Engineering Physics Institute), Moscow, Russia 

*Corresponding author. E-mail: marijanmmarkovic@gmail.com

Summary. Using dynamic and geometry of Möebious mappings we prove Lindelöf type 
theorems for much larger class of functions on the unit disk than previously considered class of 
meromor-phic functions.   

1. INTRODUCTION

In classical theory of boundary behaviour of functions of one complex variable and in the the-
ory of boundary sets the special important place is for the Lindelöf theоrem and the Fatou theo-
rem (we refer to [3, 12]) on radial and nontangential boundary values of holomorphicc functions. 
The first one concerns the local property of functions, i.e., it is about the existence of non-
tanegntial boundary value in a single point in the domain of a holomorphic function, the second 
one is about global boundary behaviour, i.e., it concerns the almost everywhere existence of ra-
dial boundary values of a holomorphic function. Nowadays there exist many proofs of these the-
orems but all of them use classical results of analytic theory of functions (see [3, 12, 13, 23]). 
Generalizations of Lindelöf theorems and Fatou theorems goes in many directions. One direction 
is for analytic functions by proving „stronger“ results, i.e., by proving the existence of nontan-
gentail boundary values under weaker conditions then those in the Lindelof theorem (see [17- 
19]). The second direction is to consider similar theorems for broader class of functions: mero-
morphic functions, endomorphic mappings, holomorphic mappings of several complex variables, 
quasiconformal mappings in n, Rn≥ 2, harmonic functions and similar [22, 24, 25].  
In this paper we prove how one can efficasely use the geometry or dynamic of Möebious 
mappings in order to derive the results on asymptotical behavior of holomorphic functions. 
Namely, we prove theorems that give necessary and sufficient conditions and criteria in order 
that a meromorphic function on the unit disk has tangential and nontangential boundary values. 
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These theorems show that the conditions in the classical Lindelöf theorem and in the theorem of 
Lehto and Virtanen, Bagemihl and Seidel, Gavrilov and Burkova on angular boundary values of 
meromorphic functions may be relaxed. In the proofs of these theorems we use the Main Lemma 
1 and the Main Lemma 2 in the Section 5 (see [18]). These results give the necessary and suffi-
cient condition on a function defined on the unit disk in the complex plane, to has a boundary set 
consisted of one point, along the set which is obtain applying cyclic semi-group produced by an 
element in the hyperbolic or parabolic Moebius group on the unit disk. More on the topic on 
boundary asymptotic properties of functions one may found in [13, 17-19, 22-24]. 

2. PRELIMINARY NOTATIONS, DEFINITIONS AND RESULTS

By D we denote the open unit disk    z 1z   in the complex plane C, and with Γ  we denote 

the boundary of D, and { } Im 0D D z z+ = ∩ > , { } Im 0D D z z− = ∩ < , and

{ },  0<r<1rD z z r= <  is the disk with radius r. By  i P pθ θ  we denote the diameter and the 

radius of D with one endpoint in ie θ . Further, we denote by ( )1 2 1 2,d z z z z= − , 1 2 ,z z ∈  the 

Euclidean distance on  , ( ),
1ph
z wd z w

zw
−

=
−

 and ( ) ( )
( )

1 ,1, log
2 1 ,

ph
h

ph

d z w
d z w

d z w
+

=
−

 , , ,z w D  stand 

for the pseudohyperbolic and hyperbolic distance between z and w in the dsik D, respecitvely, 
and    

( )
2

2
, z, ;

1 1
,

1 , z ,  w
1

s

z w
w C

z w
d z w

C
z

 −
∈

+ ⋅ +
= 
 ∈ = ∞
 +

is the spherical distance on the Rimanian sphere { }= ∪ ∞  . 

It is well known that dh is the metric in the Poencare model of the hyperbolic geometry on the 
disk D introduced by Lobachevsy. 
All convergencies in this paper are with respect to the distances introduces above.  

The set ( ) ( ){ }, , ,ph phD w r z z D d z w r′ ′= ∈ < , w D∈ , 0 1r′< < , is the pseudohyperbolic disk, 

and ( ) ( ){ }, , ,h hD w r z z D d z w r= ∈ < , , 0r > , is the disk with respect to the hyperbolic 
distance. 

Lemma 1. We have ( , ) ( , ')h phD w r D w r , where 1 1 'ln
2 1 '

rr
r
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2
1' = .
1

r

r
er thr
e

        

w D∈
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The pseudohyperbolic disk ( ),phD w r  is the Euclidean disk ( ) { },  D c R z D z c R= ∈ − <  for

2

22

1 ,
1

rc
r w
−

=
−

 and 
2

22

1
.

1
w

R r
r w
−

=
−

 

Therefore, the boundaries of hyperbolic and pseudohyperbolic disks are the ordinary cycles. The 
cycle which lies in D and with Γ has one common point is the oricycle D. The radius of D and 
arcs in D and in intersection with Γ have two points are hypercycles in D.  

An arbitrary hypercycle will be denoted by H, an arbitrary oricycle will be denoted by O. We 
denote by [ ), 0,H θ θ π∈ , the hypercycle which connects the points ie θ−  and ie θ ; we denote by 

[ ),  0, 2Oθ θ π∈ , the oricycle which is tangent to Γ  in ,ie θ  and ( )0  ,iuO e u
u i

θ θ = ∈ −∞ ∞ − 
 is 

the oricycle 1 1
2 2

iz z e θ 
− = 

 
. 

We will also consider the family of all hypercycles with two common points in Γ . 

The hyperbolic distance between a point z, ,z D∈  to the curve ,  ,Dγ γ ⊂  is

( ) ( ), inf ,h hw
d z d z w

γ
γ

∈
= . 

For H θγ = , one can prove that ( ) ( ), min ,h hw H
d z H d z w

θ

θ

∈
=  and that ( ),hd z H θ  does not depend

on  z   if z H∈ , where  H is a hyper-cycle from the family of all hypercycles which is defined by 
the hypercycle H θ  (see [10]). Also one can prove (see [10]) that there exists unique point 0w  in 

H θ such that 

( ) ( ) ( )0, min , ,h h hw H
d z H d z w d z w

θ

θ

∈
= = . (1) 

From above, by “symmetric thinking”, it follows that for w H θ∈ there exists unique point 0z  in 
H such that 

( ) ( ) ( )0, min , ,h h hz H
d w H d w z d w z

∈
= = (2) 

And this distance does not depend on w H θ∈ .  
From (1) and (2) it follows that for any w H θ∈  and z H∈  there exists unique points 0w H θ∈   

and 0z H∈   such that 

 ( ) ( ) ( )0 0, , ,h h hd w H d z H d w zθ= = .  (3) 
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Having in mind all the preceding, the equality (3) define the hyperbolic distance between hyper-
cycles H θ and H. Notation: ( ),hd H Hθ .

From the all given above we have: 

Lemma 2 (see [10]).  The set of points in D such the hyperbolic distance between the hypercycle 
H is the hypercycle which belongs to the family of all hypercycles defined by the hypercycle H. 

From Lemma 2 we obtain: 

Lemma 3 (see [8, 14]). The set  ( )
( )

( )
1,1

, ,i
H h

a
r D ae rθθ

∈ −

∆ = ∪ , ( )0,r∈ +∞ , is a domain in the disk 

D bounded by two hyper-cycles ( )H rθ  and ( )H rθ −  such that their hyperbolic distance to the 

radius Pθ  is equal to r, and which contains the points 2 
i

th re
π θ + 
 −  and 2 

i
th re

π θ + 
   and contains 

the points ie θ−  and  ie θ   (see the Figure 1). 

Lemma 4 (see [10]). Let r be the hyperbolic distance of hyper-cycle H θ  from the diameter Pθ  of 

the disk D. The angle α  between H θ  and Pθ  is equal to 2 
2

rarctg e ππα ±= − . 

If ( )1,h θ α  and ( )2,h θ α , 1 22 2
π πα α− < < < ,  are arcs in D that with the radius pθ  of the disk  D with 

endpoint in point ie θ  make angles 1α  and 2α , then the domain in D which is bounded by these 
arcs and by the circle { }| i

rD z z e rθ= − =  is the Stolz angle with vertex at ie θ . This domain is 

denoted by ( )1 2, ,θ α α∆ . By ( ),θ α∆  we denote the Stolz angle with boundary  ( ),h θ α  and 

( ),h θ α− , 
2 2
π πα− < < . We denote it by ( )1 2, ,θ α α∆ . With ( ),θ α∆  we denote the Stolz angle 

with boundary ( ),h θ α  and ( ),h θ α− , 
2 2
π πα− < < , i.e.,  

( ) ( )i,  z D, arg e ,  0
2

z zθ πθ α α α ∆ = ∈ − < < < 
 

. 

Threfore, the Stolz angle is the domain which is an usualty geometic object (see Figure 1). 

From Lemma 4 we obtain: 

Lemma 5. For every α , 
2 2
π πα− < < , there exist ( ),  0,r r∈ +∞ , ( )1 1,  0,1r r ∈ , such that 

{ } ( ) { } ( )1 1 ,  , .i i
Hz y e r z y e r rθ θθ α θ− < ∩∆ ⊂ − < ∩∆  For every ( ),  0,r r∈ +∞ , there exists 

α , 
2 2
π πα− < < , such that ( ) ( ), , .H rθ θ α∆ ⊂ ∆  
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If ( ) ( ), inf ,h hw
d z d z w

γ
γ

∈
=  and if Oθγ = , then ( ) ( ), min ,h hw O

d z O d z w
θ

θ

∈
= and ( ),hd z H θ  do not

depend on z O∈ , where O is the oricycle from the family of all oricycles generated by Oθ . One 
can also prove that (see[10]) there exists only one point 0w  in Oθ such that

( ) ( ) ( )0, min , ,h h hw O
d z O d z w d z w

θ

θ

∈
= = . Analogy one may define the distance between two ori-

cycles from the same family of ori-cycles in the following way
( ) ( ) ( ), , ,h h hd H H d w H d z Hθ θ= = . It may be shown that there exist unique points 0w Oθ∈  and 

0z O∈  such that ( ) ( ) ( ) ( )0 0, , , ,h h h hd H H d w H d z H d w zθ θ= = = .  

Now, we have the following statements: 

Lemma 6 (see [10]). The set of points in D for which the hyperbolic distance is constant from the 

oricycle O is the orycycle in the family of all orycycles defined by the oricycle O.   

From lemma 6, we have: 

Lemma 7 (see [14]).  The set ( )
( ),

, ,i
O h

u

ur D e r
u i

θθ
∈ −∞ ∞

 ∆ =  + ∪ , ( )0,r∈ +∞ , is a domain in the 

disk D which is bounded  by two ori-cycles ( )O rθ −  and ( )O rθ  such that the hyperbolic dis-

tance between them and the oricycle ( )0  ,iuO e u
u i

θ θ = ∈ −∞ ∞ + 
 is equal to r, and that pass

throughout ,ie θ  ith re θ− and  ith re θ (see Figure 2). 

 

( ),O rθ∆

0O θ  2 
i

th re
π θ + 
 

2 
i

th re
π θ + 
 −

 

r 
( ),θ α∆( ),H rθ∆

Figure 1 Figure 2 
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3. FRAGMENTS OF THE GEOMETRY OF MÖBIOUS MAPPINGS
The Möbious group on the unit disk D is the group of all conformal automorphisms of the 

unit disc D, i.e., ( ) [ ) ,  ,  0, 2
1

i z aG G D e a D z
az

θ θ π− = = ∈ ∈ ∈ 
− 

 . 

The set 

( ) ( ) [ ) 1,1 ,  0,
1

i

D a a i

z aeH g g z a
ae z

θ
θ θ θ

θ θ π−

 +
= = = ∈ − ∈ + 

 is fixed, 

stand for the hyperbolic subgroup of G with fixed points ie θ  and ie θ− , 

( ) ( )
( ) ( ) [ ) , ,  0, 2

i

D u u i

u i z ue
P g g z u

u i ue z

θ
θ θ θ

θ θ π−

 + − = = = ∈ −∞ +∞ ∈ − − +  
 is fixed, 

 is the parabolic subgroup of G with fixed point ie θ , 

and finally 

( ) ( ) ( )
( ) [ )0 0 0 0

02
0 0

1 1
 0,2 ,  z

1

i i
z z

D i i

z e z z e
E g g z D

z e z e zθ

θ θ
θ

θ θ θ
θ π

−

 − − − = = = ∈ ∈ 
− + −  

is fixed, 

 is the elliptic subgroup of G with fixed point 0z . 

Since the hyperbolic distance is invariant with respect to g G∈  and from the definition of the  
groups DH θ  and DPθ  and sets DPθ , ( ),H rθ∆ , 0O θ and ( ),O rθ∆  we have the following statements: 

Lemma 9. (i) ( ) ( )( ) ( )( ) ( ), 0, 0, ,  0,
D D

H h phg H g H
r g D r g D thr r

θ θ
θ

∈ ∈
∆ = ∪ = ∪ ∈ +∞

(ii) ( ) ( )( ) ( )( ) ( ), 0, 0, ,  0,
D D

P h phg P g P
r g D r g D thr r

θ θ
θ

∈ ∈
∆ = ∪ = ∪ ∈ +∞ . 

The set ,  ,  A A D⊂ is the stabilisator of the group DH θ  if ( )g A A= , for every Dg H θ∈ . 

Lemma 10. For every Dg H θ∈  we have ( )g P Pθ θ= , i.e., the diameter Pθ  is stabilisator of the  
group DH θ . 

Lemma 11. For every Dg H θ∈  and ( )0,r∈ +∞  we have ( )( ) ( ), ,H Hg r rθ θ∆ = ∆ , i.e., the set 

( ),H rθ∆  is also the stabilisator of the group DH θ . 

Lemma 12. For every Dg Pθ∈ we have ( )0 0g O Oθ θ= , i.e., the ori-cycle 0O θ is the  stabilisator of 

the group DPθ . 

10
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Lemma 13. For every Dg Pθ∈  and ( )0,r∈ +∞  we have ( )( ) ( ), ,O Og r rθ θ∆ = ∆ , i.e., ( ),O rθ∆  
is the stabilisator of the group DPθ . 

For ( )  g G D∈ denote ( ) ( (( ( ) ) )
 puta

... ...n

n

g z g g g z=


, ( )0g z i= , i is the identity and

( ) ( ) ( ) ( (( ( ) ) )1 1 1 1

 puta

... ...
nn

n

g z g z g g g z− − − − −= =


, n∈ . 

Lemma 14 (see [2 ] on p. 73). 
(i) Let Dg H θ∈ . For fixed points ie θ and ie θ− there holds ( )n i

n
g z e θ

→∞
→  and ( )n i

n
g z e θ−

→∞
−→ ,  

where we mean uniform convergence on compacts sets of the disk D. 
(ii) Let Dg Pθ∈ . Then for fixed point ie θ

 we have ( )n i

n
g z e θ

→∞
→ , where we also mean the uniform 

convergence of compact subsets of the disk D. 

Therefore, the point ie θ
 is an attraction point for Dg H θ∈ , and ie θ− is repulsive point for g, i.e. it 

is an attraction point  for 1g − . If Dg Pθ∈   then the attraction point for Dg Pθ∈ . 

For Dg H θ∈ , and [ ) 0,θ π∈  fixed, ,g i≠ denote { }n
gH g nθ = ∈ . The set gH θ  sa with 

composition operation is the cyclic subgroup of the group DH θ . If Dg Pθ∈ , then the set 

{ }n
gP g nθ = ∈  with composition of functions is the cyclic subgroup of DPθ . 

Let ( ) ( )( ) ( ), 0, ,  0, .n
g hn

r g D r rθ
∈

∆ = ∪ ∈ +∞


Further, from the property of invariance of the hyperbolic distance with respect to g G∈  we 
have: 

Lemma15. ( ) ( )( )( ) ( ), 0 , ,  0, .n
g hn

r D g r rθ
∈

∆ = ∪ ∈ +∞


Lemma16. Let Dg H θ∈ , g i≠ . For every ( ) 0,r∈ +∞  there exists ( )1 0,r ∈ +∞  such that

( ) ( )1, ,H gr rθ θ∆ ⊂ ∆ , and ( ) ( ), ,g Hr rθ θ∆ ⊂ ∆  for every ( ) 0,r∈ +∞ . 

Proof of lemma 16. Let Dg H θ∈  be arbitrary and let it be fixed and g i≠ . Let ( ),Hz rθ∈∆ . 

There exists  ( )0,a∈ +∞  such that ( ),i
hz D ae rθ∈ . Since  iae Pθθ ∈ and ( )0ng Pθ∈  for every

n∈ , there exists N ∈  such that iae θ  is between ( )0Ng  and ( )1 0Ng +  or is equalt to one of 

that points. Let ( )( ) ( ) ( )( )10 0, 0 0 , 0 ,  n n
h hM d g d g g n+< = = ∈ . Then we have
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( )( ) ( )( ) ( ) ( ) ( )( ) ( )10 , 0 , , 0 , 0 ,N N i i N N i
h h h h hd g z d g ae d ae z d g g d ae z M rθ θ θ+≤ + ≤ + < +

Therefore, for every ( ),Hz rθ∈∆  there exists  N ∈ such that ( )( )0 ,N
hd g z M r< + , where  M 

and r are independent on z and N. 
Since ( ) ( )( )( ), 0 ,n

g hn
M r D g M rθ

∈
∆ + = ∪ +



(by Lemma 14) and

( )( ) ( )0 , ,N
h gD g M r M rθ+ ⊂ ∆ + ,  we obtain ( ),gz M rθ∈∆ + . If we take 1r M r= + , it fol-

lows ( ) ( )1, ,H gr rθ θ∆ ⊂ ∆ . 

Now ( ) ( ), ,g Hr rθ θ∆ ⊂ ∆  , ( ) 0,r∈ +∞  follows from  Lemma 9 and Lemma 15.  

Lemma 17. Let Dg Pθ∈ , g i≠ . For every ( ) 0,r∈ +∞  there exists ( )1 0,r ∈ +∞  such that

( ) ( )1, ,P gr rθ θ∆ ⊂ ∆ , and ( ) ( ), ,g Pr rθ θ∆ ⊂ ∆   for every ( ) 0,r∈ +∞ . 

Lemma 17 may be proved in a similar way as Lemma 16, instead of diameter   Pθ  one has to 
take the oricycle

0
 O θ . 

We will further consider the domains: ( ) ( )
[ ]0,1

, ,i
H h

a

r D ae rθθ
∈

∆ =




and

( ) ( )
[ ]1,0

, ,i
H h

a

r D ae rθθ
∈ −

≈
∆ =



, ( ) 0,r∈ +∞ , we call them the hypercyclic domains in D  and

( )
( )0,

, ,O
i

h
u

ur D e r
u i

θθ
∈ +∞

 ∆ =  + ∪


 and ( )
( )0,

, ,O
i

h
u

ur D e r
u i

θθ
≈

∈ −∞

 ∆ =  + ∪ , ( ) 0,r∈ +∞ ,    which will 

be called the oricyclic domains in D. 

Lemma 18. Let a Dg H θ∈ , ag i≠ , for which ie θ  is an attraction fixed point. Then for every

( ) 0,r∈ +∞  there exists ( )1 0,r ∈ +∞  such that ( )( ) ( ) ( )( )1
0 0

0, , 0,n n
Ha h a h

n n

g D r r g D rθ
∞ ∞

= =

⊂∆ ⊂


 

. 

Lemma 19. Let u Dg Pθ∈ , ug i≠ , for which ie θ  is fixed attraction point. Then for every

( ) 0,r∈ +∞  there exists ( )1 0,r ∈ +∞  such that ( )( ) ( ) ( )( )1
0 0

0, , 0,O
n n
u h u h

n n

g D r r g D rθ
∞ ∞

= =

⊂∆ ⊂


 

, 

u>0, and ( )( ) ( ) ( )( )1
0 0

0, , 0,O
n n
u h u h

n n

g D r r g D rθ
∞ ∞

= =

≈
⊂∆ ⊂

 

, u<0. 

Lemma 18 and lemma 19 may be proved in a similar way as Lemma 16. 
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4. CLASSICAL RESULTS FOR ASYMPTOTIC AND ANGULAR LIMIT VALUES OF
ANALYTIC FUNCTIONS AT A POINT

For { },   A iA D e θ⊂ ∩Γ = , we denote by A  the closure of the set A, and

( ) ( ) ( ){ }n n
, ,    , z ,  lim ,  limi i

n nn
C f A e A z e f zθ θω ω ω

→∞ →∞
= ∈Ω ⊂ = =  is the boundaty set of a 

function  Ω→Df :  corresponding to the point ie θ  allong  the set A . It is known that 

( ) ( ), , , , .i iC f A e C f A eθ θ=  

The symbol ϕn  K ϕ  denotes the uniform convergence on the set ,K D⊂ of the sequence  ( )nϕ

of functions : ,  ,n D nϕ → ∈   to  : .Dϕ →  

If ( ),iA e θ α= ∆  is a Stolz angle in the disk D with the vertex at the point θie , then

( )( )θθ α ii eefC ,,,∆  is the boundary set of the function f along the angle ( )αθ ,ie∆ . If for every

2
0 , παα << , ( )( ) { }ωα θθ =∆ ii eefC ,,, , the θie  is the Fatou point of f, and Ω∈ω  is the unique

nontangential boundary value. 

We always denote by γ  the simple Jordan curve in the disk D with endpoint in θie . If 

( ) { }, , iC f e θγ ω= , Ω∈ω , then  ω  is an asympthotic boundary value of the function f in the

point θie along the curve γ . 

We give now the classical assymptotic results and nontangential of analytic functions. 

Theorem of Lindelöf (see [12, 23]). If :f D →  is a bounded analytic function. If 

( ) { }, , iC f e θγ ω= , ω∈ ,  then   ( )( ) { }ωα θθ =∆ ii eefC ,,,  , i.e., θie  is the Fatou point of

function f. 

There are many proofs of the Lindelöf theorem. A proof based on maximum principle of analytic 
functions may be found in [23]. 

One generalization of the Lindelöf theorem is given by Lehto and Virtanen in [11]. The used 
results from normal function theory and results in harmonic function theory and harmonic meas-
ure. 

For a family of functions { }:f f Oℑ = →  we say that it is normal family on a domain O,

,O ⊂   if for every sequence ( )nf  in that familtyℑ  there exists a subsequence  ( )knf  which 

13
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convege uniformly on compact subsets of O to a function :f O → . This is normality in the 

sense of ℑ of Montel. The family of functions { }:f f Oℑ = →  is normal in the point  z O∈

if it is  normal  familiy in a neiborhoud of z. 

It is well known that a family of functions { }:f f Oℑ = →  is normal family in the domain O

if and only if it is normal in every point in the domain O (see [16, 20]). 

If ,O ⊂   i.e. if O∞∈ , then the  family of  functions { }:f f Oℑ = →  is normal in the point

∞ if we have  normality of the  family 1   f f
z

  ′ℑ = ∈ℑ  
  

 in  0. The family of functions 

{ }:f f Oℑ = →  is normal on O if it is normal in every point of the domain O. The theory of

normal functions is well exposed in [16, 20]. 

If :f D →  is a bounded analytic maping, then the family { } f g g G∈  is normal family of
functions on the disk D.   

Theorem of Lehtо and Virtanen (see [11]). Let :f D →  be a meromorphic function. If

{ } f g g G∈  is normal  family of functions on the  disk  D  and  ( ) { }, , iC f e θγ ω= , ω∈ ,

then  we have ( )( ) { }ωα θθ =∆ ii eefC ,,,  , i.e.,  θie  is the  Fatou point of the function  f.

For the proof of the theroem Lehto and Virtanen used the results from harmonic function theory 
and  harmonic measures  (the theorem on two constants) and the propery of the normal 
meromorphic functions (see [3, 11]). 

A meromorphic function :f D →  for which the family { } f g g G∈  is normal family of

functions on D is the class of very well understood normal meromorphic functions N which 
contains the Bloch class of  holomorphic functions denoted by B.  

In the following theorems proved by Bagemihl and Seidel [1], it is proved the existence of angu-
lar boundary values under weaker asymptotical conditions then these in the preceding theorems. 
But these theorems are based on the theorems of Lehto and Virtanen.  

Theorem of Bagemihl and Seidel 1 (see [1]). Let :f D →  be a meromorphic function. If

{ } f g g G∈  is a normal family of functions on the disk D and if for every z D∈  we have

( ) ,  f z w w≠ ∈ , and if there exists a sequence ( ) ,  z ,  ,n nz D n∈ ∈ such that: 

14
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( )1lim ,  , ,  ,  i
n h n nn

z e d z z M nθ
+→∞

= < ∈ ( )i lim ,  ,nn
f z ω ω

→∞
= ∈  then ( )( ) { }ωα θθ =∆ ii eefC ,,,  for

every
2

0 , παα << , i.e., θie is the Fatou point of the function f. 

Theorem of Bagemihl and Seidel 2 (see [1]). Let :f D →  be a meromorphic function. If 

{ } f g g G∈  is a normal family of functions on the disk D and if there exists a sequence

( ) ,  z ,  ,n nz D n∈ ∈  such that ( )1lim ,  lim , 0,  i
n h n nn n

z e d z zθ
+→∞ →∞

= = ( )i lim ,  ,nn
f z ω ω

→∞
= ∈  then 

( )( ) { }ωα θθ =∆ ii eefC ,,,  for every 
2

0 , παα << , i.e., θie  is the Fatou point of function f. 

Bagemihl  and  Seidel [1] constructed an analytic functions in order  to show that the condition 
concerning the hypervbolic distance  ( )1,h n nd z z +  in Theorem  5 and Theorem 6 is not possible 

to remove. 

In the following theorem proved by Gavrilov and Burkova in [8], it is proved the existence of 
angular boundary values for the broader class of meromorphic functions then the class in the 
theorem of Lehto and Virtanen. In [Gavrilov and Burkova 11] it is given an example of mero-

morphic function for which{ } a a Df g g Hθ θ θ∈  is normal on D but the family{ } f g g G∈ is not

normal on D. 

A construction is based on the theorem which says that for a meromorphic function :f D C→  

the family { } f g g G∈  is normal on the disku D if and only if the disk D does not contain the

so called P-sequences for the function f, dok je{ } a a Df g g Hθ θ θ∈  is normal family on the disk D

if and only if in the domain ( ) ( ), ,g Hr rθ θ∆ ⊂ ∆ , ( ) 0,r∈ +∞ , does not exist the  P-sequences 

for the function f. 

A sequence ( )nz , nz D∈ , lim 1nn
z

→∞
= , is a P-sequence for a function :f D C→  if for every 

subsequence  ( )kn k N
z

∈
and for every ε , 0 1ε< < , the function  f  on ( ),

kh n
k N

D z ε
∈


, takes 

inifinity many times all velues in C , except possibly at most two (see definition, Gavrilov[6]). 

In the sequel we will need the following theorems concerning the P-sequences: 

15
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Theorem on P-sequences 1 (see [6, Lemma 1]). Let ( )nz  be a P-sequence for a meromorphic 

function :f D C→ . If for a sequence ( )nz D′ ⊂  we have ( )lim , 0h n nn
d z z

→∞
′ = , then the sequence 

( )nz′  is P-sequence for  f. 

Theorem on P-sequences 2 (see [26]).  Let :f D C→ be a meromorphic fuction on D and let 

( )nz D⊂ a sequence such that lim 1nn
z

→∞
= and ( )lim nn

f z c
→∞

=  for some a c∈ . Further, let 

( )nz D′ ⊂ be a sequence such that lim 1nn
z

→∞
′ = , ( )lim , 0h n nn

d z z
→∞

′ = , and ( )( )nf z does not 

sonverge to a  c as n →∞ . Then ( )nz and ( )nz ′ are both P-sequences of the fuction f. 

Theorem of Gavrilov and Burkova (see [8]). Let :f D →   be a meromorphic function. If

{ } a a Df g g Hθ θ θ∈  is a normal family on the  disk D  and ( ) { }, , iC f e θγ ω= , ω∈ ,  then

( )( ) { }ωα θθ =∆ ii eefC ,,,  for every 
2

0 , παα << , i.e., θie  is the  Fatou point of the function f.

A proof of theorem of Gavrilov and Burkova goes in the same way as the, by using the result 
from harmonic function theory as well as using properties of harmonic measure, as in the proof 
of theorem Lehto – Virtanen. 

In [1] are given theorems that are analigies to the theorems of Bagemil and Seidel for 
meromorphic functions on D i.e., functions for which { } a a Df g g Hθ θ θ∈  is normal on the disk 

D. 

5. MAIN RESULT

The main lemma 1. For any function :f D → , any compact set  K, ,K D⊂  and any mapping 

a Dg H θ∈ ,  ag i≠ ,  the following conditions are equivalent: 

i) fο(ga)n K   c ;

ii) ( ) { }
0

, , . n i
a

n

C f g K e cθ
∞

=

 
= 

 


Proof of main lemma 1.  Let c∈ . 

i)⇒ ii). From  i) we have 

( ) ( )( )( )( ) ( )( )1 1 10 n
aN N n N z K f g z cε ε ε∀ > ∃ = ∀ ≥ ∀ ∈ − <                 (4) 
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i.e., ( ) { }
1

 .n
a

n N

f g K w w c ε
∞

=

 
⊂ ∈ − <  

 




 

From lemma 8 we have 

( ) ( )( )( )( ) ( )( )2 2 20 n i
aN N n N z K g z e θδ δ δ∀ > ∃ = ∀ ≥ ∀ ∈ − < ,               (5) 

i.e., ( )
1

.n i
a

n N

z g K z e θ δ
∞

=

 
∀ ∈ − <  
 



   (5′)  

Let ( )nz  be any sequence in ( )
1

n
a

n

g K
∞

=


  for which  lim .i
nn

z e θ

→∞
=   From   (5), i.e., from (5′) we 

obtain 

( )( )( )( ) ( )
2

3 3 2 3, k
n n a

k N

N N z N n N z g K
∞

=

 
∃ = ∀ ≥ ∈  

 


.        (6) 

If 2 1N N≤ , then we have ( ) ( )
2 1

n n
a a

n N n N

g K g K
∞ ∞

= =

⊂
 

, from this and from   (6) it follows that 

( )
1

n
n a

n N

z g K
∞

=

∈


 for every 3.n N≥  Having in mind now (4) it follows that

( )( )3 ( ) ,nn N f z c ε∀ ≥ − < which means that  ( )lim .nn
f z c

→∞
=  

If 1 2N N≤ , then from the sequence ( )nz , except 
31,  ... , ,Nz z  remove those that are in the set 

( )
1

1

N
k
a

k

g K
=


, there are only finite many of them. Therefore, there exists 4N  such that 

( )
1

n
n a

n N

z g K
∞

=

∈


 for every 4.n N≥  Now, according to (4) we obtain  ( )( )3 ( )nn N f z c ε∀ ≥ − < , 

i.e., in this case we also have ( )lim .nn
f z c

→∞
=

Therefore, for every sequence  ( )nz  in ( )
0

n
a

n

g K
∞

=


 we have ( )lim ,nn
f z c

→∞
=  do we may conclude 

that ( ) { }
0

, , . n i
a

n

C f g K e cθ
∞

=

 
= 

 


ii )⇒ i). From  ii) we have ( ) ( ) ( )
0

  lim  limn i
n a n nn n

n

z g K z e f z cθ
∞

→∞ →∞
=

∀ ⊂ ∧ = ⇒ =


i.e.,  

( ) ( )( ) ( ) ( )( )
0

0  n i
a

n

z g K z e f z cθε δ δ ε δ ε
∞

=

 
∀ > ∃ = ∀ ∈ − < ⇒ − < 

 


       (7) 

Since ganK eiθ, for  0δ >   the exists ( )N N δ=   such that for any n N≥  and every z K∈

holds   ( )n i
ag z e θ δ− < , i.e., 
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( ) { }n i
a

n N

g K z D z e θ δ
∞

=

⊂ ∈ − <


. (8) 

From (7) and (8) it follows that ( ) { }
1

 ,n
a

n N

f g K w w c ε
∞

=

 
⊂ ∈ − <  

 




and therefore

( )( ) ( )( )( )n
an N z K f g z c ε∀ ≥ ∀ ∈ − < , i.e.,   fο(ga)n  K  c. 

If c = ∞∈ , the proof goes in the same way as in the case c∈ instead of the Eucilean metric 
we have to take the spherical distance.  

Main lemma 2. For any function :f D → , and a compact set K, ,K D⊂ and any mapping 

u Dg Pθ∈ , ug i≠ ,  the following conditions are equivalent: 
i) fο(gu)n K  c, c∈ .

( ) { }
0

 ) , , .  n i
u

n

ii C f g K e cθ
∞

=

 
= 

 


Main Lemma 2 may be proved in the same way as Main Lemma 1. 

6. APPLICATIONS

For a Dg H θ∈ , ag i≠ , for which ie θ  is an attraction fixed point

{ }{ } ( ) 0 ,  1,1
a

n
g aH g n aθ = ∈ ∪ ∈ −  is fixed, is the hyperbolic semigroup of G with fixed attrac-

tion point ie θ , and { }{ } ( ) 0  ,  ,
u

n
g uP g n uθ = ∈ ∪ ∈ −∞ +∞  is fixed, is the parabolic semigroup 

of G with attraction fixed point ie θ . 

6.1. Angular boundary values of meromorphic functions 

Theorem 1.  Let :f D →  be a meromorphic function. If 

{ } { }{ } ( )  0 ,  1,1
a

n
g af g g H f g n aθ∈ = ∈ ∪ ∈ −  

(a is fixed), is  normal family of functions on the  disk D, γ  is simple Jordan curve with one 

endpoint in θie  and ( ),H rγ θ⊂ ∆


 and ( ) { }, , iC f e cθγ = , c∈ , then

( )( ) { }, , ,i iC f e e cθ θα∆ =  for every 
2

0 , παα << , 

i.e., θie  is the Fatou point of the function f.

18
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Proof of Theorem 1. Since { }{ } ( ) 0 ,  1,1n
af g n a∈ ∪ ∈ −  , a is fixed, is a normal family of 

functions on the disk D, there exists a sequence ( )kn
af g  which uniformly on compact sete 

convegre to a meromorphic function  ϕ on 
1r

D . .i.e.,  fο(ga)nk  
1r

D   ϕ. 

Since ( ),H rγ θ⊂ ∆


, the sets ( )1
\kn

a r rg D Dγ ∩ , 10 1r r< < < , n∈ , are made of two simple 

curves. By kγ  we denote one of them Then we have 1 ,  k kγ γ +∩ =∅  and  

( ) ( )1
1 1

k kn n
k a k k a kg gγ γ+− −

+ +   Γ = ∩ Γ = =∅    , ,n∈  since the  Moebius transforms n
ag  are 

bijections 

For every m∈Ν  let us select a sequence ( )m
kz , m

k kz ∈Γ , such that ( )
____

0 1lim 0,m m
k phk

z z D r
→∞

= ∈  and  

0 0
i jz z≠   for .i j≠  We will show that ( )0

mz cϕ = , c C∈  , for every m∈Ν . 

For every m∈Ν  there holds 

( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )0 0, , , ,
k k

m m m m m m
S S k S k n k S n kd z c d z z d z f z d f z cϕ ϕ ϕ ϕ≤ + + . (9)

Let ε  be any positive real number. Since of coninuily of ϕ  we have ( ) ( )( )0 , ,
3

m m
S kd z z εϕ ϕ < if k 

is enough big. 
Since the sequence ( )knf  converge uniformly on compact sets of the disk D to ϕ , we have 

( ) ( )( ),
3kS nd z f z εϕ <  for every

1

____

rz D∈  and enough big k. 

Since m
k rz D∈  we have ( ) ( )( ),

3k

m m
S k n kd z f z εϕ < . Since m

k kz ∈Γ  it follows that 

( )
k

m m
n k k kz wϕ γ γ= ∈ ⊂  and lim m i

kk
w e θ

→∞
= . 

Since c  is the asymptotic value of f  snd since ( ) ( ) ( )lim lim lim
k k k

m m m
n k n k n kk k k

f w f z f z cϕ
→∞ →∞ →∞

= = = , 

for enough big k we have ( )( ),
3k

m
S n kd f z c ε

<   for every m∈Ν .

From (9) and obtained inequality it follows that ( )( )0 ,m
Sd z cϕ ε<  for every m . Since ε  is any 

number, we have ( )0
mz cϕ =  for every m . 

Since the sequence ( )0
mz  is in 

1

_____

rD  and i 
1

_____

rD  has an accumulation point, from the uniqness 
theorem we have cϕ ≡ . 

Therefore, we have proved that any sequence in the family { }{ } 0n
af g n∈ ∪  which is 

uniformly convergent on compact sets in D, is convergent to the constant  c. 
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Now we will show that any sequence in the family { }{ } 0n
af g n∈ ∪   converge uniformly on 

compact sets of D the the constant c.  Assume conctrary, that thereexist a sequence postoji ( )nf , 

{ }{ } 0n
n af f g n∈ ∈ ∪  , which uniformly on compacts does not converge to the constant c. 

Then there exists a number 0ε >  such that for every  Nk ∈   we have Nkn ∈  and 
____

kn rz D∈  such 

that ( )( ),
k kS n nd f z c ε≥ . Since tha family { }{ } 0n

af g n∈ ∪  is normal,
knf   has a 

subsequence 
klnf  which uniformly on compact sets of D converge, according to the preceding 

consideration it follows that it converge to the constant c, which is contrary with the assumption 
( )( ),

k

m
S n kd f z c ε≥ . This contradiction shows that every sequence in { }{ } 0n

af g n∈ ∪ 

uniformly on compact sets of D converge to the constant c. Having in mind the Lemma 1 it 

follows that ( ) { }
0

, , ,n i
a

n

C f g K e cθ
∞

=

 
= 

 


 for every compact set K, ,K D⊂  and form Lemma 5  

and  Lemma 18 we have that ( )( ) { }, , , iC f e cθθ α∆ =  for everyα , ,
2 2
π πα− < <  i.e., the function 

f  in the point ie θ  has angular boundary value c .    

In [27] it is proved that  { }{ } ( ) 0 ,  1,1n
af g n a∈ ∪ ∈ −   is normal family on D  if and only if in 

the domain ( ),H rθ∆


, ( ) 0,r∈ +∞ , does not exist P-sequences for f. 

Theorem 2.  Let :f D →  be a meromorphic function. If { }{ } ( ) 0 ,  1,1n
af g n a∈ ∪ ∈ −  , 

where a is fixed, normal family of functions on the  disk D  and if for a sequence 

( ) ( ),Hnz rθ⊂ ∆


 holds lim i
nn

z e θ

→∞
= and ( )lim ,  nn

f z c c
→∞

= ∈ , then for any sequence ( )   nr  for 

which  lim 0n
n
r
→∞
=   and ( ) ( )1

1

, ,Hh n n
n

D z r rθ
∞

=

⊂ ∆




 for 1 0,r > ( ) { }
1

, , , .i
h n n

n

C f D z r e cθ
∞

=

 
= 

 


 

Theorem 2 follows directly from  theorem on P-sequences which is formulated in the Section  4 
and the criteria for normality formulated above of the familiy of functions 

{ }{ } ( ) 0 ,  1,1n
af g n a∈ ∪ ∈ −  on  D . 

Theorem 3.   Let :f D →   be meromorphic function. If { }{ } 0 ,  n
af g n∈ ∪  ( )1,1a∈ −  

where a is fixed, is normal family of  functions on the  disk D and if for a sequence 

( ) ( ),Hnz rθ⊂ ∆


holds:  lim i
nn

z e θ

→∞
= ,   ( )1lim , 0h n nn

d z z +→∞
=  and ( )lim ,   nn

f z c c
→∞

= ∈ , then 

( )( ) { }, , ,i iC f e e cθ θα∆ =  for every 
2

0 , παα << , i.e., θie  is the  Fatou point of the  function f. 
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Proof of Theorem 3.  Let ( )12 ,n h n nx d z z += . Then we have lim 0nn
x

→∞
= . If 

( ) ( ){ }, ,h n n h n nD z x z d z z x= < , then form Theorem 2 follows that 

( ) { }
1

, , , i
h n n

n

C f D z x e cθ
∞

=

 
= 

 


c∈ . Since the curve (poligonal line)

( )1 2
1

... ... ,i
n h n n

n

z z z e D z xθγ
∞

=

= ⊂


, we have ( ) { }, , iC f e cθγ = . Since it is possible to chose r>0,

such that ( ) ( )
1

, ,Hh n n
n

D z x rθ
∞

=

⊂ ∆




, from Theorem 1 we conclude ( )( ) { }, , ,i iC f e e cθ θα∆ =  for

every 
2

0 , παα << , i.e., θie  is the Fatou point of   f.    

Theorem 4.  Let :f D →   be meromorphic function such that ( ) ,  , f z c c z D≠ ∈ ∈ . If

{ }{ } 0 ,  n
af g n∈ ∪  ( )1,1a∈ −  , a is fixed, normal  family f functions on th disk D and if 

holds:  lim i
nn

z e θ

→∞
=  and ( )( )lim 0 ,  n

an
f g c c

→∞
= ∈ , then we have ( )( ) { }, , ,i iC f e e cθ θα∆ =  for

every 
2

0 , παα << , i.e., θie  is the Fatou point of f. 

Proof of Theorem 4. Form normality of meromorphic functions { }{ } 0n
af g n∈ ∪   and the 

condition ( )( )lim 0 ,  n
an

f g c c
→∞

= ∈ ,  from Hurwitz theorem (see [20]) fοgunK c for every com-

pact set K D⊂ . If we take ( )0, ,   0<r<1,hK D r=  then from the Main Lemma 1, Lemma 5 and 

Lemma 18  we have ( )( ) { }, , ,i iC f e e cθ θα∆ =  for every 
2

0 , παα << , i.e., θie  is the Fatou 

point of f.   

6.2. Tangentialy oricyclic boundary values of meromorphic functions 

If for every ( ) 0,r∈ +∞  holds  ( ) { }, , ,O
iC f r e θθ ω ∆ = 

 



, ω∈ , then we will call ω  the 

upper oricyclic boundary value of f in the point ie θ . On the other hand, if for every ( ) 0,r∈ +∞  

holds ( ) { }, , ,O
iC f r e θθ ω

≈ ∆ = 
 

, ω∈ , ω∈ , then we will call ω  the lower o oricyclic 

boundary value for f in the point  ie θ . If ( ) ( ) { }, , , ,O O
iC f r r e θθ θ ω

≈ ∆ ∪∆ = 
 



 then we call se ω  

the oricyclic boundary value of f in the point ie θ . 

Theorem 5.  Let :f D →   be meromorphic function. If 
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{ } { }{ } ( )  0 ,  0,
u

n
g uf g g P f g n uθ∈ = ∈ ∪ ∈ ∞   , 

u  is fixed, normal  family of functions on the disk D and if for a sequence ( ) ( ),Onz rθ⊂ ∆


 holds  

lim i
nn

z e θ

→∞
= and ( )lim ,  nn

f z c c
→∞

= ∈ , then for every sequence ( )   nr for which  lim 0n
n
r
→∞
=   and  

( ) ( )1
1

, ,Oh n n
n

D z r rθ
∞

=

⊂ ∆




  for a  1 0,r > ( ) { }
1

, , , .i
h n n

n

C f D z r e cθ
∞

=

 
= 

 


 

Theorem 5′. Let :f D →  be a meromorphic function. If 

{ } { }{ } ( )  0 ,  ,0
u

n
g uf g g P f g n uθ∈ = ∈ ∪ ∈ −∞    , 

where u is  fixed, normal family of functions on the disk D and if for a sequence ( ) ( ),Onz rθ
≈

⊂ ∆

holds:  lim i
nn

z e θ

→∞
= and ( )lim ,  nn

f z c c
→∞

= ∈ , then for every ( )   nr for which  lim 0n
n
r
→∞
=  and 

( ) ( )
1

, ,Oh n n
n

D z r rθ
∞ ≈

=

⊂ ∆


  for  1 0,r > ( ) { }
1

, , , .i
h n n

n

C f D z r e cθ
∞

=

 
= 

 


 

U [27] it is proved that { }{ } ( ) 0 ,  ,0n
uf g n u∈ ∪ ∈ −∞    is normal family on the disk D if and 

only if in the domain ( ),O rθ
≈
∆ ( ),O rθ∆



, ( ) 0,r∈ +∞ , does not exist  P-sequences for the 

function  f. On the other hand, the family { }{ } ( ) 0 ,  0,n
uf g n u∈ ∪ ∈ +∞   is normal on the 

disk D if and only if in the domain  ( ),O rθ∆


, ( ) 0,r∈ +∞ , does not exist  P-sequences for the 
function f. 

Theorem 5 and Thorem 5′ follows directly from theorem on P-sequences 1 which is formulated 
in Section 4 and the above formulated criterion for normality of the family of functions

{ }{ } ( )0 ,  ,0n
uf g n u∈ ∪ ∈ −∞   { } { }{ } ( )  0 ,  ,0

u

n
g uf g g P f g n uθ∈ = ∈ ∪ ∈ −∞   .   

Theorem 6.  Let :f D →  be a meromorphic function. If 

{ } { }{ } ( )  0 ,  0,
u

n
g uf g g P f g n uθ∈ = ∈ ∪ ∈ ∞   , u  is fixed, 

is normal family on the disk D, γ  a simple Jordan curve with one endpoint in θie  and 

( ),O rγ θ⊂ ∆


 and ( ) { }, , iC f e θγ ω= , ω∈ ,  then  ( ) { }, , , i
OC f r e θθ ω ∆ = 

 



 for every

( ) 0,r∈ +∞ , i.e., ω  is the upper oricyclic boundary value for the function f in the point ie θ . 
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Theorem 6′.  Let :f D →  be a meromorphic function. If 

{ } { }{ } ( )  0 ,  ,0
u

n
g uf g g P f g n uθ∈ = ∈ ∪ ∈ −∞    , u is  fixed,

is normal family of functions on the  disku D, γ  is simple Jordan curve with one endpoint in θie

and ( ),O rγ θ
≈

⊂ ∆  and ( ) { }, , iC f e θγ ω= , ω∈ , then ( ) { }, , ,O
iC f r e θθ ω

≈ ∆ = 
 

 for every

( ) 0,r∈ +∞ , i.e., ω  is the lower oricyclic  boundary value of the function f in the point ie θ . 

Theorem 6 and Theorem 6′ may be proved using the Main Lemma 2 and Lemma 19 in the same 
way as Theorema 1 is derived from the Main Lemma 1 and Lemma 18. 

Theorem 7 and Theorem 7′ may be proved using Theorem 6 and Theorem 6′ in the same way as 
Theorem 3 using Theorem 1. 

Theorem 7. Let :f D →  be a meromorphic function. If 

{ } { }{ } ( )  0 ,  0,
u

n
g uf g g P f g n uθ∈ = ∈ ∪ ∈ +∞    , u is fixed, 

is a normal family of functions on the disk D and if for a sequence ( ) ( ),Onz rθ⊂ ∆


holds:  

lim i
nn

z e θ

→∞
= ,   ( )1lim , 0h n nn

d z z +→∞
=  and ( )lim ,   nn

f z c c
→∞

= ∈ , then   ( ) { }, , , i
OC f r e θθ ω ∆ = 

 



 

for every ( ) 0,r∈ +∞ , i.e., ω  is the upper oricyclic boundary value of function f in the point ie θ . 

Theorem 7′. Let :f D →  be a meromorphic function. If 

{ } { }{ } ( )  0 ,  ,0
u

n
g uf g g P f g n uθ∈ = ∈ ∪ ∈ −∞    , u is   fixed, 

is normal family of functions on the disk  D and if for a sequence ( ) ( ),Onz rθ
≈

⊂ ∆ holds:  

lim i
nn

z e θ

→∞
= ,   ( )1lim , 0h n nn

d z z +→∞
=  and ( )lim ,   nn

f z c c
→∞

= ∈ , then  ( ) { }, , ,O
iC f r e θθ ω

≈ ∆ = 
 

 for 

every ( ) 0,r∈ +∞ , i.e., ω  is the lower oricyclic boundary value of the function f in the point .ie θ  

Theorem 8.   Let :f D →   be a meromorphic function such that ( ) ,  , f z c c z D≠ ∈ ∈ . 

{ } { }{ } ( )  0 ,  0,
u

n
g uf g g P f g n uθ∈ = ∈ ∪ ∈ +∞    , u is fixed, normal family of functions on D 

and if  lim i
nn

z e θ

→∞
=  and  ( )( )lim 0 ,   n

un
f g c c

→∞
= ∈ , then we have ( ) { }, , , i

OC f r e θθ ω ∆ = 
 



 for 

every ( ) 0,r∈ +∞ , i.e., ω  is the upper oricyclic boundary value of the function f in the point ie θ . 
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Theorem 8′.   Let :f D →  be a meromorphic function such that  ( ) ,  , f z c c z D≠ ∈ ∈ . 

{ } { }{ } ( )  0 ,  ,0
u

n
g uf g g P f g n uθ∈ = ∈ ∪ ∈ −∞    , u is  fixed, normal family of  functions on 

the disk D and if lim i
nn

z e θ

→∞
=  and ( )( )lim 0 ,   n

un
f g c c

→∞
= ∈ , then ( ) { }, , ,O

iC f r e θθ ω
≈ ∆ = 

 
 for 

every ( ) ,0r∈ −∞ , i.e.. ω  is the lower oricyclic boundary value of the function f in  ie θ . 

Theorem 8 and Theorem 8′ may be proved using the Main Lemma 2 and Lemma 19 in the same 
way as Theorem 4 is derived from the Main Lemma 1, Lemma 5 and Lemma 18. 

7. CONSTRUCTION OF ONE EXAMPLE

We will construct an example of meromorphic function :f D →  for which

{ }{ } 0 ,  n
af g n∈ ∪  ( )1,1a∈ −  , a is fixed, is normal family of functions on the disk D, and 

{ } a a Df g g Hθ θ θ∈  is not normal family of functions on D. This construction is similar as one in 

the work [8]. 

Let ,  0,  ,i
k k kz e kθρ ρ= − > ∈  be such that

lim 1kk
ρ

→∞
=

  and 
( )1lim , 0.k kk

d z z +→∞
=

 The elements 

of the sequence ( )kz   are in the set ( )1 ,g rPθ θ−∩∆ − . Let a sequence ( )kε  be a such one that we 
have: 

10 k kε ε+< < ;  lim 0kk
ε

→∞
= ; ( ) ( )1 1, ,k k k kD z D zε ε+ +∩ =∅ , k∈ ;  

( )
( )1

,
lim sup , 0

k k
k kk z D z

d z z
ε

+→∞ ∈

 
= 

 
; 

1
k

k
ε

∞

=

< +∞∑ .

Let 3,  k ka kε= ∈ , and ( ) ( ) 1

1
.k k

k
f z a z z

∞
−

=

= −∑  The function f is meromorphic on the disk D, 

with the poles in kz , k∈ . Since ( ) ,  kf z = ∞ ( ) ,  ,kf z M kε+ < ∈  and ( )lim , 0h k kn
d z z ε

→∞
+ =

from Theorem 2 on P-sequences it follows that 
( ) ( ) ( )1 , ,k g
z r rθ θ−⊂ ∆ − ⊂ ∆

is P-sequence of f. 
Therefore, we may conclude that{ } a a Df g g Hθ θ θ∈  is not normal family of functions on the disk 

D. 

Since for every ,z z D′ ′′∈ ( )
1

,k k
k

D z ε
∞

=


 we have ( ) ( )
1

k k k
k

f z f z z z Cε
∞

=

′ ′′′ ′′− ≤ − = < +∞∑  and

since ( ), ,  0,g r rθ∆ >  contains finite number of points kz , and since ( ), ,  0,g r rθ∆ > is invariant set 
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with respect to ,  ,n
ag n∈  it follows that

( )
( ) ( )

,
limsup

i
g

f
r z e

f z c r
θθ∆ ∋ →

= < ∞ , 0 1r< < . Therefore, for 

every r , 0 1r< < , the function f  is bounded on ( ), ,r gO rθ∩∆ where { }1θ= − < −i
rO z z e r

so we have that { }{ } ( ) 0 ,  1,1n
af g n a∈ ∪ ∈ −   is normal family on the disku D (see [20], p. 

35, Montel’s theorem). 

CONCLUSION 
In this paper it is given a new approach in deriving theorems from the theory of asymptotical 

behavior of analytic functions. Namely, our theorems are proved using some results from the 
dynamic and the geometry of Möebious mappings and classical uniqueness theorem for analytic 
mappings, but in the preceding time these theorems were proved by using the approach and the 
results from the theory of harmonic mappings and harmonic measure theory. 

The Main Lemma 1 and the Main Lemma 2 prove that the necessary condition for a function 
:f D →  to has the angular or oricyclic boundary value in ie θ  is that the following two 

families of functions  

{ }{ } 0 ,n
af g n∈ ∪  ( )1,1a∈ − , { } { }{ } ( )  0 ,  ,0

u

n
g uf g g P f g n uθ∈ = ∈ ∪ ∈ −∞   , 

are  normal on the disk D. 

The constructed example in Section 7 shows that the angular boundary values exist for broader 
class of meromorphic functions then the class considered in the theorems of Lehto-Virtanen and 
Gavrilov-Burkova. We have proved theorems of type of Bagemihl-Seidel for broader class of 
functions. 

From Theorem 6 and Theorem 6′ it follows that the upper and the lower oricyclic boundary val-
ues of meromorphic function :f D →  in ie θ  are equal ,   ,ω ω∈  then f has tangential –
oricyclic boundary value ω  in ie θ . In general case it is possible to occur that one of these 
boundary values exists but the other not. This may be proved by an example which may be 
constructed in a similar way as the example in the Section 7. 

For further consideration it remains to consider is it possible to use the approach of this paper in 
order to derive results concerning the asymptotic behavior of harmonic functions on the unit disk 
D in the complex plane  .  
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Summary. This paper deals with non-self-adjoint second-order differential operators with two 

constant delays. We consider four boundary value problems 𝐷𝑖,𝑘 , 𝑖 = 0,1, 𝑘 = 1,2  

−𝑦′′(𝑥) + 𝑞1(𝑥)𝑦(𝑥 − 𝜏1) + (−1)
𝑖𝑞2(𝑥)𝑦(𝑥 − 𝜏2) = 𝜆𝑦(𝑥), 𝑥 ∈ [0, 𝜋]

𝑦′(0) − ℎ𝑦(0) = 0, 𝑦′(𝜋) + 𝐻𝑘𝑦(𝜋) = 0,

where 
𝜋

3
≤ 𝜏2 <

𝜋

2
≤ 2𝜏2 ≤ 𝜏1 < 𝜋, ℎ, 𝐻1, 𝐻2 ∈ 𝑅\{0} and 𝜆 is a spectral parameter. We assume

that 𝑞1, 𝑞2 are real-valued potential functions from 𝐿2[0, 𝜋] such that 𝑞1(𝑥) = 0, 𝑥 ∈ [0, 𝜏1) and

𝑞2(𝑥) = 0, 𝑥 ∈ [0, 𝜏2). The inverse spectral problem of recovering operators from their spectra has

been studied. We prove that delays 𝜏1, 𝜏2 and parameters ℎ, 𝐻1, 𝐻2 are uniquely determined from the

spectra. Then we prove that potentials are uniquely determined by Volterra linear integral equations. 

1 INTRODUCTION 

      The theory of differential equations with delays is a very important branch of the theory of 

ordinary differential equations and has been studied in detail in [1] and the references therein. 

For a number of results relating to the inverse spectral problems for classical Sturm-Liuville 

operators we refer the reader to [2], while some aspects of the direct and inverse problems for 

operators with a delay can be found in [3] - [13]. While there are a number results about both 

direct and inverse problems for operators with one delay, there are just a few results related to 

the operators with two or more delays (see [14]-[18]).  The motivation behind this paper is to 

initiate further research in the inverse spectral theory for differential operators with delays. In 

what follows, we always take  𝑖 = 0,1  and 𝑘 = 1,2. In this paper we consider the boundary 

value problems 𝐷𝑖,𝑘 

−𝑦′′(𝑥) + 𝑞1(𝑥)𝑦(𝑥 − 𝜏1) + (−1)
𝑖𝑞2(𝑥)𝑦(𝑥 − 𝜏2) = 𝜆𝑦(𝑥), 𝑥 ∈ [0, 𝜋]

(1) 

𝑦′(0) − ℎ𝑦(0) = 0, (2) 

𝑦′(𝜋) + 𝐻𝑘𝑦(𝜋) = 0 (3) 

where  
𝜋

3
≤ 𝜏2 <

𝜋

2
≤ 2𝜏2 ≤ 𝜏1 < 𝜋, ℎ, 𝐻1, 𝐻2 ∈ 𝑅\{0} and 𝜆 is a spectral parameter.

We assume that 𝑞1, 𝑞2 are real-valued potential functions from 𝐿2[0, 𝜋] such that

DOI: 10.20948/mathmontis-2020-49-2
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 𝑞1(𝑥) = 0, 𝑥 ∈ [0, 𝜏1) and 𝑞2(𝑥) = 0, 𝑥 ∈ [0, 𝜏2).  We study the inverse spectral problem of 

recovering operators from the spectra of 𝐷𝑖,𝑘.  Let  (𝜆𝑛,𝑖,𝑘)𝑛=0
∞

 be the eigenvalues of 𝐷𝑖,𝑘 .   

The inverse problem is formulated as follows. 

 

Inverse problem: Given (𝜆𝑛,𝑖,𝑘)𝑛=0
∞

, determine delays 𝜏1, 𝜏2, parameters ℎ,𝐻1, 𝐻2 and potential 

functions 𝑞1, 𝑞2. 

To solve this inverse problem, we use the method of Fourier coefficients. This method based 

on determination of direct relations between Fourier coefficients of the potentials or some 

functions containing the potentials, and Fourier coefficients of some known functions.   

In Section 2, we study the spectral properties of the boundary value problems 𝐷𝑖,𝑘.  In Section 

3, we prove that  delays and parameters are uniquely determined from the spectra. Then we 

prove that potentials are uniquely determined by the system of two Volterra linear integral 

equations.  

2 SPECTRAL PROPERTIES  

     One can easily show that differential equation (1) under the initial condition (2) and 

conditions 𝑞1(𝑥) = 0, 𝑥 ∈ [0, 𝜏1) and 𝑞2(𝑥) = 0, 𝑥 ∈ [0, 𝜏2) is eqivalent to the integral 

equation  

𝑦𝑖(𝑥, 𝑧) = 𝑐𝑜𝑠𝑥𝑧 +
ℎ

𝑧
𝑠𝑖𝑛𝑧𝑥 +

1

𝑧
∫ 𝑞1

𝑥

𝜏1

(𝑡)𝑠𝑖𝑛𝑧(𝑥 − 𝑡)𝑦(𝑡 − 𝜏1, 𝑧)𝑑𝑡 + 

                                   + (−1)𝑖
1

𝑧
∫ 𝑞2
𝑥

𝜏2
(𝑡)𝑠𝑖𝑛𝑧(𝑥 − 𝑡)𝑦(𝑡 − 𝜏2, 𝑧)𝑑𝑡 

   

(4) 

Here and in the sequel  𝜆 = 𝑧2.  By the method of steps it can be easily verified that the solution 

of integral equation (4) on (𝜏1, 𝜋] is  

𝑦𝑖(𝑥, 𝑧) = 𝑐𝑜𝑠𝑧𝑥 +
ℎ

𝑧
𝑠𝑖𝑛𝑧𝑥 +

1

𝑧
(𝑏𝑠𝑐

(1)(𝑥, 𝑧) + (−1)𝑖𝑏𝑠𝑐
(2)(𝑥, 𝑧)) + 

 

(5) 
               +

ℎ

𝑧2
(𝑏

𝑠2
(1)(𝑥, 𝑧) + (−1)𝑖𝑏

𝑠2
(2)(𝑥, 𝑧)) +

1

𝑧2
𝑏
𝑠2𝑐

(2)(𝑥, 𝑧) +
ℎ

𝑧3
𝑏
𝑠3
(2)(𝑥, 𝑧) 

where  

𝑏𝑠𝑐
(𝑘)(𝑥, 𝑧) = ∫ 𝑞𝑘

𝑥

𝜏𝑘

(𝑡)𝑠𝑖𝑛𝑧(𝑥 − 𝑡)𝑐𝑜𝑠𝑧(𝑡 − 𝜏𝑘)𝑑𝑡,  

𝑏
𝑠2
(𝑖)(𝑥, 𝑧) = ∫ 𝑞𝑘

𝑥

𝜏𝑘

(𝑡)𝑠𝑖𝑛𝑧(𝑥 − 𝑡)𝑠𝑖𝑛𝑧(𝑡 − 𝜏𝑘)𝑑𝑡,  

𝑏
𝑠3
(2)(𝑥, 𝑧) = ∫ 𝑞2

𝑥

2𝜏2

(𝑡)𝑠𝑖𝑛𝑧(𝑥 − 𝑡)𝑏
𝑠2
(2)(𝑡 − 𝜏2, 𝑧 )𝑑𝑡,  

𝑏
𝑠2𝑐

(2)(𝑥, 𝑧) = ∫ 𝑞2

𝑥

2𝜏2

(𝑡)𝑠𝑖𝑛𝑧(𝑥 − 𝑡)𝑏𝑠𝑐
(2)(𝑡 − 𝜏2, 𝑧 )𝑑𝑡.  
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Denote 

∆𝑖,𝑘(𝜆) = 𝐹𝑖,𝑘(𝑧) = 𝑦𝑖′(𝜋, 𝑧) + 𝐻𝑘𝑦(𝜋, 𝑧). 1 

From (5) we obtain    

𝐹𝑖,𝑘(𝑧) = (−𝑧 +
ℎ𝐻𝑘
𝑧
) 𝑠𝑖𝑛𝜋𝑧 + (ℎ + 𝐻𝑘)𝑐𝑜𝑠𝜋𝑧 + 𝑏𝑐2

(1)(𝑧) + (−1)𝑖𝑏
𝑐2
(2)(𝑧) +  

+
ℎ

𝑧
(𝑏𝑐𝑠

(1)(𝑧) + (−1)𝑖𝑏𝑐𝑠
(2)(𝑧)) +

𝐻𝑘
𝑧
(𝑏𝑠𝑐

(1)(𝑧) + (−1)𝑖𝑏𝑠𝑐
(2)(𝑧)) +  

+
𝐻𝑘ℎ

𝑧2
(𝑏

𝑠2
(1)(𝑧) + (−1)𝑖𝑏

𝑠2
(2)(𝑧)) +

1

𝑧
𝑏𝑐𝑠𝑐
(2)(𝑧) +

ℎ

𝑧2
𝑏
𝑐𝑠2
(2)(𝑧) +

𝐻𝑘
𝑧2
𝑏
𝑠2𝑐

(2)(𝑧) +
𝐻ℎ

𝑧3
𝑏
𝑠3
(2)(𝑧)  

where 

 

𝑏𝑐𝑠
(𝑘)(𝑧) = ∫ 𝑞𝑘

𝜋

𝜏𝑘

(𝑡)𝑐𝑜𝑠𝑧(𝑥 − 𝑡)𝑠𝑖𝑛𝑧(𝑡 − 𝜏𝑘)𝑑𝑡,     

𝑏
𝑐2
(𝑘)(𝑧) = ∫ 𝑞𝑘

𝜋

𝜏𝑘

(𝑡)𝑐𝑜𝑠𝑧(𝑥 − 𝑡)𝑐𝑜𝑠𝑧(𝑡 − 𝜏𝑘)𝑑𝑡 

 

 

 

𝑏
𝑠2𝑐

(2)(𝑧) = ∫ 𝑞2

𝜋

2𝜏2

(𝑡)𝑠𝑖𝑛𝑧(𝑥 − 𝑡)𝑏𝑠𝑐
(2)(𝑡 − 𝜏2, 𝑧 )𝑑𝑡,  

𝑏𝑐𝑠𝑐
(2)(𝑧) = ∫ 𝑞2

𝜋

2𝜏2

(𝑡)𝑐𝑜𝑠𝑧(𝑥 − 𝑡)𝑏𝑠𝑐
(2)(𝑡 − 𝜏2, 𝑧 )𝑑𝑡,  

𝑏
𝑐𝑠2
(2)(𝑧) = ∫ 𝑞2

𝜋

2𝜏2

(𝑡)𝑐𝑜𝑠𝑧(𝑥 − 𝑡)𝑏
𝑠2
(2)(𝑡 − 𝜏2, 𝑧 )𝑑𝑡.  

To simplify further consideration we define so called the transitional functions �̃�𝑖 as follows 

�̃�𝑖(𝑡) =

{
 
 

 
 𝑞1 (𝑡 +

𝜏1
2
) + (−1)𝑖𝑞2 (𝑡 +

𝜏2
2
) , 𝑡 ∈ [

𝜏1
2
, 𝜋 −

𝜏1
2
]

(−1)𝑖𝑞2 (𝑡 +
𝜏2
2
) , 𝑡 ∈ [

𝜏2
2
, 𝜏2) ∪ (𝜋 −

𝜏1
2
, 𝜋 −

𝜏2
2
]

0, 𝑡 ∈ [0,
𝜏2
2
) ∪ (𝜋 −

𝜏2
2
, 𝜋]

. 

 

 

(6) 

Let us also define functions 𝐾(2) and 𝑈(2) by 

𝐾(2)(𝑡) = 𝑞2(𝑡 + 𝜏2)∫ 𝑞2(𝑠)𝑑𝑠
𝑡

𝜏2

− 𝑞2(𝑡)∫ 𝑞2(𝑠)𝑑𝑠
𝜋

𝑡+𝜏2

−∫ 𝑞2(𝑠 − 𝑡)𝑞2(𝑠)𝑑𝑠
𝜋

𝑡+𝜏2

,  

     𝑡 ∈ [𝜏2, 𝜋 − 𝜏2],        𝐾
(2)(𝑡) = 0, 𝑡 ∈ [0, 𝜏2) ∪ (𝜋 − 𝜏2, 𝜋], 

and  

 
1 Below, instead of the argument (𝜋, 𝑧) we write argument (𝑧)  
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𝑈(2)(𝑡) = 𝑞2(𝑡 + 𝜏2)∫ 𝑞2(𝑠)𝑑𝑠
𝑡

𝜏2

− 𝑞2(𝑡)∫ 𝑞2(𝑠)𝑑𝑠
𝜋

𝑡+𝜏2

+∫ 𝑞2(𝑠 − 𝑡)𝑞2(𝑠)𝑑𝑠
𝜋

𝑡+𝜏2

,  

𝑡 ∈ [𝜏2, 𝜋 − 𝜏2],        𝑈
(2)(𝑡) = 0, 𝑡 ∈ [0, 𝜏2) ∪ (𝜋 − 𝜏2, 𝜋]. 

and introduce notations 

 𝐽1
(𝑘)
= ∫ 𝑞𝑖

𝜋

𝜏𝑘

(𝑡)𝑑𝑡,                𝐽2
(2) = ∫ 𝑞2

𝜋

2𝜏2

(𝑡) (∫ 𝑞2

𝑡−𝜏2

𝜏2

(𝑠)𝑑𝑠)𝑑𝑡  

and functions 

�̃�𝑖,𝑐(𝑧) = ∫ �̃�𝑖(𝑡)𝑐𝑜𝑠𝑧(𝜋 − 2
𝜋

0

𝑡)𝑑𝑡,     �̃�𝑖,𝑠(𝑧) = ∫ �̃�𝑖(𝑡)𝑠𝑖𝑛𝑧(𝜋 − 2
𝜋

0

𝑡)𝑑𝑡,  

𝑘𝑠(𝑧) = ∫ 𝐾(2)(𝑡)
𝜋

0

𝑠𝑖𝑛𝑧(𝜋 − 2𝑡)𝑑𝑡,    𝑘𝑐(𝑧) = ∫ 𝐾(2)(𝑡)
𝜋

0

𝑐𝑜𝑠𝑧(𝜋 − 2𝑡)𝑑𝑡,  

𝑢𝑠(𝑧) = ∫ 𝑈(2)(𝑡)
𝜋

0

𝑠𝑖𝑛𝑧(𝜋 − 2𝑡)𝑑𝑡,   𝑢𝑐(𝑧) = ∫ 𝑈(2)(𝑡)
𝜋

0

𝑐𝑜𝑠𝑧(𝜋 − 2𝑡)𝑑𝑡.  

One can easily show that folowing relations hold 

∫ 𝐾(2)(𝑡)
𝜋−𝜏2

𝜏2

𝑑𝑡 = −𝐽2
(2), ∫ 𝑈(2)(𝑡)

𝜋−𝜏2

𝜏2

𝑑𝑡 = 𝐽2
(2). (7) 

Using aforementioned tags and relations (7), we can rewrite characteristic functions 𝐹𝑖,𝑘(𝑧) as 

follows  

𝐹𝑖,𝑘(𝑧) = (−𝑧 +
ℎ𝐻𝑘
𝑧
) 𝑠𝑖𝑛𝜋𝑧 + (ℎ + 𝐻𝑘)𝑐𝑜𝑠𝜋𝑧 +

1

2
(�̃�𝑖,𝑐(𝑧) + 𝐽𝑖,𝑐(𝑧)) +  

 

 

 

 

 

 

(8) 

+
ℎ

2𝑧
(−�̃�𝑖,𝑠(𝑧) + 𝐽𝑖,𝑠(𝑧)) +

𝐻𝑘
2𝑧
(�̃�𝑖,𝑠(𝑧) + 𝐽𝑖,𝑠(𝑧)) +

ℎ𝐻𝑘
2𝑧2

(�̃�𝑖,𝑐(𝑧) − 𝐽𝑖,𝑐(𝑧)) 

+
1

4𝑧
(𝐽2,𝑠(𝑧) − 𝑢𝑠(𝑧)) −

ℎ

4𝑧2
(𝐽2,𝑐(𝑧) + 𝑘𝑐(𝑧)) −

𝐻𝑘
4𝑧2

(𝐽2,𝑐(𝑧) − 𝑢𝑐(𝑧)) 

               −
ℎ𝐻𝑘
4𝑧3

(𝐽2,𝑠(𝑧) + 𝑘𝑠(𝑧)) 

where 

𝐽𝑖,𝑐(𝑧) = 𝐽1
(1)
𝑐𝑜𝑠𝑧(𝜋 − 𝜏1) + (−1)

𝑖𝐽1
(2)
𝑐𝑜𝑠𝑧(𝜋 − 𝜏2),  

𝐽𝑖,𝑠(𝑧) = 𝐽1
(1)
𝑠𝑖𝑛𝑧(𝜋 − 𝜏1) + (−1)

𝑖𝐽1
(2)
𝑠𝑖𝑛𝑧(𝜋 − 𝜏2)  

𝐽2,𝑐(𝑧) = 𝐽2
(2)𝑐𝑜𝑠𝑧(𝜋 − 2𝜏2), 𝐽2,𝑠(𝑧) = 𝐽2

(2)𝑠𝑖𝑛𝑧(𝜋 − 2𝜏2).  
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The functions 𝐹𝑘(𝑧) are entire in λ of order 1/2. Using  (8), by the well known method (see 

[2]),  we obtain the asymptotic formulas for (𝜆𝑛,𝑖,𝑘)𝑛=0
∞

  of  𝐷𝑖,𝑘: 

𝜆𝑛,𝑖,𝑘 = 𝑛
2 +

2

𝜋
(ℎ + 𝐻𝑘) +

  𝐽1
(1)

𝜋
𝑐𝑜𝑠𝑛𝜏1 + (−1)

𝑖
𝐽1
(2)

𝜋
𝑐𝑜𝑠𝑛𝜏2 + 𝑜(1), 𝑛 → ∞. 

(9) 

Now, by Hadamard's factorization theorem, from the spectra of  𝐷𝑖,𝑘,  we can construct the 

characteristic functions  𝐹𝑖,𝑘. The next lemma holds. 

Lemma 2.1. The specification of spectrum (𝜆𝑛,𝑖,𝑘)n=0
∞

 of the boundary value problems Di,k 

uniquely determines the characteristic functions 𝐹𝑖,𝑘(𝑧) by the formulas 

𝐹𝑖,𝑘(𝑧) = 𝜋(𝜆0,𝑖,𝑘 − 𝑧
2)∏

𝜆𝑛,𝑖,𝑘 − 𝑧
2

𝑛2

∞

𝑛=1

. (10) 

3 MAIN RESULTS 

Lemma 3.1. The delays  𝜏𝑘, integrals   𝐽1
(𝑘)

 and sums ℎ + 𝐻𝑘 are uniquely determined by 

eigenvalues  (𝜆𝑛,𝑖,𝑘)𝑛=0
∞

 .  

 

Proof. Let us consider the sequences    

𝜌𝑛,𝑘 =
1

2
(𝜆𝑛,0,𝑘 + 𝜆𝑛,1,𝑘)   

and  

 𝜎𝑛 =
1

2
(𝜆𝑛,0,1 − 𝜆𝑛,1,1). 

From (9) we obtain the next asymptotic formulas  

𝜌𝑛,𝑘 = 𝑛
2 +

2

𝜋
(ℎ + 𝐻𝑘) +

  𝐽1
(1)

𝜋
𝑐𝑜𝑠𝑛𝜏1 + 𝑜(1) 

 

and 

𝜎𝑛 =
  𝐽1
(2)

𝜋
𝑐𝑜𝑠𝑛𝜏2 + 𝑜(1). 

 

Obviously, the delays  𝜏1, 𝜏2  and integrals   𝐽1
(1)
,   𝐽1

(2)
 can be determined from sequences  

(𝜌𝑛,𝑘)𝑛=0
∞

  and  (𝜎𝑛)𝑛=0
∞   in the same way as for the operators with one delay (see [13]).  

Lemma 3.1.  is proved. ⧠ 

 

Lemma 3.2. Parameters ℎ and 𝐻𝑘  are uniquely determined by eigenvalues  (𝜆𝑛,0,𝑘)𝑛=0
∞

. 
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Proof.  By virtue of  Lemma 3.1., functions  𝐽0,𝑐(𝑧) and  𝐽0,𝑠(𝑧) are known. Since the 

characteristic functions are uniquely determined by the spectra, putting 𝜆 = (
4𝑚+1

2
)
2

 into 

functions  𝐹0,𝑘 from (10), we can define functions 

 

𝐹∗0,𝑘(𝑚) = 𝐹0,𝑘 (
4𝑚 + 1

2
) +

4𝑚 + 1

2
−
1

2
𝐽0,𝑐 (

4𝑚 + 1

2
) −

𝐻𝑘 + ℎ

4𝑚 + 1
𝐽0,𝑠 (

4𝑚 + 1

2
).  

Then, using the form of the characteristic functions 𝐹0,𝑘 from (8), we get  

ℎ =
1

2
lim
𝑚→∞

4𝑚 + 1

𝐻2 −𝐻1
(𝐹∗0,2(𝑚) − 𝐹

∗
0,1(𝑚)) 

 

 

At the end, we determine 𝐻𝑘 from ℎ + 𝐻𝑘, thus proving Lemma 3.2. ⧠ 

In order to recover the potential functions from the spectra by the method of Fourier 

coefficients, we should transform the characteristic functions (8).  For this purpose, we use the 

method of partial integration in (8), once in integrals  �̃�𝑖,𝑠(𝑧), �̃�𝑖,𝑐(𝑧), 𝑢𝑠(𝑧) and  𝑢𝑐(𝑧), and 

twice in the integrals 𝑘𝑐(𝑧) and 𝑘𝑠(𝑧). This is where the next function appears 

𝐾(2)∗(𝑡) = {
∫ 𝐾(2)(𝑢)
𝑡

𝜏2

𝑑𝑢, 𝑡 ∈ [𝜏2, 𝜋 − 𝜏2]

0, 𝑡 ∈ [0, 𝜏2) ∪ (𝜋 − 𝜏2, 𝜋]

.     

One can show that following relation holds 

∫ (∫ 𝐾(2)(𝑢)
𝑡

𝜏2

𝑑𝑢)𝑑𝑡
𝜋−𝜏2

𝜏2

= −(𝜋 − 2𝜏2)𝐽2
(2).  

Then we obtain the characteristic functions in the form 

𝐹𝑖,𝑘(𝑧) = (−𝑧 +
𝐻𝑘ℎ

𝑧
) 𝑠𝑖𝑛𝜋𝑧 + (ℎ + 𝐻𝑘)𝑐𝑜𝑠𝜋𝑧 +

1

2
(�̃�𝑖,𝑐(𝑧) +

𝐻𝑘
𝑧
�̃�𝑖,𝑠(𝑧)) − 

 

 

 

 

 

(11) 

−ℎ (�̃�𝑖,𝑐
(1)(𝑧) +

𝐻𝑘
𝑧
�̃�𝑖,𝑠

(1)(𝑧)) −
1

2
(𝑢𝑐

∗(𝑧) +
𝐻𝑘
𝑧
𝑢𝑠
∗(𝑧)) +  ℎ (𝑘𝑐

∗∗(𝑧) +
𝐻𝑘
𝑧
𝑘𝑠
∗∗(𝑧)) 

 

+
𝐽𝑖,𝑐(𝑧)

2
+
2ℎ + 𝐻𝑘
2𝑧

𝐽𝑖,𝑠(𝑧) +
1

2𝑧
(1 −

𝐻𝑘ℎ

𝑧2
) 𝐽2,𝑠(𝑧) +

ℎ

2𝑧
(𝜋 − 2𝜏2)𝐽2

(2)
𝑠𝑖𝑛𝑧(𝜋 − 2𝜏2) 

 

         +
𝐻𝑘ℎ

2𝑧2
(𝜋 − 2𝜏2)𝐽2

(2)
𝑐𝑜𝑠𝑧(𝜋 − 2𝜏2) 

where 
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�̃�𝑖,𝑐
(1)(𝑧) = ∫ (∫ �̃�𝑖(𝑠)

𝑡

𝜏2
2

𝑑𝑠)
𝜋−

𝜏2
2

𝜏2
2

𝑐𝑜𝑠𝑧(𝜋 − 2𝑡)𝑑𝑡,  

�̃�𝑖,𝑠
(1)(𝑧) = ∫ (∫ �̃�𝑖(𝑠)

𝑡

𝜏2
2

𝑑𝑠)
𝜋−

𝜏2
2

𝜏2
2

𝑠𝑖𝑛𝑧(𝜋 − 2𝑡)𝑑𝑡 ,  

𝑢𝑐
∗(𝑧) = ∫ (∫ 𝑈(2)(𝑠)

𝑡

𝜏2

𝑑𝑠)
𝜋−𝜏2

𝜏2

𝑐𝑜𝑠𝑧(𝜋 − 2𝑡)𝑑𝑡,  

𝑢𝑠
∗(𝑧) = ∫ (∫ 𝑈(2)(𝑠)

𝑡

𝜏2

𝑑𝑠)
𝜋−𝜏2

𝜏2

𝑠𝑖𝑛𝑧(𝜋 − 2𝑡)𝑑𝑡  

and 

𝑘𝑐
∗∗(𝑧) =  ∫ (∫ 𝐾(2)∗(𝑠)

𝑡

𝜏2

𝑑𝑠)
𝜋−𝜏2

𝜏2

𝑐𝑜𝑠𝑧(𝜋 − 2𝑡)𝑑𝑡,  

 𝑘𝑠
∗∗(𝑧) =  ∫ (∫ 𝐾(2)∗(𝑠)

𝑡

𝜏2

𝑑𝑠)
𝜋−𝜏2

𝜏2

𝑠𝑖𝑛𝑧(𝜋 − 2𝑡)𝑑𝑡.   

In order to recover the potential functions from the spectra, at the beginning we define 

functions 

𝐴𝑖(𝑧) =
2

𝐻2 −𝐻1
(𝐻2𝐹𝑖,1(𝑧) − 𝐻1𝐹𝑖,2(𝑧)) + 2𝑧𝑠𝑖𝑛𝜋𝑧 − 2ℎ𝑐𝑜𝑠𝜋𝑧 − 𝐽𝑖,𝑐(𝑧) − 

 

 

(12)                     −
2ℎ𝐽1

(2)

𝑧
𝑠𝑖𝑛𝑧(𝜋 − 𝜏2) 

and 

𝐵𝑖(𝑧) =
2𝑧

𝐻2 − 𝐻1
(𝐹𝑖,2(𝑧) − 𝐹𝑖,1(𝑧)) − 2ℎ𝑠𝑖𝑛𝜋𝑧 − 2𝑧𝑐𝑜𝑠𝜋𝑧 − 𝐽𝑖,𝑠(𝑧). (13) 

From (11) we obtain  

𝐴𝑖(𝑧) = �̃�𝑖,𝑐(𝑧) − 2ℎ�̃�𝑖,𝑐
(1)(𝑧) − 𝑢𝑐

∗(𝑧) + 2ℎ𝑘𝑐
∗∗(𝑧) + 𝛼(𝑧) (14) 

𝐵𝑖(𝑧) = �̃�𝑖,𝑠(𝑧) − 2ℎ�̃�𝑖,𝑠
(1)(𝑧) − 𝑢𝑠

∗(𝑧) + 2ℎ𝑘𝑠
∗∗(𝑧) + 𝛽(𝑧) (15) 

where 

𝛼(𝑧) =
𝐽2
(2)

𝑧
(ℎ(𝜋 − 2𝜏2) + 1)𝑠𝑖𝑛𝑧(𝜋 − 2𝜏2) 

 

and 

𝛽(𝑧) =
ℎ𝐽2
(2)

𝑧2
(𝑧(𝜋 − 2𝜏2)𝑐𝑜𝑠𝑧(𝜋 − 2𝜏2) − 𝑠𝑖𝑛𝑧(𝜋 − 2𝜏2)). 
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One can easily  show that  

lim
𝑧→0

𝛽(𝑧) = 0,            

and 

lim
𝑧→0

𝛼(𝑧) = 𝐽2
(2)
(ℎ(𝜋 − 2𝜏2) + 1)(𝜋 − 2𝜏2). 

 

Put 𝑧 = 𝑚, 𝑚 ∈ 𝑁 into (14) and (15) and denote 

𝐴2𝑚,𝑖 =
2

𝜋
(−1)𝑚𝐴𝑖(𝑚),     𝐵2𝑚,𝑖 =

2

𝜋
(−1)𝑚+1𝐵𝑖(𝑚).  

Then we obtain 

𝐴2𝑚,𝑖 =
2

𝜋
�̃�2𝑚,𝑖 −

4

𝜋
ℎ�̃�2𝑚,𝑖,𝑐

(1)
−
2

𝜋
𝑢2𝑚,𝑐
∗ +

4

𝜋
ℎ𝑘2𝑚,𝑐

∗∗ −
2𝐽2
(2)

𝜋𝑚
(ℎ(𝜋 − 2𝜏2) + 1)𝑠𝑖𝑛2𝑚𝜏2, 

(16) 

𝐵2𝑚 =
2

𝜋
�̃�2𝑚,𝑖 −

4

𝜋
ℎ�̃�2𝑚,𝑖,𝑠

(1) −
2

𝜋
𝑢2𝑚,𝑠
∗ +

4

𝜋
ℎ𝑘2𝑚,𝑠

∗∗ −
2ℎ𝐽2

(2)

𝜋𝑚2
(𝑚(𝜋 − 2𝜏2)𝑐𝑜𝑠2𝑚𝜏2 + 𝑠𝑖𝑛2𝑚𝜏2) 

(17) 

where 

�̃�2𝑚,𝑖 = ∫ �̃�𝑖(𝑡)𝑐𝑜𝑠2𝑚𝑡𝑑𝑡
𝜋

0

, �̃�2𝑚,𝑖 = ∫ �̃�𝑖(𝑡)𝑠𝑖𝑛2𝑚𝑡𝑑𝑡
𝜋

0

, 
 

𝑢2𝑚,𝑠
∗ = ∫ (∫ 𝑈(2)(𝑠)

𝑡

𝜏2
2

𝑑𝑠)
𝜋−

𝜏2
2

𝜏2
2

𝑠𝑖𝑛2𝑚𝑡𝑑𝑡,   
 

𝑢2𝑚,𝑐
∗ = ∫ (∫ 𝑈(2)(𝑠)

𝑡

𝜏2
2

𝑑𝑠)
𝜋−

𝜏2
2

𝜏2
2

𝑐𝑜𝑠2𝑚𝑡𝑑𝑡  

𝑘2𝑚,𝑐
∗∗ = ∫ (∫ 𝐾(2)∗(𝑠)

𝑡

𝜏2

𝑑𝑠) 𝑐𝑜𝑠2𝑚𝑡𝑑𝑡,
𝜋−𝜏2

𝜏2

.  

𝑘2𝑚,𝑠
∗∗ = ∫ (∫ 𝐾(2)∗(𝑠)

𝑡

𝜏2

𝑑𝑠) 𝑠𝑖𝑛2𝑚𝑡𝑑𝑡
𝜋−𝜏2

𝜏2

.  

Denote  𝐴0,𝑖 =
2

𝜋
lim
𝑚→0

𝐴𝑖(𝑚).  

Then we obtain  

𝐴0,𝑖 =
2

𝜋
�̃�0,𝑖 −

4

𝜋
ℎ�̃�0,𝑖,𝑐

(1) −
2

𝜋
𝑢0,𝑐
∗ +

4

𝜋
ℎ𝑘0,𝑐

∗∗ +
2𝐽2
(2)

𝜋
(ℎ(𝜋 − 2𝜏2) + 1)(𝜋 − 2𝜏2). 

(18) 

Since sequences {𝐴2𝑚,𝑖} and {𝐵2𝑚,𝑖}  belong to the space 𝑙2, by virtue of Riesz-Fischer 

theorem, there exist functions 𝑓𝒊 from 𝐿2[0, 𝜋] such that 
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𝑓𝑖(𝑡) =
𝐴0,𝑖
2
+ ∑ 𝐴2𝑚,𝑖𝑐𝑜𝑠2𝑚𝑡 + 𝐵2𝑚,𝑖𝑠𝑖𝑛2𝑚𝑡

∞

𝑚=1

, 𝑡 ∈ [0, 𝜋] 
 

Now multiplying (18) with  
1

2
 ,  (16)  with  𝑐𝑜𝑠2𝑚𝑡 and (17) with  𝑠𝑖𝑛2𝑚𝑡,  and then 

summing-up from 𝑚 = 1 to 𝑚 = ∞,  we get the system of integral equations 

�̃�𝑖(𝑡) − 2ℎ∫ �̃�𝑖(𝑠)
𝑡

𝜏2
2

𝑑𝑡2 −∫ 𝑈(2)(𝑠)𝑑𝑠
𝑡

𝜏2

+ 2ℎ∫ 𝐾(2)∗(𝑠)
𝑡

𝜏2

𝑑𝑠 + Φ(𝑡) = 𝑓𝑖(𝑡) 
(19) 

where 

Φ(𝑡) = −
2𝐽2
(2)

𝜋
(ℎ(𝜋 − 2𝜏2) + 1) ∑

𝑠𝑖𝑛2𝑚𝜏2
𝑚

𝑐𝑜𝑠2𝑚𝑡 −

∞

𝑚=1

 

−
2ℎ𝐽2

(2)

𝜋
(𝜋 − 2𝜏2) ∑

𝑐𝑜𝑠2𝑚𝜏2
𝑚

∞

𝑚=1

𝑠𝑖𝑛2𝑚𝑡 −
2ℎ𝐽2

(2)

𝜋
∑

𝑠𝑖𝑛2𝑚𝜏2
𝑚2

∞

𝑚=1

𝑠𝑖𝑛2𝑚𝑡. 

 

After summing and subtracting integral equations  (19), and then introducing substitution of 

variables,  we get the system of integral equations 

𝑞1(𝑥) − 2ℎ∫ 𝑞1(𝑢)
𝑥

𝜏1

𝑑𝑢 −∫ 𝑈(2) (𝑢 −
𝜏1
2
)

𝑥

𝜏2+
𝜏1
2

𝑑𝑢 + 2ℎ∫ 𝐾(2)∗ (𝑢 −
𝜏1
2
)

𝑥

𝜏2+
𝜏1
2

𝑑𝑢 + 
 

 

(20) +Φ(𝑥 −
𝜏1
2
) =

1

2
(𝑓0 (𝑥 −

𝜏1
2
) + 𝑓1 (𝑥 −

𝜏1
2
)) 

and 

𝑞2(𝑥) − 2ℎ∫ 𝑞2(𝑢)
𝑥

𝜏2

𝑑𝑢 =
1

2
(𝑓0 (𝑥 −

𝜏2
2
) − 𝑓1 (𝑥 −

𝜏2
2
)). (21) 

Finally, we come to our main result. 

 

Theorem 3.1.  Let 𝑞𝑘 ∈ 𝐿2[𝜏𝑖, 𝜋],  𝑞𝑘(𝑥) = 0  for  𝑥 ∈ [0, 𝜏𝑘).   

If    
𝜋

3
≤ 𝜏2 <

𝜋

2
≤ 2𝜏2 ≤ 𝜏1 < 𝜋,  then integral equations (20) and (21)  have unique solutions 

 𝑞1 ∈ 𝐿2[𝜏1, 𝜋]  and  𝑞2 ∈ 𝐿2[𝜏2, 𝜋],  respectively.  

 

Proof.  Obviously, the integral equation (21) has a unique solution 𝑞2 on (𝜏2, 𝜋). Then we 

obtain that integrals ∫ 𝑈(2) (𝑢 −
𝜏1

2
)

𝑥

𝜏2+
𝜏1
2

𝑑𝑢  and  ∫ 𝐾(2)∗ (𝑢 −
𝜏1

2
)

𝑥

𝜏2+
𝜏1
2

𝑑𝑢  are known too, as 

well as the integral  𝐽2
(2)
.  For sums appearing in the function Φ,  we have  
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∑
𝑠𝑖𝑛2𝑚𝜏2

𝑚
𝑐𝑜𝑠2𝑚𝑡 =

∞

𝑚=1

{
 
 

 
 

−𝜏2,    𝑡 ∈ (𝜏2, 𝜋 − 𝜏2),
𝜋

2
− 𝜏2,      𝑡 ∈ (0, 𝜏2) ∪ (𝜋 − 𝜏2, 𝜋),

𝜋

4
− 𝜏2,    𝑡 = 𝜏2, 𝑡 = 𝜋 − 𝜏2

∑
𝑐𝑜𝑠2𝑚𝜏2

𝑚

∞

𝑚=1

𝑠𝑖𝑛2𝑚𝑡 =

{
 
 
 

 
 
 
−𝑡,         𝑡 ∈ (0, 𝜏2)
𝜋

2
− 𝑡, 𝑡 ∈ (𝜏2, 𝜋 − 𝜏2)

𝜋 − 𝑡,  (𝜋 − 𝜏2, 𝜋)
𝜋

4
− 𝜏2,         𝑡 = 𝜏2,

−
𝜋

4
+ 𝜏2,  𝑡 = 𝜋 − 𝜏2

and 

∑
𝑠𝑖𝑛2𝑚𝜏2
𝑚2

∞

𝑚=1

𝑠𝑖𝑛2𝑚𝑡 =

{
 
 

 
 
(𝜋 − 2𝜏2)𝑡,         𝑡 ∈ (0, 𝜏2)

𝜏2(𝜋 − 2𝑡),  𝑡 ∈ (𝜏2, 𝜋 − 𝜏2)

(𝜋 − 2𝜏2)(𝑡 − 𝜋), (𝜋 − 𝜏2, 𝜋)

(𝜋 − 2𝜏2)𝜏2,           𝑡 = 𝜏2
−(𝜋 − 2𝜏2)𝜏2,  𝑡 = 𝜋 − 𝜏2

Then for  𝑥 ∈ (𝜏1, 𝜋)  we obtain linear integral equation

𝑞1(𝑥) − 2ℎ∫ 𝑞1(𝑢)
𝑥

𝜏1

𝑑𝑢 = ∫ 𝑈(2) (𝑢 −
𝜏1
2
)

𝑥

𝜏2+
𝜏1
2

𝑑𝑢 − 2ℎ∫ 𝐾(2)∗ (𝑢 −
𝜏1
2
)

𝑥

𝜏2+
𝜏1
2

𝑑𝑢 

−𝛷 (𝑥 −
𝜏1
2
) +

1

2
(𝑓0 (𝑥 −

𝜏1
2
) + 𝑓1 (𝑥 −

𝜏1
2
)) 

which has a unique solution 𝑞1 on (𝜏1, 𝜋).  Theorem is proved. ⧠

4 CONCLUSION 

Inverse spectral problems for classical Sturm-Liouville operators have been studied 

completely, while the inverse problems for differential operators with delays have not been 

studied enough. The main results for classical Sturm-Liouville operators is presented in [2] 

while some of the results for differential operators with delay can be found in 

([3],[4],[5],[10],[11],[12],[13]). The class of operators with two delays has been least studied, 

but some of the results for this class of operators are presented in ([16], [17]). The motivation 

behind this paper is to initiate further research in the inverse spectral theory for differential 

operators with delays. We studied the inverse spectral problem of recovering operators from 

the spectra of 𝐷𝑖,𝑘. To solved this inverse problem, we used the method of Fourier coefficients. 

This method is based on determination of direct relations between Fourier coefficients of the 

potentials or some functions containing the potentials, and Fourier coefficients of some known 

functions.  We studied the spectral properties of the boundary value problems  and proved that  

delays and parameters are uniquely determined from the spectra. Then we proved that potentials 

are uniquely determined by the system of two Volterra linear integral equations. 
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Summary. Let 𝐴𝐴,𝑋𝑋,𝔘𝔘 be Banach algebras and 𝐴𝐴 be a Banach 𝔘𝔘-bimodule also 𝑋𝑋 be a Banach 
𝐴𝐴 − 𝔘𝔘-module. In this paper we study the relation between module amenability, weak module 
amenability and module approximate amenability of Banach algebra 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 and that of 
Banach algebras 𝐴𝐴,𝑋𝑋. Where 𝑇𝑇: 𝐴𝐴 × 𝐴𝐴 → 𝑋𝑋 is a bounded bi-linear mapping with specific 
conditions. 

1 INTRODUCTION 
     The notation of amenability of Banach algebras was introduced by B.Johnson in [9]. A 
Banach algebra 𝐴𝐴 is amenable if every bounded derivation from 𝐴𝐴 into any dual Banach 𝐴𝐴-
bimodule is inner, equivalently if 𝐻𝐻(𝐴𝐴, 𝑋𝑋∗) = {0} for any Banach 𝐴𝐴-bimodule 𝑋𝑋, where 𝐻𝐻(𝐴𝐴,
𝑋𝑋∗) is the first Hochschild co- homology group of 𝐴𝐴 with coefficient in 𝑋𝑋∗. Also, a Banach 
algebra A is weakly amenable if 𝐻𝐻(𝐴𝐴, 𝐴𝐴∗) = {0}. Bade, Curtis and Dales introduced the notion 
of weak amenability on Banach algebras in [5]. They considered this concept only for 
commutative Banach algebras. After a while, Johnson defined the weak amenability for 
arbitrary Banach algebras [8]. 
     For a morphism 𝑇𝑇:𝐵𝐵 → 𝐴𝐴 from a Banach algebra 𝐵𝐵 to a commutative Banach algebra 𝐴𝐴. 
The notion of module amenability of Banach algebras was introduced by Amini in [1]. Amini 
and Ebrahimi Bagha in [3] studied the concept of weak module amenability. In [10] the notation 
of module approximate amenability and contractibility as modules over of another Ba- nach 
algebra was introduced for the notion of Banach algebras. 
     M. Sangani-Monfared in [11] defined a product on 𝐴𝐴 × 𝐵𝐵 and obtained the Banach algebra 
𝐴𝐴 ×𝜃𝜃 𝐵𝐵 using a character 𝜃𝜃 ∈ 𝜎𝜎(𝐵𝐵) , for Banach algebras in a fairly general setting. 
     Later, S.J. Bhatt and P.A. Dabhi in [6] defined a product on 𝐴𝐴 × 𝐵𝐵 and obtained a Banach 
algebra 𝐴𝐴 ×𝑇𝑇 𝐵𝐵 for a morphism 𝑇𝑇 : 𝐵𝐵 → 𝐴𝐴 from a Banach algebra 𝐵𝐵 to a commutative Banach 
algebra 𝐴𝐴. 
     The first and the second authors generalized all these constructions, and de- fined the module 
Lau product 𝐴𝐴 ×𝛼𝛼 𝐵𝐵 for Banach algebras 𝐴𝐴 and 𝐵𝐵 such that 𝐴𝐴 is a Banach 𝐵𝐵-bimodule. They 
studied the ideal amenability of 𝐴𝐴 ×𝛼𝛼 𝐵𝐵 in [4]. 
     T.Yazdan panah in [12] studied the concept of expanded modular of Banach algebra denoted 
by 𝐴𝐴⊕𝑇𝑇 𝑋𝑋. He showed that 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 is amenable if and only if 𝐴𝐴 is amenable and 𝑋𝑋 = {0}. In 
this paper, we define a new Banach algebra different from of all above Banach algebras, named 
𝐴𝐴⊕𝑇𝑇 𝑋𝑋 in section 2. Then, some required basic properties of the following part are studied. In 
section 3, as the main section of paper, we study the relationship between module amenability 
of 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 and module amenability of 𝐴𝐴 and  X. We show that If 𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋 and 𝐴𝐴2 = 𝐴𝐴, 
then the module amenability of 𝐴𝐴 implies module amenability of 𝐴𝐴⊕𝑇𝑇 𝑋𝑋. Furthermore, it’s 
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conversly obtained that the module amenability of 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 implies module amenability of 𝐴𝐴 
and moreover if 𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋, then 𝑋𝑋 also is module amenable. In sectiones 4 and 5 respectively 
we study the relationship between weak mod- ule amenability (based as definition in [1] and 
[2]) and module approximte amenability of 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 and weak module amenability and module 
approximte amenability of 𝐴𝐴,𝑋𝑋. 

 
2   DEFINITIONS AND BASIC PROPERTIES 

 
     Throughout this paper it’s assumed that 𝔘𝔘 be a Banach algebra, 𝐴𝐴 be a Banach 𝔘𝔘-bimodule 
and 𝑋𝑋 be a Banach A-U-bimodule. Module actions are assumed as follow too: 

𝐴𝐴 × 𝔘𝔘 → 𝐴𝐴; (𝑎𝑎, 𝛼𝛼) ⟼ 𝑎𝑎 ∘ 𝛼𝛼,𝔘𝔘 × 𝐴𝐴 → 𝐴𝐴; (𝛼𝛼, 𝑎𝑎) ⟼ 𝛼𝛼 ⋅ 𝑎𝑎. 
𝑋𝑋 × 𝔘𝔘 → 𝑋𝑋; (𝑥𝑥, 𝛼𝛼) ⟼ 𝑥𝑥 △ 𝛼𝛼,𝔘𝔘 × 𝑋𝑋 → 𝑋𝑋; (𝛼𝛼, 𝑥𝑥) ⟼ 𝛼𝛼∇𝑥𝑥. 
𝑋𝑋 × 𝐴𝐴 → 𝑋𝑋; (𝑥𝑥, 𝑎𝑎) ⟼ 𝑥𝑥 ∘ 𝑎𝑎,𝐴𝐴 × 𝑋𝑋 → 𝑋𝑋; (𝑎𝑎, 𝑥𝑥) ⟼ 𝑎𝑎 ⋅ 𝑥𝑥. 

     Consider the bounded bilinear map 𝑇𝑇 : 𝐴𝐴 × 𝐴𝐴 → 𝑋𝑋, which has the following properties: 
𝑎𝑎 ⋅ 𝑇𝑇(𝑎𝑎1𝑎𝑎2, 0) = 𝑇𝑇(𝑎𝑎𝑎𝑎1, 0) ∘ 𝑎𝑎2,𝑇𝑇(𝑎𝑎1𝑎𝑎2, 0) = 𝑇𝑇(𝑎𝑎1, 0)𝑇𝑇(𝑎𝑎2, 0) , 
𝑇𝑇(𝛼𝛼 ⋅ 𝑎𝑎, 𝛼𝛼∇𝑥𝑥) = 𝛼𝛼 ⋅ 𝑇𝑇(𝑎𝑎, 𝑥𝑥),𝑇𝑇(𝑎𝑎 ∘ 𝛼𝛼, 𝑥𝑥 △ 𝛼𝛼) = 𝑇𝑇(𝑎𝑎, 𝑥𝑥) ⋅ 𝛼𝛼, 
∥ 𝑇𝑇(𝑎𝑎, 0) ∥=∥ 𝑎𝑎 ∥, for all 𝑎𝑎,𝑎𝑎1,𝑎𝑎2 ∈ 𝐴𝐴, 𝑥𝑥 ∈ 𝑋𝑋,𝛼𝛼 ∈ 𝔘𝔘. 

     Module extension 𝐴𝐴⊕ 𝑋𝑋, with the product  
 (𝑎𝑎, 𝑥𝑥)(𝑎𝑎1, 𝑥𝑥1) = (𝑎𝑎𝑎𝑎1, 𝑎𝑎 ⋅ 𝑥𝑥1 + 𝑥𝑥 ∘ 𝑎𝑎1 + 𝑇𝑇(𝑎𝑎𝑎𝑎1, 0)) 

and the norm ∥ (𝑎𝑎, 𝑥𝑥) ∥=∥ 𝑎𝑎 ∥ +∥ 𝑥𝑥 ∥ is a Banach algebra denoted by 𝐴𝐴⊕𝑇𝑇 𝑋𝑋. 
 

     Definition 2.1 The bounded map 𝐷𝐷:𝐴𝐴 → 𝑋𝑋∗ with 𝐷𝐷(𝑎𝑎 + 𝑏𝑏) = 𝐷𝐷(𝑎𝑎) + 𝐷𝐷(𝑏𝑏),𝐷𝐷(𝑎𝑎𝑏𝑏) = 𝑎𝑎 ⋅
𝐷𝐷(𝑏𝑏) + 𝐷𝐷(𝑎𝑎) ⋅ 𝑏𝑏 for all 𝑎𝑎, 𝑏𝑏 ∈ 𝐴𝐴, and 𝐷𝐷(𝛼𝛼 ⋅ 𝑎𝑎) = 𝛼𝛼 ⋅ 𝐷𝐷(𝑎𝑎),𝐷𝐷(𝑎𝑎 ⋅ 𝛼𝛼) = 𝐷𝐷(𝑎𝑎) ⋅ 𝛼𝛼(𝛼𝛼 ∈ 𝔘𝔘, 𝑎𝑎 ∈
𝐴𝐴) , is called module derivation.  

 
     Note that 𝑋𝑋∗ is also Banach module over 𝐴𝐴 and 𝔘𝔘 with compatible actions under the 
canonical actions of 𝐴𝐴 and 𝔘𝔘, 𝛼𝛼 ⋅ (𝑎𝑎 ⋅ 𝑓𝑓) = (𝛼𝛼 ⋅ 𝑎𝑎) ⋅ 𝑓𝑓, (𝑎𝑎 ∈ 𝐴𝐴, 𝛼𝛼 ∈ 𝔘𝔘, 𝑓𝑓 ∈ 𝑋𝑋∗) , and the same 
for right action. Here the canonical actions of 𝐴𝐴 and 𝔘𝔘 on 𝑋𝑋∗ are defined by (𝛼𝛼 ⋅ 𝑓𝑓)(𝑥𝑥) = 𝑓𝑓(𝑥𝑥 △
𝛼𝛼), (𝑎𝑎 ⋅ 𝑓𝑓)(𝑥𝑥) = 𝑓𝑓(𝑥𝑥 ∘ 𝑎𝑎), (𝛼𝛼 ∈ 𝔘𝔘, 𝑎𝑎 ∈ 𝐴𝐴, 𝑓𝑓 ∈ 𝑋𝑋∗, 𝑥𝑥 ∈ 𝑋𝑋) and it’s the same for right actions. 
As in [1] we call  A- module 𝑋𝑋 which have a compatible 𝔘𝔘-action as above, a 𝐴𝐴 − 𝔘𝔘 modules, 
above assertion is to say that if 𝑋𝑋 is an 𝐴𝐴 − 𝔘𝔘- module, then so is 𝑋𝑋∗. Also we use the notation 
𝑍𝑍𝔘𝔘(𝐴𝐴, 𝑋𝑋∗) for the set of all module derivations 𝐷𝐷:𝐴𝐴 → 𝑋𝑋∗, and 𝑁𝑁𝔘𝔘(𝐴𝐴, 𝑋𝑋∗) for those which are 
inner and 𝐻𝐻𝔘𝔘(𝐴𝐴, 𝑋𝑋∗) for the quotient group. 

 
     Proposition 2.2  𝐴𝐴⊕𝑇𝑇 𝑋𝑋 is a Banach 𝔘𝔘- bimodule.  

 
      Proof. Consider the module actions as follow: 

𝔘𝔘 × (𝐴𝐴⊕𝑇𝑇 𝑋𝑋) → 𝐴𝐴⊕𝑇𝑇 𝑋𝑋;𝛼𝛼 ⋅ (𝑎𝑎, 𝑥𝑥) = (𝛼𝛼 ⋅ 𝑎𝑎, 𝛼𝛼∇𝑥𝑥) , and (𝐴𝐴⊕𝑇𝑇 𝑋𝑋) × 𝔘𝔘 →
𝐴𝐴⊕𝑇𝑇 𝑋𝑋; (𝑎𝑎, 𝑥𝑥) • 𝛼𝛼 = (𝛼𝛼 ∘ 𝑎𝑎, 𝛼𝛼 △ 𝑥𝑥) . It is easy to check the satification of the properties. ∎ 

 
     Proposition 2.3  If 𝑌𝑌 is an A-U-module, then 𝑌𝑌 ⊕ {𝑂𝑂} is a Banach 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 − 𝔘𝔘-bimodule.  

 
      Proof. Assume that the module actions on 𝑌𝑌, are as follows: 

𝔘𝔘 × 𝑌𝑌 → 𝑌𝑌; (𝛼𝛼, 𝑦𝑦) ⟼ 𝛼𝛼 △ 𝑦𝑦,𝑌𝑌 × 𝔘𝔘 → 𝑌𝑌; (𝑦𝑦, 𝛼𝛼) ⟼ 𝑦𝑦 • 𝛼𝛼. And 𝐴𝐴 × 𝑌𝑌 → 𝑌𝑌; (𝑎𝑎,
𝑦𝑦) ⟼ 𝑎𝑎 ⋅ 𝑦𝑦,𝑌𝑌 × 𝐴𝐴 → 𝑌𝑌; (𝑦𝑦, 𝑎𝑎) ⟼ 𝑦𝑦. 𝑎𝑎. Define the module actions as: (𝑌𝑌 ⊕ {O}) × 𝔘𝔘 → 𝑌𝑌⊕
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{O}; (𝑦𝑦, 0) • 𝛼𝛼 = (𝑦𝑦 • 𝛼𝛼, 0),𝔘𝔘 × (𝑌𝑌 ⊕ {O}) → 𝑌𝑌⊕ {O}; 𝛼𝛼 • (𝑦𝑦, 0) = (𝛼𝛼 △ 𝑦𝑦, 0) . And 
(𝐴𝐴⊕𝑇𝑇 𝑋𝑋) × (𝑌𝑌 ⊕ {O}) → 𝑌𝑌⊕ {O}; (𝑎𝑎, 𝑥𝑥). (𝑦𝑦, 0) = (𝑎𝑎. 𝑦𝑦, O), (𝑌𝑌 ⊕ {O}) × (𝐴𝐴⊕𝑇𝑇 𝑋𝑋) →
𝑌𝑌⊕ {0}; (𝑦𝑦, 0) ∘ (𝑎𝑎, 𝑥𝑥) = (𝑦𝑦.  𝑎𝑎, O) . We only need to show that the actions are compatible. 

1)𝛼𝛼.  ((𝑎𝑎, 𝑥𝑥). (𝑦𝑦, 0))     = 𝛼𝛼.  (𝑎𝑎. 𝑦𝑦, 0)
= (𝛼𝛼 △ (𝑎𝑎.𝑦𝑦), 0) = ((𝛼𝛼 ⋅ 𝑎𝑎) ⋅ 𝑦𝑦, 0) 
= ((𝛼𝛼 ⋅ 𝑎𝑎, 𝛼𝛼∇𝑥𝑥) ⋅ (𝑦𝑦, 0) = (𝛼𝛼 ⋅ (𝑎𝑎, 𝑥𝑥)). (𝑦𝑦, 0)  . 

2)((𝑎𝑎, 𝑥𝑥) ⋅ (𝑦𝑦, 0)) • 𝛼𝛼    = (𝑎𝑎 ⋅ 𝑦𝑦, 0) • 𝛼𝛼 
= ((𝑎𝑎 ⋅ 𝑦𝑦) • 𝛼𝛼, 0)) = (𝑎𝑎 ⋅ (𝑦𝑦 • 𝛼𝛼), 0) 
= (𝑎𝑎, 𝑥𝑥) ⋅ (𝑦𝑦  •   𝛼𝛼, 0) = (𝑎𝑎, 𝑥𝑥) ⋅ ((𝑦𝑦, 0)   •   𝛼𝛼)  . 

3)(𝛼𝛼.  (𝑦𝑦, 0)) ⋅ (𝑎𝑎, 𝑥𝑥)     = (𝛼𝛼 △ 𝑦𝑦, 0) ⋅ (𝑎𝑎, 𝑥𝑥) 
= ((𝛼𝛼 △ 𝑦𝑦).  𝑎𝑎, 0) = (𝛼𝛼 △ (𝑦𝑦.  𝑎𝑎), 0)) 
= 𝛼𝛼.  (𝑦𝑦.  𝑎𝑎, 0) = 𝛼𝛼.  ((𝑦𝑦, 0) ∘ (𝑎𝑎, 𝑥𝑥)) 

 ∎ 
     Proposition 2.4  Let 𝑀𝑀⊕𝑁𝑁 be a Banach 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 − 𝔘𝔘-bimodule, then 𝑀𝑀 is a Banach 𝐴𝐴 −
𝔘𝔘-bimodule. 
      Proof. Consider the map 𝑄𝑄𝑀𝑀 : 𝑀𝑀⊕𝑁𝑁 → 𝑀𝑀; (𝑚𝑚, 𝑛𝑛) ⟼𝑚𝑚 and define the module actions 
as: 𝑀𝑀 × 𝔘𝔘 → 𝑀𝑀; (𝑚𝑚, 𝑛𝑛) ⟼𝑚𝑚 ⋅ 𝛼𝛼 = 𝑄𝑄𝑀𝑀((𝑚𝑚, 0) • 𝛼𝛼),𝔘𝔘 × 𝑀𝑀 → 𝑀𝑀; (𝛼𝛼, 𝑚𝑚) ⟼ 𝛼𝛼 ∘𝑚𝑚 =
𝑄𝑄𝑀𝑀(𝛼𝛼 ⋅ (𝑚𝑚, 0  𝑀𝑀 × 𝐴𝐴 → 𝑀𝑀; (𝑚𝑚, 𝑎𝑎) ⟼𝑚𝑚. 𝑎𝑎 = 𝑄𝑄𝑀𝑀((𝑚𝑚, 0) ∘ (𝑎𝑎, 0)) and 𝐴𝐴 × 𝑀𝑀 → 𝐴𝐴; (𝑎𝑎,
𝑚𝑚) ⟼ 𝑎𝑎 • 𝑚𝑚 = 𝑄𝑄𝑀𝑀((𝑎𝑎, 0) ⋅ (𝑚𝑚, 0)) ∎  
     Proposition 2.5  Let 𝑀𝑀 be a Banach 𝐴𝐴 − 𝔘𝔘-module and 𝑁𝑁 be a Banach 𝑋𝑋 − 𝔘𝔘-bimodule, 
𝑀𝑀⊕𝑁𝑁 is a Banach 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 − 𝔘𝔘-bimodule.  

 Proof. Given module actions on 𝑀𝑀⊕𝑁𝑁 as follows: 
(𝑀𝑀⊕𝑁𝑁) × 𝔘𝔘 → 𝑀𝑀⊕𝑁𝑁; (𝑚𝑚, 𝑛𝑛) ⋅ 𝛼𝛼 = (𝑚𝑚.𝛼𝛼, 𝑛𝑛∇𝛼𝛼),𝔘𝔘 × (𝑀𝑀⊕𝑁𝑁) → 𝑀𝑀⊕𝑁𝑁; 𝛼𝛼 •

(𝑚𝑚, 𝑛𝑛) = (𝛼𝛼 • 𝑚𝑚, 𝛼𝛼 △𝑚𝑚), (𝑀𝑀⊕𝑁𝑁) × (𝐴𝐴⊕𝑇𝑇 𝑋𝑋) → (𝑀𝑀⊕𝑁𝑁); (𝑚𝑚, 𝑛𝑛) ⋅ (𝑎𝑎, 𝑥𝑥) = (𝑚𝑚  𝛼𝛼,
𝑛𝑛.  𝑇𝑇(𝑎𝑎, 0  (𝐴𝐴⊕𝑇𝑇 𝑋𝑋) × (𝑀𝑀⊕𝑁𝑁) → 𝑀𝑀⊕𝑁𝑁; (𝑎𝑎, 𝑥𝑥) • (𝑚𝑚, 𝑛𝑛) = (𝑎𝑎  •   𝑚𝑚, 𝑇𝑇(𝑎𝑎, 0) ⊚𝑛𝑛) . 
∎  
     Proposition 2.6  For each (𝑓𝑓, 𝑔𝑔) ∈ 𝑀𝑀∗ ⊕ 𝑁𝑁∗, (𝑎𝑎, 𝑥𝑥) ∈ 𝐴𝐴⊕𝑇𝑇 𝑋𝑋, (𝑚𝑚, 𝑛𝑛) ∈ 𝑀𝑀⊕𝑁𝑁 we 
have (𝑓𝑓, 𝑔𝑔) ⋅ (𝑎𝑎, 𝑥𝑥) = (𝑓𝑓 ⋅ 𝑎𝑎, 𝑔𝑔 ⋅ 𝑇𝑇(𝑎𝑎, 0)) and (𝑎𝑎, 𝑥𝑥). (𝑓𝑓, 𝑔𝑔) = (𝑎𝑎.𝑓𝑓, 𝑇𝑇(𝑎𝑎, 0).𝑔𝑔) . 

 Proof. 
〈(𝑓𝑓, 𝑔𝑔). (𝑎𝑎, 𝑥𝑥), (𝑚𝑚, 𝑛𝑛)〉 = 〈(𝑓𝑓, 𝑔𝑔), (𝑎𝑎, 𝑥𝑥) • (𝑚𝑚, 𝑛𝑛)〉 

= 〈(𝑓𝑓, 𝑔𝑔), (𝑎𝑎 ∘ 𝑚𝑚, 𝑇𝑇(𝑎𝑎, 0) ⊚𝑛𝑛)〉 

= 〈𝑓𝑓, 𝑎𝑎 ∘ 𝑚𝑚〉 + 〈𝑔𝑔, 𝑇𝑇(𝑎𝑎, 0) ⊚𝑛𝑛〉 

= 〈𝑓𝑓.𝑎𝑎, 𝑚𝑚〉 + 〈𝑔𝑔.𝑇𝑇(𝑎𝑎, 0), 𝑛𝑛〉 

 = 〈(𝑓𝑓. 𝑎𝑎, 𝑔𝑔.𝑇𝑇(𝑎𝑎, 0  (𝑚𝑚, 𝑛𝑛))) 
∎ 
     Proposition 2.7  If 𝑁𝑁 is a Banach 𝑋𝑋 − 𝔘𝔘- bimodule, then is a Banach 𝐴𝐴 − 𝔘𝔘-bimodule. 

  Proof. The module actions are defined as follow: 
𝐴𝐴 × 𝑁𝑁 → 𝑁𝑁;𝑎𝑎.𝑛𝑛 = 𝑇𝑇(𝑎𝑎, 0) ⊚𝑛𝑛 and 𝑁𝑁 × 𝐴𝐴 → 𝑁𝑁;𝑛𝑛 • 𝑎𝑎 = 𝑛𝑛.𝑇𝑇(𝑎𝑎, ⊚) . ∎ 
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3  MODULE AMENABILITY 

     Lemma 3.1  𝐷𝐷 ∈ 𝑍𝑍𝔘𝔘(𝐴𝐴⊕𝑇𝑇 𝑋𝑋, 𝑀𝑀∗ ⊕𝑁𝑁∗)  if and only if there are 𝐷𝐷1 ∈ 𝑍𝑍𝔘𝔘(𝐴𝐴, 𝑀𝑀∗),𝐷𝐷3 ∈
𝑍𝑍𝔘𝔘(𝑋𝑋, 𝑁𝑁∗),𝑅𝑅 ∈ 𝑍𝑍𝔘𝔘(𝐴𝐴, 𝑁𝑁∗)  and linear map 𝐷𝐷2 : 𝑋𝑋 → 𝑀𝑀∗  such that 

1) 𝐷𝐷(𝑎𝑎, 𝑥𝑥) = (𝐷𝐷1(𝑎𝑎) + 𝐷𝐷2(𝑥𝑥), 𝑅𝑅(𝑎𝑎) + 𝐷𝐷3(𝑥𝑥)) ,
2) 𝐷𝐷2(𝑎𝑎 • 𝑥𝑥) = 𝑎𝑎 ⋅ 𝐷𝐷2(𝑥𝑥) ,
3) 𝐷𝐷2(𝑥𝑥 ∘ 𝑎𝑎) = 𝐷𝐷2(𝑥𝑥) ⋅ 𝑎𝑎,
4) 𝑅𝑅(𝑏𝑏𝑏𝑏) = 𝑅𝑅(𝑏𝑏) ⋅ 𝑇𝑇(𝑏𝑏, 0) + 𝑇𝑇(𝑏𝑏, 0) ⋅ 𝑅𝑅(𝑏𝑏) = 𝑅𝑅(𝑏𝑏).𝑏𝑏 + 𝑏𝑏.𝑅𝑅(𝑏𝑏) ,
5) 𝐷𝐷2(𝑇𝑇(𝑎𝑎𝑏𝑏, 0)) = 0,
6) 𝐷𝐷3(𝑎𝑎. 𝑥𝑥) = 𝑇𝑇(𝑎𝑎, 0).𝐷𝐷3(𝑥𝑥) ,
7) 𝐷𝐷3(𝑥𝑥 ∘ 𝑎𝑎) = 𝐷𝐷3(𝑥𝑥).𝑇𝑇(𝑎𝑎, 0) ,
8) 𝐷𝐷3(𝑇𝑇(𝑎𝑎𝑏𝑏, 0)) = 0.
  Proof. Suppose that 𝐷𝐷 ∈ 𝑍𝑍𝔘𝔘(𝐴𝐴⊕𝑇𝑇 𝑋𝑋, 𝑀𝑀∗ ⊕𝑁𝑁∗) then there are 𝑏𝑏1 : 𝐴𝐴⊕ 𝜏𝜏𝑋𝑋 → 𝑀𝑀∗, 

𝑏𝑏2 : 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 → 𝑁𝑁∗ such that D = (𝑏𝑏1, 𝑏𝑏2) , Set  
𝐷𝐷1:𝐴𝐴 → 𝑀𝑀∗;𝐷𝐷1(𝑎𝑎) = 𝑏𝑏1(𝑎𝑎, 0), 

𝐷𝐷2:𝑋𝑋 → 𝑁𝑁∗;𝐷𝐷2(𝑥𝑥) = 𝑏𝑏1(0, 𝑥𝑥), 

𝐷𝐷3:𝑋𝑋 → 𝑁𝑁∗;𝐷𝐷3(𝑥𝑥) = 𝑏𝑏2(0, 𝑥𝑥),𝑅𝑅:𝐴𝐴 → 𝑁𝑁∗;𝑅𝑅(𝑎𝑎) = 𝑏𝑏2(𝑎𝑎, 0). 
     Now 
𝐷𝐷(𝑎𝑎, 𝑥𝑥) = (𝑏𝑏1, 𝑏𝑏2)((𝑎𝑎, 0) + (0, 𝑥𝑥))     = (𝑏𝑏1, 𝑏𝑏2)(𝑎𝑎, 0) + (𝑏𝑏1,

𝑏𝑏2)(0, 𝑥𝑥) 
= (𝑏𝑏1(𝑎𝑎, 0), 𝑏𝑏2(𝑎𝑎, 0)) + ((𝑏𝑏1(0, 𝑥𝑥), 𝑏𝑏2(0, 𝑥𝑥)) 
= (𝑏𝑏1(𝑎𝑎, 0) + 𝑏𝑏1(0, 𝑥𝑥)) + (𝑏𝑏2(𝑎𝑎, 0) + 𝑏𝑏2(0, 𝑥𝑥)) 
= (𝐷𝐷1(𝑎𝑎) + 𝐷𝐷2(𝑥𝑥), 𝑅𝑅(𝑎𝑎) + 𝐷𝐷3(𝑥𝑥)), (1) 

     Now 
𝐷𝐷((𝑎𝑎, 𝑥𝑥)(𝑚𝑚, 𝑥𝑥′))     = 𝐷𝐷(𝑎𝑎𝑚𝑚, 𝑎𝑎 ⋅ 𝑥𝑥′ + 𝑥𝑥 ∘ 𝑚𝑚 + 𝑇𝑇(𝑎𝑎𝑚𝑚, 0)) 

= (𝐷𝐷1(𝑎𝑎𝑚𝑚) + 𝐷𝐷2(𝑎𝑎 ⋅ 𝑥𝑥′) + 𝐷𝐷2(𝑥𝑥 ∘ 𝑚𝑚) + 𝐷𝐷2(𝑇𝑇(𝑎𝑎𝑚𝑚, 0)),𝑅𝑅(𝑎𝑎𝑚𝑚) + 𝐷𝐷3(𝑎𝑎. 𝑥𝑥′) 
 +𝐷𝐷3(𝑥𝑥 ∘ 𝑚𝑚) + 𝐷𝐷3(𝑇𝑇(𝑎𝑎𝑚𝑚, 0))), (2) 

 since 𝐷𝐷 is module derivation so 

𝐷𝐷((𝑎𝑎, 𝑥𝑥)(𝑚𝑚, 𝑥𝑥′))     = 𝐷𝐷(𝑎𝑎, 𝑥𝑥) ⋅ (𝑚𝑚, 𝑥𝑥′) + (𝑎𝑎, 𝑥𝑥) ⋅ 𝐷𝐷(𝑚𝑚, 𝑥𝑥′) 
= (𝐷𝐷1(𝑎𝑎) + 𝐷𝐷2(𝑥𝑥), 𝑅𝑅(𝑎𝑎) + 𝐷𝐷3(𝑥𝑥)). (𝑚𝑚, 𝑥𝑥′) 
 +(𝑎𝑎, 𝑥𝑥). (𝐷𝐷1(𝑚𝑚) + 𝐷𝐷2(𝑥𝑥), 𝑅𝑅(𝑚𝑚) + 𝐷𝐷3(𝑥𝑥′)) 
= ((𝐷𝐷1(𝑎𝑎) ⋅ 𝑚𝑚 + 𝐷𝐷2(𝑥𝑥)) ⋅ 𝑚𝑚 + 𝑎𝑎 ⋅ 𝐷𝐷2(𝑥𝑥′) + 𝐷𝐷2(𝑥𝑥).𝑚𝑚, 𝑅𝑅(𝑎𝑎) ⋅ 𝑇𝑇(𝑚𝑚, 0) 
 +𝑇𝑇(𝑎𝑎, 0).𝑅𝑅(𝑚𝑚) + 𝐷𝐷3(𝑥𝑥).𝑇𝑇(𝑚𝑚, 0) + 𝑇𝑇(𝑎𝑎, 0).𝐷𝐷3(𝑥𝑥′)). (3) 

     In 3, 2 Take 𝑥𝑥 = 𝑥𝑥′ = 0 to get 𝐷𝐷1 ∈ 𝑍𝑍𝔘𝔘(𝐴𝐴, 𝑀𝑀∗), (5), (4) and (8). Take a = 0 to get (3) and 
(6). Take m = 0 to get (2), (7). And in a similar way we can get other parameters. Conversely 
is in a same way. ∎ 

     Corollary 3.2 Let 𝑋𝑋 = {0} and 𝐷𝐷,𝐷𝐷1 and 𝑅𝑅 be as in perivious lemma, then 𝐷𝐷 = 𝛿𝛿(𝑓𝑓,𝑔𝑔) if 
and only if 𝐷𝐷1 = 𝛿𝛿𝑓𝑓 and 𝑔𝑔 = 𝛿𝛿𝑔𝑔. Where 𝛿𝛿𝑔𝑔(𝑎𝑎) = 𝑔𝑔𝑇𝑇(𝑎𝑎, 0) − 𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔.  
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     Proof. Since 𝑋𝑋 = {0} and 𝐷𝐷(𝑎𝑎, 𝑥𝑥) = (𝐷𝐷1(𝑎𝑎) + 𝐷𝐷2(𝑥𝑥), 𝑅𝑅(𝑎𝑎) + 𝐷𝐷(𝑥𝑥)) so 𝐷𝐷(𝑎𝑎, 0) =
(𝐷𝐷1(𝑎𝑎), 𝑅𝑅(𝑎𝑎)) . If 𝐷𝐷 = 𝛿𝛿(𝑓𝑓,𝑔𝑔) then  
𝐷𝐷(𝑎𝑎, 0) = 𝛿𝛿(𝑓𝑓,𝑔𝑔)(𝑎𝑎, 0)

= (𝑓𝑓, 𝑔𝑔) ⋅ (𝑎𝑎, 0) − (𝑎𝑎, 0) ⋅ (𝑓𝑓, 𝑔𝑔)
= (𝑓𝑓 ⋅ 𝑎𝑎, 𝑔𝑔 ⋅ 𝑇𝑇(𝑎𝑎, 0)) − (𝑎𝑎 ⋅ 𝑓𝑓, 𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔)
= (𝑓𝑓 ⋅ 𝑎𝑎 − 𝑎𝑎 ⋅ 𝑓𝑓, 𝑔𝑔 ⋅ 𝑇𝑇(𝑎𝑎, 0) − 𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔) = (𝛿𝛿𝑓𝑓(𝑎𝑎), 𝛿𝛿𝑔𝑔(𝑎𝑎))  .

     So 𝐷𝐷1 = 𝛿𝛿𝑓𝑓 and 𝑅𝑅 = 𝛿𝛿𝑔𝑔. Conversely 
𝐷𝐷(𝑎𝑎, 0) = (𝐷𝐷1(𝑎𝑎), 𝑅𝑅(𝑎𝑎))

= (𝛿𝛿𝑓𝑓(𝑎𝑎), 𝛿𝛿𝑔𝑔(𝑎𝑎))
= (𝑓𝑓 ⋅ 𝑎𝑎 − 𝑎𝑎 ⋅ 𝑓𝑓, 𝑔𝑔 ⋅ 𝑇𝑇(𝑎𝑎, 0) − 𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔)
= (𝑓𝑓, 𝑔𝑔) ⋅ (𝑎𝑎, 0) − (𝑎𝑎, 0) ⋅ (𝑓𝑓, 𝑔𝑔)
= 𝛿𝛿(𝑓𝑓,𝑔𝑔)(𝑎𝑎, 0)  .

 ∎ 

     Theorem 3.3  The module amenability of 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 implies module amenability of A. 
Moreover if 𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋, then 𝑋𝑋 is also module amenable.  
       Proof. Assume that 𝑀𝑀,𝑁𝑁 are Banach 𝐴𝐴 − 𝔘𝔘-bimodule and Banach 𝑋𝑋 − 𝔘𝔘-bimodule 
respectively. Let 𝐷𝐷1:𝐴𝐴 → 𝑀𝑀∗ and 𝐷𝐷2:𝑋𝑋 → 𝑁𝑁∗ be module derivations. By Proposition 2.5, 𝑀𝑀⊕
𝑁𝑁 is a Banach 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 − 𝔘𝔘- bimodule. Define 𝐷𝐷′ : 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 → 𝑀𝑀∗ ⊕𝑁𝑁∗;𝐷𝐷′(𝑎𝑎, 𝑥𝑥) =
(𝐷𝐷1(𝑎𝑎),𝐷𝐷2(𝑇𝑇(𝑎𝑎, 0)). Now  

𝐷𝐷′((𝑎𝑎, 𝑥𝑥)(𝑚𝑚, 𝑥𝑥′))     = 𝐷𝐷′  (𝑎𝑎𝑚𝑚, 𝑎𝑎. 𝑥𝑥′ + 𝑥𝑥 ∘ 𝑚𝑚 + 𝑇𝑇(𝑎𝑎𝑚𝑚, 0)) 
= (𝐷𝐷1(𝑎𝑎𝑚𝑚),𝐷𝐷2(𝑇𝑇(𝑎𝑎𝑚𝑚, 0))) 
= (𝐷𝐷1(𝑎𝑎).𝑚𝑚 + 𝑎𝑎.𝐷𝐷1(𝑚𝑚), 𝐷𝐷2(𝑇𝑇(𝑎𝑎, 0)).𝑇𝑇(𝑚𝑚, 0) + 𝑇𝑇(𝑎𝑎, 0).𝐷𝐷2(𝑇𝑇(𝑚𝑚, 0))) 
= (𝐷𝐷1(𝑎𝑎), 𝐷𝐷2(𝑇𝑇(𝑎𝑎, 0))). (𝑚𝑚, 𝑥𝑥′) + (𝑎𝑎, 𝑥𝑥). (𝐷𝐷1(𝑚𝑚), 𝐷𝐷2(𝑇𝑇(𝑚𝑚, 0))) 
= 𝐷𝐷′(𝑎𝑎, 𝑥𝑥). (𝑚𝑚, 𝑥𝑥′) + (𝑎𝑎, 𝑥𝑥).𝐷𝐷′(𝑚𝑚, 𝑥𝑥)). 

     Also 
𝐷𝐷′(𝛼𝛼 ⋅ (𝑎𝑎, 𝑥𝑥))     = 𝐷𝐷′(𝛼𝛼 ⋅ 𝑎𝑎, 𝛼𝛼∇𝑥𝑥) 

    = ((𝐷𝐷1(𝛼𝛼 ⋅ 𝑎𝑎), 𝐷𝐷2(𝑇𝑇(𝛼𝛼 ⋅ 𝑎𝑎, 0))) 
    = ((𝛼𝛼 ⋅ 𝐷𝐷1(𝑎𝑎), 𝛼𝛼 ⋅ 𝐷𝐷2(𝑇𝑇(𝑎𝑎, 0))) 
    = (𝛼𝛼 ⋅ 𝐷𝐷′(𝑎𝑎, 𝑥𝑥)  . 

     And 
𝐷𝐷′((𝑎𝑎, 𝑥𝑥) + (𝑚𝑚, 𝑥𝑥′)     = 𝐷𝐷′((𝑎𝑎 + 𝑚𝑚, 𝑥𝑥 + 𝑥𝑥′)) 

            = (𝐷𝐷1(𝑎𝑎 + 𝑚𝑚), 𝐷𝐷2(𝑇𝑇(𝑎𝑎 + 𝑚𝑚), 0)) 
            = (𝐷𝐷1(𝑎𝑎) + 𝐷𝐷1(𝑚𝑚), 𝐷𝐷2(𝑇𝑇(𝑎𝑎, 0)) + 𝐷𝐷2(𝑇𝑇(𝑚𝑚, 0)) 
            = (𝐷𝐷1(𝑎𝑎), 𝐷𝐷2(𝑇𝑇(𝑎𝑎, 0)) + (𝐷𝐷1(𝑚𝑚), 𝐷𝐷2(𝑇𝑇(𝑚𝑚, 0)) 
            = 𝐷𝐷′(𝑎𝑎, 𝑥𝑥) + 𝐷𝐷′(𝑚𝑚, 𝑥𝑥′). 

      So 𝐷𝐷′ is a module derivation. Sice 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 is module amenable, there exists (𝑓𝑓, 𝑔𝑔) ∈ 𝑀𝑀∗ ⊕
𝑁𝑁∗ such that 𝐷𝐷′ = 𝛿𝛿(𝑓𝑓,𝑔𝑔). Thus  
𝐷𝐷′(𝑎𝑎, 𝑥𝑥)     = 𝛿𝛿(𝑓𝑓,𝑔𝑔)(𝑎𝑎, 𝑥𝑥) 

= (𝑓𝑓, 𝑔𝑔) ⋅ (𝑎𝑎, 𝑥𝑥) − (𝑎𝑎, 𝑥𝑥) ⋅ (𝑓𝑓, 𝑔𝑔) 
= (𝑓𝑓 ⋅ 𝑎𝑎 + 𝑔𝑔 ⋅ 𝑇𝑇(𝑎𝑎, 0)) − (𝑎𝑎 ⋅ 𝑓𝑓, 𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔) 
= (𝑓𝑓 ⋅ 𝑎𝑎 − 𝑎𝑎 ⋅ 𝑓𝑓, 𝑔𝑔 ⋅ 𝑇𝑇(𝑎𝑎, 0) − 𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔)  . 
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     Consequently 𝐷𝐷1(𝑎𝑎) = 𝑓𝑓 ⋅ 𝑎𝑎 − 𝑎𝑎 ⋅ 𝑓𝑓 i.e. 𝐷𝐷1 = 𝛿𝛿𝑓𝑓 and 𝐷𝐷2(𝑇𝑇(𝑎𝑎, 0)) = 𝛿𝛿𝑔𝑔(𝑇𝑇(𝑎𝑎, 0)). Since 
𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋, 𝐷𝐷2(𝑥𝑥) = 𝛿𝛿𝑔𝑔(𝑥𝑥) for all 𝑥𝑥 ∈ 𝑋𝑋. ∎ 

 
     Theorem 3.4  The module amenability of 𝐴𝐴 implies module amenability of 𝐴𝐴⊕𝑇𝑇 {0}.  
      Proof. Let 𝑀𝑀⊕𝑁𝑁 be a Banch 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 − 𝔘𝔘-bimodule and 𝐷𝐷:𝐴𝐴⊕𝑇𝑇 𝑋𝑋 → 𝑀𝑀∗ ⊕𝑁𝑁∗ be a 
module derivation. By lemma 3.1, there are 𝐷𝐷1,𝐷𝐷2,𝐷𝐷3 and 𝑅𝑅 such that 𝐷𝐷(𝑎𝑎, 𝑥𝑥) = (𝐷𝐷1(𝑎𝑎) +
𝐷𝐷2(𝑥𝑥), 𝑅𝑅(𝑎𝑎) + 𝐷𝐷3(𝑥𝑥)) . Since here 𝑋𝑋 = {0} so 𝐷𝐷(𝑎𝑎, 0) = (𝐷𝐷1(𝑎𝑎), 𝑅𝑅(𝑎𝑎)) . Module 
amenability of 𝐴𝐴 implies there exist 𝑓𝑓 ∈ 𝑀𝑀∗ such that 𝐷𝐷1 = 𝛿𝛿𝑓𝑓 and since 𝑁𝑁∗ is an 𝐴𝐴-U- bimodule 
and 𝑅𝑅 is module derivation, there exist 𝑔𝑔 ∈ 𝑁𝑁∗ such that 𝑅𝑅 = 𝛿𝛿𝑔𝑔. Thus 𝐷𝐷 = 𝛿𝛿(𝑓𝑓,𝑔𝑔). ∎ 

 
     Theorem 3.5  If 𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋 and 𝐴𝐴2 = 𝐴𝐴, then the module amenability of 𝐴𝐴 implies 
module amenability of 𝐴𝐴⊕𝑇𝑇 𝑋𝑋.  
      Proof. Let 𝑀𝑀⊕𝑁𝑁 be a Banch 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 − 𝔘𝔘-bimodule and 𝐷𝐷:𝐴𝐴⊕𝑇𝑇 𝑋𝑋 → 𝑀𝑀∗ ⊕𝑁𝑁∗ be a 
module derivation. By lemma 3.1, there are 𝐷𝐷1,𝐷𝐷2,𝐷𝐷3 and 𝑅𝑅 such that 𝐷𝐷(𝑎𝑎, 𝑥𝑥) = (𝐷𝐷1(𝑎𝑎) +
𝐷𝐷2(𝑥𝑥), 𝑅𝑅(𝑎𝑎) + 𝐷𝐷3(𝑥𝑥)) . Since here 𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋 and 𝐴𝐴2 = 𝐴𝐴 so 𝐷𝐷(𝑎𝑎, 𝑥𝑥) = (𝐷𝐷1(𝑎𝑎), 𝑅𝑅(𝑎𝑎)) . 
Module amenability of 𝐴𝐴 implies there exist 𝑓𝑓 ∈ 𝑀𝑀∗ such that 𝐷𝐷1 = 𝛿𝛿𝑓𝑓 and since 𝑁𝑁∗ is an 𝐴𝐴 −
𝔘𝔘-bimodule and 𝑅𝑅 is module derivation, there exist 𝑔𝑔 ∈ 𝑁𝑁∗ such that 𝑅𝑅 = 𝛿𝛿𝑔𝑔. Thus 𝐷𝐷 = 𝛿𝛿(𝑓𝑓,𝑔𝑔). 
∎ 

 
     Example 3.6  Let ℕ be the set of positive integers. Consider 𝑆𝑆 = (ℕ, ∨) with the 
maximum operation 𝑚𝑚 ∨ 𝑛𝑛 = 𝑚𝑚𝑎𝑎𝑥𝑥{𝑚𝑚, 𝑛𝑛}, then 𝑆𝑆 is a amenable countable, abelian inverse 
semigroup with the identity 1. Clearly 𝐸𝐸𝑆𝑆 = 𝑆𝑆. This semigroup is denoted by ℕ∨. 𝑙𝑙1(ℕ∨) is 
unital with unit 𝛿𝛿1. Since ℕ∨ is amenable and 𝑙𝑙1(ℕ∨) is unital so 𝑙𝑙1(ℕ∨) is module amenable 
(as an 𝑙𝑙1(ℕ∨) − 𝑙𝑙1(ℕ∨))-bimodule. Define 𝑇𝑇: 𝑙𝑙1(𝑆𝑆) × 𝑙𝑙1(𝑆𝑆) → 𝑙𝑙1(𝑆𝑆) ; 𝑇𝑇(𝛿𝛿𝑥𝑥, 𝛿𝛿𝑦𝑦) =

�
𝛿𝛿𝑥𝑥, 𝛿𝛿𝑦𝑦 = 0
𝛿𝛿𝑥𝑥∨𝑦𝑦, 𝛿𝛿𝑦𝑦 ≠ 0. Then 𝑙𝑙1(ℕ∨) ⊕𝑇𝑇 𝑙𝑙1(ℕ∨) is module amenable.  

 
 

4  WEAK MODULE AMENABILITY 
 

     The Banach algebra 𝐴𝐴 is called weak module amenable (as an 𝔘𝔘-bimodule), if 𝐻𝐻𝔘𝔘(𝐴𝐴, 𝑋𝑋) =
{0}, where 𝑋𝑋 is a commutative 𝔘𝔘-submodule of 𝐴𝐴∗([2]). 

 
     Theorem 4.1  The weak module amenability of 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 implies weak module amenability 
of A. In addition if 𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋 then 𝑋𝑋 is also weak module amenable.  
     Proof. Assume that 𝑀𝑀,𝑁𝑁 are commutative 𝔘𝔘-submodule of 𝐴𝐴∗ and 𝑋𝑋∗, respectively. we can 
show that 𝑀𝑀⊕𝑁𝑁 is a commutative 𝔘𝔘-submodule of (𝐴𝐴⊕𝑇𝑇 𝑋𝑋)∗. Let 𝐷𝐷1 ∈ 𝑍𝑍𝔘𝔘(𝐴𝐴, 𝑀𝑀) and 𝐷𝐷2 ∈
𝑍𝑍𝔘𝔘(𝑋𝑋, 𝑁𝑁) . Define 𝐷𝐷 : 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 → 𝑀𝑀⊕𝑁𝑁;𝐷𝐷(𝑎𝑎, 𝑥𝑥) = (𝐷𝐷1(𝑎𝑎),𝐷𝐷2(𝑇𝑇(𝑎𝑎, 0))), it is easy to see 
that 𝐷𝐷 ∈ 𝑍𝑍𝔘𝔘(𝐴𝐴⊕ 𝜏𝜏𝑋𝑋,𝑀𝑀⊕𝑁𝑁) . Since 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 is weak module amenable there is (𝑓𝑓, 𝑔𝑔) ∈
𝑀𝑀⊕𝑁𝑁 such that 𝐷𝐷 = 𝛿𝛿(𝑓𝑓,𝑔𝑔) and  
 (𝐷𝐷1(𝑎𝑎),𝐷𝐷2(𝑇𝑇(𝑎𝑎, 0)))    = 𝐷𝐷(𝑎𝑎, 𝑥𝑥) 

           = 𝛿𝛿(𝑓𝑓,𝑔𝑔)(𝑎𝑎, 𝑥𝑥) 
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          = (𝑓𝑓, 𝑔𝑔) ⋅ (𝑎𝑎, 𝑥𝑥) − (𝑎𝑎, 𝑥𝑥) ⋅ (𝑓𝑓, 𝑔𝑔) 
          = (𝑓𝑓 ⋅ 𝑎𝑎 − 𝑎𝑎 ⋅ 𝑓𝑓, 𝑔𝑔 ⋅ 𝑇𝑇(𝑎𝑎, 0) − 𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔) 
          = (𝛿𝛿𝑓𝑓(𝑎𝑎), 𝛿𝛿𝑔𝑔(𝑇𝑇(𝑎𝑎, 0))) 

 Hence 𝐴𝐴,𝑋𝑋 are weak module amenable. ∎ 

     Theorem 4.2  The weak module amenability of 𝐴𝐴 implies the weak module amenability of 
𝐴𝐴⊕𝑇𝑇 {0}.  
      Proof. Suppose that 𝑀𝑀⊕𝑁𝑁 is a commutative Banach 𝔘𝔘-submodule of (𝐴𝐴⊕ 𝜏𝜏{0})∗, and 
𝐷𝐷 ∈ 𝑍𝑍𝔘𝔘(𝐴𝐴⊕ 𝜏𝜏{0}, 𝑀𝑀⊕𝑁𝑁) . Then 𝑀𝑀 and 𝑁𝑁 are commutative 𝔘𝔘-submodule of 𝐴𝐴∗. Since 𝐷𝐷 ∈
𝑍𝑍𝔘𝔘(𝐴𝐴⊕ 𝜏𝜏{0}, 𝑀𝑀⊕𝑁𝑁) , by lemma 3.1 there are 𝐷𝐷1 ∈ 𝑍𝑍𝔘𝔘(𝐴𝐴, 𝑀𝑀) , and 𝑅𝑅 ∈ 𝑍𝑍𝔘𝔘(𝐴𝐴, 𝑁𝑁) , such 
that 𝐷𝐷(𝑎𝑎, 0) = (𝐷𝐷1(𝑎𝑎), 𝑅𝑅(𝑎𝑎)) . Since 𝐴𝐴 is weak module amenable so there are 𝑚𝑚 ∈ 𝑀𝑀 and 
𝑛𝑛 ∈ 𝑁𝑁 such that 𝐷𝐷1 = 𝛿𝛿𝑚𝑚,𝑅𝑅 = 𝛿𝛿𝑛𝑛, where 𝛿𝛿𝑛𝑛(𝑎𝑎) = 𝑎𝑎 ⋅ 𝑛𝑛 − 𝑛𝑛 • 𝑎𝑎 = 𝑇𝑇(𝑎𝑎, 0) ⊚𝑛𝑛 − 𝑛𝑛.𝑇𝑇(𝑎𝑎, 0) 
. 
     Now 
𝐷𝐷(𝑎𝑎, 𝑥𝑥)     = (𝐷𝐷1(𝑎𝑎), 𝑅𝑅(𝑎𝑎)) 

= (𝛿𝛿𝑚𝑚(𝑎𝑎), 𝛿𝛿𝑛𝑛(𝑎𝑎)) 
= (𝑎𝑎 ⋅ 𝑚𝑚 − 𝑎𝑎 • 𝑚𝑚, 𝑇𝑇(𝑎𝑎, 0) ⊚𝑛𝑛 − 𝑛𝑛.  𝑇𝑇(𝑎𝑎, 0)) 
= (𝑎𝑎, 0) ⋅ (𝑚𝑚, 𝑛𝑛) − (𝑚𝑚, 𝑛𝑛) ∘ (𝑎𝑎, 0) 
= 𝛿𝛿(𝑚𝑚,𝑛𝑛)(𝑎𝑎, 0)  . 

 ∎ 

     Theorem 4.3  If 𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋 and 𝐴𝐴2 = 𝐴𝐴, then the weak module amenability of 𝐴𝐴 implies 
the weak module amenability of 𝐴𝐴⊕𝑇𝑇 𝑋𝑋.  

 Proof. The proof is as above theorem. ∎ 

     Example 4.4  Let 𝑆𝑆 = ℕ∨ be as in Example 3.6, since 𝑙𝑙1(𝑆𝑆) is 𝑙𝑙1(𝑆𝑆) − 𝑙𝑙1(𝑆𝑆) − module and 
𝑙𝑙1(𝑆𝑆) is weak module amenable. Let 𝑇𝑇: 𝑙𝑙1(𝑆𝑆) × 𝑙𝑙1(𝑆𝑆) → 𝑙𝑙1(𝑆𝑆) have the properties as above 
theorems, then 𝑙𝑙1(𝑆𝑆) ⊕𝑇𝑇 𝑙𝑙1(𝑆𝑆) is weak module amenable.  

5  MODULE APPROXIMATE AMENABILITY 

     Let 𝐴𝐴 be as above, then 𝐴𝐴 is module approximately amenable (as an 𝔘𝔘- bimodule), if for any 
commutative Banach 𝐴𝐴 − 𝔘𝔘-bimodule 𝑋𝑋, each module derivation 𝐷𝐷:𝐴𝐴 → 𝑋𝑋∗ is approximately 
inner. 
     A derivation 𝐷𝐷: 𝐴𝐴 → 𝑋𝑋 is said to be approximately inner if there exists a net (𝑥𝑥𝑖𝑖)𝑖𝑖 ⊆ 𝑋𝑋 such 
that 𝐷𝐷(𝑎𝑎) = lim𝑖𝑖(𝑎𝑎 ⋅ 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖 ⋅ 𝑎𝑎), 𝑎𝑎 ∈ 𝐴𝐴.([10]) . 

     Lemma 5.1  Let 𝐷𝐷1,𝑅𝑅,𝐷𝐷3 and 𝐷𝐷2 are such as in the Lemma 3.1, and 𝐷𝐷(𝑎𝑎, 𝑏𝑏) = (𝐷𝐷1(𝑎𝑎) +
𝐷𝐷2(𝑏𝑏), 𝑅𝑅(𝑎𝑎) + 𝐷𝐷3(𝑏𝑏)). If 𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋 and 𝐴𝐴2 = 𝐴𝐴 then: 𝐷𝐷 is approximately inner if and 
only if 𝐷𝐷1 and 𝑅𝑅 are approximately inner.  
     Proof. Assume that 𝑀𝑀 is a commutative 𝐴𝐴 − 𝔘𝔘-bimodule and also 𝑁𝑁 is com- mutative 𝑋𝑋 −
𝔘𝔘-bimodule, then 𝑀𝑀⊕𝑁𝑁 is a commutative 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 − 𝔘𝔘-bimodule. Let 𝐷𝐷 be approximately 
inner so there is (𝑓𝑓𝑖𝑖 , 𝑔𝑔𝑖𝑖)𝑖𝑖 ⊆ 𝑀𝑀∗ ⊕ 𝑁𝑁∗ such that  
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𝐷𝐷(𝑎𝑎, 𝑥𝑥)     = 𝑇𝑇(𝑎𝑎′, 0) 
= lim

𝑖𝑖
((𝑎𝑎, 𝑥𝑥) ⋅ (𝑓𝑓𝑖𝑖 , 𝑔𝑔𝑖𝑖) − (𝑓𝑓𝑖𝑖 , 𝑔𝑔𝑖𝑖) ⋅ (𝑎𝑎, 𝑥𝑥)) 

= lim
𝑖𝑖

((𝑎𝑎 ⋅ 𝑓𝑓𝑖𝑖 , 𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔𝑖𝑖) − (𝑓𝑓𝑖𝑖 ⋅ 𝑎𝑎, 𝑔𝑔𝑖𝑖 .𝑇𝑇(𝑎𝑎, 0))) 
= lim

𝑖𝑖
(𝑎𝑎 ⋅ 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖 ⋅ 𝑎𝑎, 𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔𝑖𝑖 − 𝑔𝑔𝑖𝑖 ⋅ 𝑇𝑇(𝑎𝑎, 0)), 

i.e. 𝐷𝐷(𝑎𝑎) = lim𝑖𝑖(𝑎𝑎 ⋅ 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖 ⋅ 𝑎𝑎) and 𝑅𝑅(𝑎𝑎) = lim𝑖𝑖(𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔𝑖𝑖 − 𝑔𝑔𝑖𝑖 ⋅ 𝑇𝑇(𝑎𝑎, 0)). 
     Conversely, let 𝐷𝐷1(𝑎𝑎) = lim𝑖𝑖∈𝐼𝐼(𝑎𝑎 ⋅ 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖 ⋅ 𝑎𝑎) and 𝑅𝑅(𝑎𝑎) = lim𝑗𝑗∈𝐽𝐽(𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔𝑗𝑗 − 𝑔𝑔𝑗𝑗 ⋅
𝑇𝑇(𝑎𝑎, 0)) 

Since the index sets (𝐼𝐼, ≤), (𝐽𝐽, ≤) are ordered sets, so the set Λ = 𝐼𝐼 × 𝐽𝐽 = {(𝑖𝑖, 𝑗𝑗)  ∶   𝑖𝑖 ∈ 𝐼𝐼,
𝑗𝑗 ∈ 𝐽𝐽} is ordered as follows  

(𝑖𝑖, 𝑗𝑗) ≤ (𝑖𝑖′, 𝑗𝑗′) ⇔ (𝑖𝑖 ≤ 𝑖𝑖′, 𝑗𝑗 ≤ 𝑗𝑗). 
     For 𝜆𝜆 = (𝑖𝑖, 𝑗𝑗) ∈ Λ set 𝑡𝑡𝜆𝜆 = (𝑓𝑓𝑖𝑖 , 𝑔𝑔𝑗𝑗) . Let 𝜖𝜖 > 0 be given. Since 𝐷𝐷1(𝑎𝑎) = lim𝑖𝑖(𝑎𝑎 ⋅ 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖 ⋅
𝑎𝑎) and 𝑅𝑅(𝑎𝑎) = lim𝑗𝑗(𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔𝑗𝑗 − 𝑔𝑔𝑗𝑗 ⋅ 𝑇𝑇(𝑎𝑎, 0)) there are 𝑖𝑖0 ∈ 𝐼𝐼, 𝑗𝑗0 ∈ 𝐽𝐽 such that 

1) For all 𝑖𝑖 ≥ 𝑖𝑖0, ∥ 𝐷𝐷1(𝑎𝑎) − (𝑎𝑎 ⋅ 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖 ⋅ 𝑎𝑎) ∥≤ 𝜖𝜖
3
.

2) For all 𝑗𝑗 ≥ 𝑗𝑗0, ∥ 𝑅𝑅(𝑎𝑎) − (𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔𝑗𝑗 − 𝑔𝑔𝑗𝑗 ⋅ 𝑇𝑇(𝑎𝑎, 0)) ∥≤ 𝜖𝜖
3
.

     Now set 𝜆𝜆0 = (𝑖𝑖0, 𝑗𝑗0) , then for all 𝜆𝜆 ≥ 𝜆𝜆0, since 𝐷𝐷(𝑎𝑎, 𝑇𝑇(𝑎𝑎′, 0)) = (𝐷𝐷1(𝑎𝑎), 𝑅𝑅(𝑎𝑎)) , we 
have  
∥ 𝐷𝐷(𝑎𝑎, 𝑥𝑥) − ((𝑎𝑎, 𝑥𝑥) ⋅ 𝑡𝑡𝜆𝜆 − 𝑡𝑡𝜆𝜆 ⋅ (𝑎𝑎, 𝑥𝑥)) ∥    =∥ 𝐷𝐷(𝑎𝑎, 𝑥𝑥) − ((𝑎𝑎, 𝑥𝑥) ⋅ (𝑓𝑓𝑖𝑖 ,

𝑔𝑔𝑗𝑗) − (𝑓𝑓𝑖𝑖 , 𝑔𝑔𝑗𝑗) ⋅ (𝑎𝑎, 𝑥𝑥)) ∥ 
=∥ 𝐷𝐷(𝑎𝑎, 𝑥𝑥) − (𝑎𝑎 ⋅ 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖 ⋅ 𝑎𝑎, 𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔𝑗𝑗 − 𝑔𝑔𝑗𝑗 ⋅ 𝑇𝑇(𝑎𝑎, 0)) ∥ 
=∥ (𝐷𝐷1(𝑎𝑎), 𝑅𝑅(𝑎𝑎)) − (𝑎𝑎 ⋅ 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖 ⋅ 𝑎𝑎, 𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔𝑗𝑗 − 𝑔𝑔𝑗𝑗 ⋅ 𝑇𝑇(𝑎𝑎, 0)) ∥ 
=∥ ((𝐷𝐷1(𝑎𝑎) − (𝑎𝑎 ⋅ 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖 ⋅ 𝑎𝑎)),𝑅𝑅(𝑎𝑎) − (𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔𝑗𝑗 − 𝑔𝑔𝑗𝑗 ⋅ 𝑇𝑇(𝑎𝑎, 0))) ∥ 
≤∥ 𝐷𝐷1(𝑎𝑎) − (𝑎𝑎 ⋅ 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖 ⋅ 𝑎𝑎) ∥ +∥ 𝑅𝑅(𝑎𝑎) − (𝑇𝑇(𝑎𝑎, 0) ⋅ 𝑔𝑔𝑗𝑗 − 𝑔𝑔𝑗𝑗 ⋅ 𝑇𝑇(𝑎𝑎, 0)) ∥ 
< 𝜖𝜖. 

      Hence 𝐷𝐷(𝑎𝑎, 𝑥𝑥) = lim𝜆𝜆((𝑎𝑎, 𝑥𝑥) ⋅ 𝑡𝑡𝜆𝜆 − 𝑡𝑡𝜆𝜆(𝑎𝑎, 𝑥𝑥 where 𝑥𝑥 = 𝑇𝑇(𝑎𝑎′, 0) i.e. 𝐷𝐷 is approximately 
inner. ∎ 

     Theorem 5.2  If 𝐴𝐴⊕ 𝜏𝜏𝑋𝑋 is module approximately amenable then 𝐴𝐴 is module 
approximately amenable. Furthermore, if 𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋 also 𝑋𝑋 is module approximately 
amenable.  
      Proof. In an argument as in the proof of Theorem 3.3 and the application, the usage of above 
lemma. ∎ 

     Theorem 5.3  If 𝑇𝑇(𝐴𝐴.𝑂𝑂) = 𝑋𝑋 and 𝐴𝐴2 = 𝐴𝐴 then the module approximate amenability of 𝐴𝐴 
implies the module approximate amenability of 𝐴𝐴⊕𝑇𝑇 𝑋𝑋.  
       Proof. Let 𝑀𝑀⊕𝑁𝑁 be a commutative 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 − 𝔘𝔘-bimodule and 𝐷𝐷 ∈ 𝑍𝑍𝔘𝔘(𝐴𝐴⊕ 𝜏𝜏𝑋𝑋,𝑀𝑀∗ ⊕
𝑁𝑁∗) . There are 𝐷𝐷1 ∈ 𝑍𝑍𝔘𝔘(𝐴𝐴, 𝑀𝑀∗),𝐷𝐷3 ∈ 𝑍𝑍𝔘𝔘(𝑋𝑋, 𝑁𝑁∗),𝑅𝑅 ∈ 𝑍𝑍𝔘𝔘(𝐴𝐴, 𝑁𝑁∗) and 𝐷𝐷2 : 𝑋𝑋 → 𝑁𝑁∗ such that 
𝐷𝐷(𝑎𝑎, 𝑥𝑥) = (𝐷𝐷1(𝑎𝑎) + 𝐷𝐷2(𝑥𝑥), 𝑅𝑅(𝑎𝑎) + 𝐷𝐷(𝑥𝑥)) and since 𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋 and 𝐴𝐴2 = 𝐴𝐴 we have 𝐷𝐷(𝑎𝑎,
𝑥𝑥) = (𝐷𝐷1(𝑎𝑎), 𝑅𝑅(𝑎𝑎)) . Since 𝐴𝐴,𝑋𝑋 are module approximate amenable, so 𝐷𝐷1 and 𝑅𝑅 are 
approximatly inner. Thus by the above lemma, 𝐷𝐷 is approximately inner. ∎ 
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     Example 5.4  Let 𝑆𝑆 be an amenable inverse semigroup such that the set of idempotents 𝐸𝐸𝑆𝑆 
be equal to 𝑆𝑆 and 𝑙𝑙1(𝑆𝑆) has approximately unit. Since 𝑆𝑆 is amenable, 𝑙𝑙1(𝑆𝑆) is module 
approximately amenable, [10]. Also 𝑙𝑙1(𝑆𝑆) is 𝑙𝑙1(𝑆𝑆) − 𝑙𝑙1(𝑆𝑆)-bimodule, thus 𝑙𝑙1(𝑆𝑆) ⊕𝑇𝑇 𝑙𝑙1(𝑆𝑆) is 
module approximately amenable. Where 𝑇𝑇: 𝑙𝑙1(𝑆𝑆) × 𝑙𝑙1(𝑆𝑆) → 𝑙𝑙1(𝑆𝑆) is defined by 

𝑇𝑇(𝛿𝛿𝑥𝑥, 𝛿𝛿𝑦𝑦) = �
𝛿𝛿𝑥𝑥, 𝛿𝛿𝑦𝑦 = 0
𝛿𝛿𝑥𝑥𝑦𝑦, 𝛿𝛿𝑦𝑦 ≠ 0. 

6 CONCLUSIONS 

     The module amenability of 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 implies module amenability of 𝐴𝐴 and The module 
amenability of 𝐴𝐴 implies module amenability  of 𝐴𝐴⊕𝑇𝑇 {0}. Also If 𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋 and 𝐴𝐴2 = 𝐴𝐴, 
then the module amenability of 𝐴𝐴 implies module amenability of 𝐴𝐴⊕𝑇𝑇 𝑋𝑋. 
meanwhile, The weak module amenability of 𝐴𝐴⊕𝑇𝑇 𝑋𝑋 implies weak module amenability of 𝐴𝐴. 
On the contrary, if 𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋 and 𝐴𝐴2 = 𝐴𝐴, then the weak module amenability of 𝐴𝐴 implies 
the weak module amenability of 𝐴𝐴⊕𝑇𝑇 𝑋𝑋. 
     Considering approximately, if 𝐴𝐴⊕ 𝜏𝜏𝑋𝑋 is module approximately amenable then 𝐴𝐴 is module 
approximately amenable. On the contrary, if 𝑇𝑇(𝐴𝐴, 0) = 𝑋𝑋 and 𝐴𝐴2 = 𝐴𝐴 then the module 
approximate amenability of 𝐴𝐴 implies the module approximate amenability of ⊕𝑇𝑇 𝑋𝑋. 
For example, we have 𝑆𝑆 be an amenable inverse semigroup such that the set of idempotents 
𝐸𝐸𝑆𝑆 be equal to 𝑆𝑆 and 𝑙𝑙1(𝑆𝑆) has approximately unit. Since 𝑆𝑆 is amenable, 𝑙𝑙1(𝑆𝑆) is module 
approximately amenable. 

     Acknowledgements: The authors would like to thank the referees for their careful reading 
and constructive comments which improved the paper. 
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Summary.  Hardy and Copson type inequalities have been studied by a large number of authors 
during the twentieth century and has motivated some important lines of study which are currently 
active. A large number of papers have been appeared involving Copson and Hardy inequalities (see [2-
16] for more details).
    In this paper some Hardy-Steklov and Copson-Steklov type integral inequalities were established. 
Namely the integral inequalities were proved there. 

�
𝑣(𝑥)

𝑉𝑝−𝛼(𝑥)
(ℱ𝑠𝑓)𝑝(𝑥)𝑑𝑥

𝑏

0
≤ �

𝑝
|𝑝 − 𝛼 − 1|�

𝑝
 �� 𝑣(𝑥)𝑑𝑥

𝑏

0
�
1− 𝑝𝑞

 ��
𝑣(𝑥)

𝑉𝑞−
𝛼
𝑝𝑞(𝑥)

|𝐾(𝑥)|𝑞𝑑𝑥
𝑏

0
�

𝑝
𝑞

,     (∗) 

�
𝜙(𝑥)

Φ𝑝−𝛼(𝑥) (𝒞𝑠 𝑓)𝑝(𝑥)𝑑𝑥
𝑏

0
≤ �

𝑝
|𝑝 − 𝛼 − 1|�

𝑝
 �� 𝜙(𝑥)𝑑𝑥

𝑏

0
�
1− 𝑝𝑞

 ��
𝜙(𝑥)

Φ𝑞−𝛼𝑝𝑞(𝑥)
|𝐽(𝑥)|𝑞𝑑𝑥

𝑏

0
�

𝑝
𝑞

.   (∗∗) 

   Where (ℱ𝑠𝑓) is the Hardy-Steklov type operator and (𝒞𝑠 𝑓) is the Copson-Steklov type operator (see 
the main results for more details).  
   Several Hardy-Steklov type, Hardy-type and Hardy integral inequalities were derived from (∗). 
Similarly, some Copson-Steklov type and Copson type integral inequalities are deduced from (∗∗). 

1. INTRODUCTION

   In 1928, G.H. Hardy proved the following integral inequalities [6]. Let 𝑓 non-negative 
measurable function on (0, ∞) 

(ℱ𝑓)(𝑥) =

⎩
⎪
⎨

⎪
⎧� 𝑓

𝑥

0
(t)dt  for   α <  𝑝 −  1, 

� 𝑓
∞

𝑥
(t)dt  for   α >  𝑝 −  1, 

then 

� 𝑥𝛼−𝑝(ℱ𝑓)𝑝(𝑥)𝑑𝑥
∞

0
≤ �

𝑝
|𝑝 − 𝛼 − 1|�

𝑝
� 𝑥𝛼𝑓𝑝(𝑥)𝑑𝑥
∞

0
,    for  p >  1 .  (1) 

In 1976,  E.T. Copson proved the following integral inequalities (see [4], Theorem 1, 
Theorem 3). Let 𝑓,𝜙  non-negative measurable functions on (0,∞)  

Φ(𝑥) = � 𝜙(𝑡)𝑑𝑡 ,  
𝑥

0
(𝒞𝑓)(𝑥) =

⎩
⎪
⎨

⎪
⎧� 𝑓

𝑥

0
(t)𝜙(𝑡)𝑑𝑡 ,  for   c >  1, 

� 𝑓
∞

𝑥
(t)𝜙(𝑡)𝑑𝑡,  for   c < 1, 
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then 

� (𝒞𝑓)𝑝(𝑥)Φ−𝑐(𝑥)𝜙(𝑥)𝑑𝑥
𝑏

0
≤ �

𝑝
|𝑐 − 1|�

𝑝
� 𝑓𝑝(𝑥)Φ𝑝−𝑐(𝑥)𝜙(𝑥)𝑑𝑥
𝑏

0
,       for  p ≥  1.  (2) 

  Inequality (2) can be easily rewritten in the following form 

(𝒞𝑓)(𝑥) =

⎩
⎪
⎨

⎪
⎧ � 𝑓

𝑥

0
(t)𝜙(𝑡)𝑑𝑡,  for   α < 𝑝 − 1, 

� 𝑓
∞

𝑥
(t)𝜙(𝑡)𝑑𝑡,  for   α > 𝑝 − 1,  

then 

� (𝒞𝑓)𝑝(𝑥)Φα−p(𝑥)𝜙(𝑥)𝑑𝑥
𝑏

0
≤ �

𝑝
|𝑝 − 1 − α|�

𝑝
� 𝑓𝑝(𝑥)Φα (𝑥)𝜙(𝑥)𝑑𝑥
𝑏

0
,       for  p ≥  1.  (3) 

The Hardy-Steklov operator is defined by 

 (𝑇𝑓)(𝑥) = 𝑔(𝑥)� 𝑓(𝑡)𝑑𝑡
ℎ(𝑥)

𝑟(𝑥)
,  𝑓 ≥ 0 , 

where 𝑔 is a positive measurable function and 𝑟, ℎ are functions defined on an interval (𝑎,𝑏) 
such that   𝑟 (𝑥) < ℎ(𝑥)  for all  𝑥 ∈ (𝑎, 𝑏). 

  Particular cases of this operator are Hardy operator (ℱ𝑓)(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡𝑥
0 ,  the Hardy 

averaging operator �𝐹𝜇𝑓�(𝑥) = 𝑥𝜇 ∫ 𝑓(𝑡)𝑑𝑡𝑥
0   and the Steklov operator (𝑆𝑓)(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡𝑥+1

𝑥−1 , 
which  has been studied intensively (see [9] for example). 

 Let 𝑓,𝑣, 𝜙  be non-negative measurable functions on (0,∞) . Suppose that 𝑟  and ℎ  are 
increasing differentiable functions   on  [0,∞),  such that 

�0 <  𝑟(𝑥) < ℎ(𝑥) <  ∞     for   all     𝑥 ∈  (0,∞),
𝑟 (0) = ℎ (0) =  0     and     𝑟 (∞) = ℎ (∞) =  ∞. (4)  

The Hardy-Steklov and Copson-Steklov type operators are defined as follows, 

 (ℱ𝑠𝑓)(𝑥) = � 𝑓(𝑦)𝑣(𝑦)𝑑𝑦
ℎ(𝑥)

𝑟(𝑥)
,  𝑥 > 0,  (5) 

 (𝒞𝑠𝑓) =   �
𝑓(𝑦)𝜙(𝑦)
Φ(𝑦) 𝑑𝑦

ℎ(𝑥)

𝑟(𝑥)
,  𝑥 > 0,  (6) 

where 
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 Φ(𝑥) = � 𝜙(𝑡)𝑑𝑡,      for    𝑥 ∈  (0,∞) .  
𝑥

0
 

We adopt the usual convention:   0
0

= ∞
∞

= 0 .   

2. MAIN RESULTS 

     Let 0 <  𝑏 ≤ ∞.  Throughout the paper, we will assume that the integrals exist and are 
finite. The following lemma is needed in the proof of the main results (was proved in [1]).  

Lemma 2.1. Let 1 < 𝑝 ≤ 𝑞 < ∞  and 𝑓,𝑔,𝑤 be non-negative measurable functions on (𝑎, 𝑏) 
such that W(𝑥) = ∫ 𝑤(𝑡)𝑑𝑡𝑥

0 . If  𝑚 ∈ ℝ,𝑚 ≠ 1, then     

�
𝑤(𝑥)
𝑊𝑚(𝑥)𝑔

𝑝(𝑓(𝑥))𝑑𝑥
𝑏

𝑎
≤  �� 𝑤(𝑥)𝑑𝑥

𝑏

𝑎
�
1− 𝑝𝑞

 ��
𝑤(𝑥)

𝑊
𝑚𝑞
𝑝 (𝑥)

𝑔𝑞(𝑓(𝑥))𝑑𝑥
𝑏

𝑎
�

𝑝
𝑞

.                                (7) 

Remark 2.1. Let   V(𝑥) = ∫ 𝑣(𝑡)𝑑𝑡.  𝑥
0  By putting m = p − α  in inequality (7), w(x) =  v(x),

W(x) = V (x) (respectively   w(x) = ϕ(x), W(x) = Φ(x) and 𝑓(𝑥) = 𝑔(𝑓(𝑥))), we obtain 

�
𝑣(𝑥)

𝑉𝑝−𝛼(𝑥) 𝑓
𝑝(𝑥)𝑑𝑥

𝑏

0
≤  �� 𝑣(𝑥)𝑑𝑥

𝑏

0
�
1− 𝑝𝑞

 ��
𝑣(𝑥)

𝑉𝑞−
𝛼
𝑝𝑞(𝑥)

𝑓𝑞(𝑥)𝑑𝑥
𝑏

0
�

𝑝
𝑞

.                                        (8) 

�
𝜙(𝑥)

Φ𝑝−𝛼(𝑥) 𝑓
𝑝(𝑥)𝑑𝑥

𝑏

0
≤  �� 𝜙(𝑥)𝑑𝑥

𝑏

0
�
1− 𝑝𝑞

 ��
𝜙(𝑥)

Φ𝑞−𝛼𝑝𝑞(𝑥)
𝑓𝑞(𝑥)𝑑𝑥

𝑏

0
�

𝑝
𝑞

.                                      (9) 

    The main results are presented in the following Theorem and Corollaries. 

Theorem 2.1.  Let 𝑓, 𝑣,𝜙  be non-negative measurable functions on (0,∞), 1 < 𝑝 ≤ 𝑞 < ∞  
and  𝑟(𝑥), ℎ(𝑥)  satisfied the conditions (4).  If α < 𝑝 − 1, then   

�
𝑣(𝑥)

𝑉𝑝−𝛼(𝑥)
(ℱ𝑠𝑓)𝑝(𝑥)𝑑𝑥

𝑏

0
≤ �

𝑝
𝑝 − 𝛼 − 1

�
𝑝

 �� 𝑣(𝑥)𝑑𝑥
𝑏

0
�
1− 𝑝𝑞

 ��
𝑣(𝑥)

𝑉𝑞−
𝛼
𝑝𝑞(𝑥)

|𝐾(𝑥)|𝑞𝑑𝑥
𝑏

0
�

𝑝
𝑞

,     (10) 

�
𝜙(𝑥)

Φ𝑝−𝛼(𝑥) (𝒞𝑠 𝑓)𝑝(𝑥)𝑑𝑥
𝑏

0
≤ �

𝑝
𝑝 − 𝛼 − 1

�
𝑝

 �� 𝜙(𝑥)𝑑𝑥
𝑏

0
�
1− 𝑝𝑞

 ��
𝜙(𝑥)

Φ𝑞−𝛼𝑝𝑞(𝑥)
|𝐽(𝑥)|𝑞𝑑𝑥

𝑏

0
�

𝑝
𝑞

,    (11) 

where 

𝐾(𝑥) =
𝑉(𝑥)
𝑣(𝑥) ��𝑉 �ℎ(𝑥)��′𝑓�ℎ(𝑥)� −  [𝑉 (𝑟(𝑥))]′𝑓(𝑟(𝑥))�,  

 

𝐽(𝑥) =
Φ(𝑥)
𝜙(𝑥) �

�Φ �ℎ(𝑥)��′

Φ �ℎ(𝑥)�
𝑓�ℎ(𝑥)� −  

�Φ �𝑟(𝑥)��′

Φ �𝑟(𝑥)�
𝑓(𝑟(𝑥))� . 
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Proof. We consider the inequality (11), then 

(𝒞𝑠 𝑓)′(𝑥) = ℎ′(𝑥)
𝜙 �ℎ(𝑥)�
Φ �ℎ(𝑥)�

𝑓�ℎ(𝑥)� − 𝑟′(𝑥)
𝜙 �𝑟(𝑥)�
Φ �𝑟(𝑥)�

𝑓�𝑟(𝑥)�  

                     =
𝜙(𝑥)𝐽(𝑥)
Φ(𝑥)  ,                                                

integrating by part in the left-hand side of (11), we get 

                     �
𝜙(𝑥)

Φ𝑝−𝛼(𝑥)
(𝒞𝑠 𝑓)𝑝(𝑥)𝑑𝑥 =

𝑏

0
�

−(𝒞𝑠 𝑓)𝑝(𝑥)
(𝑝 − 𝛼 − 1)Φ𝑝−𝛼−1(𝑥)�

0

𝑏

  +
𝑝

𝑝 − 𝛼 − 1
   

                        ×    �
𝜙(𝑥)𝐽(𝑥)(𝒞𝑠 𝑓)𝑝−1(𝑥)

Φ𝑝−𝛼(𝑥) 𝑑𝑥
𝑏

0
.                        

Since α < 𝑝 − 1, we have  

�
𝜙(𝑥)

Φ𝑝−𝛼(𝑥)
(𝒞𝑠 𝑓)𝑝(𝑥)𝑑𝑥 ≤

𝑏

0

𝑝
𝑝 − 𝛼 − 1

�
𝜙(𝑥)𝐽(𝑥)(𝒞𝑠 𝑓)𝑝−1(𝑥)

Φ𝑝−𝛼(𝑥) 𝑑𝑥.
𝑏

0
 

The Hölder integral inequality for   1
𝑝

+ 1
𝑝′

= 1, gives 

�
𝜙(𝑥)

Φ𝑝−𝛼(𝑥)
(𝒞𝑠 𝑓)𝑝(𝑥)𝑑𝑥 ≤

𝑏

0

𝑝
𝑝 − 𝛼 − 1

��
𝜙(𝑥)

Φ𝑝−𝛼(𝑥)
(𝒞𝑠 𝑓)𝑝(𝑥)𝑑𝑥

𝑏

0
�

1
𝑝′ 

  

× ��
𝜙(𝑥)

Φ𝑝−𝛼(𝑥)
|𝐽(𝑥)|𝑝𝑑𝑥

𝑏

0
�

1
𝑝 

, 

therefore 

�
𝜙(𝑥)

Φ𝑝−𝛼(𝑥)
(𝒞𝑠 𝑓)𝑝(𝑥)𝑑𝑥 ≤ 

𝑏

0
�

𝑝
𝑝 − 𝛼 − 1

�
𝑝

 �
𝜙(𝑥)

Φ𝑝−𝛼(𝑥)
|𝐽(𝑥)|𝑝𝑑𝑥

𝑏

0
. 

Finally, by using inequality (9), we get (11).  

    The proof of inequality (10) is similar. So, the proof of Theorem is complete. 

    Now let  r (x) = 0   in  (5)  and  (6), thus  

�ℱ𝑠,1𝑓�(𝑥) = � 𝑓(𝑦)𝑣(𝑦)𝑑𝑦
ℎ(𝑥)

0
,             𝑥 > 0 ,      
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  �𝒞𝑠,1𝑓�(𝑥) = �  
𝑓(𝑦)ϕ(𝑦)
Φ(𝑦) 𝑑𝑦

ℎ(𝑥)

0
,             𝑥 > 0 .      

If we set q = p in (10) and (11), we obtain the following corollary. 

Corollary 2.1. Let 𝑓, 𝑣,𝜙 be non-negative measurable functions on  (0,∞), 𝑝 > 1,  α < 𝑝 − 1    
and 

                     �0 <  ℎ(𝑥) <  ∞     for   all     𝑥 ∈  (0,∞),
ℎ (0) =  0     and     ℎ (∞) =  ∞.                                                          (12)   

Then 

�
𝑣(𝑥)

V𝑝−𝛼(𝑥) �ℱ𝑠,1𝑓�
𝑝(𝑥)𝑑𝑥 ≤ 

𝑏

0
�

𝑝
𝑝 − 𝛼 − 1

�
𝑝

 �
𝑣(𝑥)

V𝑝−𝛼(𝑥)
|𝐾 1(𝑥)|𝑝𝑑𝑥

𝑏

0
,                          (13) 

�
𝜙(𝑥)

Φ𝑝−𝛼(𝑥) �𝒞𝑠,1 𝑓�
𝑝(𝑥)𝑑𝑥 ≤ 

𝑏

0
�

𝑝
𝑝 − 𝛼 − 1

�
𝑝

 �
𝜙(𝑥)

Φ𝑝−𝛼(𝑥)
|𝐽 1(𝑥)|𝑝𝑑𝑥

𝑏

0
,                          (14) 

where 

𝐾 1(𝑥) =
𝑉(𝑥)�𝑉 �ℎ(𝑥)��′𝑓�ℎ(𝑥)�

𝑣(𝑥) ,  

𝐽 1(𝑥) =
Φ(𝑥)
𝜙(𝑥)

�Φ �ℎ(𝑥)��′

Φ �ℎ(𝑥)�
𝑓�ℎ(𝑥)� . 

 

Remark 2.2.  If h (𝑥) = 𝑥 in Corollary 2.1, we obtain the following weighted Hardy inequality and 
Copson-type inequality 

�
𝑣(𝑥)

V𝑝−𝛼(𝑥) �ℱ𝑠,2𝑓�
𝑝(𝑥)𝑑𝑥 ≤ 

𝑏

0
�

𝑝
𝑝 − 𝛼 − 1

�
𝑝

 �
𝑣(𝑥)

V−𝛼(𝑥) 𝑓
𝑝(𝑥)𝑑𝑥

𝑏

0
,                               (15) 

�
𝜙(𝑥)

Φ𝑝−𝛼(𝑥) �𝒞𝑠,2 𝑓�
𝑝(𝑥)𝑑𝑥 ≤ 

𝑏

0
�

𝑝
𝑝 − 𝛼 − 1

�
𝑝

 �
𝜙(𝑥)

Φ𝑝−𝛼(𝑥) 𝑓
𝑝(𝑥)𝑑𝑥

𝑏

0
,                            (16) 

where 

�ℱ𝑠,2𝑓�(𝑥) = � 𝑓(𝑦)𝑣(𝑦)𝑑𝑦
𝑥

0
,             𝑥 > 0 ,      

  �𝒞𝑠,2𝑓�(𝑥) = �  
𝑓(𝑦)ϕ(𝑦)
Φ(𝑦) 𝑑𝑦

𝑥

0
,             𝑥 > 0 .      
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     If  we  put h (𝑥) = 𝜆 𝑥  and  r (𝑥) = 𝛽 𝑥 and 𝑞 = 𝑝 in Theorem 2.1, we get following 
corollary. 

Corollary 2.2. Let  𝑓, 𝑣,𝜙  be non-negative measurable functions on (0,∞), 0 < β < 𝜆 < ∞,
𝑝 > 1 and 

�ℱ𝑠,3𝑓�(𝑥) = � 𝑓(𝑦)𝑣(𝑦)𝑑𝑦
𝜆𝑥

𝛽𝑥
,             𝑥 > 0 ,      

  �𝒞𝑠,,3𝑓�(𝑥) = �  
𝑓(𝑦)ϕ(𝑦)
Φ(𝑦) 𝑑𝑦

𝜆𝑥

βx
,             𝑥 > 0 .      

If   α < 𝑝 − 1,  then   

�
𝑣(𝑥)

V𝑝−𝛼(𝑥) �ℱ𝑠,3𝑓�
𝑝(𝑥)𝑑𝑥 ≤ 

𝑏

0
�

𝑝
𝑝 − 𝛼 − 1

�
𝑝

 �
𝑣(𝑥)

V𝑝−𝛼(𝑥)
|𝐾 2(𝑥)|𝑝𝑑𝑥

𝑏

0
,                           (17) 

�
𝜙(𝑥)

Φ𝑝−𝛼(𝑥) �𝒞𝑠,3 𝑓�
𝑝(𝑥)𝑑𝑥 ≤ 

𝑏

0
�

𝑝
𝑝 − 𝛼 − 1

�
𝑝

 �
𝜙(𝑥)

Φ𝑝−𝛼(𝑥)
|𝐽 2(𝑥)|𝑝𝑑𝑥

𝑏

0
.                           (18) 

Where 

𝐾 3(𝑥) =
𝑉(𝑥)[𝜆 𝑣(𝜆𝑥)𝑓(𝜆𝑥) − 𝛽 𝑣(𝛽𝑥)𝑓(𝛽𝑥)]

𝑣(𝑥) , 

 

𝐽 3(𝑥) =
Φ(𝑥)
𝜙(𝑥) �

𝜆 𝜙(𝜆𝑥)
Φ (𝜆𝑥) 𝑓

(𝛼𝑥) −
𝛽 𝜙(𝛽𝑥)
Φ (𝛽𝑥) 𝑓(𝛽𝑥)� . 

 

Remark 2.3.  One can prove the boundedness of the operator ℱ𝑠,3 from L𝑝(0,∞) to L𝑝(0,∞)  

by using the Minkowski integral inequality for p > 1, it means that ��ℱ𝑠,3𝑓�(𝑥)�
L𝑝(0,∞)

≤

𝐶(𝜆,𝛽,𝑝)‖𝑓(𝑥)‖L𝑝,𝑣(0,∞), where L𝑝(0,∞) is the classical Lebesgue space and L𝑝,𝑣(0,∞) is the 

weighted Lebesgue space, with the following norm  ‖𝑓(𝑥)‖L𝑝,𝑣(0,∞) = �∫ |𝑓(𝑥)𝑣(𝑥)|𝑝𝑑𝑥∞
0 �

1
𝑝 
 

and  𝐶(𝜆,𝛽,𝑝) is a positive constant depending only on    𝜆,𝛽    and   𝑝. 

Remark 2.4.  For  𝜆 = 1 and β = 1
2
 , we get a Pachpatte-type inequality.  

Let   

     (ℱ𝑠∗𝑓)(𝑥) = � 𝑓(𝑦)𝑣(𝑦)𝑑𝑦
∞

𝑟(𝑥)
,          (𝒞𝑠∗𝑓)(𝑥) =   �

𝑓(𝑦)ϕ(𝑦)
Φ(𝑦) 𝑑𝑦

∞

𝑟(𝑥)
,          𝑥 > 0,  
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with

�0 <  𝑟(𝑥) <  ∞     for   all     𝑥 ∈  (0,∞),
𝑟 (0) =  0     and    𝑟 (∞) =  ∞.  (19) 

By setting ℎ(𝑥) = ∞  and reasoning a manner  analogous to the proof of Theorem 2.1, we get 
the following corollary. 

Corollary 2.3  Let 𝑓, 𝑣,𝜙  be non-negative measurable functions on (0,∞), 1 < 𝑝 ≤ 𝑞 <  ∞. 
If   α > 𝑝 − 1,  then   

�
𝑣(𝑥)

𝑉𝑝−𝛼(𝑥)
(ℱ𝑠∗𝑓)𝑝(𝑥)𝑑𝑥

𝑏

0
≤ �

𝑝
𝛼 − 𝑝 + 1

�
𝑝

 �� 𝑣(𝑥)𝑑𝑥
𝑏

0
�
1− 𝑝𝑞

 ��
𝑣(𝑥)

𝑉𝑞−
𝛼
𝑝𝑞(𝑥)

|𝐾∗(𝑥)|𝑞𝑑𝑥
𝑏

0
�

𝑝
𝑞

, (20) 

�
𝜙(𝑥)

Φ𝑝−𝛼(𝑥) (𝒞𝑠∗𝑓)𝑝(𝑥)𝑑𝑥
𝑏

0
≤ �

𝑝
𝛼 − 𝑝 + 1

�
𝑝

 �� 𝜙(𝑥)𝑑𝑥
𝑏

0
�
1− 𝑝𝑞

 ��
𝜙(𝑥)

Φ𝑞−𝛼𝑝𝑞(𝑥)
|𝐽∗(𝑥)|𝑞𝑑𝑥

𝑏

0
�

𝑝
𝑞

, (21) 

where 

𝐾∗(𝑥) = −
𝑉(𝑥) [𝑉 (𝑟(𝑥))]′𝑓(𝑟(𝑥))

𝑣(𝑥) , 

𝐽∗(𝑥) = −
Φ(𝑥)
𝜙(𝑥)

�Φ �𝑟(𝑥)��′

Φ �𝑟(𝑥)�
𝑓(𝑟(𝑥)) . 

Remark 2.5.  The following particular case of Corollary 2.3 can be derived by taking 
r(𝑥) = 𝑥 𝑎𝑎𝑑 𝑞 = 𝑝.   

�
𝑣(𝑥)

V𝑝−𝛼(𝑥) �ℱs
∗�  𝑓� 𝑝(𝑥)𝑑𝑥 ≤ 

𝑏

0
�

𝑝
𝛼 − 𝑝 + 1

�
𝑝

 �
𝑣(𝑥)

V−𝛼(𝑥) 𝑓
𝑝(𝑥)𝑑𝑥

𝑏

0
,  (22) 

�
𝜙(𝑥)

Φ𝑝−𝛼(𝑥) �𝒞s
∗�𝑓�

𝑝(𝑥)𝑑𝑥 ≤ 
𝑏

0
�

𝑝
𝛼 − 𝑝 + 1

�
𝑝

 �
𝜙(𝑥)

Φ𝑝−𝛼(𝑥) 𝑓
𝑝(𝑥)𝑑𝑥

𝑏

0
,  (23) 

where 

�ℱs∗�  𝑓�(𝑥) = � 𝑓(𝑦)𝑣(𝑦)𝑑𝑦
∞

𝑥
, 𝑥 > 0 ,      �𝒞s∗�𝑓�(𝑥) =  �

𝑓(𝑦)ϕ(𝑦)
Φ(𝑦) 𝑑𝑦

∞

𝑥
,  𝑥 > 0 . 
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Remark 2.6 We note that if  𝑣(𝑥) = 1 in the inequalities (15) and (22), we get the Hardy 
inequalities  (1). 

3. CONCLUSION

    By using Hardy-Steklov and Copson-Steklov type operators and by introducing a second 
parameter of integrability 𝑞, some new integral inequalities were established and proved. 
These integral inequalities generalize certain classical inequalities like those of Hardy   
Copson and Pachpatte. As a perspective, we propose to extended these results to ℝ𝑛 or 
subsets of ℝ𝑛 for 𝑎 ≥ 2 . Also it would of interest to try apply some of this integral 
inequalities in the study of deferent fields of mathematics (partial deferential equations, 
functional spaces, mathematical modeling, …). 
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Summary. A family of weighted two-layer finite-difference schemes is presented. Using the 

example of the numerical solution of model problems on the propagation of a single soliton 

and the interaction of two solitons, the high quality of explicit-implicit schemes of the Crank-

Nichols type with the parameter σ = 0.5 and the order of approximation O(Δt
2
 + Δx

2
) is

shown. Completely implicit two-layer difference schemes with the parameter σ = 1 and O (Δt 

+ Δx
2
) are characterized by absolute stability with a low solution accuracy due to a high

approximation error. The family of explicitly implicit difference schemes is absolutely 

unstable if the explicitness parameter σ <0.5 prevails. Analysis of the structure of the 

approximation error, performed using the modified equation method, confirmed the results of 

numerical simulation. 

1 INTRODUCTION 

The theory of nonlinear waves was originally associated with the study of problems in gas 

and hydrodynamics, which include a number of varied and striking problems of applied and 

fundamental nature [1], which lead to the need to analyze the huge and growing data 

associated with multidimensional nonlinear dynamics. 

Initially, the Korteweg de Vries equation (KdV) arose from the needs of hydrodynamics 

[2], [3] associated with the propagation of nonlinear solitary waves in shallow water [4, 5], 

which ended with the discovery of solitons [6]. The KdV equation was the first nonlinear 

wave equation to have soliton solutions. Note that the discovery of solitons [6] was carried 

out on the basis of a computational experiment. As it turned out, solitons, which are stable 

formations, have a number of amazing properties. Thus, the propagation of a soliton in the 

form of a nonlinear solitary wave allows it to maintain its shape and speed during its motion. 

In addition, solitons are characterized by elastic interaction with each other. In the course of a 

collision, they first deform and then restore their original parameters and their original shape. 

Taking into account that the propagation of a soliton is described by a nonlinear equation, 

then the principle of superposition, as it is understood in linear systems, according to which 

the sum of particular solutions is also a solution, does not hold for it. Solitons exactly interact 

with each other, first deforming, and then, restoring their original parameters, in contrast to 

linear solution systems, which pass through each other. The only result of the interaction of 

solitons may be some phase shift. This confirms that solitons are precisely nonlinear 

solutions. 

Due to the rapid development of high-performance computing technology, computational 

algorithms and methods of modern mathematical modeling, it became possible to study more 
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and more complex problems of hydrodynamics [7], nonlinear optics [8], plasma physics [9, 

10] and solids [11]. However, since the complexity of the problems under study is ahead of 

the development of the used computer technology, the problem of increasing the efficiency of 

mathematical methods and approaches remains relevant. 

The active use of solitons in the study and solution of nonlinear wave equations [12] 

describing physical phenomena in many areas [13] stimulated interest in methods for solving 

the KdV equation. The KdV equation was solved numerically by various methods, such as the 

Galerkin method [14-16], the collocation method [17, 18], the finite element method [19-21], 

the finite-difference method [22-30], etc. The choice of one or another numerical solution 

method largely determines the quality of numerical modeling. It should also be kept in mind 

that it is far from being indifferent, at the expense of what costs the final result of modeling is 

achieved. Therefore, it is quite natural to impose on computational algorithms the requirement 

not only of stability and efficiency, but also of simplicity of implementation. Finite-difference 

methods possess the greatest combination of these properties. 

Earlier, in [24, 25], the results of the analysis of two-layer difference schemes for the KdV 

equation from the point of view of integral conservation laws were reported. The concept of 

L2-conservatism of a difference scheme was used as the ability of its solution to satisfy the 

grid analogue of conservation laws [31, 32]. The L2-conservatism principle makes it possible, 

when constructing efficient algorithms, to ensure that they satisfy the grid analogs of the basic 

properties of the differential problem. 

Based on the L2-conservatism principle for the Korteweg-de Vries equation, it was shown 

that explicit two-layer difference schemes do not satisfy the L2-conservatism condition and, 

moreover, are absolutely unstable even in the weakest L2 norm. In the same papers, this 

principle was applied to construct a family of three-layer completely conservative 

(conservative and L2-conservative) weighted difference schemes. 

In this paper, we numerically and analytically study a family of two-layer difference 

schemes for the KdV equation, which includes both explicit and implicit schemes. 

2 STATEMENT OF THE PROBLEM 

KdV equation in the divergence form 

0
2 3

32
























x

uu

xt

u
     (1) 

includes nonlinear and dispersion terms, the competition of which determines the behavior of 

the solution. The solution of equation (1) is represented in the form of a moving soliton. 

The soliton is a stationary unipolar pulse traveling in the positive direction of the X axis 

with a speed Q 

 20 )(ch
),(




Qtxx

A
txu ,       (2) 

where  QA 3  is the amplitude and Q 4  is the half-width (at the level of 0.42A) of 

the soliton. The analytical representation of the soliton will be used to test the computational 

method. 
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To complete the formulation of the Cauchy problem, it is necessary to set the boundary 

conditions. As the initial condition, the grid representation of the soliton (2) is specified. 

Equation (1) requires the setting of three boundary conditions on two boundaries of the final 

computational domain. 

At the left boundary: 0

0

2

2






x
x

u
, At the right boundary 0,0 









Lx
Lx x

u
u . 

 

(3) 

3 FINITE-DIFFERENCE APPROXIMATION 

In the space of variables ),( tx , we construct a difference grid uniform in x 

  ,,0   ,,,0   ,   ,   :),( 1

1 KkMmtttxxxtx kkk
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m

t

x   





  ,     (4) 

on which the grid function is defined ),( k

m

k

m txuu  .  

 

 

 

 

Fig. 1. Grid patterns, implemented by the scheme (5), for different values of . (a) σ=0, i.e. u
k+σ

 = u
k
 

(explicit scheme); (b) 0<σ<1, empty circles are fictional nodes at the intermediate time layer (k+σ); 

(c) σ=1, i.e. u
k+σ

 = u
k+1

. 

Using (4), we construct a family of finite-difference schemes for the approximation of the 

equation (1): 
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where 1)1(   k

m

k

m

k

m uuu ,  is the weight coefficient, which values σ є [0 – 1] determine 

the degree of “implicitness” of the difference scheme. The value σ = 0 corresponds to a 

completely explcit scheme, while σ = 1 – to a completely implicit one. 

In all finite-difference schemes (5), the second order of approximation in spatial x is 

implemented for the derivatives of both the 1st and the 3rd order. With respect to the time 

variable t for all values σ≠0.5, the schemes (5) have the 1st order of approximation. For, σ = 

0.5, the expression (5) is an implicit difference scheme of the Crank-Nichols type with the 

second order of approximation in time. Fig. 1. shows grid patterns for different values of σ. 

4 COMPUTATIONAL ALGORITHM 

The difference approximation (5), applied to the interior points of the computational 

domain, generates a system of nonlinear equations with respect to quantities u~  on a new time 

layer. This system is solved at each time step by the Newton iterative method, for which the 

procedure of its linearization is performed, after which it is transformed into a linear system 

of equations with a 5-diagonal (band) matrix. In the only case of σ=0, the matrix degenerates 

into the identity one, and the scheme becomes explicit. 

5 COMPUTATIONAL EXPERIMENT 

For numerical testing, the following parameters of the equation 1  ,6   and soliton (2) 

presented in Fig. 2(a) were used: 1  ,2    4  ,100  AQx ; 

In the computational domain with the size 420L , a computational grid was constructed 

containing 2100M  intervals with a spatial step size 2.0x . The total width of the soliton 

2 contained 10 intervals. 

For implicit schemes σ≠0, a mechanism for automatic time step selection was 

implemented, based on the following parameters: the maximum allowable number of 

iterations at each time step was 3-4, the criterion of convergence of the iterative process 

includes the relative and absolute errors, the values of which were taken equal to 10
-9

. For an 

explicit scheme (σ=0), the time step is discussed below. 

Figure 2(b) shows the solution using the Crank-Nichols-type scheme (σ=0.5) at the time 

t=100 when the soliton has moved from the initial position to a distance of 400δ. The transfer 

speed determined from the numerical solution turned out to be 1.1% less than the analytical 

value (i.e., the lag was about 4δ). In this case, the amplitude of the soliton fluctuates around 

the average value with a standard deviation of 0.3%, and the average value itself is only 

0.011% greater than the analytical one (Fig. 4(a)). That is, it can be assumed that the 

numerical solution preserves the amplitude of the soliton with good accuracy during the entire 

calculation process. 

The time step during the entire computational process fluctuated with a small amplitude 

around a constant value (Fig. 4(b)). These small fluctuations were associated with the 

organization of the automatic step selection mechanism. 
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Fig.2 (a). Spatial profile of soliton at the initial time t=0.  
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Fig.2 (b). Comparison of the numerical solution obtained using a scheme of Crank-Nichols type 

(σ=0.5) with the analytical one at the time t=100. 

The solution using a completely implicit scheme (σ=1) leads to significantly worse results 

(Fig. 3). This is due to the high schematic viscosity, which in this case is the reason for a 

strong drop in the amplitude of the soliton with time, which in turn decreases its velocity (Fig. 

4(a)). In this case, as the amplitude decreases, the integration step increases (Fig.4(b)). 

However, at the initial moments of time, when the amplitude is not yet very different from the 

initial value, the time step turns out to be about 2 times less than for the Crank-Nichols type 

scheme. 

Figure 5 shows a numerical solution using an explicit difference scheme (σ=0). Figure (a) 

shows the solution with a time step 0001.0t . By the moment of time t=3, a loss of 

stability occurs and further calculation becomes impossible. Note that a decrease in the 

integration step pushes further in time the moment of stability loss.  

(a) 

(b) 
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Fig.3. Comparison of numerical solution using a completely implicit scheme (σ=1) with the analytical 

one at the time t=100. 
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Thus, decreasing the step by a factor of 2 to 5105 t leads to the fact that the 

destruction of the solution occurs at about time t=6. Figure (b) shows the loss stability at the 

time of t=30 when integrating with a step 5101 t . According to the results obtained in 

theoretical works [24, 25], explicit two-layer difference schemes for the KdV equation are 

absolutely unstable. Our results are in complete agreement with this conclusion. 
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Fig .5. Numerical solution using an explicit difference scheme (σ=0) with different integeration steps 

(by an order) 

6 ANALYTICAL STUDY 

When using the finite difference method, it is not the original partial differential equation 

that is solved numerically, but a modified equation called the differential approximation of the 

difference scheme [33–35]. The right side of this approximation is the approximation error 

and is equal to the difference between the original partial differential equation and its finite-

difference analogue. Investigation of the right-hand sides of differential approximations 

makes it possible to establish the predominant contribution to the approximation error of the 

highest derivatives and the related properties of difference schemes such as dissipation and 

dispersion. It is known that if the main term in the expression for the approximation error 

contains derivatives of an even order, then the dominant properties of difference schemes will 

be dissipative, and if derivatives of an odd order, then the dominant properties will be 

dispersive. 

Let us analyze the family of schemes (5) using the method of the modified equation [33-

35]. To do this, first we replace the sought function ),( txu  by ),(),( txutxf  . This allows 

one to get rid of the coefficient α as in both the original equation 
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That is, the factor α is simply the scaling factor for the ordinate. 
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Fig.6. Numerical solution of the problem of collision of solitons: (a) initial condition, (b) comparison 

with the analytical solution at the time t=1. 

Next, we expand the two-dimensional function ),( txf  in a Taylor series at a point 

),( 2/1k

m tx  and substitute it into scheme (7). Leaving the terms in the resulting expression not 

higher than the second order of smallness, we can write 
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In this expression (8), to simplify notation, the indices m and k + 1/2 for the function f and 

all its derivatives are omitted. We focus our attention on the first-order term in Δt. Using the 

original equation (6), we get rid of the time derivatives: 
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In addition, for simplicity, we use the boundedness of the function f and all its derivatives 

in the domain of definition, and we replace the coefficients of the second-order terms by the 

constants K1 K2. As a result, we finally get: 
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Now let's analyze the resulting expression (10). In the term of the 1st order with respect to 

Δt, the square brackets contain two groups of terms: in the 1st curly bracket there are even 
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derivatives with respect to x, in the 2nd - odd ones. I.e. the 1st curly bracket corresponds to 

the schematic viscosity, and the 2nd - to the schematic dispersion. In this case, the sign of the 

coefficient in front of the dispersion terms is insignificant, while in front of the diffusion 

terms it is very important. This sign is determined by the difference (σ-1/2). 

When σ>1/2, the coefficient in front of the first-order diffusion terms is positive, and 

scheme (7) implements equation (6) with an additional viscosity proportional to the first 

power of the time step. This provides, on the one hand, stable behavior in the calculation 

process, on the other hand, distortion of the solution; over time, the initial perturbation is 

smeared out. It is this effect that we observed in the numerical solution using a completely 

implicit scheme (see Fig. 3). 

When σ<1/2, the coefficient in front of the first-order diffusion terms is negative. That is, 

equation (10) gets negative viscosity. This means that scheme (7) becomes absolutely 

unstable. And since the absolute value of the coefficient is still proportional to the 1st power 

of the time step, the destruction of the solution occurs the earlier, the larger the time step is. 

This is precisely what we observed when experimenting with an explicit difference scheme 

(see Fig. 5). 

In addition, now the assertion of theoretical works [24, 25] about the absolute instability of 

explicit two-layer difference schemes for the KdV equation can be extended for the family of 

schemes (7): all schemes (7) are absolutely unstable for σ<1/2, i.e. with “any prevalence of 

explicitness”. 

The highlighted value of σ is 1/2. For this single value, the first-order term in (10) 

vanishes, and thus scheme (7) receives the second-order approximation in both variables, 

)( 22 xtO  . In addition, the effects of the scheme viscosity and 1st order dispersion are 

nullified. It is precisely because of this that, in a numerical solution on a somewhat coarse 

grid, it was possible to obtain the transport of a soliton with practically no distortions over 

considerable distances (see Fig. 2). 

So, scheme (5) with σ=1/2 showed the best results in modeling of the problem of the 

soliton transfer. 

7 VERIFICATION OF THE APPROXIMATION ORDER 

Using the example of the problem of collision of solitons, we numerically verify the order 

of approximation of scheme (5) at σ=0.5. For equation (1) with parameters 1  ,6  , there 

is the following analytical solution to this problem [36]: 
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We will use this solution to set the initial condition (Fig.6a) and then estimate the error of 

the numerical solution. For this, we use the following definitions of the error of the numerical 

solution at the time 
kt : 
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At the first stage, we choose the size of the spatial step 2.0)(  Ix , as in the previous 

problem on the transfer of a soliton. We solve the problem in the computational domain 

]20 ,0[x  in the time interval ]1 ,0[t  (Fig.6b) with automatic selection of the time step in 

order to determine the maximum allowable time step. It turned out 3

max 104 t . Then we 

make calculations by disabling the automatic selection mechanism and decreasing the time 

step until the errors at the end of the calculation 1endt , calculated by formulas (12), stop 

decreasing. This means that in the approximation error 

)()(),( xEtExt xt    (13) 

the part related to the time step became negligible compared to the part related to the space 

step: )()( )(0 Ixt xEtE   . It turned out for our problem 6

0 102 t . Wherein 

1)  )( )(2 IL xE 0.21359560124 

2)  )( )( IC xE 0.89613301323 
(14) 

We do the calculation again, leaving the step 0t unchanged, but reducing the step in space 

by 2 times:. We get 

1)  )2( )(2 IL xE 0.05356903839 

2)  )2( )( IC xE 0.22397163990 

Thus, with good accuracy 
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That is, with a 2-fold decrease in the spatial step, the associated approximation error 

decreased by a factor of 4. This means that the scheme has a 2nd order of approximation in 

space and an error )( 2xO  . 

To determine the order of approximation in time, we find the ratio: 
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As the spatial part of the error )( )( Ix xE  , we can use the previously obtained values (14). 

Let us calculate the total error again: 

1)  ),( )(max2 IL xt 0.21931557047 ,   ),2( )(max2 IL xt 0.2150291787 

2)  ),( )(max IC xt 0.91958522470 ,   ),2( )(max IC xt 0.90208673036 

Substituting all values into (15) we obtain  
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This means that the scheme has a 2nd order of approximation in time and an error )( 2tO  . 

8 CONCLUSIONS 

In this paper, we investigated a family of weighted two-layer difference schemes for the 

Korteweg-de Vries equation on an Eulerian difference grid. 

It is shown numerically that the best results are obtained using an explicit-implicit 

difference scheme of the Crank-Nichols type of the second order of approximation 

)( 22 xtO  . This scheme is capable of stably reproducing a stationary solution with good 

accuracy for a long time. The second order of approximation in both variables is numerically 

confirmed by the example of the problem of collision of solitons. 

A completely implicit two-layer scheme of the 1st order in time and 2nd in space 

)( 2xtO  , although absolutely stable, nevertheless, due to the high scheme viscosity, 

significantly distorts the solution. 

The calculation with the use of an explicit two-layer scheme has never been completed. 

There always came a moment of loss of stability, even with a very small time step. Although, 

up to this point, the solution was quite acceptable. 

An analytical study of the family of finite-difference schemes (5) using the modified 

equation method fully confirmed the results of numerical experiments. The analysis of the 

structure of the approximation error for a family of two-layer finite-difference schemes made 

it possible to explicitly show the reasons for the success of explicitly implicit Crank– Nichols 

type schemes with )( 2xtO  and the absolute instability of the family of schemes (5) in the 

case of “prevalence of explicitness” with a parameter σ<0.5. High scheme viscosity of 

absolutely stable fully implicit two-layer schemes of the 1st order )( 2xtO   indicate the 

need to improve the accuracy of the space-time approximation. 

An important advantage of the considered schemes is their simplicity and transparency of 

the basic mathematical constructions. 
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Summary. In this article we present a mathematical model used for surface runoff simulation in 
GeRa software. The model is based on diffusive wave approximation for the shallow water equations 
with Manning formula for flow velocity estimation. It is implemented using INMOST 
software platform for parallel mathematical modeling. Parallel efficiency of the model 
implementation is adressed for some widely used verification benchmarks. We also present 
surface-subsurface coupling approach used in GeRa software and discuss practical aspects of the 
nonlinear solver. 

1 INTRODUCTION 
Surface water is one of the key components of the hydrologic budget of the watershed. 

Thus computational efficiency of the surface runoff model implementation as well as 
effective surface-subsurface coupling become of great concern to hydrologic modeling 
software developers. Considering multiprocessor architecture of the modern computers it is 
natural to use distributed approach for mathematical models implementation.  

Surface runoff model in GeRa software [1] based on 2D diffusive wave approximation of 
the shallow water equations [2] coupled with subsurface flow model based on 3D Richards 
equation with consideration of fluid and medium compressibility [3] is implemented 
numerically using finite volume discretization method with two-point flux approximation and 
Newton iterations as a nonlinear solver. Surface and subsurface models are coupled by first-
order exchange flux [4], [5].  

Recently, a large number of different highly efficient computational codes for groundwater 
modelling have appeared [6][7][8][9] and parallelization of different aspects of this process 
remains challenging [10], [11], [12], [13]. The GeRa software was developed taking into 
account the necessity of massive parallel calculations [14]. Now this code is used for high-
performance modelling of real objects [15]. Parallelization of surface flow modelling unit is 
required for the integration with the rest part of the GeRa software. Coupled surface-
subsurface model parallelization is carried out using INMOST platform for distributed 
mathematical modeling [16]. Moreover, feature set of INMOST includes tools for automatic 
differentiation for residual vector and jacobian matrix construction for nonlinear solver. 

In this article, we address parallel efficiency of the surface runoff GeRa model in 
conjunction with groundwater flow model. The serial version of the model was previously 
discussed in [17]. Here we address the parallel implementation of the model. Coupled model 
is tested and verified using benchmarks presented in [4]. The solution obtained using GeRa 
software is compared to numerical results of other surface-subsurface simulators such as ATS 
[11], GEOtop [17], [18], HGS [19], Parflow [20], InHM [21], [22], An and Yu model [23], 
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OpenGeoSys [24], [25], Cast3M [26], CATHY [27], MIKE-SHE [28]. 
We also address numerical issues caused by discontinuous surface-subsurface flux close to 

zero surface water levels.  
 

2 SURFACE RUNOFF MATHEMATICAL MODEL 

Let's consider a domain 3Ω∈  with boundary s g∂Ω = Γ ∪Γ , where sΓ  is surface 
boundary and gΓ  is subsurface boundary. Ω  corresponds to a geological domain with sΓ  
being the land surface. Surface runoff model is applied in the two-dimensional domain sΓ . In 
GeRa the model is based on diffusive wave approximation of shallow water equations and 
Manning formula for friction slopes [19]: 

( )s
s s ss

h K H q q
t

∂
−∇ ⋅ ∇ = −

∂
, (1) 

where 
5/3
s

s
s

hK
Hν

=
∇

 
(2) 

and ( , )s sh h x t=  is the unknown surface water depth, ( , ) ( , ) ( )s sH x t h x t z x= + , ν  is the 
Manning's roughness coefficient, q  is the precipitation rate, ssq  is the surface-subsurface flux 
density. We refer to sK  as a surface conductivity coefficient. 

Two types of boundary conditions are considered on the boundary s∂Γ . The first one is 
critical depth boundary condition [19]: 

3
s s sK H gh− ∇ ⋅ =n , (3) 

and the second one is homogeneous Neumann boundary condition: 

0s sK H− ∇ ⋅ =n , (4) 

 
where n  is outward unit normal vector, g  is the gravity acceleration. 

To model groundwater flow we use modified Richards equation for variably saturated 
media with consideration of fluid and medium compressibility in domain Ω  [3]: 

( )
( ) 0g g

stor g g

h h
Ss K h z

t t
θ∂ ∂

+ −∇⋅ ∇ + =
∂ ∂

, 
(5) 

where θ  is the water content, gh  is the pressure head, ( )g
s

S S h θ
θ

= =  is the saturation, stors  is 

the specific storage, ( )g gK K h=  is the hydraulic conductivity, sθ  is the maximum (saturated) 
water content. 

Water content θ  is associated with pressure head by van Genuchten model [29]: 
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( )
, 0,

1

, 0,

s r
r gmn

g

s g

h
h

h

θ θθ
αθ

θ

− + < += 


≥

, 

(6) 

where rθ  is residual water content, α  and n  are model parameters, 1 1/m n= − . Hydraulic 
conductivity is approximated using Mualem's model [30]: 

2
1

0.5 1 1
m

m
g sat e eK K S S

  
 = − −    

, 
(7) 

where satK  is saturated conductivity, r
e

s r

S θ θ
θ θ
−

=
−

 is the effective saturation. 

The following Neumann type boundary conditions are set on ∂Ω : 

, ,
( ( , ) ) ( , )

0, .
ss s

g g g
g

q x
K h x t z h x t

x
∈Γ

− + ∇ =  ∈Γ
n  

(8) 

Here n is an outward normal vector to the boundary.Thus on sΓ  the flux is defined by 
surface-subsurface water interaction and is zero on the rest of the boundary. 

Surface-subsurface coupling approach is based on first-order exchange coefficient [31] (i.e. 
flux density is proportional to difference between surface water depth and subsurface pressure 
head): 

( ) for ( 0, ) and ( 0, 0),
( , )

0 for ( 0, 0),

ss
s g s g s g

ss s g

s g

K h h h h h h
dq h h

h h

 − > −∞ < < +∞ = >= 
 = ≤

 

(9) 

where ssK  is bottom sediments conductivity, d  is the bottom sediments layer thickness, gh  
is the limited groundwater pressure head. The latter is determined by the following formula 
with small positive g : 

( )2 21 ( )
2g g g g gh h d h d= − + + + −  . (10) 

This expression is used to provide nonlinear solver convergence and smoothly approximate 
the following value: 

 max{ , }g gh h d= − . (11) 

As one can get negative sh  during the nonlinear solver iterations, definition of expression (10) 
should be extended for 0sh < : 
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( ) for ( 0, ) and ( 0, ),
( , )

0 for ( 0, ).

ss
s g s g s g s

ss s g

s g s

K
h h h h h h h

dq h h

h h h


       

 
  

. 

(12) 

This definition means that water flow cannot have a downward direction (from surface to 

subsurface) when there is no water on the surface. 

Equation (12) is discontinuous with respect to both arguments for 0, 0s gh h  . The 

discontinuity may result in nonlinear solver oscillations near the surface-subsurface flux 

discontinuity line. To overcome this problem, we use modified formula (smoothed) for 

surface-subsurface flux. To provide further details we first decompose the range of sh  and gh  

into 3 subdomains (see fig. 1). We use the domain A as an interface between domains B and C 

and smooth the flux function in it. The following expression is used for surface-subsurface 

flux which is continuously differentiable with respect to both arguments for 0sh   except the 

square domain 0 ,0s gh h     , where it is discontinuous along the s gh h  segment, 

3 2

2

( ), ( , ) ,

1 cos
1 1

( , ) ( ) , ( , ) ,
2

0, ( , ) .

ss
s g s g

s

ss
ss s g s s g s g

s g

K
h h h h C

d

h

K
q h h h h h h h A

d

h h B




 


 


 

 
      

 
 

 



. 

(13) 

 

Figure 1. Decomposition of sh  and gh  range 
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3 NUMERICAL SOLUTION 

The system to be solved is composed of coupled surface flow equations (1) and subsurface 

flow equations (5). We use finite volume method and implicit Euler scheme to discretize 

model equations. Newton-Raphson method with relaxation is applied to solve the nonlinear 

problem in GeRa. Surface mesh on S  is obtained as trace of 3D mesh in Ω. 

To define the residual on every Newton-Raphson iteration l  we decompose it into three 

parts. Consider first the residual ,

,

l n

s iR  of the surface flow equation in i -th cell iE  of surface 

mesh in s  at n -th timestep: 

, , , ,

, , , , , , ,

l n l n l n l n

s i acc s i flow s i ss s iR R R R   . (14) 

Here accumulation term 
,

, ,

l n

acc s iR  corresponds to time derivative and precipitation sources, flow 

term 
,

, ,

l n

flow s iR  corresponds to water flow inside the computational domain (i.e. s  for surface 

runoff) and surface-subsurface term 
,

, ,

l n

ss s iR  corresponds to surface-subsurface flux. The same 

approach is applied to calculate groundwater flow equation residual: 

, , , ,

, , , , , , ,

l n l n l n l n

g i acc g i flow g i ss g iR R R R   . (15) 

Note that 
,

,

l n

s iR  and 
,

,

l n

g iR  are functions of both surface water depth and groundwater pressure 

head as surface-subsurface flux depends on both of these variables and we use fully implicit 

scheme. 

The combination of two vectors 
,

,

l n

s iR  and 
,

,

l n

g iR  is a residual vector for Newton–Raphson 

method. 

 

3.1 Discretization of surface runoff model 

Accumulation term corresponding to time derivative and source term (precipitation) can be 

written as follows: 

, 1

, ,,

, ,

l n n

s i s il n n

acc s i i i in

h h
R S S q

t


 


, 

(16) 

where iS  is the area of iE , n  is the time step index, 
,

,

l n

s ih  is the surface water depth at l -th 

Newton–Raphson iteration in iE , 
nt  is the time increment, n

iq  is the precipitation rate (or 

other sources) in iE . 

Flow term corresponds to water flow on the surface domain. Using linear two-point flux 

approximation, we get the following expression: 

, ,, ,

, , ,

ij i

n n

s j s il n l n

flow s i s ij ij

e E i j

h h
R K l

c c


  , 

(17) 

where summation is over surface mesh cells neighboring to iE  through edges, 
,

,

l n

s ijK  is 

74



V. Kramarenko and K. Novikov 

discretization of surface conductivity on a common edge ije  of cells iE  and jE , i jc c  is the 

distance between iE  and jE  cells' centers, ijl  is the length of ije . 

 

    

5/3
,

, ,

,1/4
2 2, , ,

, , ,

,

,

, 0,

0, 0,

l n

s ij l n

s ij
l n l n l n
s ij x s ij y s ij

l n

s ij

h
h

K H H

h




 


    

 

 

(18) 

where 
,

,

l n

s ijh  is approximation of sh  on ije  at l -th Newton iteration at n -th timestep, 

, ,

, ,,l n l n

x s ij y s ijH H     is approximation of sH  on ije  at l -th nonlinear iteration at n -th time 

step. For negative 
,

,

l n

s ijh , 
,

,

l n

s ijK  is assumed to be equal to zero. 

We use upwind approximation for the numerator of (18): 

, , ,

, , ,,

, , , ,

, , ,

,

, ,

l n l n l n

s i s i s jl n

s ij l n l n l n

s j s i s j

h H H
h

h H H

 
 



 
(19) 

where iz  and jz  are z -coordinates of iE  and jE  centers respectively. We also use upwind 

approximation for the denominator of (18). Assume, that kE  is the upwind cell, i.e.  

, ,

, ,

, ,

, ,

, ,

, .

l n l n

i s i s j

k l n l n

j s i s j

E H H
E

E H H

 
 



 
(20) 

For a cell kE  consider two sets of cells. edge

k  is a set of surface mesh cells neighboring to kE  

over an edge, node

k  is a set of surface mesh cells neighboring to kE  over a node. For example 

shown in fig.  2    1 2 1 2 3 9, , , , , ,...,edge edge edge node edge node node node node

j j ji j j j j j j      . 

 

Figure 2. Illustration of 
edge

jE  and 
node

jE  sets for j -th cell, 
edge

jE  consists of cyan-colored cells, 
node

jE  

consists of cyan and pink-colored cells 
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For each element of edge

k  we consider the following equation based on Taylor series: 

, , , ,

, , , ,( ) ( )l n l n l n l n

s s k k x s k k y s kH H x x H y y H          (21) 

where   is an element of edge

k , ,x y   are x, y coordinates of  -th cell, , ,

, ,

l n l n

s k s k kH h z  . 

Equations (21) for each edge

k   compose a linear system of equations for unknown ,

, ,

l n

s x kH  

and ,

, ,

l n

s y kH . In case if this system is underdetermined we use node

k  set of cells instead of edge

k . 

Consider the following matrix and vector: 

1 1 1

2 2 2

3 3 3

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

,

... ... ...

m m m

l n l n
k k s s k

l n l n
k k s s k

l n l n
k k s s k

l n l n
k k s s k

x x y y H H

x x y y H H

A bx x y y H H

x x y y H H

  

  

  

  

    
  

    
       
  
  

       

, 

(22) 

where 1 2 3, , ,..., m     are elements of edge

k  or node

k  (depending on  whether linear system 

Ax b  is underdetermined or not for edge

k ). 

The gradient , ,

, ,,l n l n

x s ij y s ijH H     is defined as 2

x

argmin Ax b‖ ‖  (linear least squares 

problem solution): 

 
1

, ,

, ,,
T

l n l n T T

x s ij y s ijH H A A A b


     . 
(23) 

3.2 Discretization of groundwater flow model 

Again, consider separate components of nonlinear residual. 

, 1 , 1

, , , ,, ,

, , ,

( ) ( )
( )

l n n l n n

g i g i g i g il n l n

acc g i i g i storn n

h h h h
R V S h s

t t

     
     

, 
(24) 

where iV  is the volume of i -th subsurface cell of 3d mesh, 
,

,

l n

g ih  is the groundwater pressure 

head at l -th nonlinear iteration at n -th time step in this cell. 

, ,

, ,, ,

, , ,( )

l n l n

g j g il n l n

flow g i g g ij ij

j i j

h h
R K h S

c c


 , 

(25) 

where summation is over cells of subsurface mesh neighboring to i -th cell through a face, 

i jc c  is the distance between centers of i -th and j -th cells, ijS  is the area of a common face 

of these cells, ( )g gK h  is defined by (7), 
,

,

l n

g ijh  is upwind pressure head defined by 

, , ,

, , ,{ , }.l n l n l n

g ij g i g jh max h h  
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3.3 Discretization of surface-subsurface flux 

Consider residual term ,

, ,

l n

ss s iR . We define this residual term as follows (domains A , B  and 

C  are depicted on fig. 1): 

   

, , , ,

, , , ,

,

,

3 2
, , , , , ,

, , , , , , ,2

, ,

, ,

( ), ( , ) ,
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1 1
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2
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l n
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l n l n l n l n l n l nss
ss s i i s i s i g i s i g i

l n l n

s i g i

K
h h h h C

d

h

K
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d
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, 

(26) 

The groundwater counterpart of this term can be defined by 
, ,

, , , , ,
s

l n l n

ss g i ss s iR R   where i  is an 

index of top level 3d subsurface mesh cell, which has si -th 2d surface mesh cell as one of its 

faces. 

4 NUMERICAL EXPERIMENTS 

Three numerical experiments are considered. In the first one no groundwater flow is 

modelled as we verify simple surface runoff model without coupling. The following two 

experiments are devoted to coupled surface-subsurface simulation. Coupled numerical 

experiments are then examined for parallel implementation efficiency. 

4.1 Surface runoff 

In this numerical experiment, we model surface runoff without coupling with groundwater. 

Numerical solution is compared to analytical solution of kinematic wave equation. Note that 

assumptions of diffusive wave approximations differ from kinematic wave. However, we 

propose to compare diffusive and kinematic wave approximation solutions due to the 

following arguments. First, analytical solutions for diffusive wave equation presented in 

papers are obtained using additional strong assumptions [33], [34]. Second, both 

approximations are formulated for the same original shallow water equations, thus 

approximate the same model.  

Ground surface is a 200m100m rectangle tilted with slope equal to 0.01 along the longest 

side. However, we add artificial river banks to prevent water outflow from the lateral sides of 

the domain. Geometry of the domain is illustrated by fig. 3. Rainfall intensity is equal to 
65 10 m/s for the first 15000 seconds of the experiment and 0 for the next 15000 seconds of 

the experiment. Overall experiment duration is 30000 seconds. Manning roughness 

coefficient is 0.05  s/m
1/3

. Comparison of the numerical results for linear discharge density 

through the outlet with the analytical solution is depicted on fig. 4 (linear discharge density is 

equal to the discharge divided by the outlet length, which is equal to 100 m). As one can see 

on the figure numerical results are close to the analytical solution, however some qualitative 

difference remains. The latter may be caused by the slight diffusive and kinematic wave 
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model disagreement. 

 

Figure 3. Geometry of tilted v-catchment numerical experiment domain 

 

Figure 4. Water discharge dynamics for tilted v-catchment numerical experiment 
 

4.2 Tilted v-catchment with subsurface 

This numerical experiment as well as corresponding other simulators' numerical results are 

described in [4]. Ground surface is a 10m wide channel with parallel walls with banks tilted in 

x  and y  directions. Slope in y  direction is constant and equal to 0.02, slope in x  direction is 

zero for the channel, and 0.05 for channel banks. Bottom of the domain has the same 

geometry as ground surface and is located 5m below the surface (see fig. 5 for domain 

geometry scheme). Two different precipitation scenarios were modeled: no rainfall during the 
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120 hours of experiment in the first scenario, 20 hours of rainfall with precipitation rate 0.1 

m/h and 100 hours of recession in the second scenario. Authors of  [4] suggest to use zero 

surface water depth and vertically hydrostatic initial conditions with water table 2 m below 

the ground surface as initial conditions. Boundary conditions are critical depth boundary 

condition for surface layer and no-flux boundary conditions for subsurface. 

 

Figure 5. Geometry of tilted v-catchment numerical experiment domain 
 

The following model parameters were used [4]: 

 31.74 10   h/m 1/3  for the channel and 41.74 10    h/m 1/3  elsewhere, 

 satK  = 10 m/h, 

 n  = 2 and   = 6 m
1
, 

 0.08, 0.4r s   , 

 510stors   m 1 , 

 precipitation rate: 0 for 120 h for the first scenario, 0.1 m/h for the first 20 h and 0 

afterwards for the second scenario. 

One of the simulators considered in [4] uses first-order exchange as a coupling method 

(HGS simulator), however there is no exact value defined for proportionality coefficient for 

the surface-subsurface flux in this paper. Therefore, bottom sediment parameters were 

estimated for GeRa to fit the results of other simulators. For this numerical experiment, we 

used 20ssK   m/day and 0.2d  m. 

Using these model parameters, we simulated the test case and obtained water dynamics for 

the surface and subsurface layers. Comparison discharge rate through the outlet obtained by 

GeRa code with other simulator results is presented in fig. 6 for the first scenario and fig. 7 

for the second scenario. As one can see from the figures Gera software produces the solution 
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close to the other simulators results. Absolute values of GeRa solution lie between other 

simulators.  

 

Figure 6. Water discharge dynamics for the first scenario of the tilted v-catchment benchmark 

 

Figure 7. Water discharge dynamics for the second scenario of the tilted v-catchment benchmark 

4.2 Borden benchmark 

Field study was originally presented by Abdul and Gillham [35], [36] where outlet 

discharge has been measured for 100 minutes of the experiment. The experiment site is 

approximately 18 m wide and 90m long. The exact surface geometry is described by Digital 

Elevation Model of the terrain [4] and is depicted in fig. 8. We considered a region with relief 
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level less than 3.02 m as a channel domain and the rest of the surface as channel banks. The 

subsurface computational domain is bounded by 0z   plane at the bottom. Numerical 

experiment is implemented and described in [4], [20], [23]. 

We used the following model parameters: 

 0.03   s/m 1/3  for the channel and 0.3   s/m 1/3  elsewhere [20], [23], 

 satK  = 0.036 m/h [4], 

 n  = 6 and   = 1.9 m 1 [4], 

 0.067, 0.37r s   [4], 

 610stors   m 1 , 

 precipitation rate: 0.02 m/h for the first 50 minutes, 0 for the last 50 minutes. 

For this numerical experiment 0.47ssK   m/day and 0.2d   m were used. Note that 

authors of [4] used constant value for Manning's roughness for the whole domain, while 

different values for the channel and the channel banks are used in [20], [23]. 

Zero water level on the surface and hydrostatic initial conditions with water table at z   

2.78 m were used as initial conditions. Boundary conditions are critical depth boundary for 

the surface layer and no-flux boundary conditions for the subsurface. 

Comparison between GeRa numerical discharge rate, other simulator discharge rate and 

experimental data is depicted in fig. 9. As one can see from the figure GeRa results are close 

to the experimental discharge rate. Moreover GeRa results agree with other simulators under 

consideration. 

 

Figure 8. Borden benchmark surface elevation described by Digital Elevation Model with 0.5m 

resolution [4] 
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Figure 9. Water discharge dynamics for Borden benchmark 

4.3 Parallel numerical experiments 

In this section, we consider parallel efficiency of the coupled surface-subsurface model 

implemented in GeRa. Parallelization is implemented with MPI technology used in INMOST. 

For the numerical experiments presented in the section we dramatically refined the meshes for 

the experiments described previously. During Newton iteration, we need to solve a system of 

linear equations. Note, that in case of convergence failure we refine the time step. Maximum 

number of Newton iterations before the time step refinement is one of nonlinear solver 

parameters. To solve the linear systems of equations obtained on each Newton iteration we 

use PETSc package [37], namely BiCGStab solver with Schwartz preconditioner. On each 

processor ILU(k) preconditioner is used. For the mesh cell distribution between processors 

ParMETIS package is used [38]. 

All experiments are performed on INM RAS cluster [39] using the computational nodes of 

the x12core segment: 

 Compute Node Arbyte Alkazar+ R2Q50 

 24 cores (two 12-core Intel Xeon E5-2670v3@2.30GHz processors or Intel Xeon 

Silver 4214@2.20GHz); 

 RAM: 64 GB; 

 Operating system: SUSE Linux Enterprise Server 15 SP2; 

 Network: Mellanox Infiniband.  

Due to node configuration we consider not 1, 2, 4,…,2
n
 cores, but 3, 6,…, 3*2

n
 cores to 

measure parallel efficiency. 

For the tilted v-catchment numerical experiment, (first precipitation scenario is considered) 

mesh size is 285750 cells. For Newton iterations, nonlinear problem parameters are the 

following: 

 initial time step is 0.001 days; 

 maximum number of nonlinear iterations before time step reduction is 40;  
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 stopping criterion is residual reduction by 10
-3

 factor.

For linear system solution PETSc parameters are the following: 

 Schwartz overlap between processors is 1;

 ILU factor level for each processor is 1;

 stopping criterion is initial residual reduction by factor 10
-9

;

In the Borden experiment, mesh size is 278140 cells. For Newton iterations, nonlinear 

problem parameters are the following: 

 initial time step is 0.001 days;

 maximum number of nonlinear iterations before time step reduction is 300;

 stopping criterion is residual reduction by factor 10
-4

.

For linear system solutions PETSc parameters are the following: 

 Schwartz overlap between processors is 3;

 ILU factor level for each processor is 3;

 Stopping criterion is initial residual reduction by factor 10
-9.

Results are shown in the Table 1 for the tilted v-catchment experiment and Table 2 for the 

Borden experiment. For each number of processors (first column) we list total solution time 

of the experiment (second column), acceleration (third column) and efficiency of 

parallelization (fourth column). Acceleration is the ratio between total solution times for 

current number of processors and for the baseline number of processors. The baseline number 

is equal to 3 for tilted v-catchment benchmark and 12 for Borden benchmark (we do not use 

serial computation on a single processor due to long computational time for the refined mesh). 

Parallelization efficiency is the ratio between solution times for current number of processors 

and for two times smaller number of processors. In other words, efficiency value shows a 

speedup for one step of processors number increasing. 

Number of 

processors 

Solution time Acceleration Efficiency 

3 29456 1.0 - 

6 19521 1.5 1.5 

12 11039 2.7 1.8 

24 5081 5.8 2.2 

48 2645 11.1 1.9 

96 1267 23.4 2.1 

192 838 35.1 1.5 

Table 1. Parallel efficiency results for the tilted v-catchment experiment 

Number of 

processors 

Solution time Acceleration Efficiency 

12 92684 1.0 - 

24 51997 1.8 1.8 

48 28083 3.3 1.8 

96 15138 6.1 1.9 

192 9111 10.17 1.7 

Table 2. Parallel efficiency results for the Borden experiment 
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Both experiments demonstrate good scalability and parallel efficiency of coupled surface-

subsurface water simulations. Maximum speedup is 35 times for tilted v-catchment 

experiment on 192 cores (theoretical maximum is 64 times). Both experiments also 

demonstrate fair efficiency. Average efficiency is more than 1.6 for both experiments and in 

some cases hyper linear speedup is observed.  

 

 5 CONCLUSIONS 

Surface runoff model implemented in GeRa software package is described in the article. 

Verification benchmarks previously applied to the serial implementation of the model in [17] 

were used here to demonstrate validity of the parallel version of the model itself as well as 

coupled surface-subsurface model. We also used these benchmarks to assess parallelization 

efficiency of the coupled model. Numerical experiments show good scalability of the 

implementation. The acceleration for the parallel implementation is up to 35 times for 192 

processors for the tilted v-catchment benchmark relative to the baseline time obtained for 3 

processors. 

We also suggested surface-subsurface flux smoothing approach in order to prevent 

nonlinear solver oscillations. 
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Summary. An effective space exploration is impossible without gravity assists (GA) using. 

Their application relaxes the constraints imposed on the space mission scenarios by the 

characteristic velocity budgets being realized at the current stage of development of space 

technology. A significant change in the inclinations of operational spacecraft (SC) orbits in 

flight aimed at studying the inner heliosphere from out-of ecliptic positions (the ESA “Solar 

Orbiter” mission, Russian “Interheliozond”) is needed to accomplish some prospective space 

missions. Low-cost tours for the high inclined orbit formation in the Solar system with use of 

gravity assists near its planets (Earth and Venus) with the full ephemeris using are considered. 

The limited dynamic possibilities of using gravity maneuvers require their repeated 

performance. Based on the formalization of the search for the GA- timetables with subsequent 

adaptive involvement of a large number of options, a high-precision algorithm for 

synthesizing chains of increasing gravity assists was built. Its use leads to a significant 

inclination change of the research SC's orbit without significant fuel consumption during a 

reasonable flight time. 

1 INTRODUCTION 

An effective space exploration is impossible without gravity assists (GA) using. Their 

application relaxes the constraints imposed on the space mission scenarios by the 

characteristic velocity budgets being realized at the current stage of development of space 

technology. A significant change in the inclinations of operational spacecraft (SC) orbits in 

flight aimed at studying the inner heliosphere from out of ecliptic positions (the ESA “Solar 

Orbiter” mission, the Russian “Interheliozond” project, etc.) is needed to accomplish some 

prospective space missions. Low-cost tours for the high inclined orbit formation in the Solar 

system with use of gravity assists near its planets (Earth and Venus) with the full ephemeris 

using are considered. The limited dynamic possibilities of using gravity maneuvers require 

their repeated performance. Relevance of regular creation of optimum scenarios — sequences 

of cranking passing of celestial bodies and solution of conditions of their execution is 

obvious. The technology for synthesizing such scenarios is complicated by the necessity of 

their 3D design with allowance made for precise ephemeris models. The formalism is based 

on two basic factors for designing high-inclination orbits. The first factor is geometric 

restrictions on the maximum possible inclination of the SC's orbit, which is achievable 

depending on the relative value of the excess vector of the SC's hyperbolic velocity (the 
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asymptotic velocity of the SC relative to the planet) compared to the average orbital velocity 

of the planet for any flight sequence. The second factor is dynamic restrictions on the 

maximum angle of rotation of the asymptotic velocity vector of the SC during a single gravity 

assist. Dynamic restrictions also depend on the value of the asymptotic velocity of the SC and 

the gravitational parameters of the planet. A joint analysis of the factors presented makes it 

possible to draw a conclusion about the dynamic nature of the planned space mission, which, 

however, will require further clarification. Based on the formalization of the search for the 

such scenarios with subsequent adaptive involvement of a large number of options, a high-

precision algorithm for synthesizing chains of increasing gravity assists was built. Its use 

leads to a significant change in the inclination of the research SC's orbit without significant 

fuel consumption during a reasonable flight time. 

In previous works [1-3], the authors conducted a comparative analysis of various modern 

astrodynamics developments [4-8], affecting the 3D spatial implementation of gravity assists, 

in order to clarify the possibility of their application, taking into account the exact ephemeris. 

In [3] a refined analytical formula of the inclination changes of the SC orbit were obtained for 

one-pass 3D GA obtained and the results of calculations by using the parameters changes of 

the orbital inclination of the SC relative the Solar system planets and their satellites. In this 

paper, the main focus is on the development of algorithms for the synthesis of multi-pass GA 

chains, the use of which leads to a significant increase in the inclination of the SC orbit above 

the ecliptic plane. 

In this paper, we generalize the formulas of [1] for the inclination of the SC orbit and its 

changes during gravitational maneuvers near the planet to the overall case of elliptical orbits 

of not only the SC, but also the planet. The geometric interpretation of the obtained formulas 

is presented. Expressions are found for the coordinates of the inclination pole on the invariant 

sphere of the asymptotic velocity of the SC. The procedure for GA chains reaching the 

inclination pole to achieve the geometrically acceptable maximum inclination of the SC orbit 

during multi-pass gravitational maneuvers is analytically studied. 

2 GEOMETRIC RESTRICTIONS OCCURRED DURING GRAVITY ASSISTS 

PERFORMING 

Using the results of [1, 2], we introduce spherical coordinates to describe the invariant 

sphere of the position of the ends of the CS’s asymptotic velocity vector V of the during 

gravity assists: radius V and angles  ρ, σ. The angle ρ is the angle between the vector ,V out  

obtained after the gravity assist and its projection on the orbital plane, and the angle σ is the 

angle between this projection and the orbital velocity vector of the planet Vpl  . 

The restrictions on changing the inclination i  of the SC’s orbit when performing GA with 

a selected planet ("solo" GA) can be interpreted as geometric and dynamic [1, 2]. 

Geometric restrictions define the maximum value of i  for any number of solo GA, which 

for the case (1) is given by the dimensionless asymptotic velocity of the KA v  [1-3, 8-12]:  

maxsin i v , (1) 

/ plv V V  . (2) 
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It is easy to see that from (1) and (2) follows a restriction for the maximum possible 

inclination: 

max 2i  . (3) 

 

3 GRAVITY ASSISTS DYNAMIC RESTRICTIONS 

Dynamic restrictions of the SC’s orbit inclination changing are determined by the 

magnitude of the planet's gravitational field and the minimum allowable flyby distance near it. 

For the rotation angle φ of the SC’s asymptotic velocity vector after a single-pass GA, is valid 

the formula [4]:  

2
sin

2 r V

 

 




 
(4) 

where μ – gravitational parameter of the flyby body, r  – the distance of the pericenter of the 

SC’'s flyby hyperbola, which cannot be less than the radius of the partner planet plR . The 

position of the "inclination pole" - the extremum point PoleT : maxi i on the V -sphere is 

schematically shown in Fig. 1. the Sequence of any solo GA in order to increase the 

inclination of the SC’s orbit (we will call them “increasing chains”) should be as close as 

possible to the point PoleT . 

 
Fig. 1. The inclination pole PoleT - the inclination extremum point location on the V - sphere 

in case sin 0   

 

The overall meaning of dynamic constraints for GA is that the end of the output vector 

,V out for a single-pass GA does not go beyond the spherical region ("spherical cap") cS  . This 

region is the intersection of a sphere and a solid angle formed by a cone with a solution angle 

of 2φ, the axis of which is the vector of the input (before GA) SC’s asymptotic velocity ,V in  

(Fig. 2). The base of the spherical cup is obviously a circle K of radius sinr V   . 
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Fig. 2. The end of the output vector ,outV  for the single-pass GA does not extend beyond the 

spherical region cS   ("spherical cap) 

4 OVEERALL CASE OF THE PLANET’S ELLIPTIC ORBIT 

Let’s obtain a generalization of the results [1] for the case of elliptical orbits of the planet 

and SC. We then use the formula for the tangent of the desired angle of inclination i  between 

two planes with normals ,n nsc under the condition (3): 

sc

sc

tg
n n

n n
i





 

(5) 

Let γ is the trajectory angle (the angle between the velocity vector of a planet and the" 

virtual " vector of the circular orbital velocity of that planet at the same point). For a circular 

orbit [1] γ=0. We introduce the right triple of Cartesian coordinates ( , , )X Y Z  so that the axis 

X  it is directed along the velocity vector of the planet, and Y is orthogonal to its orbital 

plane. Then ( ,0,0)Vpl plV , ( sin , cos ,0)rpl pl plr r  , and 

 pl pl pl pl(0, 0, cos )n r V r V     ,  

  sc pl pln r V V   ,  

    

           

sc pl pl pl pl

pl pl pl pl pl pl pl pl pl pl

n n r V r V V

r V r V r V r V r V r V



 

      

           

.  

Let's use the identity: ( ) ( ) ( ( ))a b a c a a b c      , , which in this case will mean: 

       pl pl pl pl pl plr V r V r r V V       . 

Writing V  as:  

      pl pl pl pl pl plr V r V r r V V        (6) 

we find 
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               pl pl pl pl pl(0, sin , cos sin ) (0, , )V V z yV V V V V V V V            (7) 

and 

   sc pl pl pl pl pl pl cosn n r r V V r zr V V          (8) 

This implies an important statement [1]. 

Statement. The SC’s orbit normal vector nsc  after GA will always be orthogonal the radius 

vector of the planet rpl , that is, for any GA, nsc it always remains in the plane that is 

orthogonal rpl . 

Expression (7) can be represented in coordinate form. We calculate for such a 

representation scn n : 

 
          

     

2

sc pl pl pl pl pl pl pl pl pl

2 2 2 2

pl pl pl pl pl pl plcos

n n r V r V V r V r V r V

V , V r V r Vr V r

 

 

            

       

 (9) 

Using relations 

 pl plV V xV V   , pl pl pl pl sinr V r V   , 

 pl pl plsin cosr V x yr V r V       (10) 

we can find: 

 
 2 2 2 2 2

sc pl pl pl pl pl pl

2 2 2 2 2 2

pl pl pl pl pl pl

cos sin sin cos

cos cos sin cos .

n n x x y

x y

r V r V V r V V V

r V r V V r V V

   

   

  

 

       

    

 (11) 

As a result, we get the formula for the tangent of the angle of inclination: 

 
pl

tg
cos cos sin

z

x y

V
i

V V V  


 


 

, (12) 

 
pl

sin
tg

cos cos cos( )

V
i

V V



   





 

. (13) 

The obtained formula (13) can be considered as a functional relation ( , )tg i   . 

Note that the parameter γ, as a parameter of the planet's orbit, it does not depend on the 

point of GA. It follows from (13) and (1) that the maximum of the function tg i is reached at a 

certain pole of inclination on the V - sphere ,      , for which is properly: 

 cos( ) 1,          , (14) 

 *
maxcos sin

cos cos

plV V v
i

 

    . 

For the case of a circular orbit of the planet, the relation will be fulfilled    . 

5 BASIC ANGLES OF GRAVITY ASSISTS MANEUVERS FOR PLANETS 

We compare the dependence of the maximum angle of rotation of the asymptotic velocity 

vector of the SC max , substituting the condition in (4) plr R  , and geometrically acceptable 

inclination of the formed orbit of the spacecraft (2) for the planets of the Solar system. 
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Comment. Comparison of (2) and Fig. 1 [4], formula (1.2.10), shows that in [4] the value 

of ,sc outV   approximately replaced in the denominator by plV , so that:  

max max

pl

sin sin sin
V

i v
V

 
  . 

(15) 

Expression (15) in some cases , for not very large values of v , can serve as a satisfactory 

approximation of sin i  [1, 2, 3]. 

The graphs max  relative V  for the terrestrial planets and Jupiter are shown in Fig. 3. They 

show that the maximum rotation angles are reached at near-zero values V . However, the 

value of maxi in this case, according to (4), it is close to zero. 

GA "efficiency" appears only when increasing V  to the values that provide the required 

value for a space mission maxi , but at the same time the value max , which is demonstrated in 

this graph. The bold line denotes the model value of the demanded design inclination angle 

max 6i  . The vertical, lowered from the point of its intersection with the graph of the 

function of the maximum inclination of the planet, shows the corresponding value of the 

rotation angle max  of the SC’s asymptotic velocity vector on one single GA. 

 

Fig. 3. The dependence of max  and maxi  for the planets of the earth group and Jupiter (in degrees) 

on the value of the dimensionless asymptotic velocity V  (in km/s) 
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6 SEARCHING ALGORITHMS FOR THE GRAVITY ASSISTS CHAINS THAT 

INCREASE THE SC’S ORBIT INCLINATION 

The chain GA in the case of their solo execution can be represented as the group of 

automorphisms V - sphere. Climbing on theV - sphere is required to the  target point close to 

the pole of its inclination PoleT . Arrival to the PoleT . will mean reaching the geometrically 

maximum possible inclination of the SC’s orbit (1). 

According to [1], for missions with 1 2v   the pole PoleT  will be localized at the 

intersection of latitude 60   and the longitudinal plane σ=0 (Fig. 4). 

When conducting an increasing chain of "solo" GA near a fixed planet the V - sphere is an 

invariant. Therefore, if necessary, it is possible to solve the problem of constructing a 

connected route from the starting point of the first GA 0  (contained in the spherical cap 

,1cS  ) up to the point of the inclination pole PoleT  with a sufficiently large number of 

connecting (in the limiting case, touching) local spherical caps ,1 ,2 ,, ,...,c c c NS S S    [2], (Fig. 4, 

green circles). 

The maps must overlap. Each ,2 , 1,,c c NS S    must contain at least the two points of different 

resonance lines between the orbital periods of planets and SC (GA output), which provides 

the construction of a new SC to the planet after a short time. 

 

 

Fig. 4. For missions of any class max requiredi i  , the inclination pole will be at latitude requiredi   . 

Isolines of the resonant ratios between the SC’s orbital periods and the planet of the following types 

are plotted: 1:2, 3:4, 1:1 (blue line), 5:4, 4:3, 3:2, 2:1, 3:1 

7 CONCLUSIONS 

The formulas obtained in [1-3] for the orbital inclination of the spacecraft and its change as 

a result of gravity assist maneuvers (GM) around the planet are generalized for the case when 

not only the spacecraft's orbit, but also the planet's orbit is elliptical. The geometric 

interpretation of the formulas is described. Formulas are obtained for the coordinates of the 
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inclination pole on the invariant sphere of the asymptotic velocity of the spacecraft. A 

comparative analysis of the results and modern descriptions of spatial 3D GMs was carried 

out [4-8]. Some cases are described when A. Labunsky's approximation [4] is acceptable 

[1-3]. 

A comparative analysis of the results and modern descriptions of spatial 3D GM is carried 

out [4-8]. The procedure for constructing a GM chains leading to the inclination pole to 

achieve a geometrically acceptable maximum inclination of the spacecraft's orbit is 

analytically investigated. 

The characteristic "working" size of the spherical region of the elementary GM on the 

surface of the sphere is determined. An algorithm for searching for ballistic scenarios is 

presented, which reduces to constructing a finite simply connected chain GM from the initial 

GM to the inclination pole, covered with spherical caps on the resonant lines of the invariant 

sphere. These chains can go either along the resonant isolines, or jumping between them. As a 

result, a formalized structure of GMS that increase the inclination of the SC’s orbit is 

synthesized, which allows automating the process of adaptive synthesis of phase beams of the 

corresponding optimal trajectories consisting of millions of variants. 
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Summary. An expression in a closed form is proposed for the approximation of the Debye

function used in thermodynamic models of solids. This expression defines an analytic function

that has the same limiting behavior as the Debye function at low and high temperatures. The

approximation gives the maximum relative deviation from the value of the Debye function less

than 0.001. The proposed expression can be useful in the equations of state of solids in a wide

temperature range.

1 INTRODUCTION

The Debye model [1] was proposed for description of thermodynamic behavior of materials

in a wide range of temperatures. It represents the phonon contribution to equations of state of

solids as an interpolation between limiting cases of low and high temperatures [2–25]. Equations

of state of matter are necessary for analysis and numerical simulation of physical phenomena

under extreme conditions of high temperatures and high pressures [19, 26–40].

Analytic expressions of thermodynamic potentials within the Debye model contain the De-

bye function in a form of integral [1],

D(x) =
3

x3

x
∫

0

t3dt

et −1
, (1)

x > 0, which cannot be expressed in elementary functions. Despite of that this integral can

be written as analytic expression with infinite series [1, 3, 41, 42] or special functions (poly-

logarithms and the Riemann zeta function) [43], closed-form expressions approximating the

Debye function are interesting for practical use in thermodynamic calculations. Many works

are devoted to elaboration of simple approximations of the Debye functions with different ac-

2010 Mathematics Subject Classification: 26E05, 33F05, 74A15, 80A10, 82D20.

Key words and phrases: Debye function, analytic function, equation of state, heat capacity, low and high

temperatures.
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curacy [14, 44–50]. All of such approximations can be sorted as piecewise continuously differ-

entiable functions [44, 45, 47] and smooth (in particular, analytic) functions [14, 46, 48–50].

In the present work, an expression is proposed approximating the Debye function in a closed

form of analytic function. Some results of calculations are presented illustrating the accuracy of

this approximation.

2 MODEL OF THERMODYNAMIC PROPERTIES OF SOLIDS

Thermodynamic potential the Helmholtz free energy is traditionally taken as a basis of equa-

tion of state model. This potential can be presented as a sum of three parts:

F(V,T ) = Fc(V )+Fa(V,T )+Fe(V,T ), (2)

those are a portion of energy corresponding to zero temperature T = 0 (Fc) and thermal con-

tributions of ions and electrons (Fa and Fe, respectively). Here V is the specific volume; T is

the temperature. Considering thermal contribution of ions in solids, one can take into account

portions of energy of acoustical (Fac) and optical (Foα ) modes of ions vibrations. For the unit

cell of the crystal structure with ν particles, this contribution is as follows:

Fa(V,T ) = Fac(V,T )+
3(ν−1)

∑
α=1

Foα(V,T ). (3)

The energy of acoustic vibration modes is usually considered within the framework of the Debye

model [1]:

Fac(V,T ) =
RT

ν
[3ln[1− exp(−θac/T )]−D(θac/T )]. (4)

Optical mode contributions are commonly considered in terms of the Einstein model [51]:

Foα(V,T ) =
RT

ν
ln[1− exp(−θac/T )]. (5)

Here, θac and θoα are the characteristic temperatures of the acoustical and optical modes of ions

vibrations.

The first and second derivatives of the Helmholtz free energy with respect to temperature

determine the entropy and isochoric heat capacity of a substance:

S =−(∂F/∂T )V , (6)

CV = T (∂S/∂T )V . (7)
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Consequently, the first and second derivatives of the Debye function appear in the entropy and

the isochoric heat capacity of solids. In particular, if the characteristic temperature θac does

not depend on temperature, one can obtain the following expressions for the contributions of

acoustic modes:

Sac =−
R

ν

[

3ln[1− exp(−x)]−
3x

ex −1
−D(x)+ xD′(x)

]

, (8)

CV ac =
R

ν

[

3x2ex

(ex −1)2
+ x2D′′(x)

]

, (9)

where x = θac/T .

Sometimes, it is convenient to take into account the properties of the Debye function:

D′(x) =
3

ex −1
−

3

x
D(x), (10)

D′′(x) =−
3ex

(ex −1)2
−

3

x

[

3

ex −1
−

4

x
D(x)

]

. (11)

Then the entropy and specific heat capacity are related to the value of the Debye function:

Sac =−
R

ν
[3ln[1− exp(−x)]−4D(x)], (12)

CV ac =
3R

ν

[

4D(x)−
3x

ex −1

]

. (13)

However, relations (10) and (11) may not be valid for approximation functions used instead of

the Debye function. Then using equations (12) and (13) will lead to some inaccuracy.

3 INFINITE-SERIES FORMS OF THE DEBYE FUNCTION

Following Debye [1], one can rewrite integral in equation (1) and obtain

D(x) =
3

x3

∞
∫

0

t3dt

et −1
−

3

x3

∞
∫

x

t3dt

et −1
. (14)

The first integral in equation (14) has known value π4/15 [1, 52]; the last integral in equa-

tion (14) can be simplified using the Taylor series

1

1− y
=

∞

∑
k=0

yk, (15)
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which is convergent for |y|< 1, and integrated by parts:

∞
∫

x

t3dt

et −1
=

∞
∫

x

t3e−t
∞

∑
k=0

e−ktdt =
∞

∑
k=1

∞
∫

x

t3e−ktdt =
∞

∑
k=1

(

x3

k
+

3x2

k2
+

6x

k3
+

6

k4

)

e−kt . (16)

So, one obtains

D(x) =
π4

5x3
−3

∞

∑
k=1

1

k

(

1+
3

kx
+

6

k2x2
+

6

k3x3

)

e−kt (17)

for x > 0.

At high temperatures, one can use the following relation [53]:

t

et −1
=

∞

∑
n=0

Bn

n!
tn, (18)

which is convergent for |t|< 2π . Here, Bn are the Bernoulli numbers [53]. One obtains

x
∫

0

t3dt

et −1
=

x
∫

0

t2
∞

∑
n=0

Bn

n!
tndt =

∞

∑
n=0

Bn

n!

x
∫

0

tn+2dt =
∞

∑
n=0

Bn

n!

xn+3

n+3
. (19)

So,

D(x) =
∞

∑
n=0

3Bn

(n+3)n!
xn (20)

for |x|< 2π .

4 APPROXIMATION FORM

Truncated series (17) is normally used as the basis of approximation of the Debye function

at low temperatures.

In this work, a similar form of approximation function is proposed:

KLM(x) = A03x−3 −
L

∑
l=1

(

Al0 +Al1x−1 +Al2x−2 +Al3x−3
)

e−lx. (21)

Evidently, the value of first-term coefficient

A03 =
π4

5
(22)
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secures the same limiting behavior of the function KLM(x) and all its derivatives as the Debye

function D(x) and its derivatives for x → ∞.

Using the Taylor series

ey =
∞

∑
n=0

1

n!
yn, (23)

one can evaluate limiting behavior of the function KLM(x) for x → 0:

KLM(x) = A03x−3 −
∞

∑
n=0

L

∑
l=1

1

n!
(−l)n

(

Al0xn +Al1xn−1 +Al2xn−2 +Al3xn−3
)

. (24)

Representing series (24) in the form

KLM(x) =
∞

∑
m=−3

Cmxm, (25)

one can easily obtain sequence of relations between coefficients of equations (24) and (25):

C−3 = A03 −
L

∑
l=1

Al3, (26)

C−2 =−
L

∑
l=1

(

Al2− lAl3

)

, (27)

C−1 =−
1

2

L

∑
l=1

(

2Al1 −2lAl2+ l2Al3

)

(28)

and

Cm =−
L

∑
l=1

(−l)m

(m+3)!

(

(m+1)(m+2)(m+3)Al0− (m+2)(m+3)lAl1+(m+3)l2Al2 − l3Al3

)

(29)

for m > 0.

Comparing form (25) with series (20), one can formulate conditions of coincidence of limit-
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ing behavior of the function KLM(x) and its derivatives up to order M 6 4(L−1) for x → 0:

A03 −
L

∑
l=1

Al3 = 0, (30)

−
L

∑
l=1

(

Al2− lAl3

)

= 0, (31)

−
L

∑
l=1

(

2Al1 −2lAl2 + l2Al3

)

= 0 (32)

and

−
L

∑
l=1

(−l)m
(

(m+1)(m+2)(m+3)Al0− (m+2)(m+3)lAl1+(m+3)l2Al2− l3Al3

)

= 3(m+1)(m+2)Bm (33)

for 0 6 m 6 M.

Solving this system of M +4 equations, one obtains M +4 coefficients (AL3, AL2, AL1, AL0,

A(L−1)3 and so on, if any) of the function KLM(x) (21) with the same limiting behavior as the

Debye function D(x) for x → 0 up to order M of derivatives.

Values of the rest of coefficients A10, A11, A12, A13, A20 and so on (if any) can be naturally

taken from series (17):

Al0 =
3

l
, Al1 =

9

l2
, Al2 =

18

l3
, Al3 =

18

l4
. (34)

5 APPROXIMATION WITH L = 1

For L = 1, the approximation function KLM(x) has the only variant K10(x) with 4 coefficients

Ali with l = 1, i = 0, 1, 2 and 3:

A10 =
π4

30
−1, A11 =

π4

10
, A12 =

π4

5
, A13 =

π4

5
. (35)

Calculated values of the function K10(x) and its first and second derivatives K′
10(x) and K′′

10(x)

are shown in figures 1–3 in comparison with the values of the Debye function D(x) and its

derivatives D′(x) and D′′(x). In addition, the relative deviations of the function K10(x) and its

derivatives K′
10(x) and K′′

10(x) from the reference function D(x) and its derivatives D′(x) and

D′′(x) are presented in figures 1(b), 2(b) and 3(b), respectively. The reference values of D(x),

D′(x) and D′′(x) were calculated using truncated series (17) with k 6 12 for x > 3.34 and (20)

with n 6 66 for x 6 3.34.
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Figure 1: (a) The Debye function D(x) and the approximation functions KLM(x). (b) The absolute values of the

relative deviations of the functions KLM(x) from the reference function D(x), |δDLM(x)| = |1−KLM(x)/D(x)|;
|δDP(x)|= |1−DP(x)/D(x)|, where DP(x) is the approximation function by Prut [47].
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Figure 2: (a) The first derivative with respect to x of the Debye function, D′(x), and the approximation functions,

K′
LM(x). (b) The absolute values of the relative deviations of the derivatives K′

LM(x) and D′
P(x) from the reference

derivative D′(x), |δD′
LM(x)|= |1−K′

LM(x)/D′(x)| and |δD′
P(x)|= |1−D′

P(x)/D′(x)|.
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Figure 3: (a) The second derivative with respect to x of the Debye function, D′′(x), and the approximation functions,

K′′
LM(x) and D′′

P(x). (b) The absolute values of the relative deviations of the derivatives K′′
LM(x) and D′′

P(x) from the

reference derivative D′′(x), |δD′′
LM(x)|= |1−K′′

LM(x)/D′′(x)| and |δD′′
P(x)|= |1−D′′

P(x)/D′′(x)|.
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The maximum absolute values of the relative deviations in the region x> 0 are approximately

0.1 for K10(x), 0.5 for K′
10(x) and 4.0 for K′′

10(x). Note that the relative deviation of the third

derivative K′′′
10(x) from the reference D′′′(x) grows at x → 0 in inverse proportion to x.

The ratios of the isochoric heat capacity CV (x) to its value in the high-temperature limit

(x → 0), Ch = 3R/ν , from equation (9) with the approximation derivative K′′
10(x) and from

equation (13) with the approximation function K10(x) are shown in figure 4 in comparison with

the reference dependence CV (x)/Ch that is obtained using equation (9) with the reference D′′(x).

The maximum absolute value of the relative deviation from the reference dependence CV (x)

is approximately 0.07 for the case of equation (9) with K′′
10(x) and 0.3 for the case of equa-

tion (13) with K10(x), as one can see in figure 4(b).

6 APPROXIMATIONS WITH L = 2

For L = 2, the approximation function KLM(x) has 5 variants K2M(x) for M = 0, 1, 2, 3 and

4 with 8 coefficients Ali at l = 1 and 2, i = 0, 1, 2 and 3:

A10 = 3 (for M = 0, 1, 2 and 3) or A10 =
8π4

15
−49 (for M = 4), (36)

A11 = 9 (for M = 0, 1 and 2) or A11 =
8π4

5
−

219

2
−12A10 (for M = 3 and 4), (37)

A12 = 18 (for M = 0 and 1) or A12 =
16π4

5
−117−36A10 −8A11 (for M = 2, 3 and 4), (38)

A13 = 18 (for M = 0) or A13 =
16π4

5
−39−24A10 −12A11 −4A12 (for M = 1, 2, 3 and 4),

(39)

A20 =
4π4

15
−1−A10 −A11 −

1

2
A12 −

1

6
A13, (40)

A21 =
2π4

5
−A11 −A12 −

1

2
A13, (41)

A22 =
2π4

5
−A12 −A13, (42)

A23 =
π4

5
−A13. (43)

Calculated values of the functions K2M(x) and their first and second derivatives K′
2M(x) and

K′′
2M(x) are shown in figures 1–3. One can see that the functions K20(x) and K21(x), as well as

the function K10(x), are easily distinguishable from the reference function D(x) in figure 1(a).

The derivatives K′
2M(x) and K′′

2M(x) with M = 0, 1 and 2, as well as the derivatives K′
10(x)

and K′′
10(x), are also easily distinguishable from the reference derivatives D′(x) and D′′(x) in

figures 2(a) and 3(a).
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Figure 4: (a) The reference (black line) and approximation ratios CV (x)/Ch (colored lines) and (b) the absolute

values of the relative deviations |δCVA(x)| of the approximation dependences (A = LM and P) from the reference

CV (x): solid lines—equation (9) with K′′
LM(x) and D′′

P(x); dashed lines—equation (13) with KLM(x) and DP(x).
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A |δDA|m |δD′
A|m |δD′′

A|m |δD′′′
A |m |δCV A(9)|m |δCV A(13)|m

10 1.00×10−1 4.98×10−1 3.99×10+0 ∞ 6.87×10−2 2.66×10−1

20 2.49×10−2 3.01×10−1 4.61×10+0 ∞ 1.32×10−2 8.20×10−2

21 7.50×10−3 2.05×10−2 5.48×10−1 ∞ 5.68×10−3 1.94×10−2

22 3.05×10−3 4.36×10−3 2.40×10−2 ∞ 3.07×10−3 6.00×10−3

23 9.51×10−4 1.29×10−3 2.02×10−3 9.70×10−2 1.27×10−3 1.38×10−3

24 6.99×10−4 9.59×10−4 1.53×10−3 3.69×10−2 9.48×10−4 1.01×10−3

P 4.73×10−4 1.25×10−3 2.52×10−2 5.42×10−1 4.62×10−3 7.06×10−4

Table 1: Maximum absolute values of the relative deviations δDA(x), δD′
A(x), δD′′

A(x), δD′′′
A (x)

and δCV A(x) for x > 0, where the cases A = LM and P correspond to the approximation func-

tions KLM (21) and DP [47]; the last two columns correspond to the use of equations (9) and

(13), respectively.

The remaining functions K2M(x) and derivatives K′
2M(x) and K′′

2M(x) almost coincide with

the reference dependences D(x), D′(x) and D′′(x) in figures 1(a), 2(a) and 3(a).

The absolute values of the relative deviations of the function K2M(x) and their derivatives

K′
2M(x) and K′′

2M(x) from the reference function D(x) and its derivatives D′(x) and D′′(x) are

presented in figures 1(b), 2(b) and 3(b), respectively. One can see that the maxima of these

absolute values for L = 2 are less than the corresponding maxima for K10(x), K′
10(x) and K′′

10(x).

These maxima at L = 2 decrease monotonically with increasing M (table 1).

In the best case for L = 2, the maximum absolute values of the relative deviations for x > 0

are approximately 0.0007 for K24(x), 0.001 for K′
24(x), 0.002 for K′′

24(x) and 0.04 for K′′′
24(x).

Note that, for L = 2 and M = 0, 1 and 2, as well as for L = 1, the relative deviations of the

third derivatives K′′′
2M(x) from the reference derivative D′′′(x) grow at x→ 0 in inverse proportion

to x.

The ratios of the isochoric heat capacity CV (x)/Ch from equation (9) with the approximation

derivatives K′′
2M(x) and from equation (13) with the approximation functions K2M(x) are shown

in figure 4. One can see that, for L = 2 and M = 0 and 1, as well as for L = 1, these ratios are

easily distinguishable from the reference dependence CV (x)/Ch in figure 4(a). For L = 2 and

M = 2, the dependence CV (x)/Ch can be distinguished in the case of the use of equation (13)

with the approximation function K22(x). The dependences CV (x)/Ch for the remaining cases

of L = 2 and M = 2, 3 and 4 almost coincide with the corresponding reference dependence in

figure 4(a).

As one can see in figure 4(b) and table 1, the maximum absolute values of the relative de-

viations |δCV LM|m (for x > 0) decrease monotonically with increasing L from 1 to 2 and with
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increasing M from 0 to 4. Moreover, using equation (13) gives a higher relative deviation than

using equation (9). In the best case for L = 2 and M = 4, the maximum absolute value of the

relative deviation |δCV LM|m in the region x > 0 is approximately 0.0009 using equation (9).

For comparison, the results of using the piecewise continuously differentiable approximation

function DP(x) [47] are presented in figures 1–4 and table 1. Unlike analytic functions KLM(x),

using equation (13) with DP(x) gives a lower relative deviation than using equation (9) with

discontinuous derivative D′′
P(x). Despite the slightly lower values of the maximum deviations

|δDP|m ≈ 0.0005 and |δCV P(13)|m ≈ 0.0007, the use of the analytic approximation function

K24(x) seems preferable in thermodynamic models.

7 CONCLUSIONS

Thus, a family of analytic functions KLM(x) is proposed that approximates the Debye func-

tion D(x), x > 0, in closed form. Among these functions with L = 1 and 2, the case of K24(x)

for x > 0 gives the lowest maximum relative deviations of the function and its first and second

derivatives from the reference function D(x) (less than 0.0007) and its derivatives D′(x) (less

than 0.001) and D′′(x) (less than 0.002), as well as the lowest maximum relative deviation for

the value of the isochoric heat capacity (less than 0.001). The proposed expressions can be use-

ful in modeling the equations of state for solids in a wide range of temperatures and densities.
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Summary. The article is dedicated to the 80th anniversary of the birth of the Soviet and 

Russian theoretical physicist, Doctor of Physical and Mathematical Sciences A.A. Samokhin, 

Chief Researcher of the Theoretical Department of the Institute of Prokhorov General Physics 

Institute of the RAS, a regular contributor to Mathematica Montisnigri and a long-term active 

participant in the international scientific seminar "Mathematical Models and Modeling in 

Laser-Plasma Processes and Advanced Scientific Technologies" (LPpM3), one of the 

founders of which is Mathematica Montisnigri. 

11 december 2020 marks the 80th anniversary of the birth of Alexander Alexandrovich 

Samokhin, Doctor of Physics and Mathematics, Soviet and Russian physicist. Samokhin's 

scientific life is associated with the P.N. Lebedev Physical Institute 

of the RAS (FIAN), and later with the Prokhorov General Physics 

Institute of the RAS (GPI RAS), where he still works as the chief 

researcher of the theoretical department. "Physicist from God" - 

such a description was given to A.A. Samokhin in the  book [1] 

“Events and People. (1948-2010)" written by an outstanding 

scientist in the field of plasma physics, twice laureate of the USSR 

State Prizes, laureate of the M.V. Lomonosov Moscow State 

University, Doctor of Physical and Mathematical Sciences, 

Professor Anri Amvrosyevich Rukhadze, with whom A.A. 

Samokhin had long-term cooperation. Aleksandr Aleksandrovich is 

a regular contributor to Mathematica Montisnigri and a long-term 

active participant in the international scientific seminar 

"Mathematical Models and Modeling in Laser-Plasma Processes and Advanced Scientific 

Technologies" (LPpM3, Montenegro), one of the founders of which is Mathematica 

Montisnigri. An active life position has led to the combination of scientific work with public 

discussion of scientific community  problems. A. Samokhin is the chairman of the trade union 
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of the Institute, a long-term member of the All-Russian Trade Union of RAS Workers, and 

also one of the organizers of the "Society of Scientists", created in 2012. 

Alexander Alexandrovich was born in Rostov-on-Don and graduated from school there in 

1957. He spent several war years outside the place of his birth, finding himself with his 

mother in the occupation near Kotelnikovo, known from the history of the Battle of 

Stalingrad. 

The rapid development and widespread popularization of science in the USSR, 

characteristic of the post-war period (after the victory in the war with Nazi Germany in 1945), 

led A.A. Samokhin to the Faculty of Physics of M.V. Lomonosov Moscow State University, 

after which he entered the postgraduate course of the N.N. Semenov Institute of Chemical 

Physic of the AS of USSR. In his postgraduate studies, he is engaged in various approaches to 

the theoretical description of the response of a concentrated paramagnetic spin system in 

solids to an alternating magnetic field, showing additional interest in general problems of the 

nonequilibrium behavior of macroscopic systems. His first works [2-4] attracted the attention 

of the staff of the team headed by the famous scientist I. Prigozhin. The end of the 

postgraduate study in 1966 coincided with the time of the "Prokhorov recruitment" of young 

employees at the P.N. Lebedev Physical Institute of the RAS (FIAN), including A.A. 

Samokhin. Soon after, Samokhin defended his Ph.D. thesis on the theory of nonlinear 

response of a spin system in solids. Several years after defending his Ph.D. thesis, A.A. 

Samokhin. continued to actively deal with general issues of nonequilibrium statistical 

mechanics, returning to them  later as well [5-7]. 

At the same time, he began to study new issues in the theory of the interaction of intense 

electromagnetic radiation with atoms, molecules and condensed media. During this study the 

circle of coauthors also expanded, including colleagues from the Moscow Engineering 

Physics Institute (MEPhI), M.V. Lomonosov Moscow State University, Baikov Institute of 

Metallurgy and Materials Science of the RAS (IMET) and other organizations. 

The results of the work of A.A. Samokhin on the effect of laser radiation on individual 

quantum systems were published, in particular, in [8-10] and other articles, while his studies 

of the interaction of radiation with condensed media began with the question of the instability 

of the irradiated surface of a transparent liquid due to the ponderomotive effect [11]. Further 

theoretical and experimental studies, concerning, in the main, the effect of radiation on 

absorbing condensed media, are fairly fully reflected (until the mid-1980s) in three large 

articles  from Proceedings of the Institute of General Physics  Academy of  Sciences  of the 

USSR [12-14]. Articles [12,13] are actually material for A.A. Samokhin doctoral dissertation, 

which was defended in 2000. 

In [12, 14], in particular, the efficiency of studying laser-induced fast phase 

transformations by registering the acoustic disturbances arising in this case was demonstrated 

and, using a model example [15], it was shown how the solution of the evaporation Stefan 

problem can change when taking into account the dependence of the state of the irradiated 

liquid on pressure. 

In the same period, A.A. Samokhin started  the fruitful scientific cooperation with the 

students of the outstanding Soviet and Russian mathematician, academician of the Academy 

of Sciences of USSR and the Russian Academy of Sciences, the founder of the Soviet and 

Russian schools of mathematical modeling, A.A. Samarsky from the Keldysh Institute of 

Applied Mathematics of the RAS. The publications of the first decades of this collaboration, 

in which the continuum and model-kinetic approaches were used, dealt with various 
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nonequilibrium effects in laser ablation and were partially reflected in [16-22]. In subsequent 

theoretical works, in addition to the methods mentioned above, the molecular dynamic 

modeling  was also used [23-32]. 

The results of these works, as well as of the other studies [33–37], made it possible to 

formulate a number of important conclusions on nonequilibrium laser ablation processes, 

among which one can single out the first formulated fundamental physical problem of 

determining the equilibrium physical characteristics of a substance, in particular, the 

parameters of its critical point, by the results of experiments in nonequilibrium conditions. 

Attention is drawn to the groundlessness of the widely used extension of the results of 

describing the decay of a metastable liquid at low overheating to the near-spinodal region, 

where the emerging nuclei of a new phase can no longer be considered independent. Under 

conditions of laser ablation, an important role is also played by the spatial inhomogeneity of 

temperature, which significantly affects the dynamics of the decay of a highly superheated 

metastable liquid, and possible abrupt changes in the electromagnetic properties of a 

substance such as a metal-insulator transition. When modeling the gas-dynamic boundary 

conditions at the evaporation front, the influence of the features of their dependence on the 

Mach number on the problem of the morphological stability of the evaporation front was 

established. 

In addition to work on the main direction of his activity, AA Samokhin also paid attention 

to other issues, in particular, related to the manifestations of misunderstandings and 

misconduct in science, which are discussed in [1,9,12,13, 38-40]. 

We wish Alexander Alexandrovich Samokhin good health, long and fruitful scientific and 

social activities. 
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Аннотация. Статья посвящена 80-летию со дня рождения советского и российского 

физика-теоретика, доктора физико-математических наук А.А. Самохина, главного 

научного сотрудника теоретического отдела Института общей физики им. А.М. 

Прохорова РАН, постоянного автора журнала Mathematica Montisnigri и многолетнего 

активного участника международного научного семинара «Математические модели и 

моделирование в лазерно-плазменных процессах и передовых научных технологиях» 

(LPpM3), одним из учредителей которого является журнал Mathematica Montisnigri.  

11 декабря 2020 года исполнилось 80 лет со дня рождения Александра 

Александровича Самохина, доктора физико-математических 

наук, советского и российского физика. Научная жизнь 

Самохина связана с Физическим институтом им. П.Н. 

Лебедева АН СССР (ФИАН), а впоследствии и с Институтом 

общей физики им. А.М. Прохорова РАН (ИОФ РАН), в 

котором он и по сей день трудится в качестве главного 

научного сотрудника теоретического отдела. «Физик от бога» 

- такую характеристику дал А.А. Самохину в своей книге [1] 

«События и люди. (1948-2010 годы)» выдающийся ученый в 

области физики плазмы, дважды лауреат Государственных 

премий СССР, лауреат премии имени М.В. Ломоносова МГУ, 

доктор физико-математических наук, профессор Анри 

Амвросьевич Рухадзе, с которым А.А.Самохина связывало 
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долговременное  сотрудничество. Александр Александрович является постоянным 

автором журнала Mathematica Montisnigri и многолетним активным участником 

международного научного семинара «Математические модели и моделирование в 

лазерно-плазменных процессах и передовых научных технологиях» (LPpM3, 

Черногория), одним из учредителей которого является журнал Mathematica Montisnigri. 

Активная жизненная позиция привела к совмещению научной работы с общественной. 

Самохин А.А является председателем профсоюзной организации Института, 

многолетним членом Всероссийского профсоюза работников РАН, а также одним из 

организаторов «Общества научных работников», созданного в 2012 году. 

Родился Александр Александрович в Ростове-на-Дону и там же окончил школу в 

1957 г. Несколько военных лет он провел вне места своего рождения, оказавшиьсь 

вместе с матерью в оккупации близ Котельниково, известного по истории 

Сталинградской битвы. 

Бурное развитие и широкая популяризация науки в СССР, характерная для 

послевоенного времени (после победы в войне с фашистской Германией в 1945 году), 

привели А.А. Самохина на физический факультет МГУ им. М.В. Ломоносова, после 

окончания которого, он поступает в аспирантуру Института химической физики им. 

Н.Н. Семенова АН СССР. В аспирантуре занимается различными подходами к 

теоретическому описанию отклика концентрированной парамагнитной спиновой 

системы твердого тела на переменное магнитное поле, проявляя дополнительный 

интерес к общим проблемам неравновесного поведения макроскопических систем. Его 

первые работы [2-4], привлекли внимание сотрудников коллектива, руководимого 

известным ученым И. Пригожиным. Окончание аспирантуры в 1966 г. совпало со 

временем очередного «Прохоровского набора» молодых сотрудников в Физический 

институт им. П.Н. Лебедева Академии Наук СССР, в числе которых оказался и 

Самохин А.А. Вскоре после этого Самохин защитил кандидатскую диссертацию по 

теории нелинейного отклика спиновой системы твердого тела. Несколько лет после 

защиты кандидатской диссертации Самохин А.А. продолжал активно заниматься 

общими вопросами неравновесной статистической механики, возвращаясь к ним и в 

более  поздние времена [5-7]. 

В это же время он приступил к исследованию новых вопросов теории 

взаимодействия интенсивного электромагнитного излучения с атомами, молекулами и 

конденсированными средами. При этом расширялся и круг соавторов, в число которых 

входили также коллеги из Московского инженерно-физического института (МИФИ), 

МГУ им. М.В. Ломоносова, Института металлургии им. А.А. Байкова АН СССР 

(ИМЕТ) и других организаций. 

Результаты работ Самохина А.А. по воздействию лазерного излучения на отдельные 

квантовые системы публиковались, частности, в [8-10] и других статьях, а его 

исследования взаимодействия излучения с конденсированными средами начались с 

вопроса о неустойчивости облучаемой поверхности прозрачной жидкости за счет 

пондеромоторного эффекта [11]. Дальнейшие теоретические и экспериментальные 

исследования, касающиеся, в основном, воздействия излучения на поглощающие  

конденсированные среды, достаточно полно отражены (до середины 80-х годов) в трех 

больших статьях сборника Труды ИОФАН [12-14]. Статьи [12,13] представляют собой 

фактически материал докторской диссертации, защита которой состоялась в 2000г. 
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В работах [12,14] была, в частности, продемонстрирована эффективность 

исследования лазерно-индуцированных быстрых фазовых превращений путем 

регистрации возникающих при этом акустических возмущений и на модельном 

примере [15] показано, как может изменяться решение испарительной задачи Стефана 

при учете зависимости состояния облучаемой жидкости от давления. 

В тот же период началось, продолжающееся до настоящего времени, плодотворное 

научное сотрудничество А.А. Самохина с учениками выдающегося советского и 

российского математика, академика Академии Наук СССР и Российской Академии 

Наук, основоположника советской и российской школы математического 

моделирования, А.А. Самарского из Института прикладной математики им. М.В. 

Келдыша РАН. Публикации первых десятилетий этого сотрудничества, в которых 

использовались континуальные и модельно-кинетические подходы, касались 

различных неравновесных эффектов при лазерной абляции и частично отражены в [16-

22]. В последующих теоретических работах в качестве основного подхода, кроме уже 

упомянутого выше, использовался метод молекулярно-динамического моделирования 

[23-32]. 

Результаты этих работ, а также других исследований [33-37], позволили 

сформулировать ряд важных выводов по неравновесным процессам лазерной абляции, 

в числе которых можно выделить впервые сформулированную фундаментальную 

физическую проблему определения равновесных физических характеристик вещества, 

в частности, параметров его критической точки, по результатам экспериментов в 

неравновесных условиях. Обращено внимание на необоснованность широко 

используемого распространения результатов описания распада метастабильной 

жидкости при малых перегревах на околоспинодальную область, где возникающие 

зародыши новой фазы уже нельзя считать независимыми. В условиях лазерной абляции 

важную роль играет также пространственная неоднородность температуры, 

существенно влияющая на динамику распада сильно перегретой метастабильной 

жидкости, и возможные резкие изменения электромагнитных свойств вещества типа 

перехода металл-диэлектрик. При моделировании газодинамических граничных 

условий на фронте испарения было установлено влияние особенностей их зависимости 

от числа Маха на проблему морфологической устойчивости испарительного фронта. 

Кроме работ по основному направлению своей деятельности, А.А.Самохин уделял 

также внимания и другим вопросам, в частности, связанным с проявлениями 

недоразумений и недобросовестности в науке, которые обсуждаются в [1,9,12,13, 38-

40].  

Пожелаем Александру Александровичу Самохину крепкого здоровья, долгой и 

плодотворной научной и общественной деятельности. 
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