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Summary. Using dynamic and geometry of Moebious mappings we prove Lindeldf type
theorems for much larger class of functions on the unit disk than previously considered class of
meromor-phic functions.

1. INTRODUCTION

In classical theory of boundary behaviour of functions of one complex variable and in the the-
ory of boundary sets the special important place is for the Lindelof theorem and the Fatou theo-
rem (we refer to [3, 12]) on radial and nontangential boundary values of holomorphicc functions.
The first one concerns the local property of functions, i.e., it is about the existence of non-
tanegntial boundary value in a single point in the domain of a holomorphic function, the second
one is about global boundary behaviour, i.e., it concerns the almost everywhere existence of ra-
dial boundary values of a holomorphic function. Nowadays there exist many proofs of these the-
orems but all of them use classical results of analytic theory of functions (see [3, 12, 13, 23]).
Generalizations of Lindel6f theorems and Fatou theorems goes in many directions. One direction
is for analytic functions by proving ,,stronger* results, i.e., by proving the existence of nontan-
gentail boundary values under weaker conditions then those in the Lindelof theorem (see [17-
19]). The second direction is to consider similar theorems for broader class of functions: mero-
morphic functions, endomorphic mappings, holomorphic mappings of several complex variables,
quasiconformal mappings in n, Rn> 2, harmonic functions and similar [22, 24, 25].

In this paper we prove how one can efficasely use the geometry or dynamic of Mdebious
mappings in order to derive the results on asymptotical behavior of holomorphic functions.

Namely, we prove theorems that give necessary and sufficient conditions and criteria in order
that a meromorphic function on the unit disk has tangential and nontangential boundary values.
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These theorems show that the conditions in the classical Lindel6f theorem and in the theorem of
Lehto and Virtanen, Bagemihl and Seidel, Gavrilov and Burkova on angular boundary values of
meromorphic functions may be relaxed. In the proofs of these theorems we use the Main Lemma
1 and the Main Lemma 2 in the Section 5 (see [18]). These results give the necessary and suffi-
cient condition on a function defined on the unit disk in the complex plane, to has a boundary set
consisted of one point, along the set which is obtain applying cyclic semi-group produced by an
element in the hyperbolic or parabolic Moebius group on the unit disk. More on the topic on
boundary asymptotic properties of functions one may found in [13, 17-19, 22-24].

2. PRELIMINARY NOTATIONS, DEFINITIONS AND RESULTS

By D we denote the open unit disk {z | 2/ <1} in the complex plane C, and with T" we denote
the boundary of D, and D'=Dn{z|Imz>0}, D =Dn{z|Imz<0}, and
D, ={z| |z|<r}, 0<r<1 is the disk with radius r. By P, ip, we denote the diameter and the
radius of D with one endpoint in €. Further, we denote by d(zl,zz):|zl—zz|, 2,2, €C the

Z—-W 1 l+dph(Z,W)

and d (z,w)==Ilo
1-zw n(2.W) 2 g1—dph(z,w)
for the pseudohyperbolic and hyperbolic distance between z and w in the dsik D, respecitvely,
and

, z,we D, stand

Euclidean distance on C,d, (z,w)=

2|Z_W| z,weC;
VLl L
d,(z,w)= .
,2eC, W=
1+|z|2

is the spherical distance on the Rimanian sphere C = Cu{oo} :

It is well known that dhn is the metric in the Poencare model of the hyperbolic geometry on the
disk D introduced by Lobachevsy.

All convergencies in this paper are with respect to the distances introduces above.
The set D, (w,r')={z| zeD,d,, (z,w)<r'}, weD, 0<r'<1, is the pseudohyperbolic disk,

and D, (w,r)={z| zeD,d,(z,w)<r}, weD, r>0, is the disk with respect to the hyperbolic
distance.

2r
r‘=—e2r 1=thr :
e” +1

Lemma 1. We have D,(w,r) =D, (w,r’), where r :%In 1+ r,
—r
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The pseudohyperbolic disk D, (w,r) is the Euclidean disk D(c,R):{ZG D ||z—c|< R} for

—r? 1-|w
Cc= 1—I’2’ and R = #

1-r%|wl 1-r?|w|
Therefore, the boundaries of hyperbolic and pseudohyperbolic disks are the ordinary cycles. The
cycle which lies in D and with T"has one common point is the oricycle D. The radius of D and
arcs in D and in intersection with I" have two points are hypercycles in D.

An arbitrary hypercycle will be denoted by H, an arbitrary oricycle will be denoted by O. We
denote by H’,0 [0, ), the hypercycle which connects the points —e'’ and e'; we denote by
u

—_e“9| u e(—oo,oo)} is

0, 6 €[0,27), the oricycle which is tangent to T in e”, and O’ :{
u—i

%}

We will also consider the family of all hypercycles with two common points in T".

i0

the oricycle {z

1
z——¢
2

The hyperbolic distance between a point z, zeD, to the curve y, y<D, s
dh(L}/):iWT;dh(Z’W)-

For y=H’, one can prove that dh(z,H‘)):min d, (z,w) and that dh(z,Hg) does not depend

weH?

on z if ze H,where H is ahyper-cycle from the family of all hypercycles which is defined by
the hypercycle H? (see [10]). Also one can prove (see [10]) that there exists unique point w, in
H“ such that

dh(z,H9)=er3dh(z,w)=dh(z,wo). (1)
From above, by “symmetric thinking”, it follows that for we H?there exists unique point z, in

H such that
d,(w,H)=mind, (w,z)=d, (w,2,) ()

zeH

And this distance does not depend onwe H”.
From (1) and (2) it follows that for any w e H? and ze H there exists unique points w, e H’

and z, e H such that

d, (w,H)=d, (z.H")=d, (W2,). 3)
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Having in mind all the preceding, the equality (3) define the hyperbolic distance between hyper-
cycles H”and H. Notation: d, (H‘g, H).

From the all given above we have:

Lemma 2 (see [10]). The set of points in D such the hyperbolic distance between the hypercycle
H is the hypercycle which belongs to the family of all hypercycles defined by the hypercycle H.

From Lemma 2 we obtain:

Lemma 3 (see [8, 14]). Theset A, (6,r)= U D, (ae“g, r), r €(0,+), is a domain in the disk

ae(—l,l)

D bounded by two hyper-cycles H?(r) and H?(-r) such that their hyperbolic distance to the

Zio
2

radius P, is equal to r, and which contains the points —th re'( ] and th re'(zﬂgj and contains
the points —e'’ and e (see the Figure 1).

Lemma 4 (see [10]). Let r be the hyperbolic distance of hyper-cycle H® from the diameter P, of

the disk D. The angle « between H? and P, is equal to :%—arctg 27

If h(6,01) and h(6,a,), —%<a1 <a, <%, are arcs in D that with the radius p, of the disk D with

endpoint in point e make angles «, and «,, then the domain in D which is bounded by these
arcs and by the circle D, :{z|‘z—ei9 = r} is the Stolz angle with vertex at €. This domain is

denoted by A(6,¢4,a,). By A(6,a) we denote the Stolz angle with boundary h(6,«) and

h(6,~), —%<a<%. We denote it by A(6,a,,a,). With A(6,a) we denote the Stolz angle

with boundary h(6,«) and h(6,-a), —%<a<%, ie.,

A(@,a):{z‘ zeD, |arg(e‘9—z)|<a, 0<a<%}.

Threfore, the Stolz angle is the domain which is an usualty geometic object (see Figure 1).
From Lemma 4 we obtain:

Lemma 5. For every «, —%<a<%, there exist r, re(0,+), 1, r,e(0,1), such that
{z‘ |y—e“’|<rl}mA(t9,a)c{z‘ |y—e“’|<r1}mAH (6,r). For every r, r (0,+%), there exists

a, —%<a<%, such that A, (6’, r)cA(H,a).
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Figure 1 Figure 2

If d,(z,7)=infd,(z,w) and if y =0, then dh(z,O‘g):ngdh(z,w) and d, (z,H") do not
wey wel

depend on z €O, where O is the oricycle from the family of all oricycles generated by O”. One

can also prove that (see[10]) there exists only one point w, in O%such that

dh(2,09):migdh(z,w):dh(z,wo). Analogy one may define the distance between two ori-

weO

cycles from the same family of ori-cycles in the following  way
d, (He, H)=dh (w,H)=d, (z, H”). It may be shown that there exist unique points w, e 0’ and

2, €0 suchthat d, (H’,H)=d, (w,H)=d,(z,H")=d, (W,.2).

Now, we have the following statements:
Lemma 6 (see [10]). The set of points in D for which the hyperbolic distance is constant from the

oricycle O is the orycycle in the family of all orycycles defined by the oricycle O.

From lemma 6, we have:

Lemma 7 (see [14]). The set A, (6,r)= ) D, (L_eig,rj, r €(0,+), is a domain in the

Ue(fooyoo)

disk D which is bounded by two ori-cycles O’ (—r) and O’(r) such that the hyperbolic dis-

u o .
——e"’|ue (—oo,oo)} is equal to r, and that pass

tance between them and the oricycle O,’ ={
u+i

throughout €', —th re' and th re" (see Figure 2).



Z. Pavicevié, J. Susi¢ and M. Markovié

3. FRAGMENTS OF THE GEOMETRY OF MOBIOUS MAPPINGS

The Mdbious group on the unit disk D is the group of all conformal automorphisms of the
unit disc D, i.e., G =G(D)={e‘912;_a| aeD, z¢C, 0o, 27z)}.
—az
The set

io
H3={gz=g:(z)—%

= - is fixed,
. Z|ae( 1,1)}, 96[0,72')

stand for the hyperbolic subgroup of G with fixed points e and —e'’,

o alf
Pg’:{gf=gf(z): (u+i)z—ue

—(u-i)+ue™z
is the parabolic subgroup of G with fixed pointe'?,

lue (—oo,+oo)}, 6 [0,27) is fixed,

and finally

(1—|zo|ei9)z -7, (1—e“’)
7,(1-€")z+e |z,

Eg_{ Zy :gzo(z):

| o<[o, 2;;)}, z, € D is fixed,

is the elliptic subgroup of G with fixed point z,.

Since the hyperbolic distance is invariant with respect to g € G and from the definition of the
groups HJ and P and sets Py, A, (6,r), O,"and A, (8,r) we have the following statements:

Lemma 9. (i) A, (6,r)= o, g(D,(0,r))= o, g (D, (0.thr)), r € (0,+)

(ii) Ap(e,r)zg:égg(Dh(O,r))z U, g(D,, (0,thr)), re(0,+x).

gePp
The set A, Ac D, is the stabilisator of the group H] if g (A)=A, forevery ge HE.

Lemma 10. For every g e Hj we have g(P,)=P,, i.e., the diameter P, is stabilisator of the
group HZ.

Lemma 11. For every geH? and re(0,+x) we have g(AH (9,r))=AH (6,r), ie., the set
Ay, (6,r) is also the stabilisator of the group H_ .

Lemma 12. For every g € PJwe have g (009) =0,’, i.e., the ori-cycle O, is the stabilisator of

the group P?.

10
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Lemma 13. For every g e By and r e (0,+») we have g(A, (0.r))=A,(0.r), i.e., A,(6,r)
is the stabilisator of the group PY.

For geG(D) denote 9"(2Z)=9 (9((9(2)) ), go(z)=i, i is the identity and
0" (2)=(97) ()=07 (g7 (--(97(2)--) ), new.

Lemma 14 (see [2] on p. 73).
(i) Let geHJ. For fixed points e“and —e“there holds g"(z) —>e" and g™"(z) > -¢€",

n—o0

where we mean uniform convergence on compacts sets of the disk D.
(ii) Let g e PY. Then for fixed point €' we have g"(z) — €', where we also mean the uniform

n—o

convergence of compact subsets of the disk D.

Therefore, the point €' is an attraction point for g € H?, and —e"is repulsive point for g, i.e. it
is an attraction point for g™*. If g e PY then the attraction point forg e P?.

ForgeH;, and 0e[0,7) fixed, g=#i,denote HgH:{g”|neZ}. The set H; sa with
composition operation is the cyclic subgroup of the group HZ. IfgeP/, then the set

Pg" = {g” |n € Z} with composition of functions is the cyclic subgroup of PY.
Let A, (0,r)= uzg”(Dh (O,r)), re(0,+w).

Further, from the property of invariance of the hyperbolic distance with respect to geG we
have:

Lemmals. A (6,r)=u

nez

(Dh(g”(o),r))’ r E(O,+oo).

Lemmal6. Let geH,, g=#i. For every r e(0,+) there exists r e(0,+) such that
Ay (0. r)cA (0,n),and A (0,r)= A, (6,r) forevery re(0,+x).

Proof of lemma 16. Let g e H) be arbitrary and let it be fixed and g#i. Let zeA, (0,r).

There exists ae(0,+x) such that z e Dh(aeig,r). Since ael? e P, and g"(0)e P, for every
neZ, there exists N € Z such that ae” is between g" (0) and g"**(0) or is equalt to one of
that points. Let 0<M =d, (0,9(0))=d, (g” (0), g”“(o)), n e Z. Then we have

11
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d, (9" (0),z)<d,(g"(0),ae")+d,(ae”,z)<d,(g" (0),g""(0))+d,(ae”,z) <M +r

Therefore, for every ze A, (0,r) there exists N e Z such that dh(gN (O),z)< M +r,where M

and r are independent on z and N.

Since Ay (0,M +1)= U (D, (g"(0),M +r)) (by Lemma 14) and

D, (9" (0),M+r)cA (6,M+r), weobtain zeA (6,M +r). If we take r, =M +r, it fol-

lows A, (0,r)cA,(6.1).
r)

Now A, (0,r)= A, (0,r), re(0,+x) follows from Lemma 9 and Lemma 15. []

Lemma 17. Let gePy, g=#i. For every r e(0,+) there exists r e(0,+») such that
Ap(0,r)cA (0,r),and A (O,r)c A, (0,r) forevery re(0,+wx).

Lemma 17 may be proved in a similar way as Lemma 16, instead of diameter P, one has to
take the oricycleO” .

We  will  further  consider the  domains:  Au(6,r)= | D, (ae”,r)  and

ae[0,1]

A (e.r)= U Dh(ae“",r), re(0,+0), we call them the hypercyclic domains in D and

ae[—l,O]

A, (6.r)= U Dh(L_eig,rj and A, (,r)= U Dh(L_eig,r], re(0,+0), which will
ue(0,+%) U+l ue(—0,) U+l

be called the oricyclic domains in D.

Lemma 18. Letg, e HS, g, =i, for which e is an attraction fixed point. Then for every

r € (0,+o0) there exists r, e (0,+w) such that Uga( (0,r))cAn(6,r) Uga( (0,r,))-

Lemma 19. Letg, eP/, g, =i, for which e is fixed attraction point. Then for every

r €(0,+o0) there exists r, e(0,+e) such that Ug (D, (0, r))cA (6,r) Ugu( (0,1,)),
u>0, and Ugu”(Dh(O,r))cAo (6,r) cOg (D,(0,1,)), u<o.
n=0 n=0

Lemma 18 and lemma 19 may be proved in a similar way as Lemma 16.

12
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4, CLASSICAL RESULTS FOR ASYMPTOTIC AND ANGULAR LIMIT VALUES OF
ANALYTIC FUNCTIONS AT APOINT

For AcD, Kmrz{ei‘g}, we denote by A the closure of the set A, and

C(f,A,em):{a)‘a)eQ, (z,)c A limz, =e", Iimf(zn)za)} is the boundaty set of a

n—o0 n—oo

function f:D — Q corresponding to the point e allong the set A. It is known that
C(f,Ae”)=C(f Ae")
The symbol ¢n Sk ¢ denotes the uniform convergence on the set K < D, of the sequence (¢,)

of functions ¢ :D —>C, neN, to ¢:D —C.

If A:A(ei‘g,a) is a Stolz angle in the disk D with the vertex at the point e'’, then

C(f,ale",)e") is the boundary set of the function f along the angle Ale”,a). If for every
a,0<a< % C(f,ale”,a)e”)={w}, the e is the Fatou point of f, and w € Q is the unique
nontangential boundary value.

We always denote by y the simple Jordan curve in the disk D with endpoint in e'. If
C( f ,y,ei"):{a)}, weQ, then  is an asympthotic boundary value of the function f in the
point e'’along the curve y.

We give now the classical assymptotic results and nontangential of analytic functions.

Theorem of Lindelof (see [12, 23]). If f:D—>C is a bounded analytic function. If
C(f.7.6")={w}, weC, then C(f,Al" a)e”)={o} , ie, e is the Fatou point of

function f.

There are many proofs of the Lindel6f theorem. A proof based on maximum principle of analytic
functions may be found in [23].

One generalization of the Lindelof theorem is given by Lehto and Virtanen in [11]. The used
results from normal function theory and results in harmonic function theory and harmonic meas-
ure.

For a family of functions 3={f ‘f :0 —>@} we say that it is normal family on a domain O,

O c C, if for every sequence (fn) in that familty 3 there exists a subsequence (f) which

13
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convege uniformly on compact subsets of O to a function f :O — C. This is normality in the

sense of 3 of Montel. The family of functions J= { f ‘f :0 —>E} is normal in the point z €O

if itis normal familiy in a neiborhoud of z.

It is well known that a family of functions 3= { f ‘f :0 —>E} is normal family in the domain O

if and only if it is normal in every point in the domain O (see [16, 20]).
If 0cC, i.e.if weO, then the family of functions 3={f‘f :0 —>E} is normal in the point

oo if we have normality of the family I :{f (ij | fe S} in 0. The family of functions
4

J= {f ‘f :0 %E} is normal on O if it is normal in every point of the domain O. The theory of

normal functions is well exposed in [16, 20].

If f :D— C is a bounded analytic maping, then the family {f og| g eG} is normal family of
functions on the disk D.

Theorem of Lehto and Virtanen (see [11]). Let f:D— C be a meromorphic function. If

{f °g|g eG} is normal family of functions on the disk D and C(f,y,eig)z{a)}, weC,
then we have C(f,A(e"”,a)e” )= (o}, ie., e” isthe Fatou point of the function f.
For the proof of the theroem Lehto and Virtanen used the results from harmonic function theory

and harmonic measures (the theorem on two constants) and the propery of the normal
meromorphic functions (see [3, 11]).

A meromorphic function f:D —C for which the family {f og| g eG} is normal family of

functions on D is the class of very well understood normal meromorphic functions N which
contains the Bloch class of holomorphic functions denoted by B.

In the following theorems proved by Bagemihl and Seidel [1], it is proved the existence of angu-
lar boundary values under weaker asymptotical conditions then these in the preceding theorems.
But these theorems are based on the theorems of Lehto and Virtanen.

Theorem of Bagemihl and Seidel 1 (see [1]). Let f:D— C be a meromorphic function. If
{f og| g eG} is a normal family of functions on the disk D and if for every ze D we have

f(z)2zw,weC, and if there exists a sequence (z,),z,eD, neN,such that:

14
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limz, =", d,(z,,2,.,)<M, neN, ilimf(z,)=0, ®cC, then C(f,Ale",a)e")=1{w} for

n—o nN—oo

everya,0< a < % , i.e., e'’is the Fatou point of the function f.

Theorem of Bagemihl and Seidel 2 (see [1]). Let f:D— C be a meromorphic function. If

{f og| g eG} is a normal family of functions on the disk D and if there exists a sequence

(2,), 2, €D, neN, such that limz, =¢”, limd,(z,2,,)=0, ilimf(z,)=w, @<C, then

n—o n—o

C(f,ale”,a)e”)={w} forevery o, 0 <o < % i.e., e isthe Fatou point of function f.

Bagemihl and Seidel [1] constructed an analytic functions in order to show that the condition
concerning the hypervbolic distance d, (z,,z,,,) in Theorem 5 and Theorem 6 is not possible

n?! Tn+l

to remove.

In the following theorem proved by Gavrilov and Burkova in [8], it is proved the existence of
angular boundary values for the broader class of meromorphic functions then the class in the
theorem of Lehto and Virtanen. In [Gavrilov and Burkova 11] it is given an example of mero-

morphic function for WhiCh{ fog’

9l e Hg} is normal on D but the family{f og| g eG}is not

normal on D.

A construction is based on the theorem which says that for a meromorphic function f:D —C

the family { fo g| ge G} is normal on the disku D if and only if the disk D does not contain the

so called P-sequences for the function f, dok je{ fog’

gl e Hg} is normal family on the disk D

if and only if in the domain A (0,r)c A, (0,r), r €(0,+x), does not exist the P-sequences

for the function f.

A sequence(z,), z,€D, Iim|zn|:1, is a P-sequence for a function f:D—C if for every
subsequence (znk )k y and for every ¢, O<e&<1, the function f on U Dh(znk,g), takes
N keN

inifinity many times all velues in C, except possibly at most two (see definition, Gavrilov[6]).

In the sequel we will need the following theorems concerning the P-sequences:

15
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Theorem on P-sequences 1 (see [6, Lemma 1]). Let (zn) be a P-sequence for a meromorphic

N—oo

function f:D —C. If for a sequence (z,)c= D we have limd, (zn,zn') =0, then the sequence

(z,) is P-sequence for f.

Theorem on P-sequences 2 (see [26]). Let f : D — C be a meromorphic fuction on D and let
(z,) = D a sequence such that Iim|zn|:1and lim f (z,)=c for some a ceC. Further, let

n—oo nN—o0

=l,|imdh(zn,zn'):0, and (f(z,))does not

n—oo

!

Zn

(zn')cDbe a sequence such that lim

n—w

sonverge toa cas n— . Then (z,)and (zn')are both P-sequences of the fuction f.

Theorem of Gavrilov and Burkova (see [8]). Let f:D—C be a meromorphic function. If
{fog!

Cc(f,ale”,a)e”)={w} for every o, 0 < < % i.e., e isthe Fatou point of the function f.

gs € Hg} is a normal family on the disk D and C(f,7,e”)={a}, weC, then

A proof of theorem of Gavrilov and Burkova goes in the same way as the, by using the result
from harmonic function theory as well as using properties of harmonic measure, as in the proof
of theorem Lehto — Virtanen.

In [1] are given theorems that are analigies to the theorems of Bagemil and Seidel for
meromorphic functions on D i.e., functions for which {f og’
D.

9’ e Hg} is normal on the disk

5. MAIN RESULT

The main lemma 1. For any function f : D — C, any compact set K, K = D, and any mapping
g,€H?, g, =i, the following conditions are equivalent:

i)  fo(@a)"3k C;
i) C(f,Og;‘(K),emj:{c}.
n=0
Proof of mainlemma 1. Let ceC.
1)= ii). From i) we have

(V& >0)(3N, =N, (£))(¥n= N,)(vzeK)(|f o 97 (2) - <) 4)
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ie. fLQ g;(K)]c{w6<c| w-c|<s}.

From lemma 8 we have

(V6 >0)(IN, =N, (5))(¥n=N,)(vzeK)(|9 (z)-e"| <), (5)
ie., [We Q g;‘(K)j|z—ei9|<5. (5"

Let (z,) be any sequence in [ Jgi (K) for which limz, =e”. From (5), ie., from (5') we

n—w
n=1

obtain

(3N, =N;((z,),N,))(vn= NS)[ZH e [] g;(K)]. (6)

k=N,
o0

If N, <N,, then we have O g5 (K)<= [J 97(K), from this and from  (6) it follows that

a
n=N, n=N,

z,e|Joi(K) for every n>=N, Having in mind now (4) it follows that

n=N,

(Vn=N,)(|f(z,)-c|< &), which means that lim f (z,)=c.

n—w

If N, <N,, then from the sequence(z,), except z,, ...,z , remove those that are in the set

N
ng(K), there are only finite many of them. Therefore, there exists N, such that
k=1

z, € 0 gQ(K) for every n>N,. Now, according to (4) we obtain (Vvn> N3)(|f(zn)—c|<g),

n=N;

i.e., in this case we also have lim f (z,)=c.

n—o

n

Therefore, for every sequence (z,) in | Jg;

that C(f,Og;(K),emJ:{c}.

1C:

(K) we have lim f (z,)=c, do we may conclude

n—o

n=0

ii )= i). From ii) we have v(zn)cog;‘(K) A limz, =€e“ = limf(z,)=ci.e,
n=0 n—w nN—oo

(Vg>0)(35:6(g))(VzeOgQ(K)j(|z—e‘9|<§:|f(z)—c|<5) (7)
n=0
Since ga"3k €', for §>0 the exists N =N (&) such that for any n>N and every zeK

holds

gg(z)—e"’|<5, ie.,
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092(K)C{ZED| |Z—ei9|<5}. (8)

From (7) and (8) it follows that f(@ g;(K)JC{We(C| |w—c|<g},and therefore

(Vn=N)(Vze K)(| f (gg (z))—c|<5), i.e., fo@a)" 3« cC.

If c=0eC, the proof goes in the same way as in the case ¢ € Cinstead of the Eucilean metric
we have to take the spherical distance. [ ]

Main lemma 2. For any function f:D —C, and a compact set K, K = D, and any mapping
g, €PY,g, =i, the following conditions are equivalent:
i) fo(gu)" 3 c, ceC.

i) C(f,UgS(K),ewj:{c}.
n=0
Main Lemma 2 may be proved in the same way as Main Lemma 1.

6. APPLICATIONS
For g,eH?, g,=#i, for which ¢"
H;, ={od

: H i0 0 _ n
tion point e, and Py _{gu

is an attraction fixed point

neNu {0}} a e (-11) is fixed, is the hyperbolic semigroup of G with fixed attrac-

ne Nu{0} } U e (—oo,+0) is fixed, is the parabolic semigroup

of G with attraction fixed point e

6.1. Angular boundary values of meromorphic functions

Theorem 1. Let f :D — C be a meromorphic function. If

(fooaehy}={f-a

neNu{0}}, ae(-11)

(a is fixed), is normal family of functions on the disk D, y is simple Jordan curve with one

endpoint in e and y = Au (6,r) and C(f,7,€”)={c}, ceC, then
c(f,A(e" a)e”)={c} f z,
(f.4(e",@).e”)={c} for every a,0<a<

i.e., €' is the Fatou point of the function f.
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Proof of Theorem 1. Since{f °Q,

neNu{O}}, ae(-11), a is fixed, is a normal family of
functions on the disk D, there exists a sequence (f oggk) which uniformly on compact sete

convegre to a meromorphic function ¢ on D_rl 1e., fo@a)x 3D ¢

Since y = Au (6,r), the sets y g} (D, \D,), 0<r<r <1, neN, are made of two simple
curves. By 7. Wwe denote one of them Then we have y ny.,.,=9, and
[rk =g (yk)}m[l“m:g;"“l (ym)]:@, neN, since the Moebius transforms g. are

a
bijections
For every me N let us select a sequence (z['), z{ T\, such thatlimz; =z;' € D,, (0,1;) and

2y #2) for i= j. We will show that o(z')=c, ceC , forevery meN.

For every me N there holds
dg (go(zg‘),c)s dg (go(zg“),go(z,i“))+d5 (go(zL“), f, (z&”))+ds ( f, (z,ﬁ“),c). (9)

Let & be any positive real number. Since of coninuily of ¢ we have d, (go(zg‘),go(z;")) <%, if k
is enough big.

Since the sequence (fnk) converge uniformly on compact sets of the disk D to @, we have

ds (@(2), f (z))<§ for every z e D, and enough big k.

Since z"eD, we have d ((p(z?), f, (zlﬂ“))<% Since z'el, it follows that
o, (20)=w ey, <y and lim w’ =e".

Since c is the asymptotic value of f snd since mg fo, (WQ‘): lm fogp, (zﬁ):lm fo, (z?)zc,
for enough big k we have d ( o (z{f),c) <% foreveryme N.

From (9) and obtained inequality it follows that dg ((p(zg“),c)<g for every m. Since ¢ is any

number, we have ¢(z;')=c for every m.

m

Since the sequence (zo) isin D, and i D, has an accumulation point, from the unigness
theorem we have g =c.

Therefore, we have proved that any sequence in the family {f °g,

neNuU{0}} which is

uniformly convergent on compact sets in D, is convergent to the constant c.
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Now we will show that any sequence in the family { fog,

ne NU{O}} converge uniformly on

compact sets of D the the constant c. Assume conctrary, that thereexist a sequence postoji ( f,),
fe{foq]

Then there exists a number ¢>0 such that for every keN we have n, eN and z, € D, such

n eNu{O}}, which uniformly on compacts does not converge to the constant c.

that ds(fnk(znk),c)z‘s. Since tha family {fog;‘

neNu{O}} is normal, f,  has a

subsequence f, - which uniformly on compact sets of D converge, according to the preceding
consideration it follows that it converge to the constant ¢, which is contrary with the assumption
ds(fnk(zf‘),c)Zg. This contradiction shows that every sequence in {f g, neNu{O}}

uniformly on compact sets of D converge to the constant c. Having in mind the Lemma 1 it

follows that C(f,Ug;‘ (K),e‘gj = {c} for every compact set K, K < D, and form Lemma 5
n=0

and Lemma 18 we have that C( f ,A(H,a),e”) ={c} for everya, —%<a <%, i.e., the function

f in the point €' has angular boundary value c¢. []

In [27] it is proved that {f g,

ne Nu{O}}, ae(-11) is normal family on D if and only if in

the domain KH (9, r), r (0,+o0), does not exist P-sequences for f.

Theorem 2. Let f:D—C be a meromorphic function. If {f og! neNu{O}}, ae(-11),
where a is fixed, normal family of functions on the disk D and if for a sequence

(z,)< An (6,r) holds limz, =e“and lim f (z,)=c, ceC, then for any sequence (r,) for

n

which limr =0 and ODh(zn,rn)clH (6.r,) for r1>0,C(f,ODh(zn,rn),eigj:{c}.
n—o n=1 n=1

Theorem 2 follows directly from theorem on P-sequences which is formulated in the Section 4
and the criteria for normality formulated above of the familiy of functions

{1‘09;1 neNu{O}}, ae(-11)on D.

Theorem 3. Let f:D—C be meromorphic function. If {f °g,

neNu{O}}, ae(-11)
where a is fixed, is normal family of functions on the disk D and if for a sequence

(z,)< An (6,r) holds: limz, =€”,  limd,(z,,2,,)=0 and limf(z,)=c, ceC, then

n—oo n—oo n—w

C( f ,A(e‘e,a),e”):{c} for every o,0< « <%, i.e., e isthe Fatou point of the function f.
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Proof of Theorem 3. Let x,=2d,(z,,z,,). Then we have limx =0. If
D, (z,.%,)=1{z| d,(z.2,)<x,}, then ~ form  Theorem 2 follows  that

(f UD %) j {c} ceC. Since the curve (poligonal line)
y= € cUDh .+%,), we have C(f,7.e”)={c}. Since it is possible to chose r>0,

n=

such that UDh %)< Aw (6,1), from Theorem 1 we conclude C( f ,A(e“",a),e‘@):{c} for

n=1

every a,0<a < % i.e., ' is the Fatou point of f. []

Theorem 4. Let f:D—>C be meromorphic function such that f(z)=c, ceC,zeD. If
{fog]
holds: limz, =€ and lim (92(0))=c, ceC, then we haveC(f,A(eig,a),e“g):{c} for

n—oo

neNu{O}}, ae(-11) , ais fixed, normal family f functions on th disk D and if

every o,0< a < % i.e., €' is the Fatou point of f.

Proof of Theorem 4. Form normality of meromorphic functions {f og;|Nne NU{O}} and the

condition lim f (g“ (0)) =c, ceC, from Hurwitz theorem (see [20]) fogu"=k ¢ for every com-
pact set K< D. If we take K=D (0 r) 0<r<1, then from the Main Lemma 1, Lemma 5 and
Lemma 18 we have C(f,A(e'g,a),e“g):{c} for every a,0<a<%, i.e., e is the Fatou

point of f. []

6.2. Tangentialy oricyclic boundary values of meromorphic functions

If for every re(0,+w) holds C(f,io (0,r),e‘9j={a)}, weC, then we will call o the
upper oricyclic boundary value of f in the point e'’. On the other hand, if for every r e (0,+0)

holds C(f,ZO (e,r),e“’):{a)}, weC, weC, then we will call » the lower o oricyclic

boundary value for f in the point €. If C( f ,AO (6, r)uZ0 (6, r),e"’) ={w} then we call se w

the oricyclic boundary value of f in the point "

Theorem 5. Let f :D—C be meromorphic function. If
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{foglgep/|={foq

u is fixed, normal family of functions on the disk D and if for a sequence (z,) < Ao (6,r) holds

neNu{O}}, ue(0,),

limz, =e“and lim f (z,)=c, ceC, then for every sequence (r,) for which limr,=0 and

n—0 N—ao

ODh(zn,rn)cgo(e,rl) fora r >0, C[f,ODh(zn,rn),e”]:{c}.

n=1 n=1

n—o0

Theorem 57 Let f : D — C be a meromorphic function. If
{f og| g engu}:{f og) neNu{O}}, ue(—»,0),

where u is fixed, normal family of functions on the disk D and if for a sequence (z,) ZO (6.r)

holds: limz, =e“and lim f (z,)=c, ceC, then for every (r,) for which limr,=0 and

n—oo nN—w

[th(zn,rn)cg0 (6,r) for r,>0, C(f,ODh(zn,rn),e”j:{c}.

n=1 n=1

n—oo

U [27] it is proved that {f og,

ne NU{O}}, Ue(—o0,0) isnormal family on the disk D if and

only if in the domain ZO(G,r)Ao (6.r), re(0,+x), does not exist P-sequences for the

function f. On the other hand, the family {f g,

neNu{O}}, ue(0,+0) is normal on the

disk D if and only if in the domain Ao (6.r), r e(0,+x), does not exist P-sequences for the
function f.

Theorem 5 and Thorem 5’ follows directly from theorem on P-sequences 1 which is formulated
in Section 4 and the above formulated criterion for normality of the family of functions

{fogj neNu{O}}, U e (—0,0) {fog|geng}:{fogj neNu{O}}, Ue(-,0).

Theorem 6. Let f :D — C be a meromorphic function. If

{fog|gePg9u}={fogu“ neNu{O}}, ue(0,0), u is fixed,

is normal family on the disk D, » a simple Jordan curve with one endpoint in e' and

y<ho(0,r) and C(f,7.€")={o}, weC, then C(f,lo(&,r),e”]:{a)} for every

re(0,+x), i.e., @ is the upper oricyclic boundary value for the function f in the point e'.
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Theorem 67 Let f:D—> C be a meromorphic function. If
{f og| ge ng}:{f og! neNu{O}}, ue(-,0) ,uis fixed,
is normal family of functions on the disku D, y is simple Jordan curve with one endpoint in e'

and y <A, (6,r) and C(f,}/,eig):{a)}, weC, then C(f,go(e,r),e”j:{a)} for every

re(0,+x), i.e., @ is the lower oricyclic boundary value of the function f in the point e'.

Theorem 6 and Theorem 6’ may be proved using the Main Lemma 2 and Lemma 19 in the same
way as Theorema 1 is derived from the Main Lemma 1 and Lemma 18.

Theorem 7 and Theorem 7' may be proved using Theorem 6 and Theorem 6’ in the same way as
Theorem 3 using Theorem 1.

Theorem 7. Let f : D — C be a meromorphic function. If

{fog|lgepl}={fog

neNu{O}}, ue(0,+x) , uis fixed,

is a normal family of functions on the disk D and if for a sequence (zn)clo(e,r) holds:

n—oo nN—oo nN—o0

limz,=¢“, limd,(z,2,,)=0 and limf(z,)=c, ceC, then C(f,io(e,r),e‘gj:{a)}

for every r €(0,+x), i.e., @ is the upper oricyclic boundary value of function f in the point e,

Theorem 7/ Let f :D — C be a meromorphic function. If

{foglgePl}={foq]

neNU{0}}, ue(—0,0) , uis fixed,

is normal family of functions on the disk D and if for a sequence (zn)cZO (6,r) holds:

nN—o0 n—o

limz, =€, limd,(z,2,,)=0 and limf(z,)=c, ceC, then C(f,Ao(H,r),e‘9)={a)} for

every re(0,+x), i.e,, @ isthe lower oricyclic boundary value of the function f in the point e,

Theorem 8. Let f:D—C be a meromorphic function such that f(z)=c, ceC,zeD.
{foglgerl}={foq]

and if limz, =¢"“ and lim f (gS(O)):C, ceC, then we have C(f,io (e,r),eiejz{a)} for

n—oo

ne NU{O}}, ue(0,+w) , uis fixed, normal family of functions on D

every r € (0,+0), i.e., @ is the upper oricyclic boundary value of the function f in the point e'.
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Theorem 8% Let f:D—C be a meromorphic function such that f(z)=c, ceC,zeD.
{fog|geng}:{fogS
the disk D and if limz, =e" and lim f (gg1 (O))zc, ceC, then C(f,ZO (9,r),e‘9)={a}} for

nN—o0

ne NU{O}}, ue(—»,0) , uis fixed, normal family of functions on

every r e (—=,0), i.e.. o is the lower oricyclic boundary value of the function f in e,

Theorem 8 and Theorem 8’ may be proved using the Main Lemma 2 and Lemma 19 in the same
way as Theorem 4 is derived from the Main Lemma 1, Lemma 5 and Lemma 18.
7. CONSTRUCTION OF ONE EXAMPLE

We will construct an example of meromorphic function f:D—>C for which
{fog]

{fog!
the work [8].

ne NU{O}}, a e(—l,l) , a is fixed, is normal family of functions on the disk D, and

g9 € Hg} is not normal family of functions on D. This construction is similar as one in

mp, =1 limd(z,,z.,)=0

. I -
Let Zk = ,Dke ) pk > O’ k € Nv be SUCh that k—)wp and k—o0 The elemEntS

of the sequence (z) are in the set P,nA . (-6,r). Let a sequence (&, ) be a such one that we
have:

0<&,1 <& limgk:O; D(z,6)ND (71, 6.,) =D, keN; lim( sup d(zk,zm)jzo;
% 2\ zeD(z &)

S <

k=1

Let a =&, keN, and f(z)=Y a (z-z) . The function f is meromorphic on the disk D,

k=1

with the poles in z,, ke N.. Since f(z,)=oo, |f(zk+g)|<M, keN, andlimd, (z,,z, +¢£)=0

n—oo

Z A 1 _G,r A gar .
from Theorem 2 on P-sequences it follows that ( ")C 9 ( )C ( )IS P-sequence of f.

9’ e Hg} is not normal family of functions on the disk

Therefore, we may conclude that{ fog’
D.

Since for every z',2" e D\O D(z,.¢,) we have |f(2')-f(z")|<|z/ -2,
k=1

> & =C <+ and
k=1

since A, (6,r), r>0, contains finite number of points z,, and since A, (6,r), r>0,is invariant set
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with respect to g7, neN, it follows that limsup f(z)|:cf (r)<o, 0<r<1. Therefore, for

Ag(0.r)>2>€"

every r,0<r <1, the function f is bounded on O, "NA_ (0,r), where O, :{zH|z—e‘9|<1—r}

so we have that {f g,
35, Montel’s theorem).

ne Nu{O}}, ae(-11) is normal family on the disku D (see [20], p.

CONCLUSION

In this paper it is given a new approach in deriving theorems from the theory of asymptotical
behavior of analytic functions. Namely, our theorems are proved using some results from the
dynamic and the geometry of Méebious mappings and classical uniqueness theorem for analytic
mappings, but in the preceding time these theorems were proved by using the approach and the
results from the theory of harmonic mappings and harmonic measure theory.

The Main Lemma 1 and the Main Lemma 2 prove that the necessary condition for a function
f:D—C to has the angular or oricyclic boundary value in e is that the following two
families of functions

{tog]

neNu{O}},ae(—l,l), {f°9|gepgf}={f°gﬂ

neNu{O}}, ue(-x,0),

are normal on the disk D.

The constructed example in Section 7 shows that the angular boundary values exist for broader
class of meromorphic functions then the class considered in the theorems of Lehto-Virtanen and
Gavrilov-Burkova. We have proved theorems of type of Bagemihl-Seidel for broader class of
functions.

From Theorem 6 and Theorem 6’ it follows that the upper and the lower oricyclic boundary val-
ues of meromorphic function f:D—>C in € are equal w, weC, then f has tangential —

oricyclic boundary value @ in €. In general case it is possible to occur that one of these
boundary values exists but the other not. This may be proved by an example which may be
constructed in a similar way as the example in the Section 7.

For further consideration it remains to consider is it possible to use the approach of this paper in
order to derive results concerning the asymptotic behavior of harmonic functions on the unit disk
D in the complex plane C.
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Summary. This paper deals with non-self-adjoint second-order differential operators with two
constant delays. We consider four boundary value problems D; ;,i = 0,1,k = 1,2

=" () + q1(0)y(x — 1) + (—1)'q2 (X)y(x — 75) = Ay(x), x € [0,7]
y'(0) —hy(0) =0, y'(m)+ Hyy(m) =0,

where g <17, < g < 2t, <1 <m, hHy H, € R\{0}and 1 is a spectral parameter. We assume

that q,, q, are real-valued potential functions from L,[0, ] such that q; (x) = 0,x € [0,7,) and

q,(x) =0, x € [0,7,). The inverse spectral problem of recovering operators from their spectra has
been studied. We prove that delays t,, T, and parameters h, H;, H, are uniquely determined from the
spectra. Then we prove that potentials are uniquely determined by Volterra linear integral equations.

1 INTRODUCTION

The theory of differential equations with delays is a very important branch of the theory of
ordinary differential equations and has been studied in detail in [1] and the references therein.
For a number of results relating to the inverse spectral problems for classical Sturm-Liuville
operators we refer the reader to [2], while some aspects of the direct and inverse problems for
operators with a delay can be found in [3] - [13]. While there are a number results about both
direct and inverse problems for operators with one delay, there are just a few results related to
the operators with two or more delays (see [14]-[18]). The motivation behind this paper is to
initiate further research in the inverse spectral theory for differential operators with delays. In
what follows, we always take i = 0,1 and k = 1,2. In this paper we consider the boundary
value problems D;

—y"(x) + g1 ()Y (x — 11) + (~Digy )y (x — 73) = Ay(x), x € [0, 7] @
¥'(0) — hy(0) = 0, @
y'(1) + Hey(m) = 0 3)

where = < 7, <> <27, <7, <7, hH;, H, € R\{0} and 4 is a spectral parameter.
We assume that q,, g, are real-valued potential functions from L, [0, r] such that
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q1(x) =0, x €[0,7,) and g,(x) = 0, x € [0,7,). We study the inverse spectral problem of
recovering operators from the spectra of D; ;. Let (ﬂn,i,k):;o be the eigenvalues of D; , .
The inverse problem is formulated as follows.

Inverse problem: Given (An,i,k)j;o, determine delays 74, t,, parameters h, H,, H, and potential
functions g4, q5.

To solve this inverse problem, we use the method of Fourier coefficients. This method based
on determination of direct relations between Fourier coefficients of the potentials or some
functions containing the potentials, and Fourier coefficients of some known functions.

In Section 2, we study the spectral properties of the boundary value problems D; ;. In Section
3, we prove that delays and parameters are uniquely determined from the spectra. Then we
prove that potentials are uniquely determined by the system of two Volterra linear integral
equations.

2 SPECTRAL PROPERTIES

One can easily show that differential equation (1) under the initial condition (2) and
conditions q;(x) = 0,x € [0,7;) and g,(x) =0, x € [0,7,) is eqgivalent to the integral
equation

h 1r*
yi(x,z) = cosxz + ;sinzx + ;f q1 (O)sinz(x — t)y(t — 74, z)dt +
T1

+ (—1)‘5[2 q, ()sinz(x — t)y(t — 1,,z)dt )

Here and in the sequel A = z2. By the method of steps it can be easily verified that the solution
of integral equation (4) on (t,, 7] is

h &) i@
yi(x,z) = coszx + — smzx + bs.’ (x, Z) + (=1)'bg; (x z) |+

+Z£2(b§? (x,2) + (—1)%5? (x, z)) L D7) t— " b®(x,2) ®)

Zsc

where
X
bgf) (x,2) = f qr (t)sinz(x — t)cosz(t — 1y )dt,

Tk

) X
bs(? (x,2) = f qr (t)sinz(x — t)sinz(t — 13 )dt,

Tk

X
bg) (x,2) = f q, (t)sinz(x — t)bs(f)(t —1,,2)dt,

27,

X
bs(gz(x, z) = f q, (t)sinz(x — t)bg)(t —1T,,z)dt.

2T,
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Denote
Ai (1) = Fi(2) = y;'(m,2) + Hiy(m, 2). 1

From (5) we obtain

hHyy o) (@)
Fuu(z) = (—z += )Slnnz + (h+ Hy)costz + bP (@) + (1P (2) +
hi @ i@ He (@ e
+; bcs (Z) + (_1) bcs (Z) + ~ bsc (Z) + (_1) bsc (Z) +

h .
P (59@ + DL @) +- b + 5B + bR + 35D (2)

where

T
b®) (7 = f 0 (D)cosz(x — D)sinz(t — 1)dt,

Tk

bg) (2) = fﬂqk (t)cosz(x — t)cosz(t — 1y )dt

Tk

Y
b2 = |4z @sinax — 02— 102,

27,

T
bP(2) = f 4 (Dcosz(x — b (t — 1,2 )dt,
27,

T
bg% (z) = f q, (t)cosz(x — t)bs(g)(t —1,,7 )dt.

27,

To simplify further consideration we define so called the transitional functions g; as follows

(ql(t+ )+( 1! qz(t+ 2) te [Tz—ln—TZ—I]
00 = { (~Dig (t+2) e [Zm) u (r -3 m -2,
0,te [O,TZ—Z)U(H—%Z,N] (6)
Let us also define functions K and U® by
KO =g+ 1) | 42(5)ds — 42(0) : 42 (s)ds — ft ” 425 — D, (5)ds,

te [TZlT[ - TZ]: K(Z)(t) = O,t € [01 TZ) U (T[ - TZ,T[],
and

1 Below, instead of the argument (7, z) we write argument (z)
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t T

q2(s)ds — q2(¢)

T

42(s)ds + f 42(s — D> (s)ds,

t+7,
t € [1,,m—1y], UP(t) =0,t € [0,7,) U (1 — 1y, 7]

UD() = gy(t + 1) f

T t+71,

and introduce notations

© = qod P=] ao ( [ (s)ds)dt

Tk T2 2

and functions

1 s

G o(2) = fo Gi(O)cosz(n —20dt, d;s(2) = fo G.(O)sinz(r — 2 )dt,
ky(2) = fo "KO(©) sinz(n - 20)de, ko(z) = fo "KO(©) cosz(n — 20)dt,
1y (2) = fo "UO(@) sinz(n — 20)de, uy(z) = fo "UO@) cosz(n — 20)dr.

One can easily show that folowing relations hold

=T T—T,
f K@ () dt = — ;2)’ f U(z)(t) dt = 152). @)
T2

T2
Using aforementioned tags and relations (7), we can rewrite characteristic functions F; . (z) as
follows

hHy\ . 1,
Fix(2) = (—z + 7) sinnz + (h + Hy)cosmz + 5 (ailc(z) +]i,c(z)) +

h H hH
5 (45D +Ji5(D) + 5 (85@) +15(@) + 55 (016 ~ i)
1 h H
(25 ~w@) = 15 (2@ + k(@) = 5 (J2c(2) — ue(@)

hH
— 25 (252 T k(@) @®)
where
Jie(@) = JPcosz(m — 1) + (=1 P cosz(m — 1),
Jis(2) = ]fl)sinz(n —79) + (—1)"]§2)sinz(n —T5)

Joc(@) = JPcosz(m — 21),  Jo5(2) = [P sinz(n — 215).
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The functions F, (z) are entire in 4 of order 1/2. Using (8), by the well known method (see

[2]), we obtain the asymptotic formulas for (An,i,k):):() of D
) 1) @ )
Anir =n%+ p- (h+ Hy) + 71r cosnt; + (—1)‘17cosnrz +0(1),n = oo.

Now, by Hadamard's factorization theorem, from the spectra of D, ,, we can construct the
characteristic functions F; .. The next lemma holds.

Lemma 2.1. The specification of spectrum (An_i_k):;o of the boundary value problems D;
uniquely determines the characteristic functions F; , (z) by the formulas

P A i — 22
Fi,k (Z) — T[(Ao,i,k _ ZZ) 1_[% (10)
n=1

3 MAIN RESULTS

Lemma 3.1. The delays 7, integrals jl(k) and sums h + H,, are uniquely determined by
eigenvalues ()ln,i,k):zo.

Proof. Let us consider the sequences

Pnk = %(An,o,k + An,l,k)

and

1
Op = 2 (An,O,l - An,l,l)-

From (9) we obtain the next asymptotic formulas
2 &
Pk =n%+ - (h+ Hp) + %cosnrl + 0(1)

and
2
Op = %cosnrz + 0(1).

Obviously, the delays t,, 7, and integrals ]fl), fz) can be determined from sequences

(pn,k):jzo and (a,)5m=¢ inthe same way as for the operators with one delay (see [13]).
Lemma 3.1. is proved. O

Lemma 3.2. Parameters h and H,, are uniquely determined by eigenvalues (An,o,k)zzo.
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Proof. By virtue of Lemma 3.1., functions J, .(z) and J, ;(z) are known. Since the

2
characteristic functions are uniquely determined by the spectra, putting A = (4";“) into
functions F;, from (10), we can define functions

4m+1>+4m+1 1 (4m+1> Hy +h (4m+1)

F* =F, — _
o,k(m) o,k( 2 5 am+ 1705 )

2 2]0,C
Then, using the form of the characteristic functions F; , from (8), we get

1 4m+1

h== lim ——
2 mos H, — Hy

(F*o,z(m) - F*0,1(m))

At the end, we determine H, from h + H,, thus proving Lemma 3.2. O

In order to recover the potential functions from the spectra by the method of Fourier

coefficients, we should transform the characteristic functions (8). For this purpose, we use the

method of partial integration in (8), once in integrals a; ;(z), @; .(z), us(z) and u.(z), and
twice in the integrals k.(z) and k¢(z). This is where the next function appears

t
K®*(t) = LZK(Z)(u) du,t € [, m — Tz].
0,t €[0,72) U (T — 1y, 7]

One can show that following relation holds

T—T, t
T r—

T2

Then we obtain the characteristic functions in the form

Hi.h\ 1/_ Hy
Fir(2) = <—Z + 7) sinnz + (h + Hy)cosmz + 5 a;c(z) + ~ as(z) | —

(020 + Fa, 0@ ) -3 (1@ + @ ) + a0+ Fi o)

]i,C(Z) 2h+Hk 1 Hkh h @) .
St Jis(2) + Z(l - Z_z)]Z.S(Z) + Z(n — 21,)J,” sinz(m — 27,)

+HLh (mr— Zrz)j(z)cosz(r[ —217,)
2,2 2
where
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and

In order to recover the potential functions from the spectra, at the beginning we define

functions
Ai(z) =

2@

and
Bi(2) =

From (11) we obtain

H, — Hy

HZ—ZHl(

t
(ﬁ Gi(s)ds | cosz(m — 2t)dLt,
L2
Ty ¢
(ﬁ Gi(s)ds |sinz(mw — 2t)dt,
L2
2

uz(z) = fﬂ " <ftU(2)(s) ds) cosz(m — 2t)dt,

—T, t
ui(z) = f <j U@(s) ds> sinz(mw — 2t)dt

T2

T—T, t
ki*(z) = f <j K®*(s) ds) cosz(m — 2t)dt,

T2

ki (2) = f i ( f KD (s) ds> sinz(m — 26)dt.

T2

(HZFM(Z) — HF;, (Z)) + 2zsinmz — 2hcosnz — J; (z) —

sinz(mt — 1)

Fi(2) — Fi4 (z)) — 2hsinnz — 2zcosnz — J; s(2).

Ai(2) = @0 (2) — 2hG; D (2) — ui(2) + 2hkE (2) + a(2)

Bi(2) = d;5(2) — 2h{; s (2) — ui(2) + 2hkZ*(2) + B(2)

where

and

B(z) =

(2)
a(z) = 27 (h(mr — 21,) + 1)sinz(m — 21,)

P

2 (Z(T[ — 21,)cosz(m — 21,) — sinz(mw — 212)).

34

(12)

(13)

(14)

(15)



B. Vojvodi¢ and N. Pavlovi¢ Komazec

One can easily show that

limpB(z) =0,

z-0

and
llm a(z) = ](2)(h(n —27,) + 1) (m — 21,).

Putz = m, m € N into (14) and (15) and denote
2 m 2 m+1
Aym,i = p (=D™A;(m), Bym; = p (=1)™*B;(m).

Then we obtain

)
2 4 2
Apmi = EQZm,i hqu)uc u2mc += thmc (16)
2. 4 2 4 2h)?
Bom = —bam,i — Eth}‘r)l,lS —Uzms + —hkoms — L (m(r — 27,)cos2mr, + sinzmr,) (17
where
T ~ T
dym,i = f gi(t)cos2mtdt,  bypy; = f g;(t)sin2mtdt,
0 0
n-2( ot
Upm,s = fr f U@ (s)ds | sin2mtdt,
72
Upm,c = fT U (2)(5) ds | cos2mtdt
72
-7,
k3mc = ( K(Z)*(s) ds> cos2mtdt,.
T
T,
kms = f < K(z)*(s) ds) sin2mtdt.
T2
Denote Ay ; = = lim 4; (m).
’ T m-0
Then we obtain
2 o 2. 4 . 2P (18)
AO,i =—0y; — hq - Euo,c + Ehko,c +

T 0,i,c

Since sequences {Az;,;} and {Bs,,;} belong to the space [,, by virtue of Riesz-Fischer
theorem, there exist functions f; from L, [0, ] such that

35



B. Vojvodi¢ and N. Pavlovi¢ Komazec

Aoi N
() =—+ amicosZmt + By, isinZmt,t € |0,
) ;’" Agn OS2 By iSin2 [0, 7]
m=1

Now multiplying (18) with % , (16) with cos2mt and (17) with sin2mt, and then
summing-up fromm = 1 to m = oo, we get the system of integral equations

t
G;(t) — 2h fr Gi(s)dty - f U@ (s)ds + 2h f K@*(s)ds + ®(¢) = f;(t) (19)
2

T2

where

2@
®(t) = — L (h(r — 212)+1)Z

2h](2) cos2mt, h](z) sinZmt, |
(n—ZTZ)Z sin2mt — Z 3 sin2mt.

sin2mrt,

cos2mt —

m=1

After summing and subtracting integral equations (19), and then introducing substitution of
variables, we get the system of integral equations

ql(x>—2h£xq1(u>du—fx

T
T2+2

U@ (u —Tz—l)du+ ZthJrr_lK(Z)* (u _1'2_1) du +

ro(e-2) =3(n (- D)+ (- D)) (20)

and

020~ 20 [ 4y() du = —<f0 (x=2)= £ (x- T2_2)> (1)

T2

Finally, we come to our main result.

Theorem 3.1. Let gy € Ly[1;, ], qx(x) = 0 for x € [0, 7y).
If % <7,< g < 21, < 7; < m, then integral equations (20) and (21) have unique solutions
q, € L,[t,, ] and q, € L,[t,, ], respectively.

Proof. Obviously, the integral equation (21) has a unique solution g, on (z,, 7). Then we
i i x @ (-4 x @)=, =4
obtain that integrals fTZ i U (u 2) du and sz i K (u . ) du are known too, as

well as the integral ]2(2). For sums appearing in the function ®, we have
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{ —T,, tE€ (T, T —Ty),
[00] R T[
sinzmt t _
Z 2 cos2mt = 5 T t € (0,72) U (m — 13,7),
m=1 ——Tz, t:TZIt:T[_TZ
4
—t, t e (0, Tz)
T
__t, tE(Tz,T[—TZ)
[e%) ? 2
cos2mrt _ _
Z 2 sin2mt =+ 77Tr t, (Tt —73,m)
m
m=1 Z — Ty, t = Ty,
T
- Z + TZ) t =T — Tz
and
{ (T — 275)¢, t € (0,15)
b - [—
sin2mt, To(m — 21), t € (1,,m—1y)
Z 5 sin2mt = (7 — 27,)(t — m), (m—1,,m)
m
m=1 (r — 275)7,, t=1,
_(T[ - 27'-2)7'—2! t=m— TZ

Then for x € (74,7) we obtain linear integral equation

ql(x>—2hfq1(u)du=f

2+%1
BRILE| (I IVACEE)

which has a unique solution g, on (t4, ). Theorem is proved. O

u® (u _1'2_1) du — ZhL;T_lK(Z)* (u _1'2_1) du

4 CONCLUSION

Inverse spectral problems for classical Sturm-Liouville operators have been studied
completely, while the inverse problems for differential operators with delays have not been
studied enough. The main results for classical Sturm-Liouville operators is presented in [2]
while some of the results for differential operators with delay can be found in
([31.[41.[5].[10],[11],[12],[13]). The class of operators with two delays has been least studied,
but some of the results for this class of operators are presented in ([16], [17]). The motivation
behind this paper is to initiate further research in the inverse spectral theory for differential
operators with delays. We studied the inverse spectral problem of recovering operators from
the spectra of D; . To solved this inverse problem, we used the method of Fourier coefficients.
This method is based on determination of direct relations between Fourier coefficients of the
potentials or some functions containing the potentials, and Fourier coefficients of some known
functions. We studied the spectral properties of the boundary value problems and proved that
delays and parameters are uniquely determined from the spectra. Then we proved that potentials
are uniquely determined by the system of two Volterra linear integral equations.
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Summary. Let 4, X, U be Banach algebras and A be a Banach U-bimodule also X be a Banach
A — U-module. In this paper we study the relation between module amenability, weak module
amenability and module approximate amenability of Banach algebra A @1 X and that of
Banach algebras A,X. Where T: A X A — X is a bounded bi-linear mapping with specific
conditions.

1 INTRODUCTION

The notation of amenability of Banach algebras was introduced by B.Johnson in [9]. A
Banach algebra A is amenable if every bounded derivation from A into any dual Banach A-
bimodule is inner, equivalently if H(4, X*) = {0} for any Banach A-bimodule X, where H (4,
X™) is the first Hochschild co- homology group of A with coefficient in X*. Also, a Banach
algebra A is weakly amenable if H(4, A*) = {0}. Bade, Curtis and Dales introduced the notion
of weak amenability on Banach algebras in [5]. They considered this concept only for
commutative Banach algebras. After a while, Johnson defined the weak amenability for
arbitrary Banach algebras [8].

For a morphism T: B — A from a Banach algebra B to a commutative Banach algebra A.
The notion of module amenability of Banach algebras was introduced by Amini in [1]. Amini
and Ebrahimi Bagha in [3] studied the concept of weak module amenability. In [10] the notation
of module approximate amenability and contractibility as modules over of another Ba- nach
algebra was introduced for the notion of Banach algebras.

M. Sangani-Monfared in [11] defined a product on A X B and obtained the Banach algebra
A Xg B using a character 8 € a(B) , for Banach algebras in a fairly general setting.

Later, S.J. Bhatt and P.A. Dabhi in [6] defined a product on A X B and obtained a Banach
algebra A X1 B for a morphism T : B — A from a Banach algebra B to a commutative Banach
algebra A.

The first and the second authors generalized all these constructions, and de- fined the module
Lau product A X, B for Banach algebras A and B such that 4 is a Banach B-bimodule. They
studied the ideal amenability of A X, B in [4].

T.Yazdan panah in [12] studied the concept of expanded modular of Banach algebra denoted
by A @1 X. He showed that A @ X is amenable if and only if A is amenable and X = {0}. In
this paper, we define a new Banach algebra different from of all above Banach algebras, named
A @1 X in section 2. Then, some required basic properties of the following part are studied. In
section 3, as the main section of paper, we study the relationship between module amenability
of A @7 X and module amenability of A and X. We show that If T(4, 0) = X and A% = A,
then the module amenability of A implies module amenability of A @+ X. Furthermore, it’s

2010 Mathematics Subject Classification: 46H20,46H25.
Key words and Phrases: Banach module, module amenability, weak module amenability,module approximate
amenability, module derivation, Expanded Banach algebra.
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conversly obtained that the module amenability of A @+ X implies module amenability of A
and moreover if T (4, 0) = X, then X also is module amenable. In sectiones 4 and 5 respectively
we study the relationship between weak mod- ule amenability (based as definition in [1] and
[2]) and module approximte amenability of A @+ X and weak module amenability and module
approximte amenability of 4, X.

2 DEFINITIONS AND BASIC PROPERTIES

Throughout this paper it’s assumed that U be a Banach algebra, A be a Banach U-bimodule
and X be a Banach A-U-bimodule. Module actions are assumed as follow too:

AXU - 4;(a, a)—aca,UXA- A4;(, a)— a-a.
XXU-X;(x, a)—xAa,UXX - X;(a, x) — aVx.
XX A-X;(x, a)—xoca,AXX - X;(a, X)—a-x.

Consider the bounded bilinear map T : A X A — X, which has the following properties:
a-T(a,a,,0) =T(aay,0)0a, T(a,a,, 0) =T(aq,0)T(a,,0),
T(a-a, aVx) =a-T(a, x),T(ae°a, xAa)=T(a, X)-a,
Il T(a, O) I=llall foralla,a;,a, € A,x € X,a € .
Module extension A @ X, with the product
(a, x)(aq, x1) = (aaq, a-x1 +x0a; +T(aaq,0))
and the norm || (a, x) lI=Il a Il +Il x |l is a Banach algebra denoted by A @+ X.

Definition 2.1 The bounded map D: A — X* with D(a + b) = D(a) + D(b),D(ab) = a -
D(b)+ D(a) b foralla,b€ A, andD(a-a)=a-D(a),D(a-a) =D(a) -a(a €U, a€
A) , is called module derivation.

Note that X* is also Banach module over A and U with compatible actions under the
canonical actionsof Aand W, a-(a-f) =(a-a)-f,(a€ A, a €U, f €X"), and the same
for right action. Here the canonical actions of A and W on X* are defined by (a - f)(x) = f(x A
a),(a-f)(x)=f(xeca),(a €U, a€A, f€X", x €X)and it’s the same for right actions.
As in [1] we call A4- module X which have a compatible U-action as above, a A — U modules,
above assertion is to say that if X is an A — U- module, then so is X*. Also we use the notation
Zy(A, X7) for the set of all module derivations D: A — X*, and Ny (4, X™) for those which are
inner and Hy (4, X™) for the quotient group.

Proposition 2.2 A @ X is a Banach U- bimodule.
Proof. Consider the module actions as follow:
UXADPr X)) - ADr X;a-(a, x)=(a-a, aVx) , and ADrX)XxU->
ADr X;(a, x)ea=(aca, a Ax).Itiseasy to check the satification of the properties. m
Proposition 2.3 IfY is an A-U-module, then Y @ {0} is a Banach A @1 X — U-bimodule.
Proof. Assume that the module actions on Y, are as follows:

UXY->Y;(a, y ) maAay, Y XU->Y;(y, &) yea. And AXY ->Y;(q,
y)—a-y,YXA->Y;(y, a) — y.a. Define the module actions as: (Y @ {O}) x U ->Y D
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{0k, O)ea=((yea 0),UXY D{0})>YB{0} ae(y, 0)=(aAry, 0) . And
ADr X)X ¥ S{0}) »Y D {0} (a, x).(y, 0) = (a.y, 0),(Y D{0}) x (A Dr X) -
Y @ {0}; (y, 0)o(a, x) =(y. a, O).We only need to show that the actions are compatible.
Da. ((a, x).(y, 0)) =a. (a.y, 0)
=(aa(a.y), 0)=(a-a) y, 0)
=({(a-a, aVx)-(y, 0) = (a-(a, x)).(y, 0) .

2)((@, x)-(y, 0))ea =(a-y 0)ea
=((@-y)ea, 0))=(a-(y*a) 0)
=@ x) O e+ a0)=(>@x) (0 *a.

3)(a. O, 0))-(a x) =(xAry 0)-(a x)
=((@ay). a 0)=(aa(y. a) 0)
=a. (y.a 0)=a (v, 0)°(a x))
]

Proposition 2.4 Let M @ N be a Banach A @1 X — U-bimodule, then M is a Banach A —
U-bimodule.

Proof. Consider the map Qy : M @ N - M; (m, n) — m and define the module actions
assMXxXU->M;(m, n)—m-a=Qy((m, 0)ea), UXM > M;(a, m)r> aom =
Qu(a-(m, 0 M XA - M;(m, a)— m.a=Qy((m, 0)ec(a, 0))and A X M - 4; (a,
m)—aem=Qy((a 0)-(m,0)) =

Proposition 2.5 Let M be a Banach A — U-module and N be a Banach X — U-bimodule,
M @ N is a Banach A @+ X — U-bimodule.

Proof. Given module actions on M €@ N as follows:

MAON)XU->MBPN;(m,n)-ra=m.a nVa), UX(MPBN)>MEBN,;, «a-
mn=(@em adam),(MPN)XAP; X)) >MBN);(m, n)-(a, x) =(m «a,
n.Tla 0 (AP X)X MG N)->MPN;(a, x)e(m,n)=(a  m, T(a, 0) ®n)

[ ]

Proposition 2.6 Foreach (f, g) EM* @ N*,(a, x) EAD+ X,(m, n) €M P N we

have (f, g) - (a, x) = (f -a, g-T(a, 0)) and (a, x).(f, 9) = (a.f, T(a, 0).9).

Proof.
((f, 9)-(a, x), (m, n)) =((f, 9), (a, x)*(m, n))
=((f, 9), (a>m, T(a, 0) © n))
=(f, aem)+(g, T(a, 0) @n)
=(f.a, m)+(g.T(a, 0), n)
=((f.a, g.T(a, 0 (m, n)))
- Proposition 2.7 If N is a Banach X — - bimodule, then is a Banach A — W-bimodule.

Proof. The module actions are defined as follow:
AXN->N;an=T(a 0)®@nand NXA—->N;nea=nT(a ©@). =
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3 MODULE AMENABILITY

Lemma3.1 D € Zy(A®Dr X, M* @D N*) ifand only if there are D, € Zy (A, M*),D3 €

Zy(X, N*),R € Zy(A, N*) and linear map D, : X - M* such that

1) D(a, x) = (D1(a) + Dy(x), R(a) + D3(x)) ,

) Dyaex)=a-Dy(x),

3) Dy(x 0 a) = Dp(x) - a,

4)R(bd) = R(b)-T(d, 0)+T(b, 0)-R(d) =R(b).d +b.R(d),

5) Do(T(ab, 0)) =0,

6) D3(a.x) =T(a, 0).D3(x),

7) D3(x e a) = D3(x).T(a, 0),

8) D;(T(ab, 0)) = 0.

Proof. Suppose that D € Zy (A @+ X, M* @ N*) then there are d, : A @ X - M*,
d, : A@r X - N*suchthat D = (d4, d,), Set

Dy:A - M*;D,(a) = dy(a, 0),

DZ:X - N*, Dz(x) == dl(O, x),

D3:X - N*;D3(x) =d,(0, x),R:A - N*; R(a) = d,(a, 0).

Now
D(a, x)=(d;, d)((aa 0)+(0, x) =(d;, dia 0)+(dy,
d;)(0,  x)
= (di(a, 0), dz(a, 0)) + ((d1(0, x), d2(0, x))
= (di1(a, 0) +d;(0, x)) + (d2(a, 0) +d»(0, x))
N = (D1(a) + D (x), R(a) + D3(x)), (1)
oW

D((a, x)(m, x')) =D(am, a-x'"+xom+T(am, 0))
= (D;(am) + D,(a - x") + D,(x e m) + D,(T(am, 0)),R(am) + D3(a.x")
+D3(x o m) + D3(T (am, 0))), ()
since D is module derivation so

D((a, x)(m, x")) = D(a, x) - (m, x") + (a, x)-D(m, x"
= (Dy(a) + Do(x), R(a) + D3(x))-(m, x")
+(a, x).(D1(m) + Dy(x), R(m) + D3(x"))
= ((Di(a) -m+ Dy(x)) -m+a-D,(x") + D,(x).m, R(a) - T(m, 0)
+T(a, 0).R(m) + D3(x).T(m, 0) + T(a, 0).D5(x")). 3)

In 3,2 Take x = x’ = 0 to get D; € Zy (4, M*),(5), (4) and (8). Take a = 0 to get (3) and
(6). Take m = 0 to get (2), (7). And in a similar way we can get other parameters. Conversely

1S in a same way. |

Corollary 3.2 Let X = {0} and D, D, and R be as in perivious lemma, then D = & 4y if
and only if Dy = 8 and g = 8. Where §,(a) = gT(a, 0) —T(a, 0) - g.
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Proof. Since X = {0} and D(a, x) = (D;(a) + D,(x), R(a) + D(x)) so D(a, 0) =
(D1(a), R(a)) .1fD = 4 then
D(a, 0) =6;4(a, 0)
= 9)-(a 0)—(a, 0)-(f, 9)
=(f'a' g'T(a' 0))_(a'f' T(a' O)g) _
=(ra-a-f, g-T(a 0)=T(a, 0)-g) = (&(a), 64(a)) .

SoD; =6rand R = Eg_ Conversely
D(a, 0) =(Di(a), R(a)
= (6r(a), 64(a))
=(f-a-a-f, g-T(a 0)=T(a, 0)-9)
=(f! g)-(a, 0)-(@, O)(f} g)
=6¢.g(a, 0) .

Theorem 3.3 The module amenability of A @ X implies module amenability of A.
Moreover if T(A, 0) = X, then X is also module amenable.

Proof. Assume that M, N are Banach A — U-bimodule and Banach X — U-bimodule
respectively. Let D;: A - M* and D,: X = N* be module derivations. By Proposition 2.5, M @
N is a Banach A @; X —U- bimodule. Define D' : A@r X > M* @ N*;D'(a, x) =
(D1(a),D,(T(a,0)). Now

D'((a, x)(m, x)) =D" (am, a.x'+ xom + T(am, 0))

= (D1(am), D,(T (am, 0)))

= (Dy(a).m + a.D;(m), D,(T(a, 0)).T(m, 0) + T(a, 0).D,(T(m, 0)))
= (D1(a), D»(T(a, 0))).(m, x) + (a, x).(D1(m), D,(T(m, 0)))

= D'(a, x).(m, x") + (a, x).D'(m, x)).

Also

D'(a - (a, x)) =D'(a-a, aVx)
= ((D1(a - a), D(T(a - a, 0)))
= ((@-D1(a), a-Dy(T(a, 0)))
=(a-D'(a, x) .

And

D'((a, x) + (m, x) =D'((a+m, x+x"))
= (D1(a +m), Dy(T(a+m), 0))
= (D1(a) + D1(m), D,(T(a, 0)) + D,(T(m, 0))
= (D1(a), Do(T(a, 0)) + (D;(m), D,(T(m, 0))
= D'(a, x) + D'(m, x").

So D' is amodule derivation. Sice A @1 X is module amenable, there exists (f, g) € M* P
N* such that D" = & 5. Thus

D'(a, x) =6;g(a, X)
=(f' g)-(a, x)—(a, X)‘(f, g)
=({ratg-T(a 0))—(a-f, T(a, 0)-9)
=(fra-a-f, g-T(a 0)=T(a, 0)-g) .
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Consequently Dy(a) = f-a—a-f ie. Dy =6 and D,(T(a, 0)) = 64(T(a,0)). Since
T(A, 0) =X, Dy(x) =§4(x) forallx € X. m

Theorem 3.4 The module amenability of A implies module amenability of A @ {0}.

Proof. Let M @ N be a Banch A @ X — U-bimodule and D:A @ X > M* @ N* be a
module derivation. By lemma 3.1, there are Dy, D,, D; and R such that D(a, x) = (D;(a) +
D,(x), R(a) + D3(x)) . Since here X ={0} so D(a, 0) = (D;(a), R(a)) . Module
amenability of A implies there exist f € M* such that D; = & and since N* is an A-U- bimodule
and R is module derivation, there exist g € N* such that R = §,. Thus D = §(5 o). B

Theorem 3.5 IfT(A, 0) = X and A? = A, then the module amenability of A implies
module amenability of A @ X.

Proof. Let M @ N be a Banch A @ X — U-bimodule and D:A @ X > M* @ N* be a
module derivation. By lemma 3.1, there are D;, D,, D3 and R such that D(a, x) = (D;(a) +
D,(x), R(a) + D3(x)) . Since here T(4, 0) = X and A2 = A so D(a, x) = (D;(a), R(a)) .
Module amenability of A implies there exist f € M* such that D; = &5 and since N* is an A —
U-bimodule and R is module derivation, there exist g € N* such that R = §,. Thus D = §¢,g).
]

Example 3.6 Let N be the set of positive integers. Consider S = (N, V) with the
maximum operation mV n = max{m, n}, then S is a amenable countable, abelian inverse
semigroup with the identity 1. Clearly Eg¢ = S. This semigroup is denoted by N,,.[*(N,)) is
unital with unit 8;. Since N,, is amenable and I*(N,)) is unital so I*(N,)) is module amenable
(as an I1(N,) — [*(N))-bimodule. Define T:11(S) x [1(S) » 11(S) ; T(6,, 8y) =
{Sx, 6,=0

1 1 .
Oxvy, 6y # 0. Then I*(N,) @1 " (Ny) is module amenable.

4 WEAK MODULE AMENABILITY

The Banach algebra 4 is called weak module amenable (as an U-bimodule), if Hy (4, X) =
{0}, where X is a commutative U-submodule of A*([2]).

Theorem 4.1 The weak module amenability of A @1 X implies weak module amenability
of A. In addition if T(A, 0) = X then X is also weak module amenable.

Proof. Assume that M, N are commutative U-submodule of A* and X*, respectively. we can
show that M @ N is a commutative U-submodule of (A @4 X)*. Let D; € Zy (A, M) and D, €
Zy(X, N) .Define D : AP+ X > M@ N;D(a, x) =(D,(a),D,(T(a,0))), it is easy to see
that D € Zy(A @ tX,M @ N) . Since A D7 X is weak module amenable there is (f, g) €
M @ N such that D = §f 4y and
(D1(a), Do(T(a,  0))) =D(a,  x)

= 6@ x)

44



M. Ghorbani, D. E. Bagha

=(f! g)-(a, x)—(a, X)(f, g)
=(fra-a-f, g-T(a 0)=T(a, 0)-g)
= (5;(a), 8,(T(a, 0)))

Hence A, X are weak module amenable. m

Theorem 4.2 The weak module amenability of A implies the weak module amenability of
A Dy {0}

Proof. Suppose that M @ N is a commutative Banach U-submodule of (4 & 7{0})*, and
D eZy(AD {0}, M @ N) . Then M and N are commutative U-submodule of A*. Since D €
Zy(A D {0}, M @ N) , by lemma 3.1 there are D; € Zy (A, M), and R € Zy(A, N) , such
that D(a, 0) = (D;(a), R(a)) . Since A is weak module amenable so there are m € M and
n € N such that D; = §,,,R = §,,, where §,,(a) =a-n—nea=T(a, 0) ©®n—n.T(a, 0)

Now
D(a, x) =(Di(0), R(a))
= (Om(a), dp(a))
=(a-m—aem, T(a, 0) ®@n—n. T(a, 0))
=(a, 0)-(m, n) — (m, n)°(a, 0)
= S(m,n)(a; 0) .

Theorem 4.3 IfT(A, 0) = X and A?> = A, then the weak module amenability of A implies
the weak module amenability of A @1 X.
Proof. The proof is as above theorem. m

Example 4.4 Let S = N, be as in Example 3.6, since [1(S) is [1(S) — 11(S) — module and
11(S) is weak module amenable. Let T: 11(S) x I1(S) = 11(S) have the properties as above
theorems, then 11(S) @ 11(S) is weak module amenable.

5 MODULE APPROXIMATE AMENABILITY

Let A be as above, then A is module approximately amenable (as an U- bimodule), if for any
commutative Banach A — U-bimodule X, each module derivation D: A — X* is approximately
inner.

A derivation D: A — X is said to be approximately inner if there exists a net (x;); € X such
that D(a) = lim;(a - x; — x; - a),a € A([10]) .

Lemma 5.1 Let Dy, R, D3 and D, are such as in the Lemma 3.1, and D(a, b) = (D;(a) +
D,(b), R(a) + D5(b)). If T(A, 0) = X and A*> = A then: D is approximately inner if and
only if D; and R are approximately inner.

Proof. Assume that M is a commutative A — U-bimodule and also N is com- mutative X —
U-bimodule, then M @ N is a commutative A @+ X — U-bimodule. Let D be approximately
inner so there is (f;, g;); € M™ @ N* such that
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D(a, x) =T(da, 0)
=1im((a, x) - (fuo 9 — (i, 91) - (@, X))
=lim((a-fi, T(a, 0)-g)) = (fi- @, g:-T(a, 0)))
=lim(a-fi—fi-a T(a 0)-g; = gi-T(a, 0)),

i.e. D(a) =lim;(a: f; — f; -a) and R(a) = lim;(T(a, 0) - g; — g; - T(a, 0)).
Conversely, let D;(a) =limig(a- f; — fi-a) and R(a) = lim;c;(T(a, 0)-g;—g; -
T(a,0))
Since the index sets (I, <), (J, <) are ordered sets, sotheset A=1X] ={(i, j) : i€,
J €]} is ordered as follows
GH<W HeEst, j<).
For A = (i, j) € Asetty = (fi, g;) . Let € > 0 be given. Since D;(a) = lim;(a - f; — f; -
a) and R(a) = lim;(T(a, 0) - g; — g, - T(a,0)) there are i € I, j, € J such that
1) Foralli 2 ig, | Dy(a) = (a- fi = fi- @) IS 3.
2) Forall j > ji,, | R(a) — (T(a, 0)-g; — g, T(a, 0)) II< §
Now set 45 = (ig, jo) » then for all 1 > A, since D(a, T(a', 0)) = (D;(a), R(a)) , we
have
Il D(a' X) - ((Cl, X) =ty (a! X)) I =l D(CL, X) - ((a' X) : (fu
gp—Uu  gp-(@ I
=l D(a, x)—(a-fi—fi-a, T(a, 0)-g; —g;-T(a, 0)) I
=l (D1(a), R(@)) —(a-fi—fi-a T(a, 0)-g;—g; T(a 0) I
=l ((D1(a) = (a- fi = fir&)),R(a) = (T(a, 0)-g; —g; T(a,0))) I
<IDiy(@)—(a-fi—fi-a) I+l R(a) — (T(a, 0)-g; —g;-T(a, 0)) I
<eE€.
Hence D(a, x) =limy((a, x) - t; — t;(a, x where x = T(a’, 0) i.e. D is approximately
inner. m

Theorem 5.2 If A @ ©X is module approximately amenable then A is module
approximately amenable. Furthermore, if T (A, 0) = X also X is module approximately
amenable.

Proof. In an argument as in the proof of Theorem 3.3 and the application, the usage of above
lemma. m

Theorem 5.3 IfT(A.0) = X and A? = A then the module approximate amenability of A
implies the module approximate amenability of A D1 X.

Proof. Let M @ N be a commutative A @4 X — U-bimodule and D € Zy(A @ tX,M* D
N*) . There are D; € Zy (A, M*),D; € Zy(X, N*),R € Zy(A, N*) and D, : X — N” such that
D(a, x) = (Dy(a) + D,(x), R(a) + D(x)) and since T(4, 0) = X and A2 = A we have D(a,
x) = (D1(a), R(a)) . Since A,X are module approximate amenable, so D; and R are
approximatly inner. Thus by the above lemma, D is approximately inner. m
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Example 5.4 Let S be an amenable inverse semigroup such that the set of idempotents Eg
be equal to S and 11 (S) has approximately unit. Since S is amenable, 11 (S) is module
approximately amenable, [10]. Also 11(S) is [1(S) — 11(S)-bimodule, thus 1*(S) @1 11(S) is
module approximately amenable. Where T: 11(S) x 11(S) — 11(S) is defined by
0y 6,=0

T (6, 63/) = {5xy1 5y =+ 0.

6 CONCLUSIONS

The module amenability of A @+ X implies module amenability of A and The module
amenability of A implies module amenability of A @1 {0}. Also If T(4, 0) = X and A = A,
then the module amenability of A implies module amenability of A @y X.
meanwhile, The weak module amenability of A @4 X implies weak module amenability of A.
On the contrary, if T(4, 0) = X and A? = A, then the weak module amenability of A implies
the weak module amenability of A @+ X.

Considering approximately, if A @ 7X is module approximately amenable then A is module
approximately amenable. On the contrary, if T(4, 0) = X and A% = A then the module
approximate amenability of A implies the module approximate amenability of @ X.
For example, we have S be an amenable inverse semigroup such that the set of idempotents
Es be equal to S and I1(S) has approximately unit. Since S is amenable, [1(S) is module
approximately amenable.
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Summary. Hardy and Copson type inequalities have been studied by a large number of authors
during the twentieth century and has motivated some important lines of study which are currently
active. A large number of papers have been appeared involving Copson and Hardy inequalities (see [2-
16] for more details).

In this paper some Hardy-Steklov and Copson-Steklov type integral inequalities were established.
Namely the integral inequalities were proved there.

" v PV ([ ([ ‘
J, e @ @ax < (=) <J0 ”(x)dx> (Jo T quX)' “

$) PV ([ooa) ([t ‘
fq,p =gy € NP @dx < (=) (jo ¢(x)dx> <0 pr A )|qu) (+4)

Where (F;f) is the Hardy-Steklov type operator and (Cs f) is the Copson-Steklov type operator (see
the main results for more details).

Several Hardy-Steklov type, Hardy-type and Hardy integral inequalities were derived from (x).
Similarly, some Copson-Steklov type and Copson type integral inequalities are deduced from (x).

1. INTRODUCTION

In 1928, G.H. Hardy proved the following integral inequalities [6]. Let f non-negative
measurable function on (0, «)

J f (©dt for a < p-—1,
FHX) =
d f (dt for a > p— 1,

then
[ee] p [ee]
Jo x P (Ff)P (x)dx < (m_f(—_u) JO xfP()dx, forp > 1. @

In 1976, E.T. Copson proved the following integral inequalities (see [4], Theorem 1,
Theorem 3). Let f, ¢ non-negative measurable functions on (0, )

x J f®¢)de, for ¢ > 1,
P(x) =J p®dt,  (€CH(x)=
’ kj f We()dt, for ¢ <1,

2010 Mathematics Subject Classification: 26D10, 26D15.
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then

b p
j AP < (
0

lc —1]

b
)PJO fP(x)PP~C(x)p(x)dx, for p=> 1. 2)

Inequality (2) can be easily rewritten in the following form

( X
| J f o (t)dt, for a<p—-1,
0

CeHe =1 %
U f®¢)dt, for a>p—1,
then
b p p (b
| epreemomixs (=) [ e memis, orpz1 @

The Hardy-Steklov operator is defined by

h(x)

N =g | fod, fzo,

where g is a positive measurable function and r, h are functions defined on an interval (a, b)
suchthat r (x) < h(x) forall x € (a,b).

Particular cases of this operator are Hardy operator (Ff)(x) = f(f f(®)dt, the Hardy

averaging operator (F,f)(x) = x* f(f f(t)dt and the Steklov operator (Sf)(x) = f;ff f(®)de,
which has been studied intensively (see [9] for example).

Let f,v, ¢ be non-negative measurable functions on (0,%). Suppose that » and h are
increasing differentiable functions on [0, ), such that

{O < r(x)<h(x)< oo for all x € (0,), @
r(0)=h(0)=0 and 71 () =h(x») = oo.
The Hardy-Steklov and Copson-Steklov type operators are defined as follows,
h(x)
(FfHx) = - fOv(y)dy, x>0, (5)
") £ (y)p(y)
Csf) = ———"dy, 0, 6
en=| TEya. x> ©)
where
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d(x) =Jx¢(t)dt, for x€ (0,0).
0

We adopt the usual convention: 2=2=0.
2. MAIN RESULTS

Let0 < b < . Throughout the paper, we will assume that the integrals exist and are
finite. The following lemma is needed in the proof of the main results (was proved in [1]).

Lemma2.l. Letl <p < q < and f, g, w be non-negative measurable functions on (a, b)
such that W(x) = [ w(t)dt. If m € R,m # 1, then

j WO o eydx < j w0dx i j SRR %)
a Wm(X)g - a a W%(x)g .

Remark 2.1. Let V(x) = f;‘v(t)dt. By putting m = p — a in inequality (7), w(x) = v(x),
W(x) =V (x) (respectively w(x) = ¢p(x), W(x) = ®(x) and f(x) = g(f(x))), we obtain

" v AT v :

J =1 )fp(x)dx< <Jo v(x)dx) (JO Vq-%q(x)fq(x)dx> _ (8)
Pop(x) b =G [ (b ¢ () a
o q)p—a(x)fp(x)de (JO ¢(x)dx> (O o q(x)fq( x)dx ) 9)

The main results are presented in the following Theorem and Corollaries.

Theorem 2.1. Let f,v, ¢ be non-negative measurable functions on (0,x), 1 <p < q < ®
and r(x), h(x) satisfied the conditions (4). Ifa <p -1, then

1-P

" @) P ([ e ‘
JVp vr=a(y TeHP (Ddx < (p a—l) <JO V(x)dx> (JO ) K (x )|qu>, (10)

b 9 p (P S b(x) a
v C @ s (=) (jo ¢(x)dx> <0 S Vol ) . an
where

%4 /
K@) = %{[v ()] F(h®) = [V TN FOr@)}

d(x)
¢ (x)

20 o R

/6 = o (h(x)) o (r()

f (T(x))}-
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Proof. We consider the inequality (11), then

h
wﬁﬂw=w@2&g£ﬂmm—f@igggﬂmm
_ ()] (x)
T o(x)

integrating by part in the left-hand side of (11), we get

~C @ T p
(p-—a-DoP " (x)| p-a-1

P )
0 dP-(x)

(Cs P (x)dx =[

Pp(x)](x)(Cs FP~ 1(x)
0 P4 (x) dx

Since a < p — 1, we have

P p(x) p Lo ()] (x)(Cs P~ 1(X)
(o) (Cs P (x)dx Sp S P2 (x)

The Holder integral inequality for %+p% = 1, gives

1
o7

(@ﬂwwmf

P p(x) p 169
o PP *(x )(C s [P (x)dx < p—a 1( 0 PP(x)

1

JGO[Pdx ) ;

b g
X( Pra(x)

therefore

P90
o PP(x)

b
L) [ s uera

€ rwax < (—t—) | s
Finally, by using inequality (9), we get (11).
The proof of inequality (10) is similar. So, the proof of Theorem is complete.
Now let r (X) =0 in (5) and (6), thus

h(x)
(Fs1f)(x) = ) fOv(ydy, x>0,
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h(x)

Ifwesetq=pin (10) and (11), we obtain the following corollary.

Corollary 2.1. Let f, v, ¢ be non-negative measurable functions on (0,0), p > 1, a<p-1
and

0 < h(x) < o for all x € (0,),
{ h(0)=0 and h ()= oo. (12)
Then
b V(x) p o\ (P v(x)
’ ¢ p PP )
o PP (x )(C“f) (dx < (’p—a—l) ) By 10 (14)
where
Ve[V (h h
K. = @H(52¥ﬂ<w)
@ (h
J1(x) _ 2 fof @)I f(r()).

NOEI)

Remark 2.2. If h (x) = x in Corollary 2.1, we obtain the following weighted Hardy inequality and
Copson-type inequality

P v(x) p P\ (P v()

JO - (Fsof) ()dx < (p_a_ 1) JO ) fP(x)dx, (15)
P o(x) ¢(x)
- a(x)((fszf) (x)dx< p—a—l o a()f()d (16)

where
(ﬂﬂﬂ@=Lf@h@M% x>0,

*fOne (y)

() x>0.

(Cs,zf) (x) =
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If we puth(x)=Ax and r(x) = S xand g = p in Theorem 2.1, we get following
corollary.

Corollary 2.2. Let f,v,¢ be non-negative measurable functions on (0,%), 0 < B < 1 < o,
p > 1and

Ax
(Foaf) (0) = jﬂ OOy, x>0,

Ax
(Cs,,sf)(X) = N %ﬂ;?’)d% x>0.
If a<p-—1, then
b v(x) p o\ (P v(x)
Jo Vr—a(x )(Tssf) x)dx < (m) Jo Vp_—a(x)IKz(x)lpdx, (17)
' o) PV [P W)
0 Pbp- a( )(653 f) ( )dx < (m> | q)p——a(x)UZ(x)lpdx' (18)
Where
V) [Av(Ax)f(Ax) — B v(ﬁx)f(ﬂx)]
Ki(x) = 200
_ O (Ap(Ax) B ¢(Bx)
156 =57 ){WX) Flax) = s (B )}

Remark 2.3. One can prove the boundedness of the operator F ; from L, (0, ) to L, (0, )

by using the Minkowski integral inequality for p > 1, it means that || (7, ;) ()|, .
»(0,

Cappllf (x)Ile'y(O'w), where L, (0, ) is the classical Lebesgue space and L, (0,) is the
1
weighted Lebesgue space, with the following norm [If(0)ll., o) = ( Jy 1f @) Pdx)r

and C;,p,p) Is a positive constant depending onlyon 4, and p.

Remark 2.4. For A=1andp = i , We get a Pachpatte-type inequality.

Let

0]

fv(y)dy, CH) = f( )Md% x>0,

#pe = | o

r(x)

54



B. Benaissa and A. Senouci

with
{O <r(x)< o for all x € (0,0),

r(0)=0 and 7 ()= oo. (19)

By setting h(x) = oo and reasoning a manner analogous to the proof of Theorem 2.1, we get
the following corollary.

Corollary 2.3 Let f,v,¢ be non-negative measurable functions on (0,»), 1 <p <q < .
If o>p—1, then

b v p p [ (b =G /b v(x) a
[ s @t < (i) ([ vwa) (jo e (x)l"dx> ,(20)
P L W ‘
J dP—a(x) @ f)p(x)dx<( -p+1 <J ¢(x)dx> (O R 7" (019dx ) ,(21)
where
ko = VO CEIFCE)
v(x)
¢ !
el LAGED)) ey

px) @ (r(x)

Remark 2.5. The following particular case of Corollary 2.3 can be derived by taking
r(x) =xand q = p.

vl p v(x)
JO Vr—a(x) (Ts f)p(x)dx < (a—p+1> JO Valx )fp( x)dx, (22)
b)) o b P\ [P p(x)
| Brego (Gf) Wdx < (a—p+1> ) dragn ) 4 23)
where
@Ne=[ fontay, x>0, @EHw= [ f%)%y)d x> 0.
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Remark 2.6 We note that if v(x) = 1 in the inequalities (15) and (22), we get the Hardy
inequalities (1).

3. CONCLUSION

By using Hardy-Steklov and Copson-Steklov type operators and by introducing a second
parameter of integrability g, some new integral inequalities were established and proved.
These integral inequalities generalize certain classical inequalities like those of Hardy
Copson and Pachpatte. As a perspective, we propose to extended these results to R™ or
subsets of R™ for n > 2. Also it would of interest to try apply some of this integral
inequalities in the study of deferent fields of mathematics (partial deferential equations,
functional spaces, mathematical modeling, ...).
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Summary. A family of weighted two-layer finite-difference schemes is presented. Using the
example of the numerical solution of model problems on the propagation of a single soliton
and the interaction of two solitons, the high quality of explicit-implicit schemes of the Crank-
Nichols type with the parameter o = 0.5 and the order of approximation O(At> + AX?) is
shown. Completely implicit two-layer difference schemes with the parameter ¢ = 1 and O (At
+ AX?) are characterized by absolute stability with a low solution accuracy due to a high
approximation error. The family of explicitly implicit difference schemes is absolutely
unstable if the explicitness parameter ¢ <0.5 prevails. Analysis of the structure of the
approximation error, performed using the modified equation method, confirmed the results of
numerical simulation.

1 INTRODUCTION

The theory of nonlinear waves was originally associated with the study of problems in gas
and hydrodynamics, which include a number of varied and striking problems of applied and
fundamental nature [1], which lead to the need to analyze the huge and growing data
associated with multidimensional nonlinear dynamics.

Initially, the Korteweg de Vries equation (KdV) arose from the needs of hydrodynamics
[2], [3] associated with the propagation of nonlinear solitary waves in shallow water [4, 5],
which ended with the discovery of solitons [6]. The KdV equation was the first nonlinear
wave equation to have soliton solutions. Note that the discovery of solitons [6] was carried
out on the basis of a computational experiment. As it turned out, solitons, which are stable
formations, have a number of amazing properties. Thus, the propagation of a soliton in the
form of a nonlinear solitary wave allows it to maintain its shape and speed during its motion.
In addition, solitons are characterized by elastic interaction with each other. In the course of a
collision, they first deform and then restore their original parameters and their original shape.
Taking into account that the propagation of a soliton is described by a nonlinear equation,
then the principle of superposition, as it is understood in linear systems, according to which
the sum of particular solutions is also a solution, does not hold for it. Solitons exactly interact
with each other, first deforming, and then, restoring their original parameters, in contrast to
linear solution systems, which pass through each other. The only result of the interaction of
solitons may be some phase shift. This confirms that solitons are precisely nonlinear
solutions.

Due to the rapid development of high-performance computing technology, computational
algorithms and methods of modern mathematical modeling, it became possible to study more

2010 Mathematics Subject Classification: 01-08, 35Q53, 35C08.
Key words and Phrases: Two-layer finite-difference schemes, Korteweg-de Vries equation, Euler variables,
Soliton solutions.
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and more complex problems of hydrodynamics [7], nonlinear optics [8], plasma physics [9,
10] and solids [11]. However, since the complexity of the problems under study is ahead of
the development of the used computer technology, the problem of increasing the efficiency of
mathematical methods and approaches remains relevant.

The active use of solitons in the study and solution of nonlinear wave equations [12]
describing physical phenomena in many areas [13] stimulated interest in methods for solving
the KdV equation. The KdV equation was solved numerically by various methods, such as the
Galerkin method [14-16], the collocation method [17, 18], the finite element method [19-21],
the finite-difference method [22-30], etc. The choice of one or another numerical solution
method largely determines the quality of numerical modeling. It should also be kept in mind
that it is far from being indifferent, at the expense of what costs the final result of modeling is
achieved. Therefore, it is quite natural to impose on computational algorithms the requirement
not only of stability and efficiency, but also of simplicity of implementation. Finite-difference
methods possess the greatest combination of these properties.

Earlier, in [24, 25], the results of the analysis of two-layer difference schemes for the KdV
equation from the point of view of integral conservation laws were reported. The concept of
L,-conservatism of a difference scheme was used as the ability of its solution to satisfy the
grid analogue of conservation laws [31, 32]. The L,-conservatism principle makes it possible,
when constructing efficient algorithms, to ensure that they satisfy the grid analogs of the basic
properties of the differential problem.

Based on the L,-conservatism principle for the Korteweg-de Vries equation, it was shown
that explicit two-layer difference schemes do not satisfy the L,-conservatism condition and,
moreover, are absolutely unstable even in the weakest L, norm. In the same papers, this
principle was applied to construct a family of three-layer completely conservative
(conservative and L,-conservative) weighted difference schemes.

In this paper, we numerically and analytically study a family of two-layer difference
schemes for the KdV equation, which includes both explicit and implicit schemes.

2 STATEMENT OF THE PROBLEM
KdV equation in the divergence form

ou 0 (u? o’u
at O‘ax[zJ Pac @

includes nonlinear and dispersion terms, the competition of which determines the behavior of
the solution. The solution of equation (1) is represented in the form of a moving soliton.

The soliton is a stationary unipolar pulse traveling in the positive direction of the X axis
with a speed Q

A
ch[(x—x, —Qt)/8]

where A=3Q/a is the amplitude and & =./4B/Q is the half-width (at the level of 0.42A) of

the soliton. The analytical representation of the soliton will be used to test the computational
method.

u(x,t) = (2
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To complete the formulation of the Cauchy problem, it is necessary to set the boundary
conditions. As the initial condition, the grid representation of the soliton (2) is specified.
Equation (1) requires the setting of three boundary conditions on two boundaries of the final
computational domain.

2 : ou
At the left boundary: aiu =0, At the rlght boundary U| 4= 0, — =0. (3)
aXZ & x=L ax el
3 FINITE-DIFFERENCE APPROXIMATION
In the space of variablesQ,, ,,, we construct a difference grid uniform in x
Oy = {(xm,t"): X, =X, +AX, t“=t“+AtY, m=0,...,.M, k=0,...,K } , 4)
on which the grid function is defined u® =u(x_,t*).
k+1
um
k+1
[ @ @ —Q@— K
(a) k k k k k
um—2 um—l um um+1 um+2
k+1 k+1 k+1 k+1 k+1
umtz umJil um+ umil umiz
® o o k+1
k+o ! k+o ! k+o k+o ! k+o !
N NI NN S ¥ N
1 1 1 1
® @ @ o— K
b k k k k k
( ) um72 umfl l'Im l'|m+l um+2
k+1 k+1 k+1 k+1 k+1
umtz umJil umJr umJ:rl Umiz
® @ @ @o— k+1
k
C k
(©) o

Fig. 1. Grid patterns, implemented by the scheme (5), for different values of o. (a) 6=0, i.e. u*"* = u*
(explicit scheme); (b) 0<o<1, empty circles are fictional n?des at the intermediate time layer (k+oc);
(c) o=1, i.e. U = U,

Using (4), we construct a family of finite-difference schemes for the approximation of the
equation (1):
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m m m + m+2 m+1 m-2 :0 5
5 p ()

k+1 k k+o k+o\2 k+o k+o\2 k+o k+o k+o k+o
Un —Up O (Upeg +Ug" )" (Ug™ +Ug"s Upio —2Uq7 +2U," 7 —U
At AX 2AX°

where u¥* = (1-o)uf +ou’™, o is the weight coefficient, which values ¢ € [0 — 1] determine

the degree of “implicitness” of the difference scheme. The value ¢ = 0 corresponds to a
completely explcit scheme, while ¢ = 1 —to a completely implicit one.

In all finite-difference schemes (5), the second order of approximation in spatial x is
implemented for the derivatives of both the 1st and the 3rd order. With respect to the time
variable t for all values 6#0.5, the schemes (5) have the 1st order of approximation. For, ¢ =
0.5, the expression (5) is an implicit difference scheme of the Crank-Nichols type with the
second order of approximation in time. Fig. 1. shows grid patterns for different values of o.

4 COMPUTATIONAL ALGORITHM

The difference approximation (5), applied to the interior points of the computational
domain, generates a system of nonlinear equations with respect to quantities U on a new time
layer. This system is solved at each time step by the Newton iterative method, for which the
procedure of its linearization is performed, after which it is transformed into a linear system
of equations with a 5-diagonal (band) matrix. In the only case of 6=0, the matrix degenerates
into the identity one, and the scheme becomes explicit.

5 COMPUTATIONAL EXPERIMENT

For numerical testing, the following parameters of the equation a. =6, B =1 and soliton (2)
presented in Fig. 2(a) were used: x, =10, Q=4 = A=2, §=1;

In the computational domain with the size L =420, a computational grid was constructed
containing M = 2100 intervals with a spatial step size Ax=0.2. The total width of the soliton
25 contained 10 intervals.

For implicit schemes o#0, a mechanism for automatic time step selection was
implemented, based on the following parameters: the maximum allowable number of
iterations at each time step was 3-4, the criterion of convergence of the iterative process
includes the relative and absolute errors, the values of which were taken equal to 10”°. For an
explicit scheme (0=0), the time step is discussed below.

Figure 2(b) shows the solution using the Crank-Nichols-type scheme (c=0.5) at the time
t=100 when the soliton has moved from the initial position to a distance of 4005. The transfer
speed determined from the numerical solution turned out to be 1.1% less than the analytical
value (i.e., the lag was about 45). In this case, the amplitude of the soliton fluctuates around
the average value with a standard deviation of 0.3%, and the average value itself is only
0.011% greater than the analytical one (Fig. 4(a)). That is, it can be assumed that the
numerical solution preserves the amplitude of the soliton with good accuracy during the entire
calculation process.

The time step during the entire computational process fluctuated with a small amplitude
around a constant value (Fig. 4(b)). These small fluctuations were associated with the
organization of the automatic step selection mechanism.
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Fig.2 (a). Spatial profile of soliton at the initial time t=0.
t=100

2.5 4 =—0— Numerical solution (¢ = 0.5) (b)
- = = = Analytical solution

T - - 1 T
(b) 400 405 410 415
X

Fig.2 (b). Comparison of the numerical solution obtained using a scheme of Crank-Nichols type
(c=0.5) with the analytical one at the time t=100.

The solution using a completely implicit scheme (o=1) leads to significantly worse results
(Fig. 3). This is due to the high schematic viscosity, which in this case is the reason for a
strong drop in the amplitude of the soliton with time, which in turn decreases its velocity (Fig.
4(a)). In this case, as the amplitude decreases, the integration step increases (Fig.4(b)).
However, at the initial moments of time, when the amplitude is not yet very different from the
initial value, the time step turns out to be about 2 times less than for the Crank-Nichols type
scheme.

Figure 5 shows a numerical solution using an explicit difference scheme (c=0). Figure (a)
shows the solution with a time step At=0.0001. By the moment of time t=3, a loss of
stability occurs and further calculation becomes impossible. Note that a decrease in the
integration step pushes further in time the moment of stability loss.
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Fig.3. Comparison of numerical solution using a completely implicit scheme (o=1) with the analytical

X

one at the time t=100.

Soliton Amplitude
2.0 A
] NZ.Ol (a)
1.5 2.004
< 10] 1.99;
= 2000 2025 2050
0.5- =05
] c=1
00l Analytical value
(@) 0O 20 40 60 80 100
time
Integration Step
c=0.5
10t °7! (b)
~
<
10
(b) 0 20 40 60 80 100

time

Fig.4. The soliton amplitude versus time (a) and automatically chosen integration step (b) for two
implicit schemes: =0.5 and 1.
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Thus, decreasing the step by a factor of 2 to At=5.10"leads to the fact that the
destruction of the solution occurs at about time t=6. Figure (b) shows the loss stability at the

time of t=30 when integrating with a step At=1-10"". According to the results obtained in
theoretical works [24, 25], explicit two-layer difference schemes for the KdV equation are
absolutely unstable. Our results are in complete agreement with this conclusion.

At=10" Ar=10"
2.5 2.5

t=0t=11:=2t=3 (a) t=15 (=20 =25 =30 (b)

2.0
15
—
=10
=

0.5

0.0 it
-0.5

-0.5 }————1—————————————r
60 80 100 120 140

X

Fig .5. Numerical solution using an explicit difference scheme (o=0) with different integeration steps
(by an order)

6 ANALYTICAL STUDY

When using the finite difference method, it is not the original partial differential equation
that is solved numerically, but a modified equation called the differential approximation of the
difference scheme [33-35]. The right side of this approximation is the approximation error
and is equal to the difference between the original partial differential equation and its finite-
difference analogue. Investigation of the right-hand sides of differential approximations
makes it possible to establish the predominant contribution to the approximation error of the
highest derivatives and the related properties of difference schemes such as dissipation and
dispersion. It is known that if the main term in the expression for the approximation error
contains derivatives of an even order, then the dominant properties of difference schemes will
be dissipative, and if derivatives of an odd order, then the dominant properties will be
dispersive.

Let us analyze the family of schemes (5) using the method of the modified equation [33-
35]. To do this, first we replace the sought function u(x,t) by f(x,t)=a-u(xt). This allows

one to get rid of the coefficient o as in both the original equation

o o(f2) o
a, ot -0, 6
8t+8x(2j+ﬁax3 ©

and in the finite-difference approximation

B e LB

=0 7
At AX 8 8 2AX° 0
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That is, the factor a is simply the scaling factor for the ordinate.

5 =0 5 t=1
3 (a) —0— Numerical solution (b)
4 I 4 (6=0.5)
o\ = = = = Analytical solution fo
3 I ° t
=] Q
? \ ¢ 9 )
I § ¢ & L
1 ? g) od % %
& e
0 %
1 T —— ————r—
0 5 10 15 20
X

20
Fig.6. Numerical solution of the problem of collision of solitons: (a) initial condition, (b) comparison
with the analytical solution at the time t=1.

Next, we expand the two-dimensional function f(x,t) in a Taylor series at a point
(x,,t““'?) and substitute it into scheme (7). Leaving the terms in the resulting expression not
higher than the second order of smallness, we can write

f/+f-f +pfL = —[f o RN ft’fx’+BfX(X'X\t’)(cs—;JAt -

8)
2 " 2 (
—lZé fofiy ft’fxﬁ")(c—g +; frf+ ;‘Z +g fx(x\x’it:lAt2 —E fofr +f/f +pfl }AX

X 7 XX

XXXXX

4
In this expression (8), to simplify notation, the indices m and k + 1/2 for the function f and

all its derivatives are omitted. We focus our attention on the first-order term in At. Using the
original equation (6), we get rid of the time derivatives:

fil=—f 1 —Bfs
0
f”=7_f'ff_ f”’
xt 6X( X Bxxx)
fx(xlx\t/) :_3( fx':()z _4fx’ fx’:x - f- f(IV) _Bf o

XXXX XXXXXX

In addition, for simplicity, we use the boundedness of the function f and all its derivatives
in the domain of definition, and we replace the coefficients of the second-order terms by the
constants K; K,. As a result, we finally get:

=—(£)" =1 15 Bl 9)

fl+fof+Bfr = KAX® + KAt +

R R R Y T RE G S RCA T Th

XXX

Now let's analyze the resulting expression (10). In the term of the 1st order with respect to
At, the square brackets contain two groups of terms: in the 1st curly bracket there are even

64



V.1. Mazhukin, A.V. Shapranov, E.N. Bykovskaya.

derivatives with respect to x, in the 2nd - odd ones. l.e. the 1st curly bracket corresponds to
the schematic viscosity, and the 2nd - to the schematic dispersion. In this case, the sign of the
coefficient in front of the dispersion terms is insignificant, while in front of the diffusion
terms it is very important. This sign is determined by the difference (c-1/2).

When o>1/2, the coefficient in front of the first-order diffusion terms is positive, and
scheme (7) implements equation (6) with an additional viscosity proportional to the first
power of the time step. This provides, on the one hand, stable behavior in the calculation
process, on the other hand, distortion of the solution; over time, the initial perturbation is
smeared out. It is this effect that we observed in the numerical solution using a completely
implicit scheme (see Fig. 3).

When o6<1/2, the coefficient in front of the first-order diffusion terms is negative. That is,
equation (10) gets negative viscosity. This means that scheme (7) becomes absolutely
unstable. And since the absolute value of the coefficient is still proportional to the 1st power
of the time step, the destruction of the solution occurs the earlier, the larger the time step is.
This is precisely what we observed when experimenting with an explicit difference scheme
(see Fig. 5).

In addition, now the assertion of theoretical works [24, 25] about the absolute instability of
explicit two-layer difference schemes for the KdV equation can be extended for the family of
schemes (7): all schemes (7) are absolutely unstable for 6<1/2, i.e. with “any prevalence of
explicitness”.

The highlighted value of o is 1/2. For this single value, the first-order term in (10)
vanishes, and thus scheme (7) receives the second-order approximation in both variables,

O(At? + Ax?). In addition, the effects of the scheme viscosity and 1st order dispersion are

nullified. It is precisely because of this that, in a numerical solution on a somewhat coarse
grid, it was possible to obtain the transport of a soliton with practically no distortions over
considerable distances (see Fig. 2).

So, scheme (5) with o=1/2 showed the best results in modeling of the problem of the
soliton transfer.

7 VERIFICATION OF THE APPROXIMATION ORDER

Using the example of the problem of collision of solitons, we numerically verify the order
of approximation of scheme (5) at 6=0.5. For equation (1) with parameters o =6, B =1, there

is the following analytical solution to this problem [36]:
22.5ch[x—4t—8] +10sh[1.5(x—9t —5.5)]
{ch[1.5(x — 9t —5.5)|ch[x — 4t —8]+ 2¢ch[0.5(x —19t — 0.5) }*

We will use this solution to set the initial condition (Fig.6a) and then estimate the error of
the numerical solution. For this, we use the following definitions of the error of the numerical

solution at the time t*:

Uoee (X, 1) = (11)

1 M
Do = JMHZM U 6 t9F
m=0

2) €. = max Qurﬁ —Uexact(xm,tk)‘)

0<m<M

(12)
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At the first stage, we choose the size of the spatial step Ax,,=0.2, as in the previous

problem on the transfer of a soliton. We solve the problem in the computational domain

x €[0, 20] in the time interval t [0,1] (Fig.6b) with automatic selection of the time step in
order to determine the maximum allowable time step. It turned out At__ ~4-10°. Then we

max

make calculations by disabling the automatic selection mechanism and decreasing the time
step until the errors at the end of the calculation t,, =1, calculated by formulas (12), stop

decreasing. This means that in the approximation error
g(At, AX) = E,, (At) + E, (AX) (13)

the part related to the time step became negligible compared to the part related to the space
step: E, (Aty) << E, (AX,,,). It turned out for our problem At, ~2-107°. Wherein

1) E ,(AX,) =0.21359560124
(14)
2) E. (AX,,) = 0.89613301323
We do the calculation again, leaving the step At,unchanged, but reducing the step in space
by 2 times:. We get
1) E\,(AX,, /2) = 0.05356903839
2) E¢ (Axy/2) =0.22397163990

Thus, with good accuracy
ELZ(AX(I)) -3 EC(AX(I)) _
E.,(AX,/2) " Ec (A, /2)

That is, with a 2-fold decrease in the spatial step, the associated approximation error
decreased by a factor of 4. This means that the scheme has a 2nd order of approximation in

space and an error O(Ax?).
To determine the order of approximation in time, we find the ratio:

E,. (At .) _ (Al ar AX (1)) — B (AX(;))
E (At /2) &(At /2 ' AX(l)) —Eu (AX('))

4.00

(15)

As the spatial part of the error E, (AX,), we can use the previously obtained values (14).
Let us calculate the total error again:

1) £, (Atye AX)) = 0.21931557047 , &, (At, /2, AX,,,) =0.2150291787

max !

2) £¢ (Atyy, AX,,) = 0.91058522470 , £ (At /2,AX,,,) =0.90208673036

max
Substituting all values into (15) we obtain

ELZ (Atmax) — 399 EC (Atmax) =3.
EL2 (Atmax /2) EC (Atmax /2)
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This means that the scheme has a 2nd order of approximation in time and an error O(At?).

8 CONCLUSIONS

In this paper, we investigated a family of weighted two-layer difference schemes for the
Korteweg-de Vries equation on an Eulerian difference grid.

It is shown numerically that the best results are obtained using an explicit-implicit
difference scheme of the Crank-Nichols type of the second order of approximation

O(At? + Ax?). This scheme is capable of stably reproducing a stationary solution with good
accuracy for a long time. The second order of approximation in both variables is numerically
confirmed by the example of the problem of collision of solitons.

A completely implicit two-layer scheme of the 1st order in time and 2nd in space

O(At+Ax?), although absolutely stable, nevertheless, due to the high scheme viscosity,

significantly distorts the solution.

The calculation with the use of an explicit two-layer scheme has never been completed.
There always came a moment of loss of stability, even with a very small time step. Although,
up to this point, the solution was quite acceptable.

An analytical study of the family of finite-difference schemes (5) using the modified
equation method fully confirmed the results of numerical experiments. The analysis of the
structure of the approximation error for a family of two-layer finite-difference schemes made
it possible to explicitly show the reasons for the success of explicitly implicit Crank— Nichols

type schemes with O(At + Ax?*) and the absolute instability of the family of schemes (5) in the
case of “prevalence of explicitness” with a parameter 6<0.5. High scheme viscosity of
absolutely stable fully implicit two-layer schemes of the 1st order O(At+Ax?) indicate the

need to improve the accuracy of the space-time approximation.
An important advantage of the considered schemes is their simplicity and transparency of
the basic mathematical constructions.
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Summary. In this article we present a mathematical model used for surface runoff simulation in
GeRa software. The model is based on diffusive wave approximation for the shallow water equations
with Manning formula for flow velocity estimation. It is implemented using INMOST
software platform for parallel mathematical modeling. Parallel efficiency of the model
implementation is adressed for some widely used verification benchmarks. We also present
surface-subsurface coupling approach used in GeRa software and discuss practical aspects of the
nonlinear solver.

1 INTRODUCTION

Surface water is one of the key components of the hydrologic budget of the watershed.
Thus computational efficiency of the surface runoff model implementation as well as
effective surface-subsurface coupling become of great concern to hydrologic modeling
software developers. Considering multiprocessor architecture of the modern computers it is
natural to use distributed approach for mathematical models implementation.

Surface runoff model in GeRa software [1] based on 2D diffusive wave approximation of
the shallow water equations [2] coupled with subsurface flow model based on 3D Richards
equation with consideration of fluid and medium compressibility [3] is implemented
numerically using finite volume discretization method with two-point flux approximation and
Newton iterations as a nonlinear solver. Surface and subsurface models are coupled by first-
order exchange flux [4], [5].

Recently, a large number of different highly efficient computational codes for groundwater
modelling have appeared [6][7][8][9] and parallelization of different aspects of this process
remains challenging [10], [11], [12], [13]. The GeRa software was developed taking into
account the necessity of massive parallel calculations [14]. Now this code is used for high-
performance modelling of real objects [15]. Parallelization of surface flow modelling unit is
required for the integration with the rest part of the GeRa software. Coupled surface-
subsurface model parallelization is carried out using INMOST platform for distributed
mathematical modeling [16]. Moreover, feature set of INMOST includes tools for automatic
differentiation for residual vector and jacobian matrix construction for nonlinear solver.

In this article, we address parallel efficiency of the surface runoff GeRa model in
conjunction with groundwater flow model. The serial version of the model was previously
discussed in [17]. Here we address the parallel implementation of the model. Coupled model
is tested and verified using benchmarks presented in [4]. The solution obtained using GeRa
software is compared to numerical results of other surface-subsurface simulators such as ATS
[11], GEOtop [17], [18], HGS [19], Parflow [20], InHM [21], [22], An and Yu model [23],

2010 Mathematics Subject Classification: 76S05, 65C20, 65Y05.
Key words and Phrases: Surface water, groundwater, surface-subsurface interaction, parallel computations.
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OpenGeoSys [24], [25], Cast3M [26], CATHY [27], MIKE-SHE [28].
We also address numerical issues caused by discontinuous surface-subsurface flux close to
zero surface water levels.

2 SURFACE RUNOFF MATHEMATICAL MODEL

Let's consider a domain QeR® with boundary Q=T Ul , where T, is surface

g 1
boundary and T, is subsurface boundary. Q corresponds to a geological domain with ',
being the land surface. Surface runoff model is applied in the two-dimensional domain T'. In
GeRa the model is based on diffusive wave approximation of shallow water equations and
Manning formula for friction slopes [19]:

oh,

-V(K\VH,.)=0q—-¢..,
ot ( s s) q qss

where
h” )

K = s
14 |VHS|

and h,=h,(x,t) is the unknown surface water depth, H (x,t)=h(x,t)+z(x), v is the
Manning's roughness coefficient, q is the precipitation rate, g is the surface-subsurface flux
density. We refer to K, as a surface conductivity coefficient.

Two types of boundary conditions are considered on the boundary oI';. The first one is
critical depth boundary condition [19]:

~K.,VH,-n=,/gh?, 3)
and the second one is homogeneous Neumann boundary condition:
-K,VH,-n=0, (4)

where n is outward unit normal vector, g is the gravity acceleration.
To model groundwater flow we use modified Richards equation for variably saturated
media with consideration of fluid and medium compressibility in domain Q [3]:
00(h,) oh )

+Ss, —2-V-K V(h +2)=0,
ot Sor ot g (g )

IS

stor

where & is the water content, h, is the pressure head, S =S(h,) :g is the saturation, s

S

the specific storage, K, = K(h,) is the hydraulic conductivity, 6, is the maximum (saturated)

water content.
Water content @ is associated with pressure head by van Genuchten model [29]:
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6
9+#,hg<0, ©)

0= (1+ ahgn)

0,,h, >0,
where 6, is residual water content, « and n are model parameters, m=1-1/n. Hydraulic
conductivity is approximated using Mualem's model [30]:

s U

is saturated conductivity, S, = =6, is the effective saturation.
s Yr
The following Neumann type boundary conditions are set on 0 :
O, X el (8)
0,xel

where K

sat

—K, (h, (x,t) + 2)Vh, (x,t)n ={
iy
Here n is an outward normal vector to the boundary.Thus on T', the flux is defined by

surface-subsurface water interaction and is zero on the rest of the boundary.
Surface-subsurface coupling approach is based on first-order exchange coefficient [31] (i.e.
flux density is proportional to difference between surface water depth and subsurface pressure

head):
Ky 9)

0y (h,hy) =1 d B
0 for (h, =0,h, <0),

(h,—h,) for (h, >0,—0 < h; <+<0) and (h, =0,h; >0),

where K is bottom sediments conductivity, d is the bottom sediments layer thickness, E

is the limited groundwater pressure head. The latter is determined by the following formula
with small positive ¢,

By~ -+ 77 e, 10

This expression is used to provide nonlinear solver convergence and smoothly approximate
the following value:

h, = max{h,,~d}. (11)

As one can get negative h, during the nonlinear solver iterations, definition of expression (10)
should be extended for h, <0
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Ky (12)

gu(hhy) =1 d -
0 for (h, <0,h, <h).

(h,—h,) for (h, >0,~00 <h, <+) and (h, <0,h; >h,),

This definition means that water flow cannot have a downward direction (from surface to
subsurface) when there is no water on the surface.

Equation (12) is discontinuous with respect to both arguments for h, =0,h, <0. The
discontinuity may result in nonlinear solver oscillations near the surface-subsurface flux
discontinuity line. To overcome this problem, we use modified formula (smoothed) for
surface-subsurface flux. To provide further details we first decompose the range of h, and h,

into 3 subdomains (see fig. 1). We use the domain A as an interface between domains B and C
and smooth the flux function in it. The following expression is used for surface-subsurface
flux which is continuously differentiable with respect to both arguments for h, >0 except the

square domain 0<h  <¢,0<h <¢, where it is discontinuous along the h; =h, segment,

_ 13
= (0, ). (h.hy) < C, ()
K 1 1 1—0037[hS
qss(hs7hg): dSS _?h53+;h52+(hg_g)Tg l(hs'hg)EAv-
0,(h,,h,) € B.

VA

Y =

B

Figure 1. Decomposition of h and h; range
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3 NUMERICAL SOLUTION

The system to be solved is composed of coupled surface flow equations (1) and subsurface
flow equations (5). We use finite volume method and implicit Euler scheme to discretize
model equations. Newton-Raphson method with relaxation is applied to solve the nonlinear
problem in GeRa. Surface mesh on I’ is obtained as trace of 3D mesh in Q.

To define the residual on every Newton-Raphson iteration | we decompose it into three
parts. Consider first the residual R{ of the surface flow equation in i-th cell E; of surface

mesh in I", at n-th timestep:

RSI n R| n Rl n R| n . (14)

acc,s,i flow5| SS,S,i

Here accumulation term R'"

acc,s,i

corresponds to time derivative and precipitation sources, flow

term R."

flow,s,i

corresponds to water flow inside the computational domain (i.e. T', for surface
runoff) and surface-subsurface term R.".. corresponds to surface-subsurface flux. The same

SS,S,i

approach is applied to calculate groundwater flow equation residual:
RIT =R i+ Rimgi +RY (15)

acc,g,i flow,g,i ss,0,i

Note that R!! and Ré’,? are functions of both surface water depth and groundwater pressure
head as surface-subsurface flux depends on both of these variables and we use fully implicit
scheme.

The combination of two vectors R!] and Ré‘fi‘ is a residual vector for Newton—Raphson

method.

3.1 Discretization of surface runoff model

Accumulation term corresponding to time derivative and source term (precipitation) can be
written as follows:

. —hrt (16)
RN =5, —-s qr,

acc,s,i I At

where S, is the area of E;, n is the time step index, h!} is the surface water depth at I-th

Newton—Raphson iteration in E;, At" is the time increment, q is the precipitation rate (or
other sources) in E;.

Flow term corresponds to water flow on the surface domain. Using linear two-point flux
approximation, we get the following expression:

~h, (17)
RIﬂgWSI = Z Ksu ‘C ‘

&;j €0,

where summation is over surface mesh cells neighboring to E, through edges, K!? is

s,ij
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discretization of surface conductivity on a common edge e; of cells E; and E;, ‘cicj‘ Is the

distance between E; and E; cells' centers, ‘Iij‘ is the length of e; .

(hsl,r; )5/3 (18)
: hl'h >0,
n _ 1n)2 In)2 e s
Ky = V((Vstjij) +(Vstjij) )
0,hi7 <0,
where hs';i”j is approximation of h; on e; at |-th Newton iteration at n-th timestep,
| V,H,V HUG | is approximation of VH, on e; at I-th nonlinear iteration at n-th time
step. For negative h(f, K{i is assumed to be equal to zero.
We use upwind approximation for the numerator of (18):
h H > R (19)
hof =1 e e
hs:j ! Hs:i < Hs,’j’

where z; and z; are z-coordinates of E; and E; centers respectively. We also use upwind
approximation for the denominator of (18). Assume, that E, is the upwind cell, i.e.

(20)

o B EH,
k — I, I,

E; Hgl <H.T.

For a cell E, consider two sets of cells. X is a set of surface mesh cells neighboring to E,

over an edge, =°® is a set of surface mesh cells neighboring to E, over a node. For example

H H edge _ f; :edge :edge node __ x-edge snode :node :node +node
shown in fig. 2 X5 = {i, jy°, j5%°}, 25" = 5% O/, [, [1*,..., j§°°}.

node

ode \ Cig = ode
el i efs
ode node d
clgde. € / cngde,

edge. edge
e\ G- g \G2+  JeRE
dge edge

node (s (555 node
Cip™ i ¢y LA
ode, node,
node, edge Cie node,
Gii e i gsdee Cj7

ode

e / codee, i/ codee, ejpte

Figure 2. lllustration of E* and E{** sets for j-thcell, ES"® consists of cyan-colored cells, E]**
consists of cyan and pink-colored cells
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For each element of X we consider the following equation based on Taylor series:
Hoo = Hof + (%, =XV He + (Y, = YOV Heg (21)

where o is an element of =i, x ,y are x, y coordinates of y-th cell, Hi} =hi} +z,.
Equations (21) for each a € X compose a linear system of equations for unknown H'"

and H,7, . In case if this system is underdetermined we use Z;** set of cells instead of ;.

Consider the following matrix and vector:

s, X,k

(X =% Yo =Y | (HIT —HI ] (22)
Xaz = X ya2 — Y Hslzz Hsllr<1

A= Xa'3_Xk ya3_yk y b— HS|23_H||'1 )
X =% Yoo =Y Ho —H

where a,,a,,a,,...,a,, are elements of X2 or X°® (depending on whether linear system
Ax =D is underdetermined or not for %),

s,ij? s,ij

The gradient [V,H!7,V HIT | is defined as argminll Ax—bI? (linear least squares

problem solution):

[V H v HT =(ATA) ATb. (23)
3.2 Discretization of groundwater flow model
Again, consider separate components of nonlinear residual.
o) -o(hy hi? —hi (24)
Ralmr;gn =V, ( ) (s,) S(hé’?)ssmr Evranl
At" ’ At"

where V. is the volume of i-th subsurface cell of 3d mesh, hé’y? is the groundwater pressure

head at | -th nonlinear iteration at n-th time step in this cell.
h hI " (25)
Rlﬂgwg i Z K (hl ¢ ‘ ‘

where summation is over cells of subsurface mesh neighboring to i-th cell through a face,
‘cicj‘ is the distance between centers of i-th and j-th cells, S; is the area of a common face

of these cells, K, (h,) is defined by (7), h;"?j is upwind pressure head defined by
hyh = maxgh;t, hy" 3.

9.1’ 9.]
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3.3 Discretization of surface-subsurface flux

Consider residual term R""

«si - We define this residual term as follows (domains A, B and
C are depicted on fig. 1):

26
ss (hln hln) (hsl:q’héT) C, ( )
"
1-cos—
In Kss 1 I,n 1 I,n In In In
RL =S4 , —g—z(h ) ;(hs’i) +(h" )# J(hT h") e A,
0,(h!", hi") € B.
The groundwater counterpart of this term can be defined by R." i = —RS'S“SI , Where i is an

index of top level 3d subsurface mesh cell, which has i -th 2d surface mesh cell as one of its
faces.

4 NUMERICAL EXPERIMENTS

Three numerical experiments are considered. In the first one no groundwater flow is
modelled as we verify simple surface runoff model without coupling. The following two
experiments are devoted to coupled surface-subsurface simulation. Coupled numerical
experiments are then examined for parallel implementation efficiency.

4.1 Surface runoff

In this numerical experiment, we model surface runoff without coupling with groundwater.
Numerical solution is compared to analytical solution of kinematic wave equation. Note that
assumptions of diffusive wave approximations differ from kinematic wave. However, we
propose to compare diffusive and kinematic wave approximation solutions due to the
following arguments. First, analytical solutions for diffusive wave equation presented in
papers are obtained using additional strong assumptions [33], [34]. Second, both
approximations are formulated for the same original shallow water equations, thus
approximate the same model.

Ground surface is a 200m x 100m rectangle tilted with slope equal to 0.01 along the longest
side. However, we add artificial river banks to prevent water outflow from the lateral sides of
the domain. Geometry of the domain is illustrated by fig. 3. Rainfall intensity is equal to
5x10°m/s for the first 15000 seconds of the experiment and 0 for the next 15000 seconds of
the experiment. Overall experiment duration is 30000 seconds. Manning roughness
coefficient isv = 0.05s/m*®. Comparison of the numerical results for linear discharge density
through the outlet with the analytical solution is depicted on fig. 4 (linear discharge density is
equal to the discharge divided by the outlet length, which is equal to 100 m). As one can see
on the figure numerical results are close to the analytical solution, however some qualitative
difference remains. The latter may be caused by the slight diffusive and kinematic wave
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model disagreement.

20

Figure 3. Geometry of tilted v-catchment numerical experiment domain

0.012

—GeRa
0.01 — Analytical

linear discharge
density, m2;’s
o o o
o o o
o o o
s (e)] o

0 10000 20000 30000
time, s

Figure 4. Water discharge dynamics for tilted v-catchment numerical experiment

4.2 Tilted v-catchment with subsurface

This numerical experiment as well as corresponding other simulators' numerical results are
described in [4]. Ground surface is a 10m wide channel with parallel walls with banks tilted in
x and y directions. Slope in y direction is constant and equal to 0.02, slope in x direction is
zero for the channel, and 0.05 for channel banks. Bottom of the domain has the same
geometry as ground surface and is located 5m below the surface (see fig. 5 for domain
geometry scheme). Two different precipitation scenarios were modeled: no rainfall during the
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120 hours of experiment in the first scenario, 20 hours of rainfall with precipitation rate 0.1
m/h and 100 hours of recession in the second scenario. Authors of [4] suggest to use zero
surface water depth and vertically hydrostatic initial conditions with water table 2 m below
the ground surface as initial conditions. Boundary conditions are critical depth boundary
condition for surface layer and no-flux boundary conditions for subsurface.

Figure 5. Geometry of tilted v-catchment numerical experiment domain

The following model parameters were used [4]:
— v =1.74x10"h/m"? for the channel and v =1.74x10* h/m** elsewhere,

- Ky =10 m/h,
— n=2and ¢ =6m™,
~ 0.=008,0,=04,

- s, =10°m*,

stor

— precipitation rate: 0 for 120 h for the first scenario, 0.1 m/h for the first 20 h and 0

afterwards for the second scenario.

One of the simulators considered in [4] uses first-order exchange as a coupling method
(HGS simulator), however there is no exact value defined for proportionality coefficient for
the surface-subsurface flux in this paper. Therefore, bottom sediment parameters were
estimated for GeRa to fit the results of other simulators. For this numerical experiment, we
used K, =20 m/day and d =0.2m.

Using these model parameters, we simulated the test case and obtained water dynamics for
the surface and subsurface layers. Comparison discharge rate through the outlet obtained by
GeRa code with other simulator results is presented in fig. 6 for the first scenario and fig. 7
for the second scenario. As one can see from the figures Gera software produces the solution
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close to the other simulators results. Absolute values of GeRa solution lie between other
simulators.

~
T

MIKE-SHE

CATHY
—Cast3M
—PF
—HGS
—ATS

GEOtop
—GeRa

(=]
T

[4)]

S

discharge, m®/hour

w

1 1 1 J
0 20 40 60 80 100 120
time, hours

Figure 6. Water discharge dynamics for the first scenario of the tilted v-catchment benchmark
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Figure 7. Water discharge dynamics for the second scenario of the tilted v-catchment benchmark

4.2 Borden benchmark

Field study was originally presented by Abdul and Gillham [35], [36] where outlet
discharge has been measured for 100 minutes of the experiment. The experiment site is
approximately 18 m wide and 90m long. The exact surface geometry is described by Digital
Elevation Model of the terrain [4] and is depicted in fig. 8. We considered a region with relief
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level less than 3.02 m as a channel domain and the rest of the surface as channel banks. The
subsurface computational domain is bounded by z=0 plane at the bottom. Numerical
experiment is implemented and described in [4], [20], [23].

We used the following model parameters:

— v =0.03 s/m"® for the channel and v = 0.3 s/m"*® elsewhere [20], [23],
~ K, =0.036 mh [4],

- n=6and ¢ =1.9m[4],
~ 6, =0.067,0,=0.37[4],

Sstor = 10_6 m - '

— precipitation rate: 0.02 m/h for the first 50 minutes, 0 for the last 50 minutes.
For this numerical experiment K, =0.47 m/day and d =0.2 m were used. Note that

authors of [4] used constant value for Manning's roughness for the whole domain, while
different values for the channel and the channel banks are used in [20], [23].

Zero water level on the surface and hydrostatic initial conditions with water table at z =
2.78 m were used as initial conditions. Boundary conditions are critical depth boundary for
the surface layer and no-flux boundary conditions for the subsurface.

Comparison between GeRa numerical discharge rate, other simulator discharge rate and
experimental data is depicted in fig. 9. As one can see from the figure GeRa results are close
to the experimental discharge rate. Moreover GeRa results agree with other simulators under
consideration.

elevation, m

30

25

20

> 15

10

| I 3
20 40 60 80 100 120 140 160

Figure 8. Borden benchmark surface elevation described by Digital Elevation Model with 0.5m
resolution [4]
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Figure 9. Water discharge dynamics for Borden benchmark

4.3 Parallel numerical experiments

In this section, we consider parallel efficiency of the coupled surface-subsurface model
implemented in GeRa. Parallelization is implemented with MPI technology used in INMOST.
For the numerical experiments presented in the section we dramatically refined the meshes for
the experiments described previously. During Newton iteration, we need to solve a system of
linear equations. Note, that in case of convergence failure we refine the time step. Maximum
number of Newton iterations before the time step refinement is one of nonlinear solver
parameters. To solve the linear systems of equations obtained on each Newton iteration we
use PETSc package [37], namely BiCGStab solver with Schwartz preconditioner. On each
processor ILU(K) preconditioner is used. For the mesh cell distribution between processors
ParMETIS package is used [38].

All experiments are performed on INM RAS cluster [39] using the computational nodes of
the x12core segment:

e Compute Node Arbyte Alkazar+ R2Q50

e 24 cores (two 12-core Intel Xeon E5-2670v3@2.30GHz processors or Intel Xeon
Silver 4214@2.20GHz);

e RAM: 64 GB;

e Operating system: SUSE Linux Enterprise Server 15 SP2;

e Network: Mellanox Infiniband.

Due to node configuration we consider not 1, 2, 4,...,2" cores, but 3, 6,..., 3*2" cores to
measure parallel efficiency.

For the tilted v-catchment numerical experiment, (first precipitation scenario is considered)
mesh size is 285750 cells. For Newton iterations, nonlinear problem parameters are the
following:

¢ initial time step is 0.001 days;
e maximum number of nonlinear iterations before time step reduction is 40;
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e stopping criterion is residual reduction by 107 factor.
For linear system solution PETSc parameters are the following:
e Schwartz overlap between processors is 1;
e ILU factor level for each processor is 1;
e stopping criterion is initial residual reduction by factor 10°°;
In the Borden experiment, mesh size is 278140 cells. For Newton iterations, nonlinear
problem parameters are the following:
e initial time step is 0.001 days;
e maximum number of nonlinear iterations before time step reduction is 300;
e stopping criterion is residual reduction by factor 10,
For linear system solutions PETSc parameters are the following:
e Schwartz overlap between processors is 3;
e ILU factor level for each processor is 3;
e Stopping criterion is initial residual reduction by factor 10
Results are shown in the Table 1 for the tilted v-catchment experiment and Table 2 for the
Borden experiment. For each number of processors (first column) we list total solution time
of the experiment (second column), acceleration (third column) and efficiency of
parallelization (fourth column). Acceleration is the ratio between total solution times for
current number of processors and for the baseline number of processors. The baseline number
is equal to 3 for tilted v-catchment benchmark and 12 for Borden benchmark (we do not use
serial computation on a single processor due to long computational time for the refined mesh).
Parallelization efficiency is the ratio between solution times for current number of processors
and for two times smaller number of processors. In other words, efficiency value shows a
speedup for one step of processors number increasing.

Number of | Solution time | Acceleration | Efficiency
processors

3 29456 1.0 -

6 19521 15 15

12 11039 2.7 1.8

24 5081 5.8 2.2

48 2645 11.1 1.9

96 1267 23.4 2.1

192 838 35.1 1.5

Table 1. Parallel efficiency results for the tilted v-catchment experiment

Number of | Solution time | Acceleration |Efficiency

processors

12 92684 1.0 -
24 51997 1.8 1.8
48 28083 3.3 1.8
96 15138 6.1 1.9
192 9111 10.17 1.7

Table 2. Parallel efficiency results for the Borden experiment
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Both experiments demonstrate good scalability and parallel efficiency of coupled surface-
subsurface water simulations. Maximum speedup is 35 times for tilted v-catchment
experiment on 192 cores (theoretical maximum is 64 times). Both experiments also
demonstrate fair efficiency. Average efficiency is more than 1.6 for both experiments and in
some cases hyper linear speedup is observed.

5 CONCLUSIONS

Surface runoff model implemented in GeRa software package is described in the article.
Verification benchmarks previously applied to the serial implementation of the model in [17]
were used here to demonstrate validity of the parallel version of the model itself as well as
coupled surface-subsurface model. We also used these benchmarks to assess parallelization
efficiency of the coupled model. Numerical experiments show good scalability of the
implementation. The acceleration for the parallel implementation is up to 35 times for 192
processors for the tilted v-catchment benchmark relative to the baseline time obtained for 3
Processors.

We also suggested surface-subsurface flux smoothing approach in order to prevent
nonlinear solver oscillations.
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Summary. An effective space exploration is impossible without gravity assists (GA) using.
Their application relaxes the constraints imposed on the space mission scenarios by the
characteristic velocity budgets being realized at the current stage of development of space
technology. A significant change in the inclinations of operational spacecraft (SC) orbits in
flight aimed at studying the inner heliosphere from out-of ecliptic positions (the ESA “Solar
Orbiter” mission, Russian “Interheliozond”) is needed to accomplish some prospective space
missions. Low-cost tours for the high inclined orbit formation in the Solar system with use of
gravity assists near its planets (Earth and Venus) with the full ephemeris using are considered.
The limited dynamic possibilities of using gravity maneuvers require their repeated
performance. Based on the formalization of the search for the GA- timetables with subsequent
adaptive involvement of a large number of options, a high-precision algorithm for
synthesizing chains of increasing gravity assists was built. Its use leads to a significant
inclination change of the research SC's orbit without significant fuel consumption during a
reasonable flight time.

1 INTRODUCTION

An effective space exploration is impossible without gravity assists (GA) using. Their
application relaxes the constraints imposed on the space mission scenarios by the
characteristic velocity budgets being realized at the current stage of development of space
technology. A significant change in the inclinations of operational spacecraft (SC) orbits in
flight aimed at studying the inner heliosphere from out of ecliptic positions (the ESA “Solar
Orbiter” mission, the Russian “Interheliozond” project, etc.) is needed to accomplish some
prospective space missions. Low-cost tours for the high inclined orbit formation in the Solar
system with use of gravity assists near its planets (Earth and Venus) with the full ephemeris
using are considered. The limited dynamic possibilities of using gravity maneuvers require
their repeated performance. Relevance of regular creation of optimum scenarios — sequences
of cranking passing of celestial bodies and solution of conditions of their execution is
obvious. The technology for synthesizing such scenarios is complicated by the necessity of
their 3D design with allowance made for precise ephemeris models. The formalism is based
on two basic factors for designing high-inclination orbits. The first factor is geometric
restrictions on the maximum possible inclination of the SC's orbit, which is achievable
depending on the relative value of the excess vector of the SC's hyperbolic velocity (the
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pole
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asymptotic velocity of the SC relative to the planet) compared to the average orbital velocity
of the planet for any flight sequence. The second factor is dynamic restrictions on the
maximum angle of rotation of the asymptotic velocity vector of the SC during a single gravity
assist. Dynamic restrictions also depend on the value of the asymptotic velocity of the SC and
the gravitational parameters of the planet. A joint analysis of the factors presented makes it
possible to draw a conclusion about the dynamic nature of the planned space mission, which,
however, will require further clarification. Based on the formalization of the search for the
such scenarios with subsequent adaptive involvement of a large number of options, a high-
precision algorithm for synthesizing chains of increasing gravity assists was built. Its use
leads to a significant change in the inclination of the research SC's orbit without significant
fuel consumption during a reasonable flight time.

In previous works [1-3], the authors conducted a comparative analysis of various modern
astrodynamics developments [4-8], affecting the 3D spatial implementation of gravity assists,
in order to clarify the possibility of their application, taking into account the exact ephemeris.
In [3] a refined analytical formula of the inclination changes of the SC orbit were obtained for
one-pass 3D GA obtained and the results of calculations by using the parameters changes of
the orbital inclination of the SC relative the Solar system planets and their satellites. In this
paper, the main focus is on the development of algorithms for the synthesis of multi-pass GA
chains, the use of which leads to a significant increase in the inclination of the SC orbit above
the ecliptic plane.

In this paper, we generalize the formulas of [1] for the inclination of the SC orbit and its
changes during gravitational maneuvers near the planet to the overall case of elliptical orbits
of not only the SC, but also the planet. The geometric interpretation of the obtained formulas
is presented. Expressions are found for the coordinates of the inclination pole on the invariant
sphere of the asymptotic velocity of the SC. The procedure for GA chains reaching the
inclination pole to achieve the geometrically acceptable maximum inclination of the SC orbit
during multi-pass gravitational maneuvers is analytically studied.

2 GEOMETRIC RESTRICTIONS OCCURRED DURING GRAVITY ASSISTS
PERFORMING

Using the results of [1, 2], we introduce spherical coordinates to describe the invariant

sphere of the position of the ends of the CS’s asymptotic velocity vector V_of the during
gravity assists: radius V_ and angles p, o. The angle p is the angle between the vector V,

obtained after the gravity assist and its projection on the orbital plane, and the angle o is the
angle between this projection and the orbital velocity vector of the planet V; .

The restrictions on changing the inclination i of the SC’s orbit when performing GA with
a selected planet ("solo™ GA) can be interpreted as geometric and dynamic [1, 2].

Geometric restrictions define the maximum value of i for any number of solo GA, which
for the case (1) is given by the dimensionless asymptotic velocity of the KA v, [1-3, 8-12]:

sini,, =V, (1)

v, =V, 1V, (2)
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It is easy to see that from (1) and (2) follows a restriction for the maximum possible
inclination:

ima>< < 72—/2 : (3)

3 GRAVITY ASSISTS DYNAMIC RESTRICTIONS

Dynamic restrictions of the SC’s orbit inclination changing are determined by the
magnitude of the planet's gravitational field and the minimum allowable flyby distance near it.
For the rotation angle ¢ of the SC’s asymptotic velocity vector after a single-pass GA, is valid
the formula [4]:

M 4)

sin—= >
2 u+rV;:

where p — gravitational parameter of the flyby body, r_ — the distance of the pericenter of the
SC’'s flyby hyperbola, which cannot be less than the radius of the partner planet R . The

position of the "inclination pole™ - the extremum point T, :i=1i,,0n the V_-sphere is
schematically shown in Fig. 1. the Sequence of any solo GA in order to increase the
inclination of the SC’s orbit (we will call them “increasing chains”) should be as close as
possible to the point T,

ole *

n

TP{JIL‘B
v

scout

Fig. 1. The inclination pole T,,, - the inclination extremum point location on the V_ - sphere

incase sino =0

ole

The overall meaning of dynamic constraints for GA is that the end of the output vector
V., o fOr asingle-pass GA does not go beyond the spherical region (“spherical cap™) S, . This

region is the intersection of a sphere and a solid angle formed by a cone with a solution angle
of 29, the axis of which is the vector of the input (before GA) SC’s asymptotic velocity V, ;.

(Fig. 2). The base of the spherical cup is obviously a circle K of radius r, =V,_sin ¢ .
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sc,out

A\l

Fig. 2. The end of the output vector V., . for the single-pass GA does not extend beyond the
spherical region S, (“spherical cap)

4 OVEERALL CASE OF THE PLANET’S ELLIPTIC ORBIT
Let’s obtain a generalization of the results [1] for the case of elliptical orbits of the planet
and SC. We then use the formula for the tangent of the desired angle of inclination i between
two planes with normals n,n  under the condition (3):
|nxng| ()
tgi=——2
n

sC

Let y is the trajectory angle (the angle between the velocity vector of a planet and the"
virtual " vector of the circular orbital velocity of that planet at the same point). For a circular
orbit [1] y=0. We introduce the right triple of Cartesian coordinates (X,Y,Z) so that the axis

X it is directed along the velocity vector of the planet, and Y is orthogonal to its orbital
plane. Then V, =(V,,0,0), r, =(r,siny,r, cosy,0), and
n=r,xV,=(0, 0, —r\V,cosy),
nsc = rpI X(Vpl +Voo)’

nxng = (I’pI ><Vp|)><(|’pI ><(VpI +Vw)) =

pl?

:(rpl ><Vp|)><(rpI ><Vp|)+(rpl ><Vp|)><(rpI XVoo):(rpI prI)x<rp| xVoo)
Let's use the identity: (axb)x(axc)=a(a-(bxc)),, which in this case will mean:
(rp, pr,)x(rp, wa) =T, (rp, -(Vp, wa)).
Writing V,, as:

(I’plprl)x(rplwa)zrpl(rpl.(V wi)) (6)

pl

we find

90



G.K. Borovin, A.V. Grushevskii, A.G. Tuchin and D.A. Tuchin

V, xV,=(0, =V, V_sinp, V V_ cospsinc)=(0, -V, V

oz !

Vi) ()
and
nxng =r, (rpl ) (Vpl xV, )) =Ty I"pIVpIVooz cosy (8)
This implies an important statement [1].
Statement. The SC’s orbit normal vector n . after GA will always be orthogonal the radius

vector of the planet r,, that is, for any GA, n_it always remains in the plane that is

pl
orthogonal r, .
Expression (7) can be represented in coordinate form. We calculate for such a

representation n-n:

n-ng :(rp, ><Vp|)'(rp| ><(Vpl +Vw)):(rpl val)z +(rpl val)'(rpl 'Vw):

)
=13V -cos?y + 15 (Vy, V. ) = (1 - Vi )+ (1 - VL)
Using relations
VoV, =V -V =10V, siny,
NV, =rV, siny+rV, cosy (10)
we can find:
N-ng =12 -VE-cos’y + VNV, — 1V, siny (V. siny +V,, cosy ) = a
=1V -cos’ y + V.V, cos’ y — V.V, sinycosy.
As a result, we get the formula for the tangent of the angle of inclination:
tg i = VOOZ - , (12)
V,cosy +V,, cosy -V, siny
. V_sin
tg | - SINP (13)

- V,,€0sy +V, c0s pcos(y + o)
The obtained formula (13) can be considered as a functional relation tg i(p, o) .

Note that the parameter vy, as a parameter of the planet's orbit, it does not depend on the
point of GA. It follows from (13) and (1) that the maximum of the function tg i is reached at a

certain pole of inclination on the V_ - sphere o =0", p = p", for which is properly:
cos(y +o)=-1lo'=m-y , (14)
\Y .
cos p* :ﬂzv—“’:sm la -
CoOSy  COSy
For the case of a circular orbit of the planet, the relation will be fulfilled " =7 .

5 BASIC ANGLES OF GRAVITY ASSISTS MANEUVERS FOR PLANETS

We compare the dependence of the maximum angle of rotation of the asymptotic velocity
vector of the SC ¢, , substituting the condition in (4) r_ =R, and geometrically acceptable

inclination of the formed orbit of the spacecraft (2) for the planets of the Solar system.
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Comment. Comparison of (2) and Fig. 1 [4], formula (1.2.10), shows that in [4] the value

of V... approximately replaced in the denominator by V ,, so that:

V. . (15)
sini=—=sing, ., =V, sSing,., .

pl

Expression (15) in some cases , for not very large values of v_, can serve as a satisfactory
approximation of sini [1, 2, 3].

The graphs ¢, relative V_ for the terrestrial planets and Jupiter are shown in Fig. 3. They
show that the maximum rotation angles are reached at near-zero values V_. However, the
value of i_,, in this case, according to (4), it is close to zero.

GA "efficiency" appears only when increasing V, to the values that provide the required
value for a space mission i, , but at the same time the value ¢, , which is demonstrated in
this graph. The bold line denotes the model value of the demanded design inclination angle
i =7/6. The vertical, lowered from the point of its intersection with the graph of the
function of the maximum inclination of the planet, shows the corresponding value of the
rotation angle ¢,,, of the SC’s asymptotic velocity vector on one single GA.
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Fig. 3. The dependence of ¢, and i, for the planets of the earth group and Jupiter (in degrees)
on the value of the dimensionless asymptotic velocity V_ (in km/s)
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6 SEARCHING ALGORITHMS FOR THE GRAVITY ASSISTS CHAINS THAT
INCREASE THE SC’S ORBIT INCLINATION

The chain GA in the case of their solo execution can be represented as the group of
automorphisms V_ - sphere. Climbing on theV _ - sphere is required to the target point close to
the pole of its inclination T, . Arrival to the T, .
maximum possible inclination of the SC’s orbit (1).

According to [1], for missions with v, =1/2 the pole T, will be localized at the
intersection of latitude p =60° and the longitudinal plane 0=0 (Fig. 4).

When conducting an increasing chain of "solo" GA near a fixed planet the V_ - sphere is an
invariant. Therefore, if necessary, it is possible to solve the problem of constructing a
connected route from the starting point of the first GA A, (contained in the spherical cap

S.,1) Up to the point of the inclination pole T,

will mean reaching the geometrically

Pole *

with a sufficiently large number of

Pole
connecting (in the limiting case, touching) local spherical caps S_,,,S,, ;- S,y [2], (Fig. 4,

green circles).

The maps must overlap. Each S_,,,S,,, must contain at least the two points of different

resonance lines between the orbital periods of planets and SC (GA output), which provides
the construction of a new SC to the planet after a short time.

T

Polc

N

Fig. 4. For missions of any class i, =1 the inclination pole will be at latitude p =7 —1i

required ! required *

Isolines of the resonant ratios between the SC’s orbital periods and the planet of the following types
are plotted: 1:2, 3:4, 1:1 (blue line), 5:4, 4:3, 3:2, 2:1, 3:1

7 CONCLUSIONS

The formulas obtained in [1-3] for the orbital inclination of the spacecraft and its change as
a result of gravity assist maneuvers (GM) around the planet are generalized for the case when
not only the spacecraft's orbit, but also the planet's orbit is elliptical. The geometric
interpretation of the formulas is described. Formulas are obtained for the coordinates of the

93



G.K. Borovin, A.V. Grushevskii, A.G. Tuchin and D.A. Tuchin

inclination pole on the invariant sphere of the asymptotic velocity of the spacecraft. A
comparative analysis of the results and modern descriptions of spatial 3D GMs was carried
out [4-8]. Some cases are described when A. Labunsky's approximation [4] is acceptable
[1-3].

A comparative analysis of the results and modern descriptions of spatial 3D GM is carried
out [4-8]. The procedure for constructing a GM chains leading to the inclination pole to
achieve a geometrically acceptable maximum inclination of the spacecraft's orbit is
analytically investigated.

The characteristic "working" size of the spherical region of the elementary GM on the
surface of the sphere is determined. An algorithm for searching for ballistic scenarios is
presented, which reduces to constructing a finite simply connected chain GM from the initial
GM to the inclination pole, covered with spherical caps on the resonant lines of the invariant
sphere. These chains can go either along the resonant isolines, or jumping between them. As a
result, a formalized structure of GMS that increase the inclination of the SC’s orbit is
synthesized, which allows automating the process of adaptive synthesis of phase beams of the
corresponding optimal trajectories consisting of millions of variants.
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Summary. An expression in a closed form is proposed for the approximation of the Debye
function used in thermodynamic models of solids. This expression defines an analytic function
that has the same limiting behavior as the Debye function at low and high temperatures. The
approximation gives the maximum relative deviation from the value of the Debye function less
than 0.001. The proposed expression can be useful in the equations of state of solids in a wide
temperature range.

1 INTRODUCTION

The Debye model [1] was proposed for description of thermodynamic behavior of materials
in a wide range of temperatures. It represents the phonon contribution to equations of state of
solids as an interpolation between limiting cases of low and high temperatures [2-25]. Equations
of state of matter are necessary for analysis and numerical simulation of physical phenomena
under extreme conditions of high temperatures and high pressures [19,26—40].

Analytic expressions of thermodynamic potentials within the Debye model contain the De-
bye function in a form of integral [1],

X

3 [ 3dr
D = — 1
0

x > 0, which cannot be expressed in elementary functions. Despite of that this integral can
be written as analytic expression with infinite series [1, 3,41, 42] or special functions (poly-
logarithms and the Riemann zeta function) [43], closed-form expressions approximating the
Debye function are interesting for practical use in thermodynamic calculations. Many works
are devoted to elaboration of simple approximations of the Debye functions with different ac-

2010 Mathematics Subject Classification: 26E05, 33F05, 74A 15, 80A10, 82D20.
Key words and phrases: Debye function, analytic function, equation of state, heat capacity, low and high
temperatures.
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curacy [14,44-50]. All of such approximations can be sorted as piecewise continuously differ-
entiable functions [44,45,47] and smooth (in particular, analytic) functions [14,46,48-50].

In the present work, an expression is proposed approximating the Debye function in a closed
form of analytic function. Some results of calculations are presented illustrating the accuracy of
this approximation.

2 MODEL OF THERMODYNAMIC PROPERTIES OF SOLIDS

Thermodynamic potential the Helmholtz free energy is traditionally taken as a basis of equa-
tion of state model. This potential can be presented as a sum of three parts:

F\V,.T)=F(V)+F((V,T)+F(V.T), 2)

those are a portion of energy corresponding to zero temperature 7 = 0 (F;) and thermal con-
tributions of ions and electrons (F, and F, respectively). Here V is the specific volume; T is
the temperature. Considering thermal contribution of ions in solids, one can take into account
portions of energy of acoustical (F,.) and optical (F,y) modes of ions vibrations. For the unit
cell of the crystal structure with v particles, this contribution is as follows:

3(v—1)
F(V.T)=Fe(V,T)+ Y Foa(V.T). 3)

a=1
The energy of acoustic vibration modes is usually considered within the framework of the Debye

model [1]:

RT

Foe(V,T) = T[Sm[l —exp(—0uc/T)| — D(0a/T)]. “4)

Optical mode contributions are commonly considered in terms of the Einstein model [51]:
RT
Foa(V.T) = =~ In[l —exp(—6uc/T)]. 5)

Here, 0, and 6, are the characteristic temperatures of the acoustical and optical modes of ions
vibrations.

The first and second derivatives of the Helmholtz free energy with respect to temperature
determine the entropy and isochoric heat capacity of a substance:

§=—(dF/dT)y, (6)
Cy =T(3S/IT)y. %
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Consequently, the first and second derivatives of the Debye function appear in the entropy and
the isochoric heat capacity of solids. In particular, if the characteristic temperature 6,. does
not depend on temperature, one can obtain the following expressions for the contributions of
acoustic modes:

R 3
Sac = v {3 In[1 —exp(—x)] — e"j 1 —bk) +XD,(X>:| 7 v
R[ 3x%e* 2 NI/
Cyac = ; {W +x°D (X)} ) (9)

where x = 0,./T.
Sometimes, it is convenient to take into account the properties of the Debye function:

D'(x) = — =D 1
()= 55— D). (10)
3e* 31 3 4
D'(x)=——"5 | ————-D(x)|. 11

(x) (ex—1)2 x{e"—l x OC)} (h

Then the entropy and specific heat capacity are related to the value of the Debye function:
R
Sac = —;[31n[1 —exp(—x)] —4D(x)], (12)
3R 3x

However, relations (10) and (11) may not be valid for approximation functions used instead of
the Debye function. Then using equations (12) and (13) will lead to some inaccuracy.

3 INFINITE-SERIES FORMS OF THE DEBYE FUNCTION

Following Debye [1], one can rewrite integral in equation (1) and obtain

3 7 Adt 3 [ Bdr
D(x)_x?/—et—]_x?/—et—]. (14)
0 X

The first integral in equation (14) has known value 7#/15 [1, 52]; the last integral in equa-
tion (14) can be simplified using the Taylor series

1
e (15)
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which is convergent for |y| < 1, and integrated by parts:

[t r 31\ okt = f 3 . —kt o (X 3 6x 6
/et—lz/te Ze dt:kzl/te dt:kzl ?+ﬁ+k—3+ﬁ € .
X X =

% k=0

So, one obtains
() nt 3i11+3+6+6 ok
X)=— — - —+t 55 +t==
5x3 =k kx = kK22 k33

for x > 0.
At high temperatures, one can use the following relation [53]:

t > B
e’—lzz_ntn’

|
=0 n.

which is convergent for || < 27. Here, B, are the Bernoulli numbers [53]. One obtains

[ B3dt [, B = B, | = B, X3
/t :/ﬁZ-%W:}}%/ﬂ“m: T
/ el —1 a0 n! = n! J =n'n+3

So,

> 3B,
DW= X Gzt

for |x| < 2.

4 APPROXIMATION FORM

(16)

17)

(18)

(19)

(20)

Truncated series (17) is normally used as the basis of approximation of the Debye function

at low temperatures.
In this work, a similar form of approximation function is proposed:

(AZO —I—A”x_l +A12x_2 —|—A13x_3)e_lx.

=

KLM()C) = A()3)C_3 —
=1

Evidently, the value of first-term coefficient

4

T
Ao3=?
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(22)
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secures the same limiting behavior of the function Ky (x) and all its derivatives as the Debye
function D(x) and its derivatives for x — oo.
Using the Taylor series
&=y 4y (23)
' )

nOn

one can evaluate limiting behavior of the function Kz (x) for x — 0:
KLM( A03x Z Z n— — Alox —l—A]lX +A12x"*2 —I—Al3xn73) . 24)
Representing series (24) in the form

Kiu(x Z Cx™, (25)

m=-=3

one can easily obtain sequence of relations between coefficients of equations (24) and (25):

L
C3=An—) As, (26)
=1

L
—Y (An—1Ap), (27)

=

1

=y Y (245 —2iApn+1PAj3) (28)

=1

and

Cn==), ik ((m+1)(m+2)(m+3)Ag — (m+2)(m+3)IAj + (m+3)2Ap — PAp3)
= (m+3)!

(29)

form > 0.
Comparing form (25) with series (20), one can formulate conditions of coincidence of limit-
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ing behavior of the function K;y/(x) and its derivatives up to order M < 4(L — 1) for x — O:

L
Az — Y A;3=0, (30)
=1
L
Z Ap —1AR) =0, (31
=
— Y (241 —2lAp+17A;3) =0 (32)
=1
and
L
=Y (=D ((m+1)(m+2)(m+3)A1— (m+2)(m+3)IA;; + (m+3)PAp — PAp)
=1
=3(m+1)(m+2)B, (33)

forO<m< M.

Solving this system of M + 4 equations, one obtains M + 4 coefficients (A3, Ar2, Ar1, Aro,
A(z-1)3 and so on, if any) of the function Ky (x) (21) with the same limiting behavior as the
Debye function D(x) for x — 0 up to order M of derivatives.

Values of the rest of coefficients Ag, A1, A2, A13, A9 and so on (if any) can be naturally
taken from series (17):

9 18 18

3
Ap=-,An= A12=Z—3,A13=l—4-

A=, (34)

S APPROXIMATION WITHL =1

For L = 1, the approximation function K7, (x) has the only variant K (x) with 4 coefficients

A withl=1,i=0,1,2and 3:
4 4 4

AIOZ__l,All:T_O,AIZZ%,AB:%- (35)

Calculated values of the function Kjo(x) and its first and second derivatives K|, (x) and K}{(x)
are shown in figures 1-3 in comparison with the values of the Debye function D(x) and its
derivatives D’ (x) and D" (x). In addition, the relative deviations of the function Kjo(x) and its
derivatives K|,(x) and K{;,(x) from the reference function D(x) and its derivatives D'(x) and
D" (x) are presented in figures 1(b), 2(b) and 3(b), respectively. The reference values of D(x),
D'(x) and D" (x) were calculated using truncated series (17) with k < 12 for x > 3.34 and (20)
with n < 66 for x < 3.34.
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Figure 1: (a) The Debye function D(x) and the approximation functions Kz (x). (b) The absolute values of the
relative deviations of the functions Kz (x) from the reference function D(x), |0Dpy(x)| = |1 — Kpy (x)/D(x)];
|6Dp(x)| = |1 — Dp(x)/D(x)|, where Dp(x) is the approximation function by Prut [47].
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Figure 2: (a) The first derivative with respect to x of the Debye function, D’(x), and the approximation functions,
K], (x). (b) The absolute values of the relative deviations of the derivatives K}, (x) and Djp(x) from the reference
derivative D' (x), |8D},,(x)| = |1 — K} ,,(x)/D’(x)| and |6Dp(x)| = |1 — Dp(x)/D'(x)|.
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Figure 3: (@) The second derivative with respect to x of the Debye function, D”(x), and the approximation functions,
K}, (x) and D§(x). (b) The absolute values of the relative deviations of the derivatives K}, (x) and Dj(x) from the
reference derivative D" (x), |6D},,(x)| = |1 — K}};(x)/D" (x)| and |6D}(x)| = |1 — Dp(x)/D" (x)|.
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The maximum absolute values of the relative deviations in the region x > 0 are approximately
0.1 for Kjo(x), 0.5 for Kj,(x) and 4.0 for K{;,(x). Note that the relative deviation of the third
derivative K7)(x) from the reference D"’(x) grows at x — 0 in inverse proportion to x.

The ratios of the isochoric heat capacity Cy(x) to its value in the high-temperature limit
(x = 0), Gy = 3R/v, from equation (9) with the approximation derivative K};(x) and from
equation (13) with the approximation function Kjo(x) are shown in figure 4 in comparison with
the reference dependence Cy (x)/Cy, that is obtained using equation (9) with the reference D" (x).

The maximum absolute value of the relative deviation from the reference dependence Cy (x)
is approximately 0.07 for the case of equation (9) with K}{;(x) and 0.3 for the case of equa-
tion (13) with Kj(x), as one can see in figure 4(b).

6 APPROXIMATIONS WITHL =2

For L = 2, the approximation function K7s(x) has 5 variants Kp;(x) for M =0, 1, 2, 3 and
4 with 8 coefficients Aj;at/ =1and 2,i =0, 1, 2 and 3:

8 4
A =3 (forM=0, 1, 2 and 3) or Ajg = %—49 (for M = 4), (36)
snt 219
Aj1=9 (forM=0, land2) orAj; = ?—7—121410 (for M =3 and 4), (37)
1674
A12: 18 (forM:Oand 1) 01‘A12: ?—117—361410—81411 (fOI‘MZZ, 3and4), (38)
lom*
A|3 =18 (fOI‘M:O) OI'A|3 = ? —39—2414]0— 12A]| —4A]2 (fOI‘M: 1, 2, 3 and 4),
(39)
47t 1 1
Apg=——1—-A10—A|1—=Ap—-A 40
20="T3 10=An—7An— A, (40)
21t 1
Ayy=——A|1—Ap—-=A 41
21 =3 11— Az =~ ZA, 41)
2t
Azzz?—Alz—Aw, 42)
4
T
Azgz?—Alg. (43)

Calculated values of the functions Ky (x) and their first and second derivatives K3,,(x) and
K,,(x) are shown in figures 1-3. One can see that the functions Kyy(x) and Ky (x), as well as
the function Kjo(x), are easily distinguishable from the reference function D(x) in figure 1(a).

The derivatives K3,,(x) and K7),(x) with M = 0, 1 and 2, as well as the derivatives K} (x)
and K7,(x), are also easily distinguishable from the reference derivatives D'(x) and D" (x) in
figures 2(a) and 3(a).
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Figure 4: (a) The reference (black line) and approximation ratios Cy (x)/Cy, (colored lines) and (b) the absolute
values of the relative deviations |0Cy a (x)| of the approximation dependences (A = LM and P) from the reference
Cy (x): solid lines—equation (9) with K};,(x) and D} (x); dashed lines—equation (13) with Kz (x) and Dp(x).
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A [0Dalm 16D |m 6D |m 16D |m 16Cya@9)lm  [6CyA(13)|m
10 1.00x 107" 4.98x107" 3.99 x 1010 oo 6.87x 1072 2.66x 107!
20 249x107%2 3.01x107! 4.61x10*0 oo 1.32x 1072 820x 1072
21 7.50x1073 2.05x107%2 5.48x 10! oo 5.68x 1073 1.94x1072
22 3.05x1073 436x1073 240x1072 oo 3.07x 1073 6.00x 1073
23 951x107% 1.29%x1073 2.02x1073 9.70x10°2 1.27x1073 1.38x1073
24 6.99x107% 9.59x107* 1.53x1073 3.69x10°2 948x10~* 1.01x1073
P 473x107% 125x1073 252x107%2 542x107' 4.62x103 7.06x10~*

Table 1: Maximum absolute values of the relative deviations 0D (x), 8D/, (x), D/x (x), 6D (x)

and 0Cya (x) for x > 0, where the cases A = LM and P correspond to the approximation func-

tions Kz (21) and Dp [47]; the last two columns correspond to the use of equations (9) and
(13), respectively.

The remaining functions Ky (x) and derivatives K3,,(x) and K%,,(x) almost coincide with
the reference dependences D(x), D'(x) and D" (x) in figures 1(a), 2(a) and 3(a).

The absolute values of the relative deviations of the function K»ys(x) and their derivatives
K%, (x) and K%, (x) from the reference function D(x) and its derivatives D'(x) and D" (x) are
presented in figures 1(b), 2(b) and 3(b), respectively. One can see that the maxima of these
absolute values for L = 2 are less than the corresponding maxima for Kjo(x), Kj,(x) and K{{(x).
These maxima at L = 2 decrease monotonically with increasing M (table 1).

In the best case for L = 2, the maximum absolute values of the relative deviations for x > 0
are approximately 0.0007 for K»4(x), 0.001 for K}, (x), 0.002 for K%, (x) and 0.04 for K7} (x).

Note that, for L =2 and M =0, 1 and 2, as well as for L = 1, the relative deviations of the
third derivatives K37, (x) from the reference derivative D"’ (x) grow at x — 0 in inverse proportion
to x.

The ratios of the isochoric heat capacity Cy (x)/Cy, from equation (9) with the approximation
derivatives K3,,(x) and from equation (13) with the approximation functions Ky (x) are shown
in figure 4. One can see that, for L =2 and M = 0 and 1, as well as for L = 1, these ratios are
easily distinguishable from the reference dependence Cy(x)/Cy, in figure 4(a). For L = 2 and
M = 2, the dependence Cy (x)/Cy can be distinguished in the case of the use of equation (13)
with the approximation function K, (x). The dependences Cy (x)/Cy, for the remaining cases
of L=2and M =2, 3 and 4 almost coincide with the corresponding reference dependence in
figure 4(a).

As one can see in figure 4(b) and table 1, the maximum absolute values of the relative de-
viations |0Cyy|m (for x > 0) decrease monotonically with increasing L from 1 to 2 and with
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increasing M from 0 to 4. Moreover, using equation (13) gives a higher relative deviation than
using equation (9). In the best case for L =2 and M = 4, the maximum absolute value of the
relative deviation |6Cy s |m in the region x > 0 is approximately 0.0009 using equation (9).

For comparison, the results of using the piecewise continuously differentiable approximation
function Dp(x) [47] are presented in figures 1-4 and table 1. Unlike analytic functions Kz (x),
using equation (13) with Dp(x) gives a lower relative deviation than using equation (9) with
discontinuous derivative D} (x). Despite the slightly lower values of the maximum deviations
|6Dp|m ~ 0.0005 and |6Cyp(13)|m ~ 0.0007, the use of the analytic approximation function
K»4(x) seems preferable in thermodynamic models.

7 CONCLUSIONS

Thus, a family of analytic functions K7 (x) is proposed that approximates the Debye func-
tion D(x), x > 0, in closed form. Among these functions with L = 1 and 2, the case of Ky4(x)
for x > 0 gives the lowest maximum relative deviations of the function and its first and second
derivatives from the reference function D(x) (less than 0.0007) and its derivatives D’(x) (less
than 0.001) and D" (x) (less than 0.002), as well as the lowest maximum relative deviation for
the value of the isochoric heat capacity (less than 0.001). The proposed expressions can be use-
ful in modeling the equations of state for solids in a wide range of temperatures and densities.
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Basic Research (grant No. 18-08-01493).

The paper is based on the proceedings of the XXX VI International Conference on Interaction
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scientist in the field of plasma physics, twice laureate of the USSR
State Prizes, laureate of the M.V. Lomonosov Moscow State
University, Doctor of Physical and Mathematical Sciences,
Professor Anri Amvrosyevich Rukhadze, with whom A.A.
Samokhin had long-term cooperation. Aleksandr Aleksandrovich is
a regular contributor to Mathematica Montisnigri and a long-term
active participant in the international scientific seminar
"Mathematical Models and Modeling in Laser-Plasma Processes and Advanced Scientific
Technologies" (LPpM3, Montenegro), one of the founders of which is Mathematica
Montisnigri. An active life position has led to the combination of scientific work with public
discussion of scientific community problems. A. Samokhin is the chairman of the trade union

2010 Mathematics Subject Classification: 97M50, 80A22.
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of the Institute, a long-term member of the All-Russian Trade Union of RAS Workers, and
also one of the organizers of the "Society of Scientists™, created in 2012.

Alexander Alexandrovich was born in Rostov-on-Don and graduated from school there in
1957. He spent several war years outside the place of his birth, finding himself with his
mother in the occupation near Kotelnikovo, known from the history of the Battle of
Stalingrad.

The rapid development and widespread popularization of science in the USSR,
characteristic of the post-war period (after the victory in the war with Nazi Germany in 1945),
led A.A. Samokhin to the Faculty of Physics of M.V. Lomonosov Moscow State University,
after which he entered the postgraduate course of the N.N. Semenov Institute of Chemical
Physic of the AS of USSR. In his postgraduate studies, he is engaged in various approaches to
the theoretical description of the response of a concentrated paramagnetic spin system in
solids to an alternating magnetic field, showing additional interest in general problems of the
nonequilibrium behavior of macroscopic systems. His first works [2-4] attracted the attention
of the staff of the team headed by the famous scientist I. Prigozhin. The end of the
postgraduate study in 1966 coincided with the time of the "Prokhorov recruitment™ of young
employees at the P.N. Lebedev Physical Institute of the RAS (FIAN), including A.A.
Samokhin. Soon after, Samokhin defended his Ph.D. thesis on the theory of nonlinear
response of a spin system in solids. Several years after defending his Ph.D. thesis, A.A.
Samokhin. continued to actively deal with general issues of nonequilibrium statistical
mechanics, returning to them later as well [5-7].

At the same time, he began to study new issues in the theory of the interaction of intense
electromagnetic radiation with atoms, molecules and condensed media. During this study the
circle of coauthors also expanded, including colleagues from the Moscow Engineering
Physics Institute (MEPAI), M.V. Lomonosov Moscow State University, Baikov Institute of
Metallurgy and Materials Science of the RAS (IMET) and other organizations.

The results of the work of A.A. Samokhin on the effect of laser radiation on individual
guantum systems were published, in particular, in [8-10] and other articles, while his studies
of the interaction of radiation with condensed media began with the question of the instability
of the irradiated surface of a transparent liquid due to the ponderomotive effect [11]. Further
theoretical and experimental studies, concerning, in the main, the effect of radiation on
absorbing condensed media, are fairly fully reflected (until the mid-1980s) in three large
articles from Proceedings of the Institute of General Physics Academy of Sciences of the
USSR [12-14]. Articles [12,13] are actually material for A.A. Samokhin doctoral dissertation,
which was defended in 2000.

In [12, 14], in particular, the efficiency of studying laser-induced fast phase
transformations by registering the acoustic disturbances arising in this case was demonstrated
and, using a model example [15], it was shown how the solution of the evaporation Stefan
problem can change when taking into account the dependence of the state of the irradiated
liquid on pressure.

In the same period, A.A. Samokhin started the fruitful scientific cooperation with the
students of the outstanding Soviet and Russian mathematician, academician of the Academy
of Sciences of USSR and the Russian Academy of Sciences, the founder of the Soviet and
Russian schools of mathematical modeling, A.A. Samarsky from the Keldysh Institute of
Applied Mathematics of the RAS. The publications of the first decades of this collaboration,
in which the continuum and model-kinetic approaches were used, dealt with various

112



V.1. Mazhukin, Z. Paviéevié¢, O.N. Koroleva, A.V. Mazhukin

nonequilibrium effects in laser ablation and were partially reflected in [16-22]. In subsequent
theoretical works, in addition to the methods mentioned above, the molecular dynamic
modeling was also used [23-32].

The results of these works, as well as of the other studies [33-37], made it possible to
formulate a number of important conclusions on nonequilibrium laser ablation processes,
among which one can single out the first formulated fundamental physical problem of
determining the equilibrium physical characteristics of a substance, in particular, the
parameters of its critical point, by the results of experiments in nonequilibrium conditions.
Attention is drawn to the groundlessness of the widely used extension of the results of
describing the decay of a metastable liquid at low overheating to the near-spinodal region,
where the emerging nuclei of a new phase can no longer be considered independent. Under
conditions of laser ablation, an important role is also played by the spatial inhomogeneity of
temperature, which significantly affects the dynamics of the decay of a highly superheated
metastable liquid, and possible abrupt changes in the electromagnetic properties of a
substance such as a metal-insulator transition. When modeling the gas-dynamic boundary
conditions at the evaporation front, the influence of the features of their dependence on the
Mach number on the problem of the morphological stability of the evaporation front was
established.

In addition to work on the main direction of his activity, AA Samokhin also paid attention
to other issues, in particular, related to the manifestations of misunderstandings and
misconduct in science, which are discussed in [1,9,12,13, 38-40].

We wish Alexander Alexandrovich Samokhin good health, long and fruitful scientific and
social activities.
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AnHoTranus. Cratbs nocssieHa 80-JIETHIO €O IHSA POXKACHHUS COBETCKOTO M POCCHUNCKOIO
¢usnka-TeopeTuka, J0oKTopa (Qu3nMko-maremMarnyeckux Hayk A.A. CamMoxuHa, TJIaBHOTO
HAy4YHOTO COTpYyJHHMKA TeopeTuueckoro otaena HMuHcrtutyra obmeit ¢uszukum um. A.M.
[Tpoxoposa PAH, mocrosinHOrOo aBTopa *xypHaia Mathematica Montisnigri 1 MHOTOJIETHETO
aKTUBHOI'O YYaCTHHMKa MEXIYHApOJHOI0 HAy4HOro ceMuHapa «MareMaTHuecKue MOJIeNu U
MOJICIIMPOBAHKE B JIA3€PHO-TUIA3MEHHBIX IPOIeccax M MEPeOBbIX HAYYHBIX TEXHOJOTHSIX)
(LPpM3), ogauM U3 yupeauTeseil KOToporo siBisieTcs skypHan Mathematica Montisnigri.

11 npexabps 2020 roma wucnomHwiock 80 JeT co JAHS POXACHUS AJEeKcaHzpa
AnexcanapoBuua CaMOXuHa, JOKTOpa (PU3MKO-MAaTEMAaTHYECKHX
HayK, COBETCKOr0 M poccuiickoro ¢usuka. HayuHas Ku3Hb
CamoxuHa cBsizaHa ¢ @Dusnueckum wuHCTUTYTOM uM. [LH.
Jle6eneBa AH CCCP (®DUAH), a Biocnenctsuu u ¢ UHCTUTYTOM
obmeit ¢usuku uMm. A.M. IlpoxopoBa PAH (MO® PAH), B
KOTOPOM OH U 1O cel JeHb TPYAUTCA B KauecTBE TIJIABHOTO
HAY4YHOTO COTPYIHHMKA TEOpeTH4ecKoro oraena. «dusuk ot 6oray
- Takylo xapaktepuctuky fain A.A. CamoxuHy B cBoeil kuure [1]
«CoObiTust u mroau. (1948-2010 rozp1)» BBLIAIONINICS YUYCHBINA B
obnactu (U3MKM MJIa3Mbl, JBaXKIbl JlaypeaT ['ocyaapcTBEHHBIX
npemuit CCCP, naypear npemun umenn M.B. Jlomonocosa MI'Y,
JTOKTOp  (U3MKO-MaTeMaTU4YeCKUX HayK, mpodeccop AHpu
AmMBpocbeBnu Pyxansze, ¢ xotopsiM A.A.CaMOXHMHA CBS3bIBAJIO
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JOJITOBPEMEHHOE ~ COTPYIHUYECTBO. AJieKcaHap AJIEKCaHIPOBHUY SIBJISETCS IOCTOSHHBIM
aBTopoM >kypHama Mathematica Montisnigri ¥ MHOroJETHUM aKTHBHBIM YY4aCTHHKOM
MEXYHapOJAHOIO HAy4yHOro ceMHHapa «MareMaTH4ecKHe MOJEIN U MOJEIUPOBAHUE B
JA3epHO-TUIA3MEHHBIX MpoIleccaX H MEPeJOBBIX HAy4YHBIX TexHojorusx» (LPpMS3,
UYepHoropusi), OHUM M3 yUpeAUTeIeld KoToporo sBiseTcs xypHan Mathematica Montisnigri.
AKTHBHas )KU3HEHHAs MO3ULIMS MPUBEIa K COBMEILIEHUIO HAYYHOH pabOThl ¢ OOIIECTBEHHOI.
Camoxun A.A sBuseTca mpeacenareneM NpoQCor3HON opranu3auuu MHCTUTYTA,
MHOTOJIETHUM WieHOM Bcepoccuiickoro npodcoro3a pabotaukoB PAH, a Taxke omHum u3
opraamu3aTopoB «O0I1IecTBa HAYYHBIX paOOTHUKOBY, co3aaHHOro B 2012 romy.

Ponuncs Anekcannp AnexcanapoBud B PoctoBe-Ha-J[oHY M Tam k€ OKOHYMII IIKOJIY B
1957 r. HeckonbKkO BOEHHBIX JIET OH IMPOBEJI BHE MECTAa CBOErO POXKJICHHS, OKA3aBIIUbCH
BMECTE C Marepbl0 B OKKynamuu Oin3 KOTelbHHKOBO, HW3BECTHOTO [0 HCTOPUU
CranuHrpaackoit OUTBBHI.

bypHoe pasButue u mupokas nomymspusanus Hayku B CCCP, xapaktepHas s
MIOCJIEBOEHHOTO BpeMeHH (Tociie modesl B BoiiHe ¢ (ammctckoi ['epmanueii B 1945 rony),
npuBenu A.A. CamoxuHa Ha usuueckuii dakynprer MI'Y um. M.B. JlomonocoBa, mocne
OKOHYaHHUsI KOTOPOTO, OH TMOCTYIMAeT B acMHUpaHTypy MHCTHUTYyTa XUMHYECKOH (HU3UKH UM.
H.H. CemenoBa AH CCCP. B acnupaHType 3aHUMaeTcs pa3iudyHbIMH IOJXOJaMU K
TEOPETUYECKOMY ONMCAHUIO OTKJIMKA KOHLEHTPUPOBAHHOW ITapaMarHUTHOW CIIMHOBOW
CUCTEMBbl TBEpPJOr0 Tela Ha MEePEeMEHHOE MAarHUTHOE II0Jie, MPOSBIAS JOMOJHUTEIbHBIN
MHTEpeC K 00ImMUM mpobdaeMaM HEpaBHOBECHOTO MOBEICHUSI MAaKPOCKOMMMYECKHX cucTeM. Ero
nepBble paboThl [2-4], MPHUBIEKIM BHUMAaHHME COTPYAHUKOB KOJUIEKTHUBA, PYKOBOJIUMOIO
u3BecTHbIM yueHbIM WM. IlpuroxkuneiM. OkoH4aHue acnupantypbl B 1966 r. coBmaio co
BpeMeHeM ouepenHoro «lIpoxopoBckoro Habopa» MOJOJBIX COTPYJHHKOB B Duindeckuii
unctutyt uMm. IL.H. Jle6eneBa Axamemun Hayk CCCP, B uncine KOTOpPBIX OKaszajics |
CamoxuH A.A. Bckope nocie storo CaMOXMH 3alMTHII KaHIUAATCKYK TUCCEPTALUIO T10
TEOpUN HEJIMHEMHOTO OTKJIMKA CIMHOBOM CHUCTEMbl TBepaoro tena. Heckoibko jer mocie
3alIUThl KaHAugaTckoi auccepramuu CaMoxuH A.A. MpOAOKal aKTMBHO 3aHUMATbhCs
OoOLIMMH BONPOCAaMU HEPAaBHOBECHOM CTATUCTHMUYECKON MEXaHUKH, BO3BpAIllasiCh K HUM U B
Oosiee To3aHKME BpeMeHa [5-7].

B 5310 Xe BpemMs OH NPUCTYNWJI K HCCIEIOBAaHUIO HOBBIX BOIPOCOB TEOPUHU
B3aMMOJICHCTBUS MHTEHCUBHOTO AJIEKTPOMArHUTHOTO M3JIy4EHHs ¢ aTOMaMM, MOJIEKYyJIaMU U
KOHJEHCUPOBaHHBIMU cpesiaMu. [Ipu 3ToM pacumpsiics 1 Kpyr COaBTOPOB, B YMCIIO KOTOPBIX
BXOJMIIM TaKXKe KoJuierdn u3 MOCKOBCKOro MH)eHepHO-¢usmdeckoro nHcruryra (MUDN),
MI'Y um. M.B. JlomonocoBa, Mucruryra meramnyprun uM. A.A. baiikoBa AH CCCP
(UMET) u apyrux opraHu3armi.

Pesynpratsl pabor CamoxuHa A.A. IO BO3/ICHCTBUIO Ja3epHOTO U3TyYeHUS HA OTJENIbHBIE
KBaHTOBBIC CHUCTEMBI MYOJMKOBAJINCh, 4YacTHOCTH, B [8-10] w npyrmx crarhsx, a ero
UCCIIEIOBAaHMS B3aMMOJICHCTBHS M3Iy4eHHUS C KOHJCHCHPOBAHHBIMH CpelaMH HadalliCh C
BOIpOCa O HEYCTOMYMBOCTH 00JydaeMOM IMOBEPXHOCTH MPO3PAYHON >KUJIKOCTH 32 CUET
nongepomotopHoro 3¢dekra [11]. JlanbHeimme TeopeTHYECKUE M DKCIIEPUMEHTAIBHBIC
UCCJIEIOBAHMSI, Kacalolluecsi, B OCHOBHOM, BO3JCWCTBHUS H3Iy4YEHHs Ha IOIJIOMIAOLINE
KOHJIGHCUPOBAHHBIE CPeJIbl, TOCTATOYHO MOJHO OTPakeHBI (710 cepeauHbl 80-X roI0B) B TpeX
ooubimx crathsix coopuuka Tpymnst MODAH [12-14]. Crateu [12,13] npeacraBisor coOoi
(akTHUECKH MaTepual JOKTOPCKOM TuccepTaluy, 3alTa KOTopoit coctosiack B 2000r.
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B paborax [12,14] Obula, B 4YacTHOCTH, MPOJEMOHCTPHUPOBaHA APPEKTUBHOCTD
UCCJIEIOBAHMS  JIa3epHO-UHIYLIUPOBAHHBIX  OBICTPBIX ()a30BBIX MPEBPALEHUN IyTeM
pPErHCTpallui BO3HUKAIONIMX MPU 3TOM aKYCTUYECKUX BO3MYIIEHUW MU HAa MOJEIHLHOM
npumepe [ 15] mokazaHo, Kak MOXKET U3MEHATHCS PEIIeHUe ucnapuTelbHol 3amaun Credana
MIPH y4eTe 3aBUCUMOCTH COCTOSHUSL 00Ty4aeMOn KHUIKOCTH OT JaBJICHUS.

B ToT *e mepuoJ Hayaiock, MPOAOHKAKOLIEECs JO HACTOALIEIO0 BPEMEHH, MIOJOTBOPHOE
HayuyHoe coTpynHuuectBo A.A. CamMOXMHa C YYCHUKAMH BBIJAIOLIETOCS COBETCKOTO M
poccuiickoro maremartuka, akagemuka Akagemun Hayk CCCP u Poccuiickoil Axamemuu
Hayk, OCHOBOIIOJIOXKHHMKAa COBETCKOM M  POCCHMCKOM  IIKOJbI  MaTeMaTHYECKOIO
mozaenupoBanus, A.A. Camapckoro u3 HHcrtutyra npuxiaaHod marematuku um. M.B.
Kenpbima PAH. IlyOnukanuu nepBbIX JECATHIIETUH 3TOrO COTPYAHHYECTBA, B KOTOPBIX
UCIIOJIb30BATUCh  KOHTHUHYaJbHbIE M  MOJCIIBHO-KUHETUYECKHUE TOJIXOJbl, KacaluCh
Pa3IUYHBIX HEPABHOBECHBIX A((EKTOB MPH JTa3ePHON aOJISAINNA U YaCTUIHO OTPaKeHbI B [ 16-
22]. B mocienyromumx TeopeTHYECKUX paboTax B KaueCTBE OCHOBHOIO MOJAXO0/a, KpOME YKe
YIOMSIHYTOT'O BBIIIE, UCIIOIB30BAJICSA METO/ MOJICKYJISIPHO-AMHAMUYECKOTO MOJIECITUPOBAHUS
[23-32].

Pesynaprarel aTMX pabor, a Takke Jpyrux wuccienoBanuid [33-37], mo3Bommn
c(hOopMyIIUpOBaTh Psii BaXXHBIX BHIBOJOB MO HEPABHOBECHBIM IpOLIECCaM Jla3epHOU abnsiuwu,
B UHUCJIC KOTOPBIX MOXHO BBIJICIHUTH BIEPBBIE CHOPMYIUPOBAHHYIO (PYHIAMCHTAIHHYIO
buznyeckyro npobieMy ornpenesaeHus] paBHOBECHBIX (U3MUYECKUX XapPAKTEPUCTUK BEIECTBA,
B YaCTHOCTH, MapaMEeTPOB €ro KPUTUUECKOW TOUYKH, MO pe3yJbTaTaM SKCIEPUMEHTOB B
HEPaBHOBECHBIX ycloBusix. OOpalieHo BHUMaHHE Ha HEOOOCHOBAHHOCTH IUPOKO
UCIIOJIb3YEMOTO  pacHpOCTPAaHEHUsl pe3yJbTaTOB OIMCAaHUS paclaja MeTacTaOMIbHON
KUAKOCTH TPU MaJbIX TMEperpeBax Ha OKOJOCHMHOJAIBHYIO 00JacTh, TJl€é BO3HUKAIOIINE
3apOJIBIIINA HOBOH (ha3bl YK€ HEJlb3sl CYUTATh HE3aBUCUMBIMH. B yCIIOBHSIX JTa3epHOM aOIsium
BAKHYIO pPOJIb WrpaeT TakXKe MPOCTPAHCTBEHHAs HEOAHOPOJHOCTh TEMIIEpaTyphl,
CYIIECTBEHHO BIIMAIONIAS Ha JMHAMHUKY pacrajia CHUJIbHO MeperpeTod MeTacTaOUIbHON
JKUJKOCTH, U BO3MOJKHBIE PE3KHE U3MEHEHHUs SJIEKTPOMArHUTHBIX CBOMCTB BeEIlleCTBAa THUIA
nepexoja MeTaUI-IUAJEKTpuK. [lpu  MojenupoBaHUM Ta30AMHAMUYECKHUX TPaAHUYHBIX
ycloBui Ha (ppoHTE HcTapeHus ObLIO YCTAHOBIEHO BIMSHUE OCOOEHHOCTEH MX 3aBUCHMOCTH
oT uncna Maxa Ha npo6sieMy MOp(}OJTOTHYECKON YCTOMYUBOCTH UCTIAPUTEIHHOTO (PPOHTA.

Kpome paGoT mo oCHOBHOMY HampaBlIEHUIO CBOEU neATenbHOCTH, A.A.CaMOXUH YAEINs
TaKk)k€ BHUMAHUS M JPYyrUM BOIMpPOCAM, B YACTHOCTH, CBS3AaHHBIM C TPOSBICHUSIMH
HEJ0Opa3yMEeHU M HEAOOPOCOBECTHOCTH B HayKe, KOTOpble obcyxnatores B [1,9,12,13, 38-
40].

[Toxenaem Anekcanapy AunekcanapoBndy CaMOXHHY KpPENKOro 3/I0POBbS, JOJITOM U
TUIOJIOTBOPHOM HAYYHOU U OOIIECTBEHHOM eATeIbHOCTH.
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