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Summary. The processes of elastoplastic deformation in single-crystal alloys characterized

by cubic symmetry of properties are investigated. Using the heat-resistant single-crystal alloy

VZhM8 used to create gas turbine engine blades by directional crystallization as an example, the

dependences of deformation processes on the orientation of loading directions with respect to

crystallographic axes are shown. Significant anisotropy of mechanical properties, including the

presence of negative Poisson’s ratios, in heat-resistant nickel alloys is maintained up to a tem-

perature of 1150 ◦C. Therefore, over the entire range of operating temperatures, the propagation

velocities of elastic and plastic waves in single-crystal heat-resistant nickel alloys depend on the

propagation direction. On the example of a VZhM8 single-crystal alloy under dynamic loading

in a three-dimensional formulation, the differences in the processes of deformation realized in

a single crystal under loading along the [011], [111] and [001] axes are investigated.

1 INTRODUCTION

The mechanical properties of anisotropic materials, which include single crystals [1] with

cubic symmetry properties, depend on the direction. When they are loaded in some directions,

a common feature is auxeticity (deformation of the same sign in the direction perpendicular

to the direction of loading). In single crystals with cubic symmetry of properties [2–9], elastic

properties in the plane (011) are traditionally subject to investigation. This is due to the pres-

ence of negative values of Poisson’s coefficients (auxeticity) in some planes, as well as values

exceeding 0.5 and even 1.5 for some types of single crystals. Therefore, the processes of elastic

deformation under loading of single crystals along the axis [011] have a number of features. The

problems of single crystal deformation with cubic symmetry of properties under dynamic load-

ing conditions [10] are considered, for example, single-crystal VZhM8 based on nickel, with

face-centered lattice. In materials with cubic symmetry of properties in the (011) plane, the elas-

tic properties coincide only when the axes are rotated by an angle of 90◦; for any other angles of

rotation in the (011) plane, the elastic properties are different. Therefore when the shock loading

direction changes relative to the crystallographic axes of single crystals with cubic symmetry
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of properties, as well as when the computational coordinate system rotates in any plane rela-

tive to the crystallographic axes, the wave pattern of deformation changes. Turbine blades of

heat-resistant nickel alloys are made from such materials. VZhM8 V generation single-crystal

alloy, created for use by gas turbine engine blades, is characterized by significant anisotropy

of elastic properties, plasticity, creep, short-term and long-term strength, high-cycle and low-

cycle fatigue, and crack resistance [11]. Alloy VZhM8 contains Cr—vol 3%, Mo—vol 3.5%,

W—vol 4.2%, Re—vol 6.3%, Ta—vol 6%, Al—vol 5.7%, Co—vol 5.5%, Ru—vol 6%.

The single-crystal alloy VZhM8 has a dendritic structure. It has a heterophase structure. The

rhenium-containing alloy is additionally alloyed with ruthenium to stabilize the phase composi-

tion. All mechanical characteristics have their own anisotropy [12], which significantly depends

on temperature. Aircraft engine blades are grown in such a way that their longitudinal axis co-

incides with the crystallographic direction [001]. This is determined by the need to minimize

the magnitude of the Young’s modulus and, consequently, the magnitude of thermal stresses in

the direction of the centrifugal forces. The azimuthal orientation of the single-crystal alloy with

respect to the blade geometry is not controlled [13–15]. To study the mechanical properties

in the [001], [011] and [111] directions in single crystal alloys, sample castings are obtained

using seed single crystals of Ni–W alloy. The samples have a cylindrical shape; the longitudi-

nal axis of the samples coincides with one of the directions: [001], [011] and [111]. Poisson’s

coefficients, Young’s modulus under tensile conditions at different temperatures [16], as well

as plasticity and strength characteristics are investigated in the obtained samples. The values

of elastic and plastic properties of the VZhM8 alloy obtained in full-scale experiments in the

directions [001], [011] and [111] in [17] were used in modeling the processes of elastic and

plastic deformations.

Using the example of solving a test problem (Taylor test) with different orientations of the

crystallographic axes of a single crystal with cubic symmetry properties relative to the cylinder

axis in a three dimensional formulation, features of the deformation processes characteristic

of auxetic materials are shown. These studies are needed to corrected the mathematical mod-

els used to process the results of field experiments used to study the dynamic properties of

materials [18, 19]. The values of the propagation velocities of elastic waves depending on the

direction in anisotropic and in particular auxetic materials play an important role in such field

experiments.

The paper presents the results of numerical simulation of spall fracture of a target from a

VZhM8 alloy for the case of coincidence of the direction of shock loading with the [011] axis

and it is shown that in this case a non-axisymmetric deformation process occurs in the target.

From the solution of the problem of shock loading of the cylinder along the [011] direction

the reason of this asymmetry is clear. In the study of the deformation processes for the three

cases of loading of the cylinders against a rigid wall and shock loading targets carried out nu-
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merically by the dynamic finite element method using original programs [20, 21]. The aim of

the work is to study the processes of elastic-plastic deformation in materials characterized by

cubic symmetry of mechanical properties under dynamic loads. The influence of the presence

of negative Poisson’s coefficients in the elastic properties of cubic single crystals on the im-

plementation of various processes of elastic-plastic deformation depending on the directions of

shock loading relative to the crystallographic axes of single crystals is shown. A mathematical

model of elastic-plastic modeling of anisotropic materials is applied, taking into account the

correspondence of uniform bulk deformation to anisotropic stress.

2 MATHEMATICAL STATEMENT OF THE PROBLEM

Dynamic loading of an anisotropic solid is modeled within the framework of continuum

mechanics using the continuity equation and equations of motion [22] in a three dimensional

formulation: continuity equation
dρ

dt
+ρdivv̄ = 0, (1)

continuum motion equations

ρ
dvk

dt
=

∂σ ki

∂xi

+Fk, (2)

where ρ is the medium density; v is speed vector; Fk are the mass vector components; σ i j are

the contravariant components of the symmetric stress tensor. The components of the symmetric

strain rate tensor (ei j) were calculated as follows ei j =(∇iv j +∇ jvi)/2, where v j are the velocity

vector components; i, j = x, y, z. The elastic deformation of an anisotropic material is carried

out using the values of total stresses and rates of total deformations and is described by the

generalized Hook’s law:

dσi j/dt =Ci jklekl , (3)

where Ci jkl are the components of the elastic constant tensor in the calculated coordinate system.

The calculations were carried out using a mathematical model that includes the decomposition

of the total stress tensor into the deviator part and the “anisotropic” hydrostatic stress [21]:

σi j = Si j −Peλi j, (4)

where Si j are the total stress deviator components, λi j is the generalized Kronecker symbol, Pe

is the mean pressure. In the field of elastic deformations Si j = Ci jklεkl , λi j = Ci jklδkl/(3Ka),

Ka = Ci jklδi jδkl/9, Pe = εVCi jklδi jδkl/3, where Ka is the generalized bulk strain modulus, δkl

is the Kronecker symbol, εkl are the deformation deviator components, Ci jkl are the elastic

constants defined in directions that coincide with the directions of the calculated coordinate

system, εV is volumetric deformation of anisotropic medium. In the field of elastic deformations
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εV = ε11 + ε22 + ε33. In the field of plastic deformations εV = (V −V0)/V0. The volumetric

deformation of the anisotropic medium does not change, when the direction of the deformation

changes, but due to different compressibility factors of the material in different directions, it

causes anisotropic hydrostatic stress in cases when λi j is not equal to one.

Using of numerical calculations in the field of elastic deformations of the decomposition of

the total stress tensor in the form of (4) is equivalent to calculations in full stresses. The total

stresses in the field of plastic deformations were also calculated by formula (4). Those in the

present work, this approach is extended to the region of plastic deformations and it was assumed

that the pressure anisotropy coincided in the region of elastic and plastic deformations. When

modeling plastic deformation of anisotropic material, the average pressure Pe in the material

was calculated using the Mie–Grüneisen equation as a function of specific internal energy E

and current density:

Pe =
3

∑
n=1

Kn

(

V

V0
−1

)n[

1−K0
(V/V0 −1)

2

]

, (5)

where K0,K1,K2,K3 are the material constants, V,V0 are the current and initial volumes. In the

field of plastic deformations, Pe was also multiplied by the values of the coefficients λi j. The

components of the total stress deviator were calculated using the flow theory. The associated

law of flow is used to calculate the plastic deformation in the form

dε
p
i j = dλ

∂F

∂σi j
, (6)

the parameter dλ = 0 at elastic deformation, at plastic is always positive, is defined by means

of a condition of plasticity, dε p
i j are the components of plastic deformation, F is the plasticity

function.

The Mises–Hill plasticity condition, written through stress deviators for transtropic material

with regard to isotropic hardening, has the form [23]

F(Si j,R) =
S2

11

r2
1

+
S2

22

r2
2

+
S2

33

r2
3

+
S2

12

r2
4

+
S2

31

r2
5

+
S2

23

r2
6

−R2 = 0, (7)

where ri is determined through yield limits for tensile and shear transtropic material, R is the

isotropic hardening function.

From the experimental studies presented in [23] it is known that the function R characterizing

isotropic hardening is invariant to the type of stress state, is determined from experiments on

simple loading and depends linearly on the accumulated plastic deformation ε p: R(ε p) = 1+

ξ ε p, where ε p =
∫

∣

∣dε
p
kl

∣

∣, k, l = 1, 2, 3.

94



E. A. Strebkova, M. N. Krivosheina and Ya. V. Mayer

The elastoplastic material deformation model is supplemented by a fracture criterion con-

taining the ultimate porosity of the material. Spalling of the sample is considered as a process

of merging micropores in a plastically deformed material under the action of tensile stresses. By

averaging over the volume, we pass from the volume of the porous medium to the solid medium

with the averaged density and the equation of state of the porous material.

Assuming that the change in pore volume depends on the plastic characteristics of the mate-

rial and does not depend on the viscosity characteristics, an equation is solved that is the equality

of the pressure increment obtained by the equation of state of the matrix material and due to the

growth of the spherical pores. As a measure of damage, the porosity parameter α introduced by

Herrmann. The porosity parameter in the Herrmann model is the ratio of the specific volume

(V =Vm+Vp) of the porous medium to the specific volume of the solid matrix material (starting

material):

α =V/Vm. (8)

In modeling of the detachment fracture, an equation was used to determine the porosity

parameter, obtained from the equilibrium condition of the spherical pore under the action of the

applied pressure, in the following form:

αPe+αs ln(α/(α −1)) = 0, (9)

where αs = 2σsm/3. This equation is applied provided that

Pe < αs ln(α/(α −1)), (10)

otherwise the change in porosity does not occur in time, i.e.

dα/dt = 0. (11)

The moment of completion of the local macroscopic destruction of the material is the achieve-

ment of porosity of the critical value. The elastic-plastic deformation of the isotropic projectile

material was carried out using the Prandtl–Reiss model. The stresses defined in the element,

rigidly rotated in space, are recalculated using the Jaumann derivative

Dσi j

Dt
= dσi j/dt −σikω jk −σ jkωik, (12)

where ωi j = 0.5
(

∂v j/∂xi −∂vi/∂x j

)

.
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3 COMPUTATIONAL EXPERIMENT

The impact of a cylinder with a height of 50 mm and a radius of 5 mm from a single crystal

alloy VZhM8 on a rigid target with an initial velocity of 50 m/s is considered. The axis of

symmetry of the cylinder in each problem coincides with one of the three axes in which the

elastic, plastic, and strength properties in cubic crystals are traditionally investigated: [111],

[001], and [011]. In the first case, all three calculated axes coincide with the directions [111].

In the second case, the direction of the axis of symmetry of the cylinder and the other two

coincides with the direction of the crystallographic axes [001], [010] and [100]. In the third

case, the axis of symmetry of the cylinder coincides with the direction [011], and the other

two axes of the calculated coordinate system with [100] and [01̄1]. Those, in the first and in

the second cases, axisymmetric problems are solved, and in the third case, a three-dimensional

stress state is realized in the cylinder. The differences in each case of the axes of symmetry of

a single crystal alloy relative to the axis of symmetry of the cylinder leads to the fact that in all

three problems the values of technical elastic constants and velocities of propagation of elastic

waves in the direction of each coordinate axis have different values. Only elastic deformations

are considered, in order to determine their contribution in cases of development of elastoplastic

deformations. The ratios of the strain values are analyzed, as well as their sign in three cases

of different orientations of the VZhM8 crystallographic axes with respect to the direction of

impact.

In the first case, the values of technical elastic constants are: E = 250.6 GPa, ν = 0.28,

G = 46.7 GPa, longitudinal wave speeds vL = 6548 m/s, shear wave speeds vS = 2646 m/s.

In the second case, the values of technical elastic constants are: E = 102.2 GPa, v = 0.426,

G = 118.7 GPa longitudinal wave speeds vL = 5539 m/s, shear wave speeds vS = 3619 m/s.

In the third case, the values of technical elastic constants differ in three mutually perpendicu-

lar directions: Ex = 102.2 GPa, Ey = Ez = 193.2 GPa, Gxy = Gzx = 118.7 GPa, Gyz = 35.8 GPa,

νxy = 0.788, νyz = −0.14, νzx = 1.489, longitudinal wave speeds vL = 6311 m/s, shear wave

speeds vS1 = 3619 m/s and vS2 = 1989 m/s [13]. In this case, the cylinder material is char-

acterized by auxeticity; the other two Poisson ratios exceed the value of 0.5. Material density

ρ0 = 9060 kg/m3. The axis of symmetry of the cylinder in all three cases coincides with the axis

OZ. The shock loading of a cylindrical body made of VZhM8 alloy with a steel projectile with

an initial velocity of 600 m/s is simulated. The elastoplastic deformation of the isotropic ma-

terial of the projectile is determined using the Prandtl–Reuss model. Plastic deformation in the

material of an target is determined using a flow model with isotropic hardening. The Mises–Hill

function is used as a function of plasticity for anisotropic media. The yield strength at a temper-

ature of 800 ◦C is 934 MPa in the [011] direction and 1050.8 MPa in the [001] direction. The

spallation of a cylindrical body from a VZhM8-target alloy is modeled on the base of a mathe-
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Figure 1: The initial configuration of the projectile and target.

matical model modified for anisotropic media [24]. The element is considered to be destroyed

and all stress components in it are equated to zero when a local stretch of the grid element is

more than 30%. This simulates the appearance of a spall crack in the material of a target with

its shock loading. Consider the interaction of two bodies in the general, three-dimensional case

in the Cartesian coordinate system XYZ (figure 1).

The calculation method used is the finite element method modified by G. R. Johnson for solv-

ing problems in dynamic formulation [20]. It has first order accuracy in time and in space. Dis-

cretization of the computational domains was carried out using simplex approximation. Bound-

ary conditions of impact—loading of the cylinder on a rigid wall. Each body occupies an area

Di (i = 1, 2), bounded by the surface Qi, respectively. The velocity vector of the striker at the

initial moment of time has a value V0 and its direction coincides with the longitudinal axis of

the striker. Surfaces Q1 and Q2 are stress-free, Q3—the contact surface between bodies. Each

material is in a non-stressed undeformed homogeneous state. Initial conditions (t = 0): u =V0,

σi j = E = w = v = 0, with x,y,z ∈ D1(i = x,y,z), σi j = E = w = v = u = 0, with x,y,z ∈

D2(i = x,y,z), ρ = ρi, with x,y,z ∈ Di, i = 1,2, Where u,v,w are the components of the velocity

vector along the axes XYZ are respectively. The boundary conditions are as follows: on free
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surfaces the conditions are fulfilled Tnn = Tns = Tnb = 0, friction-free sliding conditions are re-

alized on the contact surfaces Tnn+ = Tnn−, Tnb+ = Tnb− = Tns+ = Tns− = 0, vn+ = vn−. Here,

n is the unit vector of the normal to the surface at the point under consideration, b and s are

the unit vectors tangent to the surface at this point, Tn is the force vector on the site with the

normal n, v is the velocity vector. The lower indices of the vectors Tn and v mean projections on

the corresponding vectors of the basis; the plus “+” characterizes the value of parameters in the

material at the upper boundary of the contact surface, the minus “−”—at the bottom.

Discretization of computational domains. To construct a uniform numerical grid of nodes

in the computational domain, an algorithm for constructing a grid in a Cartesian coordinate

system is used [25]. Simplex elements—tetrahedra—were used to construct the grid in a three-

dimensional coordinate system. The mass of the element was evenly distributed between the

four nodes. In cases where a node belonged to several elements, the total mass, concentrated in

the i-th node was equal to one-fourth of the mass of all elements containing this node.

4 THE DISCUSSION OF THE RESULTS

Figure 2 shows a decrease in the length of the cylinders, for three cases of orientation of the

crystallographic axes relative to the axis of symmetry of the cylinder. Curve 1 shows that due

to the maximum values of the elastic properties along the [111] direction, the oscillations of the

cylinder length have a shorter period. For the considered ratio of the length of the cylinder to

its diameter, the oscillations of the length of the cylinder are determined by the values of the

rod ones, not the longitudinal speeds. Figure 2 shows that there is a clear relationship between

the periods of oscillations of the lengths of the cylinders and the values of the velocities of

propagation of longitudinal waves. In the case of orientation along the axis of symmetry of the

cylinder, the direction of the [001] crystal changes the cylinder length to the maximum and

have a maximum oscillation period (curve 2, figure 2). In all three cases, the times of arrival of

the wave to the free surface of the cylinder are different due to differences in the velocities of

propagation of longitudinal waves. In the case of orientation along the axis of symmetry of the

cylinder, the direction of the crystal [011] (curve 3, figure 2) exceeds the maximum change in

the length of the cylinder by 17% in the case of the direction [111] along the axis of the cylinder.

Auxeticity of anisotropic materials is manifested in directions perpendicular to the direction

of loading. In figure 3, curve 3 shows the elastic variation of the cylinder radius along the OY

axis at a height of 1 mm from the contact surface of the cylinder for the case of direction [011]

along the axis of the cylinder with time. Until the cylinder is separated from the target, elastic

oscillations of the magnitude of the cylinder radius demonstrate compressive deformation. After

the cylinder is separated from the target, changes in the radius value occur around the original

value. When the directions [111] or [001] coincide, the magnitudes of changes in the radiuses of
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Figure 2: The change of the cylinder radius in time along the axis OX , for the cases: 1—the axis of symmetry of

the cylinder is directed along the [111] axis; 2—along the [001] axis; 3—along the [011] axis.

the cylinders at a height of 1 mm from the contact surface demonstrate only tensile deformation

up to cylinder bounce. The periods and amplitudes of oscillations of the radiuses of the cylinders

in these cases are much smaller. The presence of a negative value of the Poisson coefficient in

the plane formed by the loading direction and the axis OY manifests itself in the compression

of the cylinder along the axis OY , but only during the contact time of the cylinder and target.

The elastic change in the cylinder radius is also at a height of 1 mm from the contact surface

of the cylinder, but in the perpendicular direction, shown in figure 4. Curve 3 shows the change

in the cylinder radius over time, which significantly exceeds the change in the radiuses of the

cylinders for the cases of curves 1 and 2. In the plane formed by the direction of loading and the

axis OX for the material oriented in the cylinder along the direction [011] the Poisson’s ratio

is greater than 0.5, i.e. exceeds the maximum value for isotropic materials. Therefore up to a

cylinder bounce from an target in the case of [011] along the OX axis, an increase in radius 2

times greater than in the case of orientation along the cylinder axis of the single crystal [001] is

observed, with Poisson’s ratio equal to 0.426 (curve 2, figure 4).

Such a ratio of changes in the radiuses of the cylinders for three cases of orientation of

the crystallographic axes relative to the axes of symmetry of the cylinders is observed at any

distance from the contact to the free surfaces of the cylinders. The obtained results explain

the reason why a non-symmetric deformed state is realized in the target from single crystal
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Figure 3: The change in the cylinder radius over time along the OY axis, for the cases: 1—the axis of symmetry of

the cylinder is directed along the [111] axis; 2—along the [001] axis; 3—along the [011] axis.

alloy VZhM8 with its shock loading in the direction [011]. Target from single crystal alloy

VZhM8 has a cylindrical shape but its height is 2 mm and a radius of 7.5 mm. Its shock loading

was carried out by a steel projectile with a height of 1 mm and a radius of 7.45 mm with an

initial speed of 600 m/s. In this case a problem is numerically modeled in a three-dimensional

statement. It is realized in field experiments in the study of dynamic characteristics. The process

of deformation in the target includes elastic, plastic deformation as well as spall fracture. The

degree of deviation from axisymmetric deformation in an target can be illustrated by changing

the magnitude of the target radii on the lateral surfaces along the axis OX and OY (figure 5).

Since the yield strength of the VZhM8 alloy in the direction of the OY axis is less than

in the direction of the OX axis it was logical to expect that a larger increase in radius would

be observed in the direction of the OY axis. The figure shows that by the time point of 1 µs,

when the spalling destruction has already occurred, the target radius in its middle part along

the OX axis increased by 0.19 mm, and in the OY axis direction—only by 0.13 mm. As shown

in the analysis of the process of elastic deformation under shock loading of the cylinder along

the same direction [011], the missing part of the deformation in the direction of the OY axis

is determined by the auxetism of the VZhM8. That is the missing part of the deformation in

the direction of the OY axis is determined by the compressive elastic deformation due to the

negative value of the Poisson’s ratio. This calculation showed that in the study of the dynamic
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Figure 4: The change in the height of the cylinder, for the cases: 1—the axis of symmetry of the cylinder is directed

along the [111] axis; 2—along the [001] axis; 3—along the [011] axis.

properties of auxetic material with an initial shock loading speed of 600 m/s until the moment

of spall fracture the elastic properties to a greater extent determine the process of elastoplastic

deformation of the target. The type and location of the spall crack in the target is shown in

figure 6.

The distribution of relative volumes (Vv = V/V0) of elements is shown (the ratio of the cur-

rent volume of the element of the computational grid to the initial one) in the section of the

target. The figure shows that in the area where the crack was formed the volume of elements

on average increased 1.5–1.75 times. The cross section of the projectile and target is made in

the OZY plane: the OZ axis is directed upwards, the loading was simulated along it; OY axis is

perpendicular to it. Dark blue targets areas are areas where is no stretch. In areas from blue to

red there are stretch areas, where the relative volume is greater than 1.
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Figure 5: The change in the radius of the target in time: 1—along OX axis; 2—along OY axis.
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Figure 6: Distribution of the relative volume of the material in the cross section OZY of the projectile and target at

the moment 0.85 µs.
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5 CONCLUSIONS

On the example of a heat-resistant single-crystal alloy VZhM8, characterized by a signif-

icant anisotropy of mechanical properties, including auxeticity, significant differences in the

processes of elastic-plastic deformation under loads along the axis [011], [111] and [001] are

shown. To demonstrate the features of the elastic deformation processes for the VZhM8 alloy,

the solutions of the Taylor test (cylinder impact on a non-deformable wall) obtained numeri-

cally in a three-dimensional formulation are shown. When modeling the shock loading of a thin

cylindrical target made of a single-crystal alloy VZhM8 along the direction [011], it is shown

that a three-dimensional elastic-plastic deformation is realized in the target, due to the auxeticity

of the target material.
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