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Summary. Multiple importance sampling (MIS) is a well-known method for noise
reduction in Monte-Carlo ray tracing. It weights contributions from merging camera
and light paths in different vertices. Since noise strongly depends on these weights, the
problem of the optimal choice of weight to reach the minimal noise is very important. For
bi-directional Monte-Carlo ray tracing with photon maps (BDPM), different join paths
are not statistically independent because several light paths are checked against the same
camera path and vice versa. As a result, the optimal weights which minimize the noise
functional in the classic Monte Carlo ray tracing and in BDPM are different. In this paper
we calculate weights for the simple reduced case of just two strategies, i.e. merging at just
two vertices of camera ray. We show that these weights obey an integral equation which is
qualitatively different from the well-known MIS formulae for uncorrelated samples. The
integral equation is solved analytically in a closed form and one can see that the MIS
weights for BDPM algorithm depend on the number of rays and scene geometry. In this
paper we also correctly take into account the direct illumination to pixel luminance.

1 INTRODUCTION

Currently simulation of light propagation is widely used not only in optical engineering
bust also in design of new materials. It is intensively applied in architectural, automotive
and aircraft design tasks. If wave effects can be neglected, various kinds of stochastic
ray tracing are a good choice. This realm mainly includes Metropolis light propagation
and Monte-Carlo ray tracing (MCRT). When an image should be calculated, the classic
forward ray tracing from light source is inefficient and various bi-directional modifications
[1] are applied. The weak side of all stochastic methods is that their results are noisy.
The amplitude of noise depends on the method of ray generation and scattering.

Therefore the problem of the optimal probability distribution of ray scattering has
being addressed since long. An important foundation which many modern approaches
originated from is the Veach’s work [2]. Its theorems about Multiple Importance Sampling
(MIS) in Monte-Carlo based methods are still a base for current research. The idea is
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to generate several random numbers, one for each “strategy” (i.e. probability density
which admits an efficient generation of samples), and then sum their contributions to the
accumulated average with weight (which usually depends on the phase space point). With
the optimal choice of weights for each strategy, the noise can be substantially reduced,
and [2] suggested the famous “balanced heuristic” and “power heuristic” methods of
calculation of weights. A proof had been produced that albeit these weights are only
sub-optimal, the resulting noise does not much exceed the absolute minimum. Recently
this latter point had been attacked in e.g. [3].

Veach results are based on the theorem which assumes independent samples, but then
were applied to the more advanced methods like bi-directional Monte Carlo path tracing
(BDPT), bi-directional Monte-Carlo ray tracing with photon maps (BDPM) [4, 5] or their
combination [6]. Meanwhile now the “samples” i.e. light paths connecting the source and
the camera, happen to be not independent because e.g. in BDPM or “vertex merging”
the same light path is merged with many camera paths and vice versa. So the resulting
joined full trajectories have common part and thus they are not independent.

In this work we investigate the weights optimal to BDPM and demonstrate the equa-
tions for them are qualitatively different from the famous Veach heuristics. This is because
for the bidirectional Monte Carlo path tracing method or for BMCRT with photon maps
the noise does not follow the rule like in the classic MCRT [7]. Therefore the optimal
weights which minimize the noise functional in the classic MCRT and in BDPM are dif-
ferent. Since the BDPM noise is a quadratic functional over the ray contribution as it is
shown in [7], it is also quadratic in weights. So while calculation of weights that minimize
that noise functional looks mathematically trivial it is not so in practice.

There is an infinite set of weights in bidirectional MCRT with own set of weights for
each join path length. The weights from different sets are defined in different functional
spaces (they have different number of arguments, i.e. vertices and so on), while all they
are “coupled” in the noise functional. There are also problems with ray absorption etc. As
a result the optimal weights obey an infinite system of linear integral equations which are
extremely complex. And their kernels must be calculated from solving yet other integral
equations similar to the “rendering equation” [8] and so on.

We derive the formulae for the optimal MIS weights in case of photon maps, i.e. when
each camera ray is merged with several light rays. Unlike the algebraic equations of the
Veach’s “balance (or power) heuristic”, these are integral equations which happily admit
solution in closed form (i.e. it is an analytic formula which includes several integrals of
the input functions). One can also see that they depend not only on the BDFs and light
emission distribution, like in the Veach case, but also they depend on the number of rays
and scene geometry.

2 BACKGROUND

The issue of optimal MIS weights choosing is very important. It influences on quality
of resultant realistic image or, what is the same, on a convergence speed of algorithm.
This is why lot of studies is devoted to the issue.

The MIS formulae and heuristic methods for optimal weights calculation were proposed
in [2, 9]. The formulae derived there depend on the scattering characteristics (BDFs) and
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distribution of light source emission only. Further this approach was applied in many
papers of which we should recommend [10].

Some extension was suggested in [11] which operates probability density of the join
paths (i.e. rays from the source to the camera obtained by “merging vertices” of the
forward and backward MCRT). The number of vertices in the join path and two halves
which constitute it is different, because two close ones merge into one. Thus the phase
spaces are different, but the author unify them and calculate the density in the space
of join paths. Naturally, it is proportional to the importance of the join path, and also
contains scale factor proportional to the squared merging radius. What is important
here is that this radius can be different in different parts of the scene. As a result,
after substitution the density of the join path into Veach-like formulae the authors can
investigate dependence on the merging radius. The remaining problem is that this is still
a one-sample density which is insufficient to treat “correlation terms” in BDPM [7], so
accounting for the integration radius does not help much. Notice that our approach does
not use the density of join paths, but only those of the light and camera paths, because
the noise is an integral with narrow kernels due to “vertex merging”, and these weakly
converge to the delta function so that not causing much problems.

The general idea of the papers [12, 13] is that the forward MCRT ray hits within
the integrating sphere around the point of the camera ray. This method is named photon
mapping or “vertex merging”. In the same time it is possible to connect the segment point
of the camera ray with the forward MCRT point (“vertex connection”). Of course here
it is necessary check the shading, etc. In general these are two different bidirectional ray
tracing methods. And the authors united those using weights to produce the promising
“vertex connection and merging” (VCM) method. But the weights are all the same
fractionally rational as those of Veach. Non-locality and non-linearity (outside the Veach’s
“power heuristic”) is absent there.

S. Popov and others in [14] proposed original algorithm for generation of full paths
connecting camera and light source. They stochastically generated several paths with
different weights. After that they chose weights to minimize stochastic noise in resultant
image. Their algorithm differs from ours because they neglect statistical dependence
between “camera rays of different length”. This sounds reasonable, but even if they are
really independent, they are merged with the same light path. The authors claim they
have a full derivation which does account for correlations and leads to integral equations,
but it is absent in the paper. The initial equations they start from are correct but too
complex to treat and the authors simplified the problem by replacing the actual noise by
its upper bound.

Naturally, this does not guarantee the weights found do lead to a smaller noise: al-
though the upper bound decreases, the noise itself may even increase.

Several works [15, 16, 17] are devoted to the issue of efficient computation of the MIS
weights.

In [18] the problem of calculations of the optimal weights had been considered for a
limited MIS when we mix contributions from just two vertices, M-th and (M + 1)-th of
the camera path, when M is fixed. This consideration assumed that there is no direct
illumination at the camera vertices up to the last (i.e. the (M + 1)-th), see Section 7 of
this paper. While possible in reality, this is a severe limitation, especially when M is large
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enough. Current paper eliminates this restriction.

3 LIMITED MIS IN BDPM

The general idea is described in [18]: we trace camera ray until it underwent M +
1 diffuse events, it never can go further. While the direct and caustic illumination is
collected in all of them, diffuse one is collected only in the M-th and M + 1-th hits, with
weights wy and w; = 1 — wy correspondingly. These weights are deterministic functions
of M + 1 vertices of the join trajectory (merged camera and light paths), counting from
camera. These weights affect the noise while the limiting accumulated image luminance is
the same, and so can be chosen so as to reduce the noise. Details and reasoning produced
in [18] up to Section 7 remain still valid. We also assume that M > 0 so that the density
of camera hits starting from the M-th is diffuse. The difference is in Eq. (3) of [18], where
the contribution to pixel luminance from merging the camera and light paths neglected
the direct illumination while here it will be taken into account.

4 RAY CONTRIBUTION

Here and below all calculations are for one pizel. The total flux of all scene lights is
assumed 1 to not bother about scaling between the density of photons and irradiance.

Retaining the direct illumination, the contribution® to pixel luminance from merg-
ing the camera path {zg,z1,...} (counting from the first camera hit z,) and light path
{x(()F), 2 ...} (counting vertices from the light source) is

ZE Loy eeey T Lo(l'm 17$m>

+ Z K (w3 — o) wo(X, 27 B(X) f (21 — 27 2 — 2ary, 201)
n>2

+ Z K(zprn — 20wy (X, a0 B(X war0) f(@) — 20, wnren — ar, 2ari1)
n>2

+wi (X, ar1) E(X, 2ar1) Lo(@ar, Targr)

where

X = (20,0, Trn)
is the initial part of the camera path,
y—x
|y — x|

denotes the unit vector from x to y, K is the integration kernel, wy and w; = 1 — w, are
the weights, Lo(z,y) is the surface luminance in point y under direct illumination coming

=

!That is, accumulated pixel value increases by C.
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from the point z, f(v,u,z) is diffuse BDF in luminance factor units at surface point = for
illumination direction (towards the surface) v and direction of scattering (away from the
surface) u, E(xq, ..., Ty) is the energy (or transmission factor in [10] terms) of the camera
ray before hitting x,,, while for the light ray the energy is always 1. Notice that since the
direct component is taken explicitly (via the terms L), it is not taken from photon maps
to avoid double counting, i.e. the light segments [:E(()F),ng)] which represent the direct
illumination do not interact with integration spheres and thus the sums start from n = 2.

The “energy” or camera ray, which is also named transmission factor, is defined as

usual: it is 1 just after leaving the camera, i.e. E(xy) = 1 and then

E(zo, ..., ®ms1) = t(Tm-1, Tm) E(To, .y T (1)

where

uly,z) = / F(0,2 = y.2) (v n(2))] d, 2)

n being the local normal.
Below we shall denote

M
£0 (L’Q,..., E ZE (L’Q,..., Lo(.’[‘m 1,[Em)

m=0

which is what the pure path tracing (without using FMCRT) would accumulate. Ray
contribution then becomes

¢ = ﬁo(XM)+w1(XM+1) (X ng1)Lo(zar, Tars)

3 K — ) wo(Xar, OB f@ = o oar = an,an)  (3)
n>2
+3 Ky — 28w (X s, 2aa)) B(X y) f (2 = 2 2 = o Ta)
n>2
5 NOISE

In BDPM (with or without weights), the variance of the pixel luminance calculated
from Np forward rays and Np backward rays (started from the same pixel) obeys the
general law [7], see also [18]:

Vo= o (4O~ (O + L (s — o)
L (o - o)

Here (-)p is the averaging over the BMCRT ensemble for the fixed FMCRT ray and (-)
is the averaging over the FMCRT ensemble for the fixed camera ray. Notice the linear
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term ((C)) is independent from the order of averaging so we drop subscripts here. It is
also independent from weights, while ((C?)) and ((C)%)p depend on them.
Averaging over the ensemble of light paths resp. camera paths is

O = [Opral? 2l ceall, e ol &
<'>B = /(')pB(%,fEl,-~-,90M+1)d$0d$1"'d$M+1 (5)

where pr and pp are the probability densities of the light and camera paths. Since we
assume that FMCRT uses Russian roulette to kill rays while keeps ray energy, pg is not
normalized. Below we shall sometimes use the spatial and sometimes angular probability
densities keeping in mind the obvious relation between differentials

F(x—y) = s(z,y)dy (6)
s(y,r) = |((x —y) n(x))] (7)

where n is the local normal.

While neither explicit form nor the properties of pg(- -+ ) are used, for the camera path
density we need the recurrence relation. Namely, in BMCRT where direction of the next
segment of the camera ray is chosen proportionally to BDF,

pB(To, .y Tarr1) = f(v,u,xM) |(v-n(xa))| s(xar, 2ars1) X pe(To, oy Tar), (8)

where

3 f(U,U,I'M)
flv,u,x = — 9
( M) ,U(JUM,JUMH) ( )

= Ty41 7 TM

U = Ty — Typy-1

is the “normalized” BDF for BMCRT, and the total backward scattering p was defined
in (2).

Notice that when Ny — oo while Np is fixed the noise does not vanish. This remaining
noise Ng' (({C)2)5 — ({C))?) can be naturally termed the “BMCRT noise”, and ((C)%) 5
named “BMCRT term”. Similarly, when Np — oo while N is fixed, the remaining noise
N ({(CYE) p — ((C))?) is termed “FMCRT noise” and ((C)%)p is named the “FMCRT
term”. The last quadratic average ((C?)) will be named the “cross term”.

Again, like in [18], we neglect the “FMCRT noise”, because for most practical cases it is
much smaller than the other two terms. Assuming N > 1, we arrive at the approximate
noise law:

NpV =~ Np' (((C%) = ((C)°) + {{C)p)s — ((C))” (10)

Now let us calculate the weight-dependent quadratic averages ((C?)) and ((C)%) 5.
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5.1 Cross term ((C?))

Averages over the ensemble of light paths (4) of the terms proportional to the Oth or
1st power of kernel are all limited for S — 0. So in ((C?)) dominating are terms quadratic
in kernel. Let us assume that the integration kernel K is uniform within the integration
sphere, so that K? = S7'K where S is its area. Then

1
o2 - EZK([EM—:L'%F))wg(XM,x;}i)l)g%/l(XM’:Bffi)l’x;F))

n>2

1
5 2 Ko = o) wd (Xar) g (X, 2,7, 1)

n>2

+ 3 K(zy — ) K (@ — 287) x ()

n#n’
+ 3 Klaw — ) K@y —2) x ()
n>2
+0(1),
In( X, 2l ) = B, f) = 2D 2 = T, )

where we dropped the terms proportional to the product K(zy — I%F))K (xp — a:g))

which for n # n’ and S — 0 vanishes because in a “normal” scene the light path segment
can not have zero length. Therefore

For different light path vertices n # n’ the average of K(xy — x%F))K (Trre1 — x;},?))
times a limited function over the light paths is limited for S — 0. The product K (z; —
xle))K (Tpre1 — x%F)) of kernels with different centres is 0 for a.e. camera path, thus the
average of a limited function times it over the combined camera and light paths ensemble
thus goes to 0 as S — 0. Therefore, the two first lines strongly dominate for S — 0.

Now let us applying to them averaging (4) then (5) and taking into account that by
virtue of FMCRT

pr(xl 2) D) = (v n(@)| L(v, z)d*0 = |(v - n(2))| (v, 2)s(z, 22 d?a (11)

where n is the local normal, I, is angular density of illumination of the n-th order (i.e.
() 5 2. We

after n — 1 scattering events, n = 1 is for direct) in = from direction v = z,

then obtain

(c?) ~ s /wg(XM+1)E2(XM)f2($M+1 — TN M = M1, T M)
XJ(zpr41 = T, $M)pB(XM)8($M7$M+1)d2XM+1

+5_1/wf(XM+1)b(~"UM7$M+1)E2(XM+1)PB(XM+1)d2XM+1 (12)

where
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I=>"1, (13)

is the angular density of the full diffuse illumination,

Jw,z) = |(v-n(x))|I(v,z) (14)

is diffuse irradiance and

b(zar, Tarer) = /f2(v’,xM+1 — Tar, Tari1)J (U, wap g )dP (15)

Notice this integral is over the diffuse illumination only.
Introducing

Q(Xnr11) = E(X ) E(X p11)p5(X ar41) (16)

and applying to it the recurrence relation (1) one obtains two useful identities:

E(X n11)p(X i) EH (X)) Q(X 1) (17)
E*(Xn)pp(Xan) = (a1, 2a)Q(Xari1) (18)

Substituting (18) into (12) we arrive at

<<02>> R Sl/wg(XMJrl)f(-TMJrl — TMH,TM 7 folth)
XI(xpre1 — SUM,fEM)Q(XM-H)CFXM-H

+S1/w%(XM—l-l)b(xMaxM—l-l)M(xM—hxM)Q(XM—H)dQXM—H (19)

Then, since wg = 1 — wy,

(c?) ~ 5 / £ (0,1 220) (0, 23)Q(X g )2 X ar
+Sl/w%(XM+l)5(xM17xM7$M+1)I(vaxM)Q(XM+1>d2XM+1
o5 / W1 (X ar2) F(0, 1, 230) 1 (0, 520) QX a1 )P X (20)

where

b(IM, IM+1)

I(v,zp) (21)

5(xM717$M7xM+1) = f($M+1 — Ty T — TM—1, IL’M) +/L(33M71, Z’M)
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5.2 BMCRT term ((C)%)p

Averaging (3) over the light paths ensemble and using (11), (13), (6) and (14), we
have for S — 0 when the kernel is nearly a delta-function,

(CVr = Lo(Xn) + E(X0)Go(X y) + E(X yi1)wi (X ) L@, oaren)  (22)
where:
La(xpr, xarer) = /f(v,xMH — xM,xMH)J(v,xMH)dzv (23)

is luminance under diffuse illumination, L = Lg + L4 is the full luminance and

Gk(XM) = /wk(XMH)f(ﬂCMH — TMH,TM — $M—17$M)
><J(%’Mﬂ — TM; xM)S(l’M, 9€M+1)d2$M+1 (24)

Squaring (22) and averaging over the BMCRT paths gives

(©F)s = [ CXpa(Xa)E X
+ [ @apd
+ [ W) P s, a0 B Rars Do Har ) g
2 [ Lo Gol X E(Xa )pa(Xar) 22 g

+2 [ wi (X 1) Lo(Xar) L(zar, a1 E(X 04105 (X ar ) > X a1

—— —

w1 (X ar41)Go(Xar) L(zar, Tars) ™ (@ar—1, Tar)

XE2<XM+1)pB<XM+1)d2XM+1

+2
where

p(X ) = E*(Xa)pp(Xn) (25)
Applying (17) and (18) this becomes
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/ C2(X 0 )ps(Xa )2 Xy
/ XM)dQXM
+ w XM+1 $M7$M+1),M(IL”M—1,xM)Q(XMH)dQXMH

+2 [ Go(X ) E~H (X a0) Lo( X as)p( X 0r) 2 X ns

—

+2 [ wi(Xn 1) BN (X 0) Lo(Xar) L(zar, 0ari1) Q(X api1)d> X pr iy

+2 [ w1 (X ar41)Go(Xar) L(zar, Tar41)Q(X ars1)d* X ari

—

Then,

/GO(XM)E‘l(XM)L’O(XM)p(XM)dQXM
+ / W (X ar) BN X0 Lol X ) L(was 2314 Q(X s )P X

B /E(XM)EO(XM>Ld<u’ 2an)pp(Xa)d* X

(here we replaced L with I using (30) and recalled normalization wg 4+ w; = 1) we finally
arrive at

{(OV)p = /ﬁo(XM) (Lo(X ) + 2E(X ar) La(u, 21)) pp(Xar)d> Xy
+/Gg(XM)P(XM)d2XM
+ [ W@ n(ear s, ) P03 QX)X

+2/G0(XM) (/wl(XMH)I(v,:cM)Q(XMH)dz:cMH) d*X

Applying the definition (24) to the inner integral in the 4th line we have
(O = /ﬁo(XM) (Lo(Xar) +2E(X ar) La(u, 2r)) pi(X ar)d* X
i / (Go(Xur) + Gr(X0))* p(Xar)d* X s

+ / w3 (X pr) (@ar—1, ar) I (0, 200)Q(X ppi1 )P X ar i

- / GH(Xa)p(X ) d* X
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From (24), and normalization wy+w; = 1 it follows that Go+ Gy = Lg(xp — Tp—1,Tar)
thus

G%(XM)p(XM)dz'XM (26)

or

(C)2)p = / (Lo(Xa1) + E(Xa) Laluty 20))? pis (X ) 2K oy
+/wf(XMH)M(xM—be)IQ(%JJM)Q(XM+1)d2XM+1
- / G y)p(Xa )P X (27)

5.3 Resulting noise

Substituting (20) and (26) into (10) we have

NV~ gt [ f(0 ) 00 Q ) P X

-+ / (E()(XM) —+ E(XM)Ld(u, xM))2pB<XM)d2XM
—(np' +1) ((O))?
+/w%(XM+1)a<$MlaxMaxMJrl)H(l'M1,$M)I(UaxM)Q(XM+1)d2XM+1

—/Gf(XM)P(XM)CFXM
_Qng’l/wl(XM-Fl)f(’UvU’)ZEM)I(U7xM)Q(XM+1)d2XM+1 (28)
where
ngp = SNp
~ b(xpr, x
a(Tr—1,Tr, Tapr) = nﬁlf(U,U,JCM)‘FnEIM+L(IM,$M+1) (29)

L<mM7 $M+1)
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and f was defined in (9). We also used the obvious relation that in absence of specular
objects and volumetric absorption angular density of secondary (diffuse) illumination
equals the full radiance of the surface point seen from that direction:

]($M+1 —){L'M,ZEM) :L(IEM,ZEM+1) (30)

6 OPTIMAL WEIGHTS

By definition, this are the weights which minimize the noise functional. In our case
there is only one independent weight, let it be w;. Variation of noise (28) with respect to
it is

N
TBM/ ~ /5w1w1(XM+1)a($M—1737M73UM+1),U($M—1>$M)
X1 (v, 20)Q(X a1 X pra

it [ G (R F0r 0,220 (0, 220)Q Xt ) E s

where here and below

U = Ty — Typy-1

Tp+1 —7 T

and

0G1(X ) = /5w1(XM+1)f(v,u, 220)J (v, 2a0)8(Tar, Tarer )2 ar s

Expanding,

N
TBfSV ~ /5w1(XM+1)(w1(XM+1)G($M—1,$M7$M+1)M($M—1,$M)

‘—n}lf(v, U, Tpr) — Gl(XM))
XI(U>37M)Q(XM+1)d2XM+1

The optimal weight is the one for which the functional V' reaches its minimum, i.e.
0V =0 for an arbitrary dw;. This happens if and only if

w1 (X p1) (np' B(@ai—1, o, Taagr) + p(@n—1, ) 1(v, 2ar)) = np' fo,u,200) + G (X )

or
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w1 (X pr41) <nF1f(U7 U, Tar)

Let

a(xM—h LM, $M+1)

Wi (T -y Targ1) = Wiv, u, xy) +

Wl (Ua u, $M)
then
where
él(xm 7'TM) =
Vo=

1 b(fEMy $M+1)

thp I(v, ) = (v )

G1(X )

#1000 )

g 1 b(ifM, ZEM+1)

nglf(l}/u,l‘M) + n;‘ L(I'M xM-{-l) + L(:EM):EM+1)

nl_Wlf(Uv Uu, :BM)

a(.TM_l, XM, m]\44—1)

él(mo, ,Q]M)

a(iﬁM—l, LM, fL’M+1)

/w1($o, m;xM—i—l)f(%u7$M>J(U7$M>S($M>xM+1)d2IM+1

/wl(:vg,...,a:MH)f(v,u,xM)J(v,mM)dQv

Tr+1 — TM

Substituting this w; into the above definition of él(xo, ..., Zpr) we have

G1(900, -~-;$M)

from what it follows that

where

A(u, )
B(u, xpr)

Finally

= /Wl(v, u, xM)f(v, w, 2pr)J (v, 2p)d?0

+nFé1(x07"'7xM)/Wl(vau7$M)J(U7xM)dQU

/ Wi (v, u, o) f(v,u, w37)J (0, 207 )d20

/ Wl (Ua u, xM)J(Uv .CEM)d2U
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Figure 1: Use of weights in the limited MIS. Blue color relates to camera ray, red color relates to diffuse
light ray.

Alu, z)

a(zpr—1, T, ar1) (1 — npB(u, zar))

wi(Trv—1, Tar, Taa1) = Wi(v, u, zay) + (34)

and it depends only on three vertices (xpr—1, pr, pr41) of the join path.

7 CALCULATION OF WEIGHT IN RAY TRACING

As seen from (3), for kernel which is S™! inside integration sphere the camera path
(g, ..., xpr41) after interaction with all light photons increases the luminance of pixel by

M
AL = ZE(xo,...,xm)Lo(xm_l,xm)
m=0
+E(zo, ..., ) Zwo(fBM—1, Tar, Tp) f(Vpy T — i1, Tar)
p
Fwi(@pr—1, Tar, Taggr ) E (o, oy g ) L(2ar, @ pgs1) (35)

where ) is over the diffuse FMCRT photons (z,, v,) inside the integration sphere around
xyr and L(xpy, 2p41) 18 estimation of the full radiance at z;41 towards xy, (diffuse com-
ponent is from photon maps, the direct one being calculated deterministically), calculated
as it would be without weights. This use of weights is schematically shown in Figure 1.

We therefore need weight wq (21,2, y) for the the following y:

1. Hit point of the camera ray after scattering at x,

2. Previous hitpoint of all diffuse FMCRT photons which hit the integration sphere
about z s
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For each y the weight is given by (34) which includes integrals b(zpr,y) and L(zas,y). As

seen from (15) and (23), they can be estimated with Monte-Carlo method from photon
2

maps:

1
bz, y) =~ 2(vy,y = Tar: 36
(a1, ) SNFEP:f (Vps Y — Tar; y) (36)
1
L(zam,y) ~ Lo(xa,y) + SN, zp: f(vp, y = a3 y) (37)

where the sums are over the diffuse FMCRT photons (z,,v,) inside the integration sphere
around y. These calculations are very much similar to the usual estimation of surface
radiance from photon maps. Then (29), (31) give us the base component of weight
Wi (v, u,xpr) for this set of directions v =y — xy.

Regrettably their result is inevitably noisy while (as said in the very beginning) the
weights must be deterministic functions of the join path so that the weight calculated
for given (zpr_1,2p, y) must be the same during all the MCRT process. Meanwhile in
BDPM the photon maps change from iteration to iteration, thus had that same trajectory
(xar-1,ar, y) been encountered latter, the weight calculated for it would be different.

A simple remedy is to freeze the photon map used for calculation of integrals in the
weight formula so that it is the same for all iterations. For example, we can always use
photon map from the 1st iteration. In this case L(zpr,xpr41) is calculated differently:
for the 3rd line of (35) it is calculated from the “main” photon maps of current iteration
while for the weight it is calculated from the frozen map.

The scheme of calculations is shown in Figure 2 (left).

Besides, we need A and B which are independent from y. The integrals (32) and
(33) with respect to the measure J(v, z);)d?v proportional to the number of the incident
photons per surface area also can be estimated with the Monte-Carlo method as:

1 _

A =~ SNF;Wl(vp,u,xM)f(vp,u,xM) (38)
1

B =~ SNFZP:T/Vl(Up,u,xM) (39)

where the sums are again over the FMCRT photons (x,,v,) which hit the integration
sphere around x ;.

Again to make the result deterministic we use photons from the frozen map. Notice
we need W another set of directions than those in (36), (37) because there v, was from
the “main” photon map while now it is from the frozen photon map.

We therefore need to calculate W there, too. This is by the same (36), (37), only for
y which is now the previous hit from not the main but the frozen map.

The scheme of calculations is shown in Figure 2 (right).

2The full radiance L, can be calculated either completely from photon maps (using both direct and
diffuse photons), or its direct component Ly can be calculated separately while and only the diffuse
component (23) is taken from the photon maps
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b, L b, L Compute Compute

“X b L— W, b, L— W,

Compute

Compute

weight w,

Compute
b L

Figure 2: Left: Calculation of weights assuming A and B had been already calculated. Blue color relates
to camera ray, red color relates to light ray from current photon map and green color relates to light
ray from frozen photon map. In each integration sphere we compute b, L from the frozen photon map
and then calculate w; from them. Right: Calculation of A and B from the frozen photon map. In
each integration sphere we compute b, L from the frozen photon map, then calculate W from them and
eventually average into A and B.

8 CONCLUSION

The “full” MIS requires that all vertices in the join path be used for intersection of
light and camera rays. It happens that even for very simple scenes the problem is very
sophisticated. We therefore proposed a compromise sub-optimal approach when only two
weights can be not 0. These strategies are: either terminate camera ray at the given vertex
or continue it by yet one segment. Then, we treat the weights of these two strategies as
functions of the camera path and the last light path vertex but not of the “early” part of
light path. In this case the optimal weights obey a linear integral equation that admits
solution in close form, i.e. the solution is an analytic formula which though depends on
some integrals that must be calculated numerically. We demonstrate how they can be
calculated using FMCRT in presence of the direct illumination to pixel luminance. The
algorithm does not require too sophisticated calculations and is applicable in practice.

Unlike the widely used Veach heuristic [2], [10] the optimal MIS weights for BDPM
algorithm are not local and depend on the scene properties in points outside the current
path. Besides, they depend not only on BDFs and distribution of light source emission
but also on the number of forward (light) paths traced in one BDPM iteration and on the
area of the integration sphere.
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