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Summary. The contamination game of a grid graph        is a dynamic variant of the 

domination, similar to the power domination. This standard is introduced by Haynes, 

Hedetniemi and Henning in 2002, which is initially defined as a basic domination for a set of 

vertices   in a graph  , and then a propagation of this domination in all vertices of  , while 

starting with  . On the other hand, the contamination phenomena in        is interpreted by 

an evolutionary automaton cellular, which aims to propagate viruses according to a given 

propagation rules. In this paper, we define a mathematical self-playing game called a 

contamination game based on the power domination, in which, we identify the minimum 

number of contaminant cells for       , called the contamination number and denoted 

         . 

1 INTRODUCTION 

Electric power systems need to be monitored in real-time. One way to achieve this task is 

to place phase measurement units at selected locations in the system. The power system 

monitoring problem is a combinatorial optimization problem that consists of minimizing the 

number of measurement devices to be put in an electric power system. The power system 

monitoring problem has been formulated as a graph theory domination problem by Haynes, 

Hedetniemi, Hedetniemi, and Henning in [1]. This problem is of somehow different flavor 

than standard domination type problems, since putting a phase measurement unit into a vertex 

of a graph can have global effects. For instance, if an electric power system can be modeled 

by a path, then a single measurement unit suffices to monitor the system no matter how long 

is the path. 

Let         be a connected graph. For a vertex   of  , let      denote the open 

neighbor-hood of  , and for a subset     let                  . We denote by     
the set monitored by  , defined algorithmically as follows [2]: 

Algorithm 1 Construction of a monitored set      

Input: Graph         and    . 

Output:      the monitored set by  . 

1: Initiate      ←       ; 

2: While there exists        such that                   do 

3:      ←         ; 
4: EndWhile; 

5: Return     ; 
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The set   is called a power dominating set of   if        and the power domination 

number, denoted by      , is the minimum cardinality of a power dominating set. 

Various papers have addressed the power domination number, in which they essentially 

concentrate on its algorithmic point of view (see [3], [4], [5], [6], [7] and [8]). This problem is 

proven to be NP-complete even when restricted to bipartite graphs, chordal graphs, planar 

graphs, circle graphs and split graphs [9]. In contrast, the problem can be solved in 

polynomial time for trees and interval graphs [10]. Dorfling and Henning obtained closed 

formulas for the power domination numbers of grid graphs [11]. This result is in striking 

contrast with the fact that a determination of such formulas for the usual domination number 

of grid graphs is an open problem [1]. Now, a natural description of a grid is a cartesian 

product of two paths. However, there exist other graph products such as the strong, the direct, 

and the lexicographic product [1]. Hence, it is natural to ask whether the power domination 

number can also be determined for these products of paths. 

In this paper we introduce a new variant of domination characterized as a virus-

contamination in grid graph       , which is defined in two steps: 

(1) Local domination for a few cells of       . 

(2) Propagation on all cells of        according to a given initial contamination rules. 

2 POWER CONTAMINATION ON THE GRID 

Let              be a grid graph, and    . The set   is said to be a contaminating 

set if a full contamination of        can be achieved from        and the power 

contamination number           is the minimum cardinality of a power contaminating set. 

In the following, we will illustrate the problem as a self-playing game, in order to deal with 

the problem of contamination in       . 

For a vertex   of       , let      and       denote, respectively, Moore neighborhood 

(see Fig.1(a)) and Von Neumann neighborhood (see Fig.1(b)) of  , extended to the cells at the 

edge of       . 

 

Figure 1: Moore and Von Newmann neighborhoods of the black cell. 
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2.1 Contamination rules in        

The contamination game of        can be seen as a cellular automaton, or a model where 

each state leads automatically to the next state from predefined rules. This game takes place 

on       , whose cells are considered by analogy as living cells, which can take two 

different states "sick" or "healthy". At each step, the state of any cell is determined by the 

state of its eight neighbors, in regards to a given initial contamination rules. The goal of this 

game is to find the minimum number of initial contaminated cells           , such that the 

entire grid is contaminated. This kind of contamination can be seen as an evolutionary cellular 

automaton, which models an epidemiological phenomenon, illustrating the propagation of 

viruses in living cells. 

The space of states is a two-dimensional grid of sick or healthy living cells. The chosen 

transition rule depends on the number and position of the contaminated living neighboring 

cells that surround a cell, it corresponds to Moore neighborhood. 

A cell   is contaminated by two sick cells    and    if one of the following conditions is 

fulfilled: 

(i)             , 

(ii)             and                  

The possible configurations which satisfy these conditions are given in Fig.2. 

 

Figure 2: The contamination rules of the blue cell. 

 

The following algorithm illustrates the contamination and spread process which yield the 

contaminated set  , according to the contamination rules: 

 

Algorithm 2 Construction of a contaminated set      
Input: Graph         and    . 

Output:      the subset of vertices contaminated by  . 

1: Initiate      ←  ; 

2: While there exists          such that (i) and (ii) are satisfied do 

3:      ←         ; 
4: EndWhile; 

5: Return     ; 
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2.2 Mathematical model 

Let    
   

 be the decision variable at the step  , 

 

   
   

  
                                                 

                                                                              

  

The goal of this game is to find the minimum number of contaminating cells  
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the step 0, so that the entire grid is contaminated after    steps, according to Algorithm 2. 

The objective is the following: 

            
   

 

   

 

   

     
          

 
         

    

 

   

 

   

      

according to the contamination rules presented above, which are written as follows: 

      

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
    

   
        

   
         

     
                                     

   
   

        
   

         
     

                                     

   
   

      
   

       
     

                                                 

   
   

      
   

       
     

                                                 

   
   

        
   

       
     

                                            

   
   

        
   

       
     

                                       

   
   

        
   

       
     

                                       

   
   

        
   

       
     

                                      

   
   

                                                                                                              

  

30



A. Ainouche, S. Bouroubi 

3 CONTAMINATION ON STRONG PRODUCT OF TWO PATHS 

A natural representation of a grid        is as the strong product of two paths      , 

such that (see Fig.3): 

(1) each cell of        is represented by a vertex   in      , 

(2) the neighboring between two cells in        is represented by an edge in      . 

 

Figure 3:        modeled as the strong product of paths. 

The number of neighboring of each cell in        represents the degree of the 

corresponding vertex in      , as shown in Fig.3. This implies that the virus-contamination 

on        is equivalent as on      . 

Fig.4 represents an optimal contamination of       . The red cells (equivalently the red 

vertices in      ) represent the contaminated cells in step 0. 

 

Figure 4:             . 

The evolution of the total contamination of the grid        is shown in Fig.5. 

Figure 5: The evolution of the total contamination of       .  

4 MAIN RESULTS 

Lemma 4.1. For any positive integer $m$, the contamination number of the path           is: 
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Proof. Let        , with               and for            ,        . In order to 

have a full contamination of   , we should deploy viruses on the extremities of the path,    and   , 

and then we deploy the viruses alternatively on   , according to the contamination rule Fig.2(d). Thus, 

we should deployed    
   

 
  viruses, which implies that         + 

 

 
  (see for instance Fig.6). 

Figure 6: Optimal contamination in    and    . 

 

Theorem 4.2. Let     be two positive integers. Then we have 

          

 
 
 

 
      

 

 
   

 

 
                                          

     
 

 
   

 

 
                                                               

  

Proof. Let us first observe that the minimum number of viruses contaminating the grid        is the 

same as       , simply rotate        through 
 

 
. For this reason, we assume throughout the proof 

that      .  

In the following we give a construction of a contaminant set with the given cardinality. We 

conjecture that the construction is optimal; therefore this upper bound gives the exact value. 

If      the contamination is achieved with the given cardinality, using Lemma 1. Suppose that 

       and set         . In order to have a full contamination, it suffices to decompose   

into    and   , such that          and           . The contamination of    and    

induces a full contamination of  . For that, we distinguish fourth cases: 

Case 1:   and   are even. 

Let     
  be a diagonal of       of order   and size    , such that            . The main 

diagonal   
 , which is a path, is fully contaminated using 

 

 
   viruses, according to Lemma 1. From 

the contamination rules defined above, more precisely Fig.2(f) and Fig.2(h), the parallel paths     
  of 

size     are fully contaminated. The contamination continues to spread according to the same rules 

until reaching the last diagonal. Thus we have a full contamination of           . 

Now we move to the contamination of  . To contaminate this latter it suffices to alternatively 

deploy 
   

 
 viruses on the first path from the top of  , starting by the last vertex according to the 

contamination rules Fig.2(d) and Fig.2(e). Hence, we get a full contamination of    , and then a full 

contamination of         , using 
 

 
   viruses (see Fig.7). 
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Figure 7: Contamination strategy in       . 

Case 2:   and   are odd. 

The contamination of   is done in two steps, as seen in the first case. A full contamination of 

      is attained by deploying alternatively  
 

 
 +1 viruses on the main diagonal of    using Lemma 

1 and the contamination rules Fig2(a), Fig.2 (f) and Fig.2(h). The contamination of    is obtained by 

deploying alternatively 
   

 
 viruses on the first path from the top of  , starting by the last vertex 

according to the contamination rules Fig.2 (d) and Fig.2(e). Hence, we get a full contamination of    , 

and then a full contamination of         , by using  
 

 
  

   

 
    

 

 
    viruses (see Fig.8). 

 

Figure 8: Contamination of      .  

Case 3:   odd and   even. 

As seen in the second case,    is fully contaminated by using  
 

 
     

 

 
 +1 viruses. To 

contaminate    it suffices to alternatively deploy  
   

 
  

 

 
  

 

 
  viruses on the first path from the 

top of  , starting with the second vertex of    then add a virus at the last vertex (see Fig.9). Hence, we 

have a full contamination of    , according to the contamination rules Fig.2(d) and Fig.2(e) and then a 

full contamination of         , using  
 

 
   

   

 
    

 

 
  . 

 

Figure 9: Contamination of      .  

Case 4:   even and   odd. 

The graph    is fully contaminated by using 
 

 
  , as seen in the first case. To contaminate    it 

suffice to alternatively deploy  
   

 
   

 

 
  

 

 
 viruses on the first path from the top of  , starting 

with the second vertex of    then add a virus at the last vertex (see Fig.10). Hence, we have a full 

contamination of    , according to the contamination rules Fig.2 (d) and Fig.2(e) and then a full 
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contamination of         , using 
 

 
  

   

 
     

 

 
   . 

 

Figure 10: Contamination of      .  

 

As a consequence of the above theorem, we can give the following Corollary. 

Corollary 4.3. For any positive integer  , we have: 

           
 

 
     

Our investigation therefore puts us in a position to conjecture the following result: 

Conjecture. Let     be two positive integers. Then we have 

          

 
 
 

 
      

 

 
   

 

 
                                          

     
 

 
   

 

 
                                                               

  

5 CONCLUSION 

In this work, we have introduced a new dynamic variant of domination, which has the same 

principle of unfolding as power domination. This type of domination can be interpreted as a biological 

phenomenon or an evolutionary social phenomenon, which is called a contamination game and takes 

place in the grid graph       . We identified an upper bound for the minimum number of 

contaminant cells            and conjectured that it gives the exact value. 
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