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Summary. This note considers some number theoretic properties of the orthonormal

Neyman polynomials which are related to Delannoy numbers and certain complex Delannoy 

numbers. 

1 INTRODUCTION 

Rayner and Best point out that “the concept of smooth goodness of fitness tests was 

introduced in Neyman (1937)” [22]. Goodness of fit concepts in general usually go back to 

Karl Pearson [20]. Rayner [21] further pointed out that Jerzy Neyman’s smooth alternative of 

order k to the uniform distribution on (0,1) has probability density for 

                       

   

                (1.1) 

where K(θ) is a normalising constant and the       are orthonormal polynomials (Freeman) 

related to the Legendre polynomials. 

It is the purpose of this note to consider some number theoretic properties of the      
polynomials (i = 0,1,2,3,4 in Rayner) which, for convenience, we label as Neyman 

polynomials. In Deveci and Shannon [9] complex-type k -Fibonacci numbers are defined and 

the relationships between the k -step Fibonacci numbers and the complex-type k -Fibonacci 

numbers are provided together with miscellaneous properties of the complex-type k -

Fibonacci numbers. In addition, they studied the complex-type k -Fibonacci sequence modulo 

m . Finally, they obtained the period of the complex-type 2 -Fibonacci sequences in the 

Dihedral group 2nD ,  2n  .

In this paper, we define the complex-type Delannoy numbers and then give the 

relationships between the Delannoy numbers and the complex-type Delannoy numbers. 

Furthermore, we study the complex-type Delannoy sequence modulo m . 
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2 NEYMAN POLYNOMIALS 

Rayner elsewhere lists the first five such polynomials and we add some more in order to 

build up a picture of patterns. To help with this we have slightly modified some aspects of his 

notation as in Bera and Ghosh [3]: 

      =      

      =         

      =              

      =                    

      =                              

      =                                    

      =                                              

Blinov and Lemeshko [4] have set out corresponding Legendre polynomials as, in effect, 

      =      

      =        

      =            

      =             

      =                      

3 NEYMAN TRIANGLE 

We assemble the absolute values of the polynomial coefficients into a triangle, as the row 

sums are all unity if we include the signed values of the coefficients. The row sums are in the 

right-most column, and the pertinent OIES references [23] are in the bottom row. 

1 1 

2 1 3 

6 6 1 13 

20 30 12 1 63 

70 140 90 20 1 321 

252 630 560 210 30 1 1683 

924 2772 3150 1680 420 42 1 8989 

A000984 A002457 A002544 A007744 A106440 A013613 --- A001850 

Table 1: Neyman triangle 

The leading diagonals in this table generate the sequence {1,2,7,26,101,404,1645,…} 

which does not seem to be in OEIS, but the anti-diagonals can related to OEIS sequences in 

Table 2(a). 
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1 1 1 1 1 1 1 1 A000012 

2 6 12 20 30 42 56 72 A002378 

6 30 90 210 420 756 1260 1980 A033487 

20 140 560 1680 4200 9240 18480 34320 A105939 

70 630 3150 11550 34650 90090 210210 450450 70xA000581 

Table 2(a): Anti-diagonals in Neyman triangle 

The patterns are clearer when we express the Neyman anti-diagonals as multiples of the 

first element in each row, as in Table 2 (b). The leading diagonal here yields a known 

sequence (A005809) as do the anti-diagonals (A001519), the odd Fibonacci numbers as a 

bisection of the Fibonacci sequence, but we shall not pursue these here. 

1 X 1 1 1 1 1 1 1 1 A000012 

2 X 1 3 6 10 15 21 28 36 A000217 

6 X 1 5 15 35 70 126 210 330 A000332 

20 X 1 7 28 84 210 462 924 1716 A000579 

70 X 1 9 45 165 495 1287 3003 6435 A000581 

A0….. 00012 05408 0384 000447 53134 02299 53135 53136 

Table 2(b): Anti-diagonals in Neyman triangle 

The leading diagonals in Table 2(a) generate the sequence {1,3,13,63,321,1683,8989,…} 

[A001850] the elements of which are the Central Delannoy numbers [2], so called because 

they constitute the central anti-diagonal in the infinite square Delannoy array [A008288] in 

Table 3. The leading anti-diagonal here is A005809. 

n↓ 

m→ 0 1 2 3 4 5 6 7 

0 1 1 1 1 1 1 1 1 

1 1 3 5 7 9 11 13 15 

2 1 5 13 25 41 61 85 113 

3 1 7 25 63 129 231 377 575 

4 1 9 41 129 321 681 1289 2241 

5 1 11 61 231 681 1683 3653 7183 

6 1 13 85 377 1289 3653 8989 19825 

7 1 15 113 575 2241 7183 19825 48639 

Table 3: Square Delannoy array 

The leading diagonals in this array generate the Pell numbers {1,2,5,12,29,…}, and, in the 

sense of this paper, Alladi and Hoggatt [1] further related these numbers to Tribonacci 

triangles.  When this array is turned clockwise through 45
0
 we have the Pell triangle.

We also see regular intersections (as common elements) among the row and column 

sequences, which is a topic worth exploring as in Stein [24] who found it necessary to 

examine the intersection of Fibonacci sequences in order to answer the question of whether 

every member of a variety is a quasigroup given that every finite member is [25]. 

The Central Delannoy numbers           can be expressed as 
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(3.1) 

and 

   
     

  
 

(3.2) 

in terms of the Neyman numbers, which would appear to be new. This suggests we consider 

in turn 

     

  
                           

which is A006442, the expansion of            
 

  , which is also related to the Delannoy 

numbers. Likewise A084768 is 

     

  
                                     

and so on. 

4 THE COMPLEX-TYPE DELANNOY NUMBERS 

Now we define a new sequence that we call the complex-type Delannoy sequence 

  ,iD m n  as follows: 

          
     

1 if 0 or 0,
,

1, , 1 1, 1 otherwise.

i

i i i

m n
D m n

i D m n i D m n D m n

 
 

       
         (1) 

Note that when m n a  , the complex-type Delannoy sequence   ,iD m n  is reduced to the 

central complex-type sequence   ,iD a a . 

A table for the values of the complex-type Delannoy numbers is given by below: 

 n↓ 

m→ 

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

 0 1 1 1 1 1 1 1 1  

 1 1 2i-1 -3 -2i-1 1 2i-1 -3 -2i-1  

 2 1 -3 -8i+1 13 16i+1 -19 -24i+1 29  

 3 1 -2i-1 13 34i-1 -63 -98i-1 141 194i-1  

 4 1 1 16i+1 -63 -160i+1 321 560i+1 -895  

 5 1 2i-1 -19 -98i-1 321 802i-1 -1683 -3138i-1  

 6 1 -3 -24i+1 141 560i+1 -1683 -4168i+1 8989  

 7 1 -2i-1 29 194i-1 -895 -3138i-1 8989 22146i-1  

Table 4: Square complex-type Delannoy numbers 
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From the definitions of the Delannoy numbers and the complex-type Delannoy numbers, we 

derive the following relations:  

i. For , 1m n   

 

       

       

       

       

1

2

3

2 1, 1 1, 1 , 1 mod 4 ,

2 1, 1 1, 1 , 2 mod 4 ,
,

2 1, 1 1, 1 , 3 mod 4 ,

2 1, 1 1, 1 , 0 mod 4 .

n i

n i

i

n i

n i

i D m n D m n n

i D m n D m n n
D m n

i D m n D m n n

i D m n D m n n







       

       

 
      


      

 

ii. For , 0m n  ,    , ,i iD m n D n m . 

iii. For , 0m n  ,        1, , 1 1 ,
ni iD n n D n n D n n      . 

It is well-known that a sequence is periodic if, after a certain point, it consists only of 

repetitions of a fixed subsequence. The number of elements in the repeating subsequence is 

the period of the sequence. 

The research on the conformity of a single term,  modna p , has a long history forming 

most known Pascal's oldest fractal problem, which was originally created by the parities of 

binomial coefficients 
n

k

 
 
 

; see for example, [5,6,7,8,10,12,14,16,17,18,29,30]. We now 

extend the concept to the complex-type Delannoy numbers. 

Consider the sequence  

         , 0, , 1, , 2, ,i i i iD m n D n D n D n  

where n  is a fixed positive integer and 0,1, 2,m  . 

If we reduce the sequence   ,iD m n  modulo  , taking least nonnegative residues, then 

we can get the repeating sequence, denoted by 

             , 0, , 1, , 2, ,i i i iD m n D n D n D n     

where   ,iD u n   is used to mean the thu element of the sequence    ,iD m n   modulo 

  for the positive integer constant n . 

We note here that the sequence    ,iD m n   has the same recurrence relation as in (1). 

Theorem 4.1. The sequence    ,iD m n   is periodic. 

Proof. It is clear that sequence    ,1iD m   is a constant sequence. Since the sequence 

   ,1iD m   is a constant sequence; that is, since it consists only the repetitions of a 

constant subsequence, we can say that the sequence    , 2iD m   is also a periodic 

sequence, using the recurrence relation in the sequence    ,iD m n  . Similarly, since the 
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sequences    ,1iD m   and    , 2iD m   are periodic; that is, they consist only the 

repetitions of constant sub-sequences, the sequence    ,iD m n   is also periodic. By a 

similar idea, we get the repeating sequences  

   ,1iD m  ,    , 2iD m  ,…,    , 1iD m n   

are periodic; that is, they consist only the repetitions of constant sub-sequences, using the 

recurrence relation in the sequence    ,iD m n  . Thus, this implies that the sequence 

   ,iD m n   is periodic.                                                                                                         □ 

Example 2.1. We have 

   
1, 1,1, 1,0, 1,0,2 1,0,2 1,1, 1,

,3 3
1, 1,1, 1,0, 1,0,2 1,0,2 1,1, 1,

i
i i i i i i

D m
i i i i i i

      
  

      
 

and its terms repeat so we get    ,3 3 12iL D m  , where the period of the sequence 

   ,iD m n   is denoted by    ,iL D m n  . 

Conjecture 4.1. Let p  be prime, let n  be a fixed positive integer and 0,1, 2,m  . If u  is 

the smallest positive integer such that        1, ,i u i uL D m n p L D m n p  , then 

       , ,i v v u i uL D m n p p L D m n p  . 

Theorem 4.2. Let 1  and 2   be positive integers with 1 2, 2   , then  

             1 2 1 2, , , , ,i i iL D m n lcm lcm L D m n L D m n    
 

. 

Proof. Let  1 2,lcm    . Then,  

           

       

, , , , 1

, , 1 0 mod

i i i i

i i

D m n L D m n D m n L D m n

D m n L D m n n

 

 

    
   

     
 

 

and 

           

       

, , , , 1

, , 1 0 mod

i i i i

k k

i i

k k

D m n L D m n D m n L D m n

D m n L D m n n

 

 

    
   

     
 

 

for 1,2k  . Using the least common multiple operation this implies that  

           

       

, , , , 1

, , 1 0 mod

i i i i

i i

k

D m n L D m n D m n L D m n

D m n L D m n n

 

 

    
   

     
 
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for 1,2k  . So we have        1, ,i iL D m n L D m n   and        2, ,i iL D m n L D m n  , 

which means that        1 2, , ,i ilcm L D m n L D m n  
 

 divides 

     1 2, ,iL D m n lcm   . We also know that 

                     

            

1 2 1 2

1 2

, , , , , , , , 1

, , , , 1 0 mod .

i i i i i i

i i i

k

D m n lcm L D m n L D m n D m n lcm L D m n L D m n

D m n lcm L D m n L D m n n

   

  

    
   

     
 

Then, 

                     

            

1 2 1 2

1 2

, , , , , , , , 1

, , , , 1 0 mod .

i i i i i i

i i i

D m n lcm L D m n L D m n D m n lcm L D m n L D m n

D m n lcm L D m n L D m n n

   

  

    
   

     
 

and it follows that      1 2, ,iL D m n lcm   divides 

       1 2, , ,i ilcm L D m n L D m n  
 

. Therefore, we have the following conclusions.    □ 

Corollary 4.1. Let v  and u  be positive integers. If 2vn  , then     1, 2 2i u u vL D m n    for 

2u v  . 

Corollary 4.2. Let n  be a positive integer and u  a positive integer such that 2u  . Then 

    1, 2 2i u uL D m n  . 

5 CONCLUDING COMMENTS 

Lavers’ Lemma 5 [15] suggests a way to generalize (3.1) to produce corresponding 

pyramids, and Horadam [13] and Subba Rao [26,27,28] contain further ideas on the study of 

intersections of sequences. 
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