SOME ASPECTS OF NEYMAN TRIANGLES AND DELANNOY ARRAYS

ÖMÜR DEVECI ${ }^{1 *}$, ANTHONY G. SHANNON ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science and Letters, Kafkas University, 36100
Kars, Turkey
${ }^{2}$ Warrane College, the University of New South Wales, Kensington, NSW 2033, Australia
*Corresponding author. E-mail: odeveci36@hotmail.com

DOI: 10.20948/mathmontis-2021-50-4

Summary. This note considers some number theoretic properties of the orthonormal Neyman polynomials which are related to Delannoy numbers and certain complex Delannoy numbers.

1 INTRODUCTION

Rayner and Best point out that "the concept of smooth goodness of fitness tests was introduced in Neyman (1937)" [22]. Goodness of fit concepts in general usually go back to Karl Pearson [20]. Rayner [21] further pointed out that Jerzy Neyman's smooth alternative of order k to the uniform distribution on $(0,1)$ has probability density for

$$
\begin{equation*}
\left.h(y, \theta)=\exp \sum_{i=1} \theta_{i} \pi_{i}(y)-K(\theta)\right\}, 0<y<1, k=1,2, \ldots \tag{1.1}
\end{equation*}
$$

where $K(\theta)$ is a normalising constant and the $\pi_{i}(y)$ are orthonormal polynomials (Freeman) related to the Legendre polynomials.

It is the purpose of this note to consider some number theoretic properties of the $\pi_{i}(y)$ polynomials ($i=0,1,2,3,4$ in Rayner) which, for convenience, we label as Neyman polynomials. In Deveci and Shannon [9] complex-type k-Fibonacci numbers are defined and the relationships between the k-step Fibonacci numbers and the complex-type k-Fibonacci numbers are provided together with miscellaneous properties of the complex-type k Fibonacci numbers. In addition, they studied the complex-type k-Fibonacci sequence modulo m. Finally, they obtained the period of the complex-type 2 -Fibonacci sequences in the Dihedral group $D_{2 n},(n \geq 2)$.

In this paper, we define the complex-type Delannoy numbers and then give the relationships between the Delannoy numbers and the complex-type Delannoy numbers. Furthermore, we study the complex-type Delannoy sequence modulo m.

[^0]Key words and Phrases: Neyman polynomials, Legendre polynomials, Delannoy numbers, Fibonacci numbers, Tribonacci triangles.

2 NEYMAN POLYNOMIALS

Rayner elsewhere lists the first five such polynomials and we add some more in order to build up a picture of patterns. To help with this we have slightly modified some aspects of his notation as in Bera and Ghosh [3]:

$$
\begin{aligned}
& \pi_{0}(y)=\sqrt{ } 1(1) \\
& \pi_{1}(y)=\sqrt{ } 3(2 y-1) \\
& \pi_{2}(y)=\sqrt{ } 5\left(6 y^{2}-6 y+1\right) \\
& \pi_{3}(y)=\sqrt{ } 7\left(20 y^{3}-30 y^{2}+12 y-1\right) \\
& \pi_{4}(y)=\sqrt{9}\left(70 y^{4}-140 y^{3}+90 y^{2}-20 y+1\right) \\
& \pi_{5}(y)=\sqrt{ } 11\left(252 y^{5}-630 y^{4}+560 y^{3}-210 y^{2}+30 y-1\right) \\
& \pi_{6}(y)=\sqrt{ } 13\left(924 y^{6}-2772 y^{5}+3150 y^{4}-1680 y^{3}+420 y^{2}-42 y+1\right) .
\end{aligned}
$$

Blinov and Lemeshko [4] have set out corresponding Legendre polynomials as, in effect,

$$
\begin{aligned}
& p_{0}(y)=\sqrt{ } 1(1) \\
& p_{1}(y)=\sqrt{ } 3(2 y) \\
& p_{2}(y)=\sqrt{ } 5\left(6 y^{2}-0.5\right) \\
& p_{3}(y)=\sqrt{ } 7\left(20 y^{3}-3 y\right) \\
& p_{4}(y)=\sqrt{ } 9\left(70 y^{4}-15 y^{2}+0.375\right)
\end{aligned}
$$

3 NEYMAN TRIANGLE

We assemble the absolute values of the polynomial coefficients into a triangle, as the row sums are all unity if we include the signed values of the coefficients. The row sums are in the right-most column, and the pertinent OIES references [23] are in the bottom row.

1							1
2	1						3
6	6	1					13
20	30	12	1				63
70	140	90	20	1			321
252	630	560	210	30	1		1683
924	2772	3150	1680	420	42	1	8989
A000984	A 002457	A 002544	A 007744	A 106440	A 013613	---	A001850

Table 1: Neyman triangle
The leading diagonals in this table generate the sequence $\{1,2,7,26,101,404,1645, \ldots\}$ which does not seem to be in OEIS, but the anti-diagonals can related to OEIS sequences in Table 2(a).

1	1	1	1	1	1	1	1	A000012
2	6	12	20	30	42	56	72	A002378
6	30	90	210	420	756	1260	1980	A033487
20	140	560	1680	4200	9240	18480	34320	A105939
70	630	3150	11550	34650	90090	210210	450450	$70 \times \mathrm{A} 000581$

Table 2(a): Anti-diagonals in Neyman triangle
The patterns are clearer when we express the Neyman anti-diagonals as multiples of the first element in each row, as in Table 2 (b). The leading diagonal here yields a known sequence (A005809) as do the anti-diagonals (A001519), the odd Fibonacci numbers as a bisection of the Fibonacci sequence, but we shall not pursue these here.

1 X	1	1	1	1	1	1	1	1	A 000012
2 X	1	3	6	10	15	21	28	36	A 000217
6 X	1	5	15	35	70	126	210	330	A 000332
20 X	1	7	28	84	210	462	924	1716	A000579
70 X	1	9	45	165	495	1287	3003	6435	A000581
A0....	00012	05408	0384	000447	53134	02299	53135	53136	

Table 2(b): Anti-diagonals in Neyman triangle
The leading diagonals in Table 2(a) generate the sequence $\{1,3,13,63,321,1683,8989, \ldots\}$ [A001850] the elements of which are the Central Delannoy numbers [2], so called because they constitute the central anti-diagonal in the infinite square Delannoy array [A008288] in Table 3. The leading anti-diagonal here is A005809.

$\boldsymbol{n} \downarrow$ $\boldsymbol{m} \rightarrow$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{0}$	1	1	1	1	1	1	1	1
$\mathbf{1}$	1	3	5	7	9	11	13	15
$\mathbf{2}$	1	5	13	25	41	61	85	113
$\mathbf{3}$	1	7	25	63	129	231	377	575
$\mathbf{4}$	1	9	41	129	321	681	1289	2241
$\mathbf{5}$	1	11	61	231	681	1683	3653	7183
$\mathbf{6}$	1	13	85	377	1289	3653	8989	19825
$\mathbf{7}$	1	15	113	575	2241	7183	19825	48639

Table 3: Square Delannoy array
The leading diagonals in this array generate the Pell numbers $\{1,2,5,12,29, \ldots\}$, and, in the sense of this paper, Alladi and Hoggatt [1] further related these numbers to Tribonacci triangles. When this array is turned clockwise through 45° we have the Pell triangle.

We also see regular intersections (as common elements) among the row and column sequences, which is a topic worth exploring as in Stein [24] who found it necessary to examine the intersection of Fibonacci sequences in order to answer the question of whether every member of a variety is a quasigroup given that every finite member is [25].

The Central Delannoy numbers $\left\{a_{n}\right\}, n \geq 0$, can be expressed as

$$
\begin{equation*}
a_{n}=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{n}=\frac{\pi_{n}(2)}{\sqrt{n}} \tag{3.2}
\end{equation*}
$$

in terms of the Neyman numbers, which would appear to be new. This suggests we consider in turn

$$
\frac{\pi_{n}(3)}{\sqrt{n}}=\{1,5,37,305,2641,23525, \ldots\}
$$

which is A006442, the expansion of $\left(x^{2}-10 x+1\right)^{-\frac{1}{2}}$, which is also related to the Delannoy numbers. Likewise A084768 is

$$
\frac{\pi_{n}(4)}{\sqrt{n}}=\{1,7,73,847,10321,129367,1651609, \ldots\}
$$

and so on.

4 THE COMPLEX-TYPE DELANNOY NUMBERS

Now we define a new sequence that we call the complex-type Delannoy sequence $\left\{D^{i}(m, n)\right\}$ as follows:

$$
D^{i}(m, n)=\left\{\begin{array}{cc}
1 & \text { if } m=0 \text { or } n=0 \tag{1}\\
i \cdot D^{i}(m-1, n)+i \cdot D^{i}(m, n-1)-D^{i}(m-1, n-1) & \text { otherwise } .
\end{array}\right.
$$

Note that when $m=n=a$, the complex-type Delannoy sequence $\left\{D^{i}(m, n)\right\}$ is reduced to the central complex-type sequence $\left\{D^{i}(a, a)\right\}$.

A table for the values of the complex-type Delannoy numbers is given by below:

$\boldsymbol{n} \downarrow$								
$\boldsymbol{m} \rightarrow$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{0}$	1	1	1	1	1	1	1	1
$\mathbf{1}$	1	$2 i-1$	-3	$-2 i-1$	1	$2 i-1$	-3	$-2 i-1$
$\mathbf{2}$	1	-3	$-8 i+1$	13	$16 i+1$	-19	$-24 i+1$	29
$\mathbf{3}$	1	$-2 i-1$	13	$34 i-1$	-63	$-98 i-1$	141	$194 i-1$
$\mathbf{4}$	1	1	$16 i+1$	-63	$-160 i+1$	321	$560 i+1$	-895
$\mathbf{5}$	1	$2 i-1$	-19	$-98 i-1$	321	$802 i-1$	-1683	$-3138 i-1$
$\mathbf{6}$	1	-3	$-24 i+1$	141	$560 i+1$	-1683	$-4168 i+1$	8989
$\mathbf{7}$	1	$-2 i-1$	29	$194 i-1$	-895	$-3138 i-1$	8989	$22146 i-1$

Table 4: Square complex-type Delannoy numbers

From the definitions of the Delannoy numbers and the complex-type Delannoy numbers, we derive the following relations:
i. For $m, n \geq 1$

$$
D^{i}(m, n)= \begin{cases}2(i)^{n} \cdot D(m-1, n-1)-D^{i}(m-1, n-1), & n \equiv 1(\bmod 4) \\ 2(i)^{n+1} \cdot D(m-1, n-1)-D^{i}(m-1, n-1), & n \equiv 2(\bmod 4) \\ 2(i)^{n+2} \cdot D(m-1, n-1)-D^{i}(m-1, n-1), & n \equiv 3(\bmod 4) \\ 2(i)^{n+3} \cdot D(m-1, n-1)-D^{i}(m-1, n-1), & n \equiv 0(\bmod 4)\end{cases}
$$

ii. For $m, n \geq 0, D^{i}(m, n)=D^{i}(n, m)$.
iii. For $m, n \geq 0, D^{i}(n+1, n)=D^{i}(n, n+1)=(-1)^{n} \cdot D(n, n)$.

It is well-known that a sequence is periodic if, after a certain point, it consists only of repetitions of a fixed subsequence. The number of elements in the repeating subsequence is the period of the sequence.

The research on the conformity of a single term, $a_{n}(\bmod p)$, has a long history forming most known Pascal's oldest fractal problem, which was originally created by the parities of binomial coefficients $\binom{n}{k}$; see for example, $[5,6,7,8,10,12,14,16,17,18,29,30]$. We now extend the concept to the complex-type Delannoy numbers.

Consider the sequence

$$
\left\{D^{i}(m, n)\right\}=\left\{D^{i}(0, n), D^{i}(1, n), D^{i}(2, n), \ldots\right\}
$$

where n is a fixed positive integer and $m=0,1,2, \ldots$
If we reduce the sequence $\left\{D^{i}(m, n)\right\}$ modulo α, taking least nonnegative residues, then we can get the repeating sequence, denoted by

$$
\left\{D^{i}(m, n)(\alpha)\right\}=\left\{D^{i}(0, n)(\alpha), D^{i}(1, n)(\alpha), D^{i}(2, n)(\alpha), \ldots\right\}
$$

where $D^{i}(u, n)(\alpha)$ is used to mean the u th element of the sequence $\left\{D^{i}(m, n)(\alpha)\right\}$ modulo α for the positive integer constant n.
We note here that the sequence $\left\{D^{i}(m, n)(\alpha)\right\}$ has the same recurrence relation as in (1).
Theorem 4.1. The sequence $\left\{D^{i}(m, n)(\alpha)\right\}$ is periodic.
Proof. It is clear that sequence $\left\{D^{i}(m, 1)(\alpha)\right\}$ is a constant sequence. Since the sequence $\left\{D^{i}(m, 1)(\alpha)\right\}$ is a constant sequence; that is, since it consists only the repetitions of a constant subsequence, we can say that the sequence $\left\{D^{i}(m, 2)(\alpha)\right\}$ is also a periodic sequence, using the recurrence relation in the sequence $\left\{D^{i}(m, n)(\alpha)\right\}$. Similarly, since the
sequences $\left\{D^{i}(m, 1)(\alpha)\right\}$ and $\left\{D^{i}(m, 2)(\alpha)\right\}$ are periodic; that is, they consist only the repetitions of constant sub-sequences, the sequence $\left\{D^{i}(m, n)(\alpha)\right\}$ is also periodic. By a similar idea, we get the repeating sequences

$$
\left\{D^{i}(m, 1)(\alpha)\right\},\left\{D^{i}(m, 2)(\alpha)\right\}, \ldots,\left\{D^{i}(m, n-1)(\alpha)\right\}
$$

are periodic; that is, they consist only the repetitions of constant sub-sequences, using the recurrence relation in the sequence $\left\{D^{i}(m, n)(\alpha)\right\}$. Thus, this implies that the sequence $\left\{D^{i}(m, n)(\alpha)\right\}$ is periodic.
Example 2.1. We have

$$
\left\{D^{i}(m, 3)(3)\right\}=\left\{\begin{array}{l}
1, i-1,1, i-1,0, i-1,0,2 i-1,0,2 i-1,1, i-1, \\
1, i-1,1, i-1,0, i-1,0,2 i-1,0,2 i-1,1, i-1, \ldots
\end{array}\right\}
$$

and its terms repeat so we get $L\left(D^{i}(m, 3)(3)\right)=12$, where the period of the sequence $\left\{D^{i}(m, n)(\alpha)\right\}$ is denoted by $L\left(D^{i}(m, n)(\alpha)\right)$.
Conjecture 4.1. Let p be prime, let n be a fixed positive integer and $m=0,1,2, \ldots$. If u is the smallest positive integer such that $L\left(D^{i}(m, n)\left(p^{u+1}\right)\right) \neq L\left(D^{i}(m, n)\left(p^{u}\right)\right)$, then $L\left(D^{i}(m, n)\left(p^{v}\right)\right)=p^{v-u} \cdot L\left(D^{i}(m, n)\left(p^{u}\right)\right)$.
Theorem 4.2. Let α_{1} and α_{2} be positive integers with $\alpha_{1}, \alpha_{2} \geq 2$, then

$$
L\left(D^{i}(m, n)\left(\operatorname{lcm}\left(\alpha_{1}, \alpha_{2}\right)\right)\right)=l c m\left[L\left(D^{i}(m, n)\left(\alpha_{1}\right)\right), L\left(D^{i}(m, n)\left(\alpha_{2}\right)\right)\right] .
$$

Proof. Let $\operatorname{lcm}\left(\alpha_{1}, \alpha_{2}\right)=\alpha$. Then,

$$
\begin{aligned}
D^{i}(m, n)\left[L\left(D^{i}(m, n)(\alpha)\right)\right] & \equiv D^{i}(m, n)\left[L\left(D^{i}(m, n)(\alpha)\right)+1\right] \\
& \equiv \cdots \equiv D^{i}(m, n)\left[L\left(D^{i}(m, n)(\alpha)\right)+n-1\right] \equiv 0(\bmod \alpha)
\end{aligned}
$$

and

$$
\begin{aligned}
D^{i}(m, n)\left[L\left(D^{i}(m, n)\left(\alpha_{k}\right)\right)\right] & \equiv D^{i}(m, n)\left[L\left(D^{i}(m, n)\left(\alpha_{k}\right)\right)+1\right] \\
& \equiv \cdots \equiv D^{i}(m, n)\left[L\left(D^{i}(m, n)\left(\alpha_{k}\right)\right)+n-1\right] \equiv 0\left(\bmod \alpha_{k}\right)
\end{aligned}
$$

for $k=1,2$. Using the least common multiple operation this implies that

$$
\begin{aligned}
D^{i}(m, n)\left[L\left(D^{i}(m, n)(\alpha)\right)\right] & \equiv D^{i}(m, n)\left[L\left(D^{i}(m, n)(\alpha)\right)+1\right] \\
& \equiv \cdots \equiv D^{i}(m, n)\left[L\left(D^{i}(m, n)(\alpha)\right)+n-1\right] \equiv 0\left(\bmod \alpha_{k}\right)
\end{aligned}
$$

for $k=1,2$. So we have $L\left(D^{i}(m, n)\left(\alpha_{1}\right)\right) \mid L\left(D^{i}(m, n)(\alpha)\right)$ and $L\left(D^{i}(m, n)\left(\alpha_{2}\right)\right) \mid L\left(D^{i}(m, n)(\alpha)\right)$, which means that $\operatorname{lcm}\left[L\left(D^{i}(m, n)\left(\alpha_{1}\right)\right), L\left(D^{i}(m, n)\left(\alpha_{2}\right)\right)\right] \quad$ divides $L\left(D^{i}(m, n)\left(\operatorname{lcm}\left(\alpha_{1}, \alpha_{2}\right)\right)\right)$. We also know that

$$
\begin{aligned}
D^{i}(m, n)\left[\operatorname{lcm}\left(L\left(D^{i}(m, n)\left(\alpha_{1}\right)\right), L\left(D^{i}(m, n)\left(\alpha_{2}\right)\right)\right)\right] & \equiv D^{i}(m, n)\left[\operatorname{lcm}\left(L\left(D^{i}(m, n)\left(\alpha_{1}\right)\right), L\left(D^{i}(m, n)\left(\alpha_{2}\right)\right)\right)+1\right] \\
& \equiv \cdots \equiv D^{i}(m, n)\left[\operatorname{lcm}\left(L\left(D^{i}(m, n)\left(\alpha_{1}\right)\right), L\left(D^{i}(m, n)\left(\alpha_{2}\right)\right)\right)+n-1\right] \equiv 0\left(\bmod \alpha_{k}\right) .
\end{aligned}
$$

Then,

$$
\begin{aligned}
& D^{i}(m, n)\left[\operatorname{lcm}\left(L\left(D^{i}(m, n)\left(\alpha_{1}\right)\right), L\left(D^{i}(m, n)\left(\alpha_{2}\right)\right)\right)\right] \equiv D^{i}(m, n)\left[\operatorname{lcm}\left(L\left(D^{i}(m, n)\left(\alpha_{1}\right)\right), L\left(D^{i}(m, n)\left(\alpha_{2}\right)\right)\right)+1\right] \\
& \equiv \cdots \equiv D^{i}(m, n)\left[\operatorname{lcm}\left(L\left(D^{i}(m, n)\left(\alpha_{1}\right)\right), L\left(D^{i}(m, n)\left(\alpha_{2}\right)\right)\right)+n-1\right] \equiv 0(\bmod \alpha) .
\end{aligned}
$$

and it follows that $L\left(D^{i}(m, n)\left(\operatorname{lcm}\left(\alpha_{1}, \alpha_{2}\right)\right)\right)$ divides $\operatorname{lcm}\left[L\left(D^{i}(m, n)\left(\alpha_{1}\right)\right), L\left(D^{i}(m, n)\left(\alpha_{2}\right)\right)\right]$. Therefore, we have the following conclusions.
Corollary 4.1. Let v and u be positive integers. If $n=2^{v}$, then $L\left(D^{i}(m, n)\left(2^{u}\right)\right)=2^{u-v-1}$ for $u+2 \geq v$.
Corollary 4.2. Let n be a positive integer and u a positive integer such that $u \geq 2$. Then $L\left(D^{i}(m, n)\left(2^{u}\right)\right)=2^{u-1}$.

5 CONCLUDING COMMENTS

Lavers' Lemma 5 [15] suggests a way to generalize (3.1) to produce corresponding pyramids, and Horadam [13] and Subba Rao [26,27,28] contain further ideas on the study of intersections of sequences.

REFERENCES

[1] K. Alladi and V.E. Hoggatt, "Tribonacci numbers and Related Functions", Fibonacci Quarterly, 15(1), 42-45 (1977).
[2] C. Banderier and S.Sylviane, "Why the Delannoy numbers?", Journal of Statistical Planning and Inference, 135(1), 40-54 (2005).
[3] A.K. Bera and A. Ghosh, "Neyman's smooth test and its use in econometrics", Singapore Management University Research Collection School of Economics, 6-2001, p. 17 (2001).
[4] P.Y. Blinov and Y. B.Y. Lemeshko, "A Review of the Properties of Tests for Uniformity", Proceedings of the $12^{\text {th }}$ International Conference on Actual Problems of Electronics Instrument Engineering (APEIE), Novosibirsk: NSTU/IEEE, pp.540-547 (2014).
[5] S. Chowla, J. Cowles, and M. Cowles, "Congruence properties of Apéry numbers", Journal of Number Theory, 12(2), 188-190 (1980).
[6] K.S. Davis and W.A. Webb, "Pascal's triangle modulo 4", The Fibonacci Quarterly, 29(1), 79-83 (1991).
[7] O. Deveci and Y. Akuzum, "The cyclic groups and the semigroups via MacWilliams and Chebyshev matrices", Journal of Mathematics Research, 6(2), 55 (2014).
[8] O. Deveci and E. Karaduman, "The cyclic groups via the Pascal matrices and the generalized Pascal matrices", Linear algebra and its applications, 437(10), 2538-2545 (2012).
[9] O. Deveci and A.G. Shannon "The complex-type k-Fibonacci sequences and their applications", Communications in Algebra, 1-16 (2020).
[10] S.P. Eu, S.C. Liu, and Y.N. Yeh, "On the congruences of some combinatorial numbers", Studies in applied mathematics, 116(2), 135-144 (2006).
[11] J.M. Freeman, "A Strategy for Determining Polynomial Orthogonality", In Bruce E. Sagan and Richard P. Stanley (eds). Mathematical Essays in honor of Gian-Carlo Rota, Boston/Basel/Berlin: Birkhäuser, 239-244 (1998).
[12] A. Granville, Arithmetic properties of binomial coefficients, I: Binomial coefficients modulo prime powers, In Organic mathematics, Proceedings of the workshop, Simon Fraser University, Burnaby, Canada, December. 12-14. American Mathematical Society (1997).
[13] A.F. Horadam, "Generalizations of two theorems of K. Subba Rao", Bulletin of the Calcutta Mathematical Society, 58(1), 23-29 (1966).
[14] P.Y. Huang, S.C. Liu, and Y.N. Yeh, "Congruences of Finite Summations of the Coefficients in certain Generating Functions", The Electronic Journal of Combinatorics, 21(2), P2-45 (2014).
[15] T.G. Lavers, "The Fibonacci Pyramid", In G.E. Bergum, A.F. Horadam and A.N. Philippou (eds). Applications of Fibonacci Numbers, Volume 7. Dordrecht: Kluwer, pp. 255-263 (1998).
[16] E. Lucas, "Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques suivant un module premier", Bulletin de la Société mathématique de France, 6, 49-54 (1878).
[17] K. Lü and J. Wang, " k-step Fibonacci Sequences Modulo m", Utilitas Mathematica, 71, 169-178 (2007).
[18] Y. Mimura, "Congruence properties of Apéry numbers", Journal of Number Theory, 16(1), 138146 (1983).
[19] J. Neyman, "'Smooth' test for goodness of fit", Scandinavian Actuarial Journal, 3-4, 149-199 (1937).
[20] R.L. Plackett, "Karl Pearson and the Chi-Squared Test", International Statistical Review, 51(1), 59-72 (1983).
[21] J.W.C. Rayner, The goodness of fit publications of J.W.C. Rayner. Volume 1. Thesis for the degree of Doctor of Philosophy, the University of Wollongong, p. 3 (1994).
[22] J.W.C. Rayner and D.J. Best, "Neyman-type Smooth Tests for Location-Scale Families", Biometrika, 73(2), 437-446 (1986).
[23] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, (OEIS). oeis.org. San Diego CA: Academic Press (1964).
[24] S.K. Stein, "The intersection of Fibonacci sequences," Michigan Mathematics Journal, 9, 399402 (1962).
[25] S.K. Stein, "Finite models of identities", Proceedings of the American Mathematical Society, 14, 216-222 (1963).
[26] K. Subba Rao, "Some properties of Fibonacci numbers", American Mathematical Monthly, 60, 680-684 (1953).
[27] K. Subba Rao, "Some properties of Fibonacci numbers-I", Bulletin of the Calcutta Mathematical Society, 46, 253-257 (1954).
[28] K. Subba Rao, "Some properties of Fibonacci numbers-II", Mathematics Student, 27, 19-23 (1959).
[29] Z.W. Sun, "On Delannoy numbers and Schröder numbers", Journal of Number Theory, 131(12), 2387-2397(2011).
[30] D.D. Wall, "Fibonacci series modulo m", The American Mathematical Monthly, 67(6), 525-532 (1960).

Received January 27, 2021

[^0]: 2010 Mathematics Subject Classifications: 11B83; 62-01.

