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Summary. In the work within the framework of "entropic cosmology", the scenario of the cos-

mological accelerated expansion of a flat, homogeneous and isotropic Universe under the influ-

ence of entropic forces is considered without the concept of dark energy a hypothetical medium 

with negative pressure. Assuming that the horizon of the Universe has its own temperature and 

entropy, which arises during the holographic storage of information on the screen of the horizon 

surface, the entropy models of the Universe associated with the BekensteinHawking entropy 

and the non-extensive Barrow and Tsallis–Cirto entropies are considered. The modified equa-

tions of acceleration and continuity of Friedman with governing power terms having an entropic 

nature are derived both within the framework of Einstein's general theory of relativity and on the 

basis of a thermodynamic approach that allows modeling the non-adiabatic evolution of the Uni-

verse. At the same time, models based on nonextensive entropies predict the existence of both a 

decelerating and accelerating Universe. 

1. INTRODUCTION

In the last years of the twentieth century (1998), an unexpected discovery was made in cos-

mology related to the accelerating expansion of the Universe. Currently, this fact has been con-

firmed by a huge number of observational data and numerous cosmological experiments con-

cerning the microwave background, large-scale structure, and other dimensions of the Universe 

(see, for example, [1-2]). In this regard, modern cosmological concepts are fully consistent with 

the Friedman−Robertson−Walker model of a homogeneous, isotropic, and almost flat (infinite) 

and open Universe, continuously expanding with acceleration [3-5]. 

Despite the growing amount of observational evidence for the existence of an accelerated ex-

pansion of the Universe, its nature and fundamental origin are still an unresolved issue. As it is 

know, the ratio of ordinary (baryonic) matter, dark matter and dark energy is approximately. 

1 : 10 : 25 . Consequently, the evolution of the Universe is completely dominated by cold dark 

matter and dark energy − the so-called cosmic vacuum [6-7], the energy density of which is cur-

rently associated with the cosmological constant 56 21.1 10 sm   . 
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The constant  determines antigravity in the Einstein modified general theory of relativity 

(GR) by Einstein [4]. 

The cosmological vacuum has everywhere and always constant positive density 
2/ 8c G    and negative pressure 2P c    . According to Friedman's cosmology of a ho-

mogeneous and isotropic universe, gravitation is created not only by the density of the material 

medium, but also by its pressure in combination 23 /P c . The vacuum causes antigravity pre-

cisely because its effective gravitating energy vvvG cP  23 2   is negative at positive 

density. Since the density of the vacuum (dark energy) exceeds the total density of all other types 

of cosmic energy, then antigravitation is stronger than gravitation. Under this condition, the 

cosmological expansion must occur with acceleration [8]. Thus, the cosmological accelerated 

expansion of the Universe is completely determined by the acting in parallel gravitational and 

antigravitational forces described by the modified general relativity approach.  

It should be noted, however, that at present there are a number theories in support that of 

gravity are called. In contrast to the Standard Model, which combines three interactions in na-

ture but gravity, the "Theory of Everything" (or M-theory), unifies all forces and particles in na-

ture, but it not fully complies with General relativity [9]. 

Among the many scenarios for the accelerated expansion of the Universe, the so-called "en-

tropic cosmology" has recently attracted much attention, according to which gravity is perceived 

as a kind of force associated with a change in entropy. The concept of the cosmological entropic 

force was proposed by the Dutch physicist ("string theorist") Eric Verlinde, who in his article 

[10] developed a rather "crazy" theory, according to which the phenomenon of gravity is ex-

plained through entropy, i.e. the force of gravity is inherently thermodynamic in origin [11], 

2010). In this work, the author argues that the central concept necessary for the emergence of 

gravity is information (more precisely, the amount of information associated with matter and its 

distribution) in terms of entropy. The most important assumption of the theory is that infor-

mation associated with a certain region of space obeys the holographic principle (see, for exam-

ple, [12] and relies heavily on the physics of black holes [13-14]. 

In the cited article, it was shown that within the holographic principle of the formation of 

space
i)
 gravity inevitably arises, which is identified with the entropy force caused by changes in

information
ii)

, associated with the growth of the area occupied by material bodies. According to

the holographic picture of the world, entropy is stored on holographic screens, and space appears 

between two similar screens. With this approach, the gravitational force in space is determined 

by the entropy gradient, or the so-called entropic force. 

Nearly the same time, within the framework of the Verlinde hypothesis, Easson et al. [15] de-

veloped a heuristic theory of the accelerated expansion of the Universe, based on the entropic 

force.  Authors of that work have demonstrated that accelerated expansion is an inevitable con-

sequence of an increase in entropy associated with the storage of holographic information on a 

surface screen located on the event horizon (space-time region) of the Universe. As a result, with 

this approach, the progress in physical understanding of the process of accelerated expansion of 

i
) Here, holography refers to information about the Universe encoded on a screen, which is interpreted as a two-

dimensional surface of the Universe. 
ii
) According to the holographic principle, the growth of information associated with an increase in the surface of 

the Universe occupied by material bodies leads to an increase in entropy; hence the emergence of a gradient of en-

tropy (entropy force) directed against the increase in the radius of the specified surface area. And this is gravity. 
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the Universe was achieved based on entropic forces, without the concept of dark energy − hypo-

thetical medium with negative pressure. 

In other words, contrary to the widespread explanation of the observed accelerated expansion 

of the Universe, which appears in the presence of a driving force (in the Friedman equations) due 

to dark energy, an alternative interpretation of such a force was proposed - an entropic force. The 

latter was associated with the entropy and temperature of the horizon of the Universe, which 

arise when storing information on the screen of the surface of the horizon. 

Finally, in a number of subsequent works (see, for example, [16-29]) devoted to entropic 

cosmology, the scenario of the accelerated expansion of the Universe under the influence of en-

tropic forces of various nature was discussed, proceeding from the idea that the horizon of the 

Universe (like the event horizon of a black hole) has its own entropy and temperature. In all the-

se studies, along with the de Sitter temperature [30], various entropy entities were used (in par-

ticular, the Bekenstein−Hawking entropy [13], the non-extensive Tsallis−Cirto entropy [31], the 

modified (equally-distributed) entropy Renyi [32] and others). Instead of the cosmological con-

stant in the equations of Einstein's general theory of relativity, an additional so-called governing 

term was added, associated with the entropy and temperature of the event horizon of the Uni-

verse. Using modified Friedman equations, it was shown that such models explain the current 

accelerating expansion of the Universe and they are in good agreement with the data on superno-

vae. Let us note that the cosmological acceleration found in this case (considered as a conse-

quence of the entropic force) turns out to be relatively small (of the order of the Hubble con-

stant), in contrast to the huge value of accelerated expansion, which is confusing to most cos-

mologists, predicted by quantum field theory in combination with general relativity
iii)

.

Thus, the study of the influence of entropic forces on the accelerated expansion of the Uni-

verse is of interest, since due to the anti-gravitational action, it is these forces that can play the 

role of mysterious dark energy both in the form of a cosmological constant and in the form of 

scalar fields [33]. In entropic cosmology, it is assumed that the horizon of the Universe has asso-

ciated temperature and entropy due to information stored on the surface of the event horizon 

holographically.  

Here we concern some elementary considerations intended to show how the entropy force, 

which has a thermodynamic nature, is related to the entropy of a large body. For this, we use 

the second law of thermodynamics for a macroscopic body, in the form of the Gibbs relation

dE TdS PdV  . Since for a very large body with a change in its volume (due to the displace-

ment of the boundary dr ), the surface area A and internal energy E  practically do not change, 

then one can write 0 ( )TdS P Adr  . Hence, it follows that if the entropy changes due to in-

crease of radius of the volume, then the force /sF PA TdS dr   arises. Since the space-time-

dependent entropy (evolving in time and reaching a maximum in the final thermal state), ex-

pands in space, its gradient appears, which is interpreted as an entropic force. 

iii
) The identification of the cosmological constant with the vacuum energy does not allow, unfortunately, to pen-

etrate into the essence of dark energy and leads to a still unsolvable problem, which consists in the fact that the ob-

served value of the dark energy density  4310 eV
abs


   and its theoretically predicted value  41810 GeV

th


differ by 120 orders of magnitude (here, ( )V V  the potential of the scalar fields   (inflaton) [4]. 
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In the presented work, which is related to modeling the accelerated expansion of a flat, homo-

geneous and isotropic Universe, modified Friedman equations are obtained, in which instead of 

the cosmological constant there appears an additional control term (driving force) associated 

with changes in entropy and temperature on the Hubble horizon of the Universe. The surface ar-

ea of the Universe is a key characteristic that determines its entropy and information content. 

Along with the traditional Bekenstein−Hawking entropy [15], which is proportional to the area 

of the Hubble horizon, we also incorporate the non-additive Tsallis−Cirto entropy [31], which is 

proportional to the horizon volume, and the non-additive entropy of Barrow [34-36], taking into 

account the fractal structure of the Hubble horizon. For these entropies, modified Friedman equa-

tions have been constructed to explain the cosmological expansion of the Universe without dark 

energy. In this case, the corresponding entropic forces predetermine both deceleration and/or ac-

celerated expansion of the Universe. It is important to note that the construction of new models 

of the evolution of the Universe is carried out on the basis of the recently introduced non-

additive Barrow entropy, which is a new holographic model of entropy associated with the modi-

fication of the horizon of the Universe surface due to quantum gravitational effects.  

2. SOME ELEMENTS OF CLASSICAL COSMOLOGY

2.1 Gravitational field equations 

First, we will consider a flat evolutionary model of the Universe, which is infinite in space, 

homogeneous, isotropic and expanding. In this case, the Universe is modeled by some cosmolog-

ical fluid, the particles of which are galaxies. At this level of large-scale averaging, the structure 

of the Universe is symmetric and has no singularities. In classical cosmology, models of the 

evolving Universe are constructed on the basis of Einstein's equations of general relativity (see, 

for example, [4, 33, 37]. 

The expansion of the Universe is governed by the equations of the gravitational field, which 

have the following general form [4, 8]:  

1
( )

2
R g R t g T       .  (1) 

Here 2ds g dx dx 
  four-dimensional space-time interval in general relativity, g   met-

ric tensor, g g 
   ; R g R

    Ricci tensor; R   the Riemann−Christoffel

tensor, composed of the products of the first derivatives ( / ) ( / )p pg x g x        and the second

derivatives 2 /g x x      of the metric tensor; R g R
  scalar curvature of four-

dimensional space; 
48 /G c     Einstein gravitational constant; T   the energy-momentum

tensor, which plays the role of the source of the gravitational field; c  speed of light in vacuum, 

   the cosmological "constant" introduced by Einstein, which can often be omitted; G   grav-

itational constant.  
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In flat hyperspace, the space-time linear interval has the form 

2 2 2 2 2 2 2( ) ( )ds c dt a t dx dy dz    , which corresponds to the metric tensor with Galilean com-

ponents
iv)

2 2
00 11 22 33; ( ) ; 0 at ;g c g g g a t g g g           , (2) 

where t − the space time coordinate; ( )a t − expansion coefficient (Robertson−Walker scale fac-

tor [4]. For the case of an ideal cosmological fluid
v)

 the energy-momentum tensor in a locally

inertial Cartesian coordinate system has the form 2( )T c P u u Pg       , where ( ),t  

( )P P   are, respectively, the density and scalar pressure of the cosmological fluid (including 

matter and radiation) at the moment of time .t  Here a four-dimensional velocity /u x s    is

introduced, which is determined by the condition that in the accompanying locally inertial Carte-

sian coordinate system its components are equal 0 1u  and 0 0u  . Thus, at rest, the tensor

components T  have the following form [3]:

2
00 11 22 33; ; 0T c T T T P T при          . (3) 

Note that in a flat model of the Universe, the three-dimensional curvature is zero, but the four-

dimensional space remains curved. 

2.2 Friedman's cosmological model 

Let us consider Friedman's standard model for a flat open universe
vi)

.

From Einstein's equations (1) under the above assumptions
 vii)

 two Friedman equations for the

scale factor ( )a t  follow [3] 

2
2, 8

( ) ( ) /33
t

omitted

a G
H t t

a

  
     

 
,     (4) 

iv)
 Almost all modern cosmology is based on this Robertson-Walker metric. 

v)
 An ideal fluid is defined as a medium for which at each point there is a locally inertial Cartesian frame of ref-

erence moving with the fluid, in which the fluid itself looks the same in all directions. 
vi)

 Space is flat only if the ratio : / 1cr     , where 2
: 3 / 8

cr
H G    is the critical mass density (matter + radiation),

29 3
10 /

cr
g sm


  . According to modern observational data, the value 1.02 0.02   . 

vii)
 Space is flat only if the ratio : / 1cr     , where 2

: 3 / 8
cr

H G    is the critical mass density (matter + radiation),

29 3
10 /

cr
g sm


  . According to modern observational data, the value 1.02 0.02   . 
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2
2

1 ( ) 4 3 ( )
, ( ) ( ) /3( ) 3tt

omitted

dH t G P t
a H t t

a t dt c

  
         
   

,  (5) 

which describe an expansion of the Universe. Here, the dot denotes the time derivatives; 

( ) : , /tH t a a  − the Hubble parameter, or the Hubble expansion rate of the Universe (in the

modern period 18 1
0 2.2 10H c   ); m      total density of matter and radiation. Equa-

tions (4) and (5) include an additional governing parameter / 3  that, if properly defined, can 

explain the accelerated expansion of the late Universe [33]. 

From equations (4) and (5) it is easy to obtain the following continuity equation − "energy 

conservation law" 

2

, ( ) ( )
, ( ) 3 ( ) 0

( )
t

t
a t P t

t t
a t c

 
     

 
.  (6) 

To do this, it is necessary to differentiate (4) and combine the result with the ratio (5), which the 

pressure satisfies. Note that equation (6) can also be derived directly from the first law of ther-

modynamics, if we consider the Universe as a thermodynamic system bounded by the visible 

horizon and expanding adiabatically ([38], see also Section 5.1. of this work). 

Equation (6) can be written as 
2/ 3( / )ad da P c     , or, which is the same

3 2 2( ) / 3d a da Pc a   .  (7) 

If the dependence of pressure ( )P t on ( )a t is known, it is possible, by solving equation (4) (at

0  ), to determine ( )a t for all times. Thus, the fundamental equations of dynamic cosmology 

are the Einstein equations (4), the energy conservation equation (6) and the equation of state. 

Cosmological models based on the Robertson−Walker metric, in which ( )a t it is determined 

from these equations, are called Friedman models [39]. Note that the solution ( )a t obtained in 

this way automatically satisfies Eq. (5), since differentiating (4) with respect to time and using 

(7), we obtain 

2 3 2 2
2

8 8
2 , , , ( ) , 3

3 3t tt t t
G d G P

a a a a a a a a
a da a c

   
        

   
 

which is equivalent to equation (5). 

Equation (7) can be easily solved in the case of an equation of state in the form P w  with 

a time-independent coefficient w . In this case, equation (6) leads to a solution 
3 3wP a 

,

which, in particular, is applicable in the following frequently encountered limiting cases: 

− if the main contribution to the energy density of the Universe is made by nonrelativistic 

matter with negligible pressure, then it follows from (7) that 

3( ) ( )t a t   when P   ;  (8) 
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− if the contribution of relativistic particles, such as photons, prevails in the energy density, 

then / 3P   , and from (7) one obtains 

4( ) ( )t a t   when / 3P   ;  (9) 

− in the case of a cosmological vacuum, when 
2P c   , equation (7) has a solution in the

form of a constant  , known (up to generally accepted numerical factors) as the cosmological 

constant  , or vacuum density. 

The currently known observations of the accelerating expansion of the Universe are consistent 

with the existence of a constant vacuum energy equal to 2c . The very existence of an accelerat-

ing expansion, in accordance with equation (5), requires that a significant part of the energy den-

sity of the Universe should be in such a form for which 23 / 0P c  , in contrast to ordinary

matter and radiation. This form is called dark energy in cosmology [4]. 

3. ACCELERATED EXPANSION OF THE UNIVERSE

3.1. Entropy force associated with the Bekenstein−Hawking entropy 

In this work, to explain the accelerated expansion of the Universe, we will use a different ap-

proach (without dark energy), in which the ideas of information, holography, entropy and tem-

perature play a central role (see [10, 22, 40]). Consideration of the entropic force on the holo-

graphic horizon of an expanding flat Universe, which has associated entropy and temperature, 

leads to the so-called entropic cosmology, which assumes that it is the entropic force acting on 

the Hubble horizon and directed outward towards the horizon that is responsible for the phenom-

enon of accelerated expansion. For this reason, there is no ambiguous dark energy component in 

the cosmological equations.  

With this approach, by analogy with the thermodynamic characteristics of the Hubble horizon 

of a black hole described by its temperature and entropy, entropy cosmology assumes that the 

region of the expanding flat Universe (coinciding with the Hubble horizon) has a temperature 

proportional to the de Sitter temperature [30] and the associated Bekenstein−Hawking entropy 

[15]. In this case, the problem of the relationship between the cosmological constant and the en-

tropic force is solved in a natural way [10]. 

In entropic cosmology, the Hubble horizon (radius) HR  and the temperature of the cosmolog-

ical horizon of the Universe H ST T  are determined by the expressions [15]

1
HR cH ,   (10) 

2 2H
B B H

c
T H

k k R
  

 
,  (11) 
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where Bk  and / 2h   are the Boltzmann constant and the reduced Dirac constant, respective-

ly; − non-negative free order parameter (1)O  (usually 1/ 2 or 3 / 2 , which corresponds to 

the parameter for the screen temperature obtained in [15].  

The temperature of the horizon of the Universe, closely related to the de Sitter temperature

/ 2S BT H k  , can be estimated as

30(1) 3 10
2Н

B

H
T K

k
 


,  (12) 

which is much lower than the temperature of the cosmic microwave background, 2.73T К . 

The entropy associated with the horizon of the Universe is given by the following Beken-

stein−Hawking relation [13] 

3
H

BH B B H
Pl

A c
S k k A

A G

 
  

 
,  (13) 

where HA  is the size of the area of the standard horizon (surface area of the Hubble radius area

)HR ; 
3 70 2/ 2.612 10PlA G c m   − Planck area. Substituting the quantity 

2 2 2
H HA R c H     into relation (13), we obtain 

53
2 122

2 2

1
(2.6 0.3) 10B

BH B H B
k cс K

S k R k
G G H H

   
       

   
   

.  (14) 

A positive constant is introduced here 

5 2 2

2
: 0B B B

PlPl

k c k c k c
K

G AL

  
    ,  (15) 

where 
3/PlL G c is the Planck length.

Increasing the radius HR by HdR increases the entropy BHS  by BHdS  in accordance with the

formula 

3

2B
BH H H

k с
dS R dR

G

 
   
 
 

3
1222 (2.6 0.3) 10 .B H

H B
H

k c dRc
dR k

G H R

   
         

The entropy force BHF corresponding to the growth of the Bekenstein−Hawking entropy can be

defined as 
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BH
BH H

H

dS
F T

dr
  .  (16) 

Here, the minus sign indicates the direction of increasing entropy or screen, which in this case is 

the event horizon [15]. 

Substituting now relations (11) and (13) into (16) and using the formula for the area HA  of

the standard horizon, we obtain the following expression for the entropic force 

2 3

2

2 2
BH

BH H
H B H B H

dS H d K H K dH
F T

dR k dr k drH H

 
         

 

5 6 4

2 2 2

1 1 1

H H

c dH c c

G dR G GH H R
      .  (17) 

The pressure BHP  of this force on the cosmological horizon of the Universe is determined by

the formula 

4 2
2 2

2

21

4 4 34

crBH
BH

H H

F c c
P H c

A G GR


      


 (18) 

(where 2: 3 / 8cr H G  is the critical mass density of matter and radiation). This value is close

to the measured negative pressure (tension) of dark energy in the form of a cosmological con-

stant [4]. Thus, in the holographic approach, pressure arises not due to the negative pressure of 

dark energy, but due to the entropic tension due to the entropic content on the horizon of the 

Universe. The presence of such tension is equivalent to outward cosmic acceleration viii). In other 

words, the acceleration of the universe arises as a natural consequence of the entropy change at 

the horizon of the Universe. 

3.2. Accelerated expansion of the Universe under the influence of the 

Bekenstein−Hawking entropy force 

We will now assume that in entropy cosmology the effective pressure BHP  based on the

Bekenstein−Hawking entropy is determined by the relation  

2
2

4BH BH
c

P P P P H
G

     


 .  (19) 

When using BHP , equations (5) and (6) take the following form:

viii) Note that from the possibility of describing the cosmic acceleration of the Universe by an entropic force, it

does not follow that gravity itself is an entropic force [10]. 
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2
2

, 4 3 ( )
( ) ( )

3
tta G P t

t H t
a c

 
      

 
,  (20) 

3
2

3
, 3 ( ) ( ) ( )

4t
P

H t t H t
Gc

 
      

 
.  (21) 

These equations can be considered as modified equations of acceleration (5) and continuity (6) 

for entropy cosmology, obtained using the Bekenstein−Hawking entropy. The quantity H2 in 
these equations is related to the entropic force, which can explain the accelerated expansion of the 
Universe without introducing the concept of dark energy − the cosmic vacuum (associated with 
the cosmological constant), the energy density of which is negative. Note that the Beken-stein
−Hawking entropy is proportional to the area of the cosmological horizon of the Universe, due to 
which the model based on this entropy predicts only the Universe expanding with uniform 
acceleration. This model of the accelerated expansion of the Universe is capable to provide a good 
fit with supernova data [15, 22]. 

4. ENTROPIC FORCE ASSOCIATED WITH NON-ADDITIVE ENTROPY

OF BARROW AND TSALLIS−CIRTO 

Recently [35] proposed a model of the quantum gravitational foam of space-time was pro-

posed to estimate the entropy of black holes and the Universe, the surface of which can have a 

complex fractal structure of the cosmological horizon down to arbitrarily small scales (up to a 

scale of the order of the Planck length) due to quantum gravitational effects. The introduction of 

the fractal structure of the horizon (space-time region) of the Universe leads to an increase in its 

surface area. As you know, the surface area of the Universe is a key characteristic that deter-

mines its entropy and information content. 

The complex fractal structure of the horizon of the Universe results in a finite volume, but 

with an infinite (or finite) area [35]. According to the thermodynamics of black holes, the possi-

ble effects of the quantum-gravitational foam of space-time in the region of the cosmological 

horizon lead to a new definition of the entropy of the Universe − to the non-additive entropy of 

Barrow BS  [35] related to the additive Bekenstein−Hawking entropy as follows:

 
1 /2

/ /
D

B B BH BS k S k


 . Substituting the values BHS and Bk  into this ratio yields

120(1 /2)10 D
BS


. Here, the parameterD (0 1)D   is the fractal mass dimension of the quan-

tum-gravitational foam, which quantitatively determines the deformation of the structure of the 

horizon of the Universeix).  

ix) It should be noted that when defining the Barrow entropy, the complex fractal structure of the cosmological

horizon is modeled by an analogue of the spherical "Koch snowflake" using an infinite decreasing hierarchy of 

touching spheres around the Schwarzschild event horizon. Nevertheless, this simple model of possible manifesta-

tions of quantum-gravitational effects has important implications for estimates of the entropy of the Universe, which 

is usually slightly larger than in the baseline scenario.  
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It is easy to show that Barrow's entropy obeys the following pseudo-additive law for two in-

dependent systems N  and M :  
2

2 2 2
2 2(N M) (N) (M)

D

D DB B B

B B B

S S S

k k k



 

 
    

     
    
 

. 

Entropy BS can be written as follows:

1 /2 /21 /2 2 3 2
2

D DD
H H B H

B B B H
Pl Pl Pl

A R k c R
S k k R

A A G A

        
       
        

 

  

/2 /22 1 /2
2 2 2 2 2 2

2 /2

D D D
DH

H H H HD
Pl B B

R K K
Kс R Kс R R R

A k с k


  

    
      
       

.  (22) 

Here 
3 70 2/ 2.612 10PlA G c m    Planck area; 

2: / 0B PlK k c A   ; HA   standard

horizon area;. In the case 0D   that corresponds to the simplest structure of the cosmological 

horizon of the Universe, the standard  /B BH B H PlS S k A A   Bekenstein−Hawking entropy

considered above is restored. 

When 1D , then there is a smooth space-time structure of the horizon of the Universe, at 

which

3/2
H

B ТС B
Pl

A
S S k

A

 
   

 
. In this case, formula (22) is similar to that for the non-additive

entropy of Tsallis and Cirto [31], introduced by these authors, when studying the evolution of a 

black hole on the basis of completely different physical principles, different from the fractal in-

terpretation (see [41-44]). In order to obtain modified cosmological equations, we apply the pro-

cedure considered in the previous section to derive an expression for the entropy force, but now 

involving the Barrow entropy (22). It is  evident that in the general case of a medium with fractal 

dimension (0 1)D  , these equations, in contrast to the Friedman equations (20) and (21), will 

contain new additional terms that allow modeling the cosmological behavior of the Universe [34, 

36, 45]. 

4.1. Entropic Force Associated with Barrow's Entropy 

At this point, we will consider the possibility of an accelerated cosmological expansion of the 

Universe, but using the Barrow entropy at its horizon. Barrow's entropy arises, in particular, due 

to the fact that the surface of the horizon of the Universe can deform due to quantum-

gravitational effects, and its deviation from the Bekenstein−Hawking entropy is quantitatively 

determined by the fractal dimension index D .  

Increasing the radius HR  by HdR  increases the entropy BS  by BdS  in accordance with the

expression 
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 
1 /2 1( ) (2 ) /
D D

B B Pl H HdS D k D A R dR
    .  (23) 

Then for the entropic force BF  arising from the modification of the horizon of the Universe,

which is associated with quantum-gravitational effects, we will have: 

/23
1(2 )

2

D
DB

B H B H
H B H Pl

dS c c
F T k D R

dR k R G A
    

       
   

/2 /24 42 (2 )

2 2

D DD
D D
H

Pl B

D c D c K
R H

G A G k


     

      
  

.  (24) 

Accordingly, the pressure BP  of this force on the cosmological horizon of the Universe is de-

fined by the formula  

/2 /24 2
2 2(2 ) (2 )

4 4 2 2 4

D DD
D DB

B H
H B B

F c K D D c K
P R H

A G k G k


     

       
    

.     (25) 

In what follows, we will assume that in entropy cosmology the effective pressure BP  based

on the Barrow entropy is determined by the relation  

/22
2(2 )

2 4

DD
D

B B
B

D c K
P P P P H

G k


 

       
  

.  (26) 

     When using P′B the equations of acceleration (5) and continuity (6) take the form

/2
2

2

1 4 3 (2 )
, ( ) ( ) ( )

( ) 3 2

D
D D

tt
B

G D K
a t P t c H t

a t kc

   
        

   
 ,  (27) 

/2
3

2

( ) 3 2
, ( ) 3 ( ) ( ) ( )

4 2

D
D D

t
B

P t D K
t H t t c H t

G kc

   
        

   
.  (28) 

     It is important to note that in the case of fractal dimension D  =0 these equations will 
coincide with the modified Friedman equations (20) and (21), i.e., the deformation of the 

Bekenstein− Hawking holographic entropy is measured by a new index D, whereas the case of 

zero defor-mation ( D  =0 ) corresponds to the entropy force Barrow, which fully  complies with 
the stand-ard entropy force considered in [15]. 

At the same time, the authors of [34], based on observational data from a sample of the 
collec-tion (SNIa) of supernovae and using direct measurements of the Hubble parameter by 

cosmic chronometers, showed that the value deformation parameter equal to D  =0.094 , 
assuming that a small deviation from the standard holographic Bekenstein−Hawking entropy is 
preferable. 
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The case 1D corresponds to the maximum deformation associated with the Tsallis−Cirto 

cosmological entropy [31]. The scenario for the manifestation of this entropy predicts both de-

celeration and/or accelerated expansion of the Universe [46].  

In the general case, when 0 1D  we have a new cosmological scenario for the manifesta-

tion of the entropic force, based on the Barrow entropy associated with the quantum-

gravitational effects of the horizon of the Universe. This scenario allows simulating the cosmo-

logical behavior of the Universe for the case of various modifications of Barrow's governing 

gravitational force [36].  

4.2. Entropic force associated with the entropy of Tsallis−Cirto 

Let us now consider entropic cosmology under the assumption that the cosmological horizon 

of the Universe has a temperature 

2 2H
B H B

c
T H

k R k
   

 

and that the non-additive entropy of Tsallis−Cirto,  is defined as follows [31] 

3/2 1/23/2 2 3 2
2(1) : H H B H

TC B B B H
Pl Pl Pl

A R k c R
S S k k R

A A G A

       
        
        

1/21/2 1/23
2 3 3

4 3

1
H H

Pl BB

K K
Kс R R cK

A kk c H


    
      
      

.  (29) 

It follows from formula (29) that the non-additive entropy TCS  is proportional to the volume of

the horizon of the Universe, in contrast to the Bekenstein−Hawking entropy (14), which is pro-

portional to its area. 

Increasing the radius HR  by HdR  increases the Tsallis−Cirto entropy TCdS  in accordance

with the ratio 

 
1/2

3 4 23 /TC B H HdS K k c R dR .  (30) 

Using (30), we obtain the following expressions for the entropy force and pressure on the 

cosmic horizon of the Universe, corresponding to the Tsallis−Cirto entropy: 

1/243

2
B

ТС H H
H Pl

dS c
F T R

dR G A

 
     

 

1/2 1/2
3 4 33 3

2 2H H
B B B

K c K
R R

k c k KG k

     
        

         

,  (31) 
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1/2 1/24 2
1

2

3 3

2 4 4 24

ТС
TC H

B BH

F c K c c K
P R H

G k G kR

   
        

     
.  32) 

Assuming, as it was made before, that in entropy cosmology the effective pressure ТСP  based

on the Tsallis−Cirto entropy is determined by the relation ТС ТСP P P   , and substituting ТСP

in the equations of acceleration (5) and continuity (6); we will obtain: 

1/2

2

, 4 3 ( ) 3
( ) ( )

3 2
tt

B

a G P t c K
t H t

a kc

  
       

   
,  (33) 

1/2
2

2

( ) 3 3
, 3 ( ) ( ) ( )

4 2t
B

P t c K
H t t H t

G kc

  
       

   
.  (34) 

Equations (33) and (34) can be considered as modified equations of acceleration and continui-

ty based on the generalized Tsallis−Cirto entropy. From equation (33) it follows that the govern-

ing force term in this model is proportional to the Hubble rate H expansion of the Universe, in 

contrast to the analogous entropy force term in the Bekenstein−Hawking model, which is propor-

tional to 2H .

It should be noted that cosmological equations similar to equations (33) and (34) have been 

repeatedly discussed in the literature when modeling the evolution of the Universe based on dif-

ferent approximations of the variable cosmological term (see, for example, [46]). On the other 

hand, the entropy force (31) obtained from the generalized entropy Tsallis− Cirto behaves in the 

same way as the driving force of a viscous cosmological fluid with bulk viscosity  , which is 

used to explain the accelerated expansion of the Universe in models of viscous cosmology. In-

deed, the expression for the effective pressure 

1/233
( ) ( ) ( )

8ТС
B

c K
P t P t H t

G k

 
    

  
 in equation 

(34) is similar to the expression ( ) ( ) 3 ( )P t P t H t     for pressure in viscous cosmology models 

designed to simulate dark matter. Models of this type assume that the Universe is filled with a 

cosmological fluid with bulk viscosity that can generate the entropy of a homogeneous and iso-

tropic Universe (see [47-51). This similarity became possible due to the fact that the nonadditive 

entropy of Tsallis Cirto, introduced on the basis of the holographic principle, behaves as if it 

were the classical entropy of a homogeneous and isotropic Universe generated by the volumetric 

viscous stress of a cosmological fluid [48, 52-54]. 

Thus, using the holographic principle, which is associated with the existence of the Barrow 

entropy on the horizon of the Universe, in this work two models of the entropic force were con-

sidered: model (17) based on the Bekenstein−Hawking entropy, and model (31) based on non-

additive Tsallis−Cirto entropy. These models describe the evolution of an accelerating Universe 

without using the concept of the cosmological constant or dark energy. 
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 This implies that the Bekenstein−Hawking entropy force model predicts a uniformly acceler-

ating Universe, while the Tsallis−Cirto model predicts both deceleration and accelerated expan-

sion of the Universe [46, 55]. 

5. THERMODYNAMIC APPROACH TO THE DEVELOPMENT OF

THE EQUATION OF ENERGY CONSERVATION 

Let us now proceed to consideration of the non-adiabatic expansion of the Universe caused by 

Barrow's cosmological entropy on the Hubble horizon. For this purpose, we derive the general-

ized energy equation (6), modifying the thermodynamic approach developed in the monograph 

[38]. 

5.1. Adiabatic expansion of the Universe 

According to the first law of thermodynamics, the principle of conservation of total energy for 

non-additive systems can be written in the form / / /dQ dt dE dt PdV dt  or in the form of the 

Gibbs relation [56, 57] 

/ / / /TdS dt dQ dt dE dt PdV dt   ,  (35) 

expressing the rate /TdS Dt of change in entropy S  when an element of a non-additive medium 

moves along its trajectory. Here dQ  is the heat transferred across the border from the environ-

ment to the element of the environment, dE and dV  changes in the internal energy and volume 

of the area of matter and radiation, respectively. Relation (35) can be rewritten as 

( , , )t t
dS dE PdV

TdS dQ T dt dt E PV dt
dt dt


     .  (36) 

Let us now consider a sphere of initial radius ŝr , expanding together with the universal ex-

pansion of the Universe, so that its own radius ( )HR t at the moment of time t is determined by

the expression ˆ( )H sR a t r . Then the volume ( )V t  of the sphere is

3 3ˆ( ) (4 / 3) ( )sV t r a t   .  (37) 

From this it follows 

3 2 ,4
ˆ, (3 , ) 3 3

3
t

t s t
a

V r a a V VH
a

 
   

 
,   ( , / )t aa H  .  (38) 

For the internal energy of the sphere, we have ( ) ( ) ( )E t t V t  , where ( )t is the internal energy 

density, determined by the relation 2( ) ( )t t c   . Hence, the rate of change in the internal energy

of the sphere ( )E t  is determined as  

 , , , , 3t t t tE V V H V        .  (39) 
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Substituting equations (38) and (39) into , ,t tE PV , we obtain

 , , , 3 3 , 3 ( )t t t tE PV H V PVH H P V             

 2 2, 3 /t H P c c V    
  

.  (40) 

Finally, substituting relations (37) and (39) into equation (36), we obtain the first law of ther-

modynamics for an expanding or contracting Universe: 

2
2

( , , ) , 3t t t
dS P

T E PV H c V
dt c

  
         

  

 2 2 3, 3 / (4 / 3)t Hc H P c R     
  

.  (41) 

Let us now consider such motions of cosmic matter for which the entropy of each particle of 

the medium remains in the first approximation constant throughout the entire path of an element 

of the medium, i.e.  / 0dS dt  . Such reversible and adiabatic motions are isentropic. For them, 

equation (41) is reduced to the previously obtained continuity equation (6) for the adiabatic ex-

pansion of the Universe  

2, ( )
, ( ) 3 ( ) ( ) / 0

( )
t

t
a t

t t P t c
a t

     
  

. 

5.2. Modified energy equation for modeling non-adiabatic expansion of the Universe 

If the evolution of the Universe within the framework of non-adiabatic entropic cosmology is 

modeled, then / 0dS dt   (see [58-60]. To calculate /TdS dt in equation (41), we will use for-

mula (24) related to the Barrow entropy [35], as the most general in the case under consideration. 

As a result, we will have  

/23
1(2 )

2

D
DB H

H B H
B H Pl

dS dRc c
T k D R

dt k R G A dt
    

     
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/2 /24 5
22 (2 )

,
2 2

D DD
D DH
H t

Pl B

dRD c D c K
R H H

G A dt G k


      

      
  

.  (42) 

Taking into account expression (42), the energy equation (41) 

2 3
2

3
, 3

4
B

t H H
dSP

H T c R
dtc

     
        

   
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in the case of non-adiabatic expansion of the Universe under the influence of the driving entropy 

force (associated with the Barrow entropy) takes the form 

/2
2 1

2

, 2 3
, 3 ,

2 4

D
D Dt

t t
Ba

a P D K
c H H

k Gc

     
          

    
.  (43) 

This is a modified equation of continuity obtained from the first law of thermodynamics under 

the assumption of non-adiabatic expansion of the Universe. The right-hand side of equation (43) 

is associated with a non-adiabatic process. If 0H   or if H const , then equation (43) is re-

duced to the continuity equation for the adiabatic expansion of the Universe. Note that a similar 

modification of the continuity equation for entropy cosmology has been studied for other cosmo-

logical models of the expansion of the Universe (see, for example, [18, 19]. 

Using equation (43), the following equations of continuity can be obtained in the case of non-

adiabatic expansion of the Universe under the influence of the Bekestein−Hawking and Tsal-

lis−Cirto entropic forces: 

2

, 3
, 3 ,

4
t

t ta

a P
HH

Gc

   
        

  
,    ( 0)D  ,  (44) 

1/22

2

, 3 3
, 3 ,

2 4
t

t t
Ba

a P c K
H

k Gc

    
          

    
,    ( 1)D  .  (45) 

5.3. Simple models of non-adiabatic expansion of the Universe 

In this subsection, using the modified continuity equation (43), we’ll analyze two generalized 

Friedman equations (4) and (5) for the scale factor in the case of non-adiabatic expansion of the 

Universe under the influence of the Barrow entropy force. 

For this purpose, we write equation (4) in the form 

2 2 28
( , ) ( )

3t a a
G

a f t


   ,  (46) 

where ( )f t  is a function depending on the type of entropy force, including high-order correc-

tions. Differentiating this equation with respect to t , we obtain 

 2 28
2 , , , 2 , , 2 ,

3t tt t t t ta a a a
G

a a a f f a


    
, 

or, after dividing by 2 ,ta a ,

, 4 1 1
, 2 ,

3 2
tt

t ta

a G
f f

H H


  
     

 
.  (47) 

Now multiplying the energy equation (43) by / 1 /,ta Ha  , as a result we will have
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 
/2

2, 2 3
3 1 ,

2 4

D
D Dt
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w c H H

H k G
    
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.  (48) 

where the notation is introduced  2/w P c  . Substituting relation (48) into equation (47), we 

finally obtain 

 
/2

2, 4 2 1
1 3 , ,

3 2 2

D
D Dtt

t t
Ba

a G D K
w c H H f f

k H



  

       
 

 (49) 

Further, for the purpose of simulation, one should follow the work [15, 22] concept, where it was 

assumed that the term associated with the entropy force does not depend on the time derivative 

of the Hubble parameter. Following this assumption, we define the functions ( )f t   in such a way 

that the term with ,tH  is absent in equation (49). If we put

/2
2 22

( ) ( )
2

D
D D

B

D K
f t c H t

D k
 

   
  

,  (50) 

we then obtain the following simple system of self-consistent equations,  composed of the modi-

fied Friedman equations, acceleration and continuity: 

/22
2 2 2, 8 2

3 2

D
D Dt

B

a
a

a G D K
c H

D k
    

      
   

,  (51) 
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D k



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      
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,  (52) 

/2
2 1

2

, 2 3
, 3 ,

2 4

D
D Dt

t t
Ba

a P D K
c H H

k Gc

     
          

    
.  (53) 

This system of equations makes it possible to simulate a new scenario of the evolution of the 

Universe, if one considers it as a thermodynamic system bounded by the visible horizon, which 

expands nonadiabatically under the influence of the entropic force associated with the nonaddi-

tive entropy of Barrow. 

Using the system of equations (51)-(53), it is possible to obtain a number of models that de-

scribe the non-adiabatic evolution of the Universe without using the concept of the cosmological 

constant, or dark energy. These models include, in particular, the non-adiabatic model based on 

the Bekenstein−Hawking entropy and the non-adiabatic model based on the Tsallis−Cirto non-

additive entropy. 
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Assuming parameter 0D   in formula (50), we will have 
2( ) ( )f t H t   for the function ( )f t .

In this case, a simple entropy model of the non-adiabatic expansion of the Universe based on the 

Bekenstein−Hawking entropy takes the form 

 
2 2 28

,
3t a
G

a H


    ,  (54) 
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1 3
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tt

a

a G
w H


     ,  (55) 

2

, 3
, 3 ,

4
t

t ta
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HH
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   
        

  
.  (56) 

Entropic force 
2f H  in the equation. (54) coincides with the corresponding term in formula

(55). The modified Friedman equations (54) and (55) correspond to equations (4) and (5) of the 

Friedman cosmological model. Using this system, it is possible to establish a number of proper-

ties of a non-adiabatically expanding Universe (see, for example, [23, 25]. 

If we put 1D in formula (50), then for the function ( )f t  we obtain the following expression 

 
1/223 / Bf c K k H  ,  (57) 

and taking it into account  the system (51)-(53) takes the form 
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.  (60) 

This system of equations underlies the simulation of the evolution of the non-adiabatically ex-

panding Universe under the influence of the Tsallis−Cirto entropy force [31]. 

Thus, entropy cosmology using the procedure of "gravitational thermodynamics" using the 

Barrow entropy is quite effective for constructing a number of models describing the evolution 

of the Universe and allowing one to find quantitative estimates of the non-adiabatic accelerated 

expansion of the Universe in accordance with observational data.  
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CONCLUSION 

Progress in astrophysics rooted in the ground-based and space astronomy greatly influenced 

the key concepts of our views about space environment, origin, evolution and fate of our Uni-

verse. For less than half a century since the beginning of space exploration [61] cosmology expe-

rienced dramatic changes and this process continuously escalates. New projects and break-

throughs in theoretical approaches in the coming years open extremely challenging horizons in 

this intriguing branch of astrophysics and general science.  

The modern cosmological data indicate that the Universe is expanding with acceleration. Un-

fortunately, a simple modified general relativity, which includes a key parameter − the cosmo-

logical constant  , characterizing an expansion cannot describe this phenomenon convincingly 

enough. Therefore, it becomes necessary to search for an approach that could be used to describe 

the accelerated expansion of the Universe more effectively.  

One of the directions along this path consists in the construction of a modified theory of 

gravity, according to which the entropic force underlies the accelerated expansion of the Uni-

verse. The emergence of this force is an inevitable consequence of the growth of entropy at the 

post-inflationary stage of the quantum canvas of space-time, which can be associated with the 

storage of holographic information on the “surface screen of the Universe”, similar in a certain 

sense to the event horizon of a black hole. 

It should be noted that the holographic principle was put forward  earlier in the study of  phys-

ics of the black holes as an important property of quantum gravity, which states that the proper-

ties of space are encoded at its boundary (on the gravitational horizon of events). Based on this 

principle, Verlinde proposed an extended holographic picture in which Einstein's gravity arises 

from the statistical effect of a holographic screen. This approach proved to be effective for de-

scribing quantitatively the accelerated expansion of the Universe. A number of authors general-

ized the basic scenario of the evolution of the Universe, based on the use of entropic forces of 

various nature, with involvement of the assumption that the horizon of the Universe, like the 

event horizon of a black hole, has its own entropy and temperature. 

Recently, Barrow proposed a model of the quantum gravitational canvas of space-time to es-

timate the entropy of black holes and the Universe, the surface of which can have a complex 

fractal structure of the cosmological horizon down to arbitrarily small scales (an order of the 

Planck length) due to quantum gravitational effects. As it is known, many solutions of the classi-

cal Einstein equations, in particular, the isotropic homogeneous cosmological model of Fried-

man−Robertson−Walker, contain singularities and cannot be analytically continued beyond 

them. In this regard, we face the fundamental problem of modern cosmology: what caused the 

growth of fluctuations and the emergence of a fragment of space-time on the infinite quantum 

canvas of the Universe, which concentrated within itself a huge energy ("vacuum energy") and 

why and how it was followed by inflation (de Sitter phase) and subsequently, the Big Bang left 

behind observed echo in the form of microwave background radiation (CMB). One way or an-

other, the basis of such a scenario, which gave rise to the birth of the Universe, is addressed to 

quantum-gravitational effects [62]. 

In this work, an attempt is undertaken to better understand the physical mechanism of the ac-

celerated expansion of a flat, homogeneous and isotropic Universe. Modified cosmological equa-

tions are obtained, containing new additional terms that coincide with the basic Friedman equa-

tions in the case when the Barrow deformation exponent corresponds to the fractal dimension 

0D  . However, in the general case 0 1D  , new governing terms appear associated with 
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changes in the entropy of Barrow on the Hubble horizon of the Universe. It significantly exceeds 

its age, which affect the evolution of the main cosmological criteria, such as the scale factor, the 

deceleration parameter, the density of matter (involving visible and dark matter, radiation, neu-

trinos, etc.) and the growth of linear perturbations of matter. This should lead to a new phenome-

nological description of the thermal history of the Universe. The core for this conclusion is based 

on the results of this work, in which the validity of using the generalized second law of thermo-

dynamics for the Barrow entropy was thoroughly investigated. On this basis, modified Friedman 

equations were obtained, which made it possible to explain the non-adiabatic expansion of the 

Universe in terms of entropy, without involving hypothetical dark energy as a texture (fabric) of 

the very expanding space. It seems reasonable to find out in this approximation a solution to the 

modified Einstein equations with quantum corrections and to establish whether there are physi-

cally interesting nonsingular solutions among them. 

As one may see, entropy cosmology, based on the concepts of "gravitational thermodynam-

ics" using the entropy of Barrow, is regarded as quite effective approach for quantitative assess-

ment of the non-adiabatic accelerated expansion of the Universe and its possible change with 

time. The results of the analysis of possible solutions of the cosmological equations analyzed in 

this work will be presented in the following publications of the authors. 
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