NOTE ON A THEOREM OF ZEHNXIAG ZHANG

I. LAIB ${ }^{1}$, A. DERBAL ${ }^{2}$, R. MECHIK ${ }^{3}$, N. REZZOUG ${ }^{4 *}$
${ }^{1}$ ENSTP, Garidi Kouba, 16051, Algiers, and Laboratory of Equations with Partial Non Linear Derivatives, ENS Vieux Kouba, Algiers, Algeria.
${ }^{2}$ Department of Mathematics, Equation With Partial Non Linear Derivatives Laboratory, ENS Old Kouba, Algiers, Algeria.
${ }^{3}$ Department of Mathematics, University of Science and Technology Houari Boumédiène, Algiers, Algeria.
${ }^{4}$ University of Tiaret, and Analysis and Control of Partial Differential Equation Laboratory, University of Sidi Bel Abbes, Algeria.
*Corresponding author. E-mail: nadir793167115@gmail.com

DOI: 10.20948/mathmontis-2021-50-5

Summary. A sequence of strictly positive integers is said to be primitive if none of its terms divides the others. In this paper, we give a new proof of a result, conjectured by P. Erdős and Z. Zhang in 1993, on a primitive sequence whose the number of the prime factors of the termes counted with multiplicity is at most 4 . The objective of this proof is to improve the complexity, which helps to prove this conjecture.

1. INTRODUCTION

A sequence A of strictly positive integers is said to be primitive if none of its terms divides the others. We define the degree of A by $\operatorname{deg}(\mathrm{A})=\max \{\Omega(a) a \in \mathrm{~A}\}$ where $\Omega(a)$ is the number of prime factors of a counted with multiplicity, we take $\operatorname{deg}(A)=0$ if $A=\{1\}$ or \emptyset. Erdős [2] showed that for a primitive set $A, \sum_{a \in A} \frac{1}{a \log a}<\infty$. Later in [3], Erdős asked if is true that for any primitive sequence A,

$$
\sum_{a \in A, a \leq n} \frac{1}{a \log a} \leq \sum_{p \in P, p \leq n} \frac{1}{p \log p} \text { for } n>1,
$$

where P denotes the set of prime numbers. After a few years, Zhang [5], proved the following:
Theorem. For any primitive sequence A whose the number of the prime factors of the termes counted with multiplicity is at most 4 , we have

$$
\sum_{a \in A, a \leq n} \frac{1}{a \log a} \leq \sum_{p \in P, p \leq n} \frac{1}{p \log p} \text { for } n>1 .
$$

In our work, by using the new estimations of the n-th prime number, we simplify the complexity (the number $N=20000$ decreased to 95). Throughout the paper we denotes by p_{m} the m-th prime number and we put $f(A)=\sum_{a \in A} \frac{1}{a \log a}$ where, $f(A)=0$ if $\operatorname{deg}(A)=0$.

For a primitive sequence A and $m \geq 1$, we pose

$$
\begin{aligned}
A_{m} & =\left\{a \in A, \text { the prime factors of } a \text { are } \geq p_{m}\right\}, \\
A_{m}^{\prime} & =\left\{a \in A_{m}, p_{m} \mid a\right\} \\
A_{m}^{\prime \prime} & =\left\{\frac{a}{p_{m}}: a \in A_{m}^{\prime}\right\} .
\end{aligned}
$$

Clearly, the union $A=\mathrm{U}_{m \geq 1} A_{m}^{\prime}$ is disjoint and $\operatorname{deg}\left(A_{m}^{\prime \prime}\right)<\operatorname{deg}(A)$ when A is finit. Our method based on the fact that a primitive sequence A does not contain simultaneously p_{1} and $p_{1}{ }^{4}$.

2. MAIN RESULTS

We need the following lemmas.
Lemma 2.1 Let $n>1$ be an integer, put $F(n)=\log n+\log \log n-1$ then

$$
\begin{array}{ll}
p_{n} \geq n F(n), \text { for } n \geq 2[1] & \\
p_{n}>n(\log (n F(n))-\alpha), & \text { for } n \geq 3 \\
p_{n} \leq n(F(n)+\beta), & \text { for } n \geq 95 \tag{3}
\end{array}
$$

where $\alpha=1.127$ and $\beta=0.305$.
Proof. Consider the function g defined on N by

$$
n \mapsto g(n)=\frac{p_{n}}{n}-\log (n F(n)) \text { for } n \geq 3
$$

then according to (1), we have $g(n) \geq h(n)$ where

$$
h(n)=-1-\log \left(1+\frac{\log \log n-1}{\log n}\right),
$$

the study of the real function $x \mapsto h(x)(x \geq 3)$ gives us $h(x) \geq h\left(e^{e^{2}}\right)>-\alpha$, then $g(n)>-\alpha$, which is equivalent to

$$
p_{n}>n(\log (n F(n))-\alpha), \text { for } n \geq 3 .
$$

A computer calculation shows that for $95 \leq n<7022$, we have

$$
p_{n} \leq n(F(n)+\beta)
$$

and on the other hand we have $p_{n} \leq n(\log n+\log \log n-0.9385)$ where $n \geq 7022$ [4], therefore the inequality (3) is verified for $n \geq 95$. This completes the proof.

Lemma 2.2 For $m \geq 1$ and $j \in\{1,2,3\}$, we have

$$
\sum_{i \geq \max (m, j-1)} \frac{1}{p_{i}\left(k_{j}+\log p_{i}\right)}<\frac{1}{k_{j-1}+\log p_{m}}
$$

where $k_{0}=0.023, k_{1}=0.3157, k_{2}=0.901$ and $k_{3}=2.079$.
Proof. Put $N=95, C=0.0713$,

$$
\begin{array}{lll}
u_{1}=0.09435, & u_{2}=0.387, & u_{3}=0.9723 \\
v_{1}=0, & v_{2}=0, & v_{3}=-0.0074
\end{array}
$$

It is clear that for $m \geq N$ and $j \in\{1,2,3\}$ we have $\max (m, j-1)=m$ and

$$
\begin{align*}
& C \geq-\log (F(m))+\log \left(1+\frac{1}{m}\right)+\log (F(m+1)+\beta) \\
& C \leq u_{j}-k_{j-1} \tag{4}\\
& v_{j}=\alpha-k_{j}+2 u_{j}-1
\end{align*}
$$

Now Put

$$
h_{j}(m)=\sum_{i \geq \max (m, j-1)} \frac{1}{p_{i}\left(k_{j}+\log p_{i}\right)} .
$$

By (1) and (2) we have, for $m \geq N$ and $j \in\{1,2,3\}$,

$$
p_{i}\left(k_{j}+\log p_{i}\right)>i(\log (i F(i))-\alpha)\left(k_{j}+\log (i F(i))\right),
$$

Since $x 7!\log (x F(x))$ increases for $x>N$, we have

$$
h_{j}(m+1)<\int_{m}^{\infty} \frac{d t}{t(\log (t F(t))-\alpha)\left(\log (t F(t))+k_{j}\right)},
$$

use the change of variable $x=\log t$, we obtain

$$
h_{j}(m+1)<\int_{\log m}^{\infty} \frac{d t}{(\mathrm{~L}(\mathrm{x})-\alpha)\left(\mathrm{L}(\mathrm{x})+k_{j}\right)} \text {, where } \mathrm{L}(\mathrm{x})=\log \left(\mathrm{e}^{\mathrm{x}} \mathrm{~F}\left(\mathrm{e}^{\mathrm{x}}\right)\right) .
$$

Since, for $x>\log N$,

$$
\frac{1}{L^{\prime}(x)}<\left(1-\frac{1}{L(x)-1}\right)
$$

then

$$
h_{j}(m+1)<\int_{\log m}^{\infty} \frac{\left(1-\frac{1}{L(x)-1}\right) L^{\prime}(x) d x}{(\mathrm{~L}(\mathrm{x})-\alpha)\left(\mathrm{L}(\mathrm{x})+k_{j}\right)}
$$

by setting $y=L(x)$ and $y_{m}=L(\log m)$ we get

$$
h_{j}(m+1)<\int_{y_{m}}^{\infty} \frac{(\mathrm{y}-2) d y}{(\mathrm{y}-1)(\mathrm{y}-\alpha)\left(\mathrm{y}+k_{j}\right)}
$$

For $m \geq N$ and $j \in\{1,2,3\}$ we put

$$
g_{j}(m)=\frac{1}{k_{j-1}+\log p_{m}},
$$

then according to (3) and (4) we have

$$
\begin{aligned}
g_{j}(m+1) & \geq \frac{1}{k_{j-1}+\log ((m+1)(F(m+1)+\beta))} \\
& >\frac{1}{\log (m F(m))+u_{j}}=\int_{y_{m}}^{\infty} \frac{d y}{\left(y+u_{j}\right)^{2}} .
\end{aligned}
$$

We have for $m \geq N$ and $j \in\{1,2,3\}$,

$$
(y-2)\left(y+u_{j}\right)^{2}-(y-1)(y-\alpha)\left(y+k_{j}\right) \leq 0 .
$$

So, for $m \geq N$ and $j \in\{1,2,3\}$, we have $h_{j}(m+1)<g_{j}(m+1)$ i.e.

$$
h_{j}(m+1)<g_{j}(m+1) \text { for } m \geq N \text {. }
$$

A computer calculation gives for $1 \leq m \leq N$ and $j \in\{1,2,3\}$,

$$
\begin{aligned}
h_{j}(m) & =\sum_{i \geq \max (m, j-1)}^{N} \frac{1}{p_{i}\left(k_{j}+\log p_{i}\right)}+h_{j}(N+1) \\
& <\sum_{i \geqq \max (m, j-1)}^{N} \frac{1}{p_{i}\left(k_{j}+\log p_{i}\right)}+\frac{1}{\log (N F(N))+u_{j}}<g_{j}(m) .
\end{aligned}
$$

This completes the proof.
Lemma 2.3 Let $m \geq 1$ be fixed and let $B=B_{m}$ be primitive with $\operatorname{deg}(B) \leq 3$. For $1 \leq t \leq 4-\operatorname{deg}(B)$, we have

$$
\begin{align*}
& \sum_{b \in B} \frac{1}{b\left(t \log p_{m}+\log b\right)}<\frac{1}{k_{t-1}+\log p_{m}} \text { where } p_{1}^{4-t} \notin B_{1}, \tag{5}\\
& \sum_{b \in B} \frac{1}{b\left(t \log p_{m}+\log b\right)}<\frac{1}{k_{0}+\log p_{m}} \text { where } p_{1}^{3} \notin B_{1} . \tag{6}
\end{align*}
$$

Proof. For $m \geq 1$ and $1 \leq t \leq 4-\operatorname{deg}(B)$ put

$$
g_{t}(B)=\sum_{b \in B} \frac{1}{b\left(t \log p_{m}+\log b\right)} \text { where }\left(g_{t}(\varnothing)=0\right)
$$

By induction on $\operatorname{deg}(B)$. If $\operatorname{deg}(B)=1$ and $1 \leq t \leq 3$ we have $t \log p_{m} \geq t \log 2>$ k_{t} and $p_{1} \neq B_{1}$ when $t=3$, then by lemma 2 we get

$$
g_{t}(B)=\sum_{b \in B} \frac{1}{b\left(t \log p_{m}+\log b\right)}<\sum_{i \geq \max (m, t-1)} \frac{1}{p_{i}\left(k_{t}+\log p_{i}\right)}<\frac{1}{k_{t-1}+\log p_{m}} .
$$

If $\operatorname{deg}(B)=s>1$ and $1 \leq t \leq 4-s$, we know that $B=\bigcup_{i \geq m} B_{i}{ }^{\prime}$ is disjoint, so,

$$
g_{t}(B)=\sum_{i \geq m} g_{t}\left(B_{i}^{\prime}\right) \text { where } p_{1}^{4-t} \notin B_{1}^{\prime} .
$$

We have two cases: if $\operatorname{deg}\left(B_{i}{ }^{\prime}\right) \leq 1$ then

$$
\begin{equation*}
g_{t}\left(B_{i}^{\prime}\right)<\frac{1}{p_{i}\left(k_{t}+\log p_{i}\right)}, \tag{7}
\end{equation*}
$$

if $\operatorname{deg}\left(B_{i}{ }^{\prime}\right)>1$ then

$$
\begin{aligned}
g_{t}\left(B_{i}^{\prime}\right) & =\sum_{b \in B_{i^{\prime \prime}}} \frac{1}{p_{i} b\left((t+1) \log p_{i}+\log b\right)} \\
& =\frac{1}{p_{i}} g_{t+1}\left(B_{i}^{\prime \prime}\right) \text { where } p_{i}^{3-t} \notin B_{1}^{\prime \prime},
\end{aligned}
$$

since $\operatorname{deg}\left(B_{i}{ }^{\prime \prime}\right)<s$ and $t+1 \leq 4-\operatorname{deg}\left(B_{i}{ }^{\prime \prime}\right)$ we have

$$
g_{t+1}\left(B_{i}^{\prime \prime}\right)<\frac{1}{k_{t}+\log p_{i}} \text { where } p_{1}^{4-(t+1)} \notin B_{1}^{\prime \prime}
$$

thus

$$
\begin{equation*}
g_{t}\left(B_{i}^{\prime}\right)<\frac{1}{p_{i}\left(k_{t}+\log p_{i}\right)} . \tag{8}
\end{equation*}
$$

So, from (7), (8) and lemma 2 we obtain

$$
g_{t}(B)<\frac{1}{k_{t-1}+\log p_{m}} \text { where } p_{1}^{4-t} \notin B_{1} .
$$

For $t=1$ we get the inequality (6), which ends the proof.
Proof of theorem 2.4 Let n be fixed and let $A=\{a: a \in A, a \leq n\}$ be subsequence of A where $\operatorname{deg} A \leq 4$. Put $\pi(n)=m$, the number of primes $\leq n$; then $A=\mathrm{U}_{1 \leq i \leq m} A_{i}^{\prime}$ is disjoint and $f(A)=\sum_{1 \leq i \leq m} f\left(A_{i}^{\prime}\right)$. Let $1 \leq i \leq m$, we distinguish the two following cases:
case 1: we suppose that $p_{1}{ }^{4} \notin A$, i.e. , $p_{1}{ }^{3} \notin A_{1}^{\prime \prime}$. If $\operatorname{deg} A_{i}{ }^{\prime} \leq 1$ then $f\left(A_{i}^{\prime}\right) \leq \frac{1}{p_{i} \log p_{i}}$ and if $\operatorname{deg} A_{i}^{\prime}>1$ then

$$
f\left(A_{i}^{\prime}\right)=\frac{1}{p_{i}} \sum_{b \in A_{i}^{\prime \prime}} \frac{1}{b\left(\log p_{i}+\log b\right)}
$$

where $p_{1}{ }^{3} \notin A_{1}^{\prime \prime}$ and $\operatorname{deg} A_{i}^{\prime \prime} \leq \operatorname{deg} A_{i}^{\prime}-1 \leq 3$,
so, according to (6), we get

$$
\sum_{b \in A_{i^{\prime}}} \frac{1}{b\left(\log p_{i}+\log b\right)}<\frac{1}{k_{0}+\log p_{i}}<\frac{1}{\log p_{i}} \text { where } p_{1}^{3} \notin A_{1}^{\prime \prime},
$$

therefore

$$
\begin{equation*}
f\left(A_{i}^{\prime}\right) \leq \frac{1}{p_{i} \log p_{i}} \text { for } 1 \leq i \leq m \tag{9}
\end{equation*}
$$

Case 2: if $p_{1}{ }^{4} \in A$, since A is a primitive sequence then $p_{1} \notin A_{1}^{\prime}$, $\operatorname{so}, \operatorname{deg}\left(A_{1}^{\prime}-\left\{p_{1}{ }^{4}\right\}\right) \neq 1$, i.e. ,

$$
f\left(A_{1}^{\prime}-\left\{p_{1}{ }^{4}\right\}\right)<\frac{1}{p_{1}\left(k_{0}+\log p_{1}\right)^{\prime}}
$$

Thus

$$
\begin{aligned}
f\left(A_{1}^{\prime}\right) & =f\left(\left\{p_{1}{ }^{4}\right\}\right)+f\left(A_{1}^{\prime}-\left\{p_{1}{ }^{4}\right\}\right) \\
& =\frac{1}{p_{1}{ }^{4} \log p_{1}{ }^{4}}+\frac{1}{p_{1}\left(k_{0}+\log p_{1}\right)}<\frac{1}{p_{1} \log p_{1}} .
\end{aligned}
$$

And from (9) we have $f\left(A_{1}^{\prime}\right) \leq \frac{1}{p_{i} \log p_{i}}$ for $2 \leq i \leq m$, Then

$$
\begin{equation*}
f\left(A_{1}^{\prime}\right) \leq \frac{1}{p_{i} \log p_{i}} \text { for } 1 \leq i \leq m \tag{10}
\end{equation*}
$$

thus, by (9) and (10) we get

$$
f(A)=\sum_{1 \leq i \leq m} \frac{1}{p_{i} \log p_{i}} .
$$

This completes the proof.

3. CONCLUSION

Using a new estimate of n-th prime with appropriate division of primitive sequence lead us to simplify the complexity. It would of interest to apply the obtained result to study the Erdös conjecture for primitive sequences of higher degree.

REFERENCES

[1] P. Dusart, "The k-th prime is greater than $k(\ln k+\ln \ln k-1)$ for $k \geq 2$ ", Math. Comp, 68, 411-415 (1999).
[2] P. Erdős, "Note on sequences of integers no one of which is divisible by any other", J. Lond. Math. Soc, 10, 126-128 (1935).
[3] P. Erdős, Seminar at the University of Limoges, (1988).
[4] G. Robin, "Estimation de la Fonction de Tchebychef θ sur le k-ème Nombre Premier et Grandes Valeurs de la Function $\omega(n)$ Nombre de Diviseurs Premiers de n", Acta Arith., 52, 367-389 (1983).
[5] Z. Zhang, "On a conjecture of Erdős on the sum $\sum 1 / a_{i} \log a_{i}$ ", J. Number Theory, 39, 1417 (1991).

Received April 10, 2020

