MATHEMATICA MONTISNIGRI
Vol L (2021)

COMPLEX NUMBERS SIMILAR TO THE GENERALIZED
BERNOULLI NUMBERS AND THEIR APPLICATIONS

BRAHIM MITTOU"" and ABDALLAH DERBAL?

'Univercity Kasdi Merbah Ouargla, EDPNL & HM Laboratory of ENS Kouba, Algiers, Algeria
*ENS Old Kouba, EDPNL & HM Laboratory of ENS Kouba, Algiers, Algeria

*Corresponding author.E-mail: mathmittou@gmail.com
DOI: 10.20948/mathmontis-2021-50-2

Summary. Let y be a primitive Dirichlet character modulo k > 3. In this paper, we define complex

numbers associated with y, which we denote by Cy(x)(r = 0,1, ... ), and we discuss their properties
and their relationships with the generalized Bernoulli numbers.

1. INTRODUCTION

Let y be a Dirichlet character modulo k > 3. Then the classical generalized Bernoulli
numbers B,,(y) for (m = 0,1, ...) are defined by:
k +0o

zelz zm 21
;xa)ekz — =) Bal0=y, A<

m=0
They can be expressed in terms of Bernoulli polynomials as (see [2, formula (4.1)]):

k
l
Bn(0) = k™ )" (0 B (7).
=1
where the Bernoulli polynomials B,,,(x) are defined by:

+00

ZexZ Zm

—— z Bu()—, Izl <2m
m=0

The Dirichlet L-function corresponding to y is defined by:

L(s,x) = ZX(Z), R(s) > 1.

n

Now, let y be a primitive character. It is well known [2, Theorem 9.10] that the values of

L(s,x) ats = —n,(n = 0,1, ...) can be expressed by the generalized Bernoulli numbers as:
Bry1(0) (1.1)
L(—n,y) = — /22
=m0 n+1

Also from [2, Theorem 9.6] if y(—1) = (—1)"(n = 1,2,...), then the special values of
L(s, x) at s = n are given by:

1.2
Lin ) = (~1)n1 (12)

() [2mi\"*
L5 B,
2n! \ k

2mia
where 7(x) = Yk_1 y(a)e ¥ is the Gaussian sum associated with y.
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In this paper, based on a definition given by Davies and Haselgrove in [4], we rewrite the
formulas (1.1) and (1.2) in terms of the numbers C,.(y). We also give some results, properties
and applications of these numbers, and their relationship with the generalized Bernoulli
numbers.

2. DEFINITION AND LEMMAS

In order to prove our main results, we give the following definition and we need the later
lemmas.

Definition 2.1 Let y be a non-principal character modulo k > 3. For an integer r = 0 we
define the function p,-(x, x) for x € R, as follows:

po(x, x) = S(x, x) + Co(x), whereS(x, x) = z x(n),

n<x
x (2.1)
Pro1 (1) = j P (6, 2)dE + Cran (O,
0

k
fmmww=a
0

Lemma 2.2 Let y be a non-principal character modulo k > 3. Then

1. The function S(x, y) is k-periodic.
2. For any function f defined from [0, k) to C which has an antiderivative g we have

k k—1
S(t, dt = — )
fo (6,0 f(Ddt mZﬂg(m)x(m)

3. If y is primitive, then the Fourier series expansion of S(x, y) is given by:

k-1 +oo _
SCx, x) = % Z my(m) + E;X) Z X(:) sin (annx> if y(—1) = +1,
m=1 n=1

(2.2)
k-1 +o00
1 E X 2
S, x) = % z my(m) — ;X) z X(:) cos( nknx> if y(—1) = —1,
where m "
k

2

B00 = ), xtmigy () i a1 = 1

Proof. 1. For any integer N, we have

SEHNkD = ) x( =) xn+NO) =) x(n) =S,

ns<x+Nk nsx nsx

so S(x, y) is k-periodic.

16



B. Mittou and A. Derbal

2. This follows at once from the integration by parts and the fact that YX~ y(m) = 0 (see
e.g. [1, p. 30]).
3. The Fourier series expansmn of S(x, y) is given by:

2nmx _[2nmx
ay +Z (ancos( T >+bnsm( T )),

n=1

where

1 Kk 1 k-1
a =7 | Stnde =7 myam),
0
m=

1

—szS(t ) <2nnt>dt_—1 = (m)s <2mnx>f -
an—k0 x) cos|— = x(m) sin orn>1,
m=1
k—1
b _ijS(t ) si <2nﬂt) gt = 1 Z (m) (2mnx>f > 1
Tl 0 sin{— = 1)(m cos | — orn > 1.
m=

If y(—1) = +1, we put 8 = znTn and we show that a,, = 0 for n > 1. Indeed

k-1
-1 -1
an =—— Zl y(m) sin(m@) = — Zl x(k —m)sin((k —m)0)

k—1
1
= Z x(m)sin(mf) = —

m=1
Also ay = 0, since

k—1 k—1 k-1 k-1
> mxm) = (k= mx(k —m) =k Y x(m)— > my(m) == > my(m).

If)((—_l) =—1, we show by the same way that b_n =0forn> 1.
According to [1, Theorem 8.15] we have

XWEQ) = Z x(m)
from which we can write for n > 1

1 -1
b, = — X E(p)x(n) if y(=1) = +1, anda, = — X EQo)x(n) if y(—1) = —1.
This completes the proof.

CcOS 2mnmn
sin

) itx(-1) = £1,

Lemma 2.3 Let y be a primitive character modulo k > 3. Then
1. For r > 1, the function p, (x, y) is continuous and k-periodic.

2. The Fourier series expansion of p,.(x, x) is given by:
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Gy — £ FO0 < X(1) sin (Znnx
0 ] - L

- n cos\ k )ifX(_l)zil' (2.3)

n=1

Forr > 1 and y(—1) = +1, we have

Par-1(, x) = (—1)rET(X)( « >2H N I 0s (Znnx>,

21 nar k
e 2.4)
CEG) (KT O x()  (2nmx '
parCon) = (17 =2 (-) e n(55),
n=

Forr =1 and y(—1) = —1, we have

Par-1 (2, x) = (-1 )rE(x)< )" 1zx(n) <2n7tx)

T
(2.5)
(x )—(—1)r+1@<£> AN cos <2n7tx>
Dor\X, X) = T T n=1n2r+1 & .

Proof. 1. It is clear that, for r > 1 the function p,(x, ) is continuous, since it is the primitive
of piece-wise continuous function. The properties of the Dirichlet characters and formulas
(2.1) allow us to show by induction that, for any N € Z and r € N:

(N+1D)k
f P, (6, x)dx = 0, and p,(x + Nk, 1) = pr (%, ),
Nk

from which the periodicity of p, (x, y) follows.

2. The formulas (2.3), (2.4) and (2.5) are obtained by successive integrations of (2.2), taking
into consideration the formulas (2.1). The lemma is proved.

3. MAIN RESULTS

In this section we give our main results. Let us start by the explicit formulas for the
numbers C,(y).

Theorem 3.1 Let y be a primitive character modulo k > 3. Then the numbers C,(y) are
explicit as follows:

If y(—1) = +1,

k-1
-1
GO0 =5 D mA(m), Cor() = 00 = 0),
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[ 2r—2m (3.1)
Cora(0) = Z G I G~ ),Zmzr;c(m) (=2

If y(-1) = -1,

k-1
1
Co00 =7 ) mx(m), Cyra(0) = 0Gr 2 1),
m (3.2)

2r 2m
C z C Z 2r+1 >1
ZT‘(X) (27' 2m + 1)| Zm()() T k(Zr + 1)| m X(m) (T )
Proof. The first formula of (2.4) and the last formula of (2.5) show that for r > 1:

Cor(X) = p2,(0,x) = 0if (1) = +1, and C5_1(x) = p2r-1(0,x) = 0if y(-1) = —1.
According to the last formula of (2.1), we have

k-1

1
Cal) =1 Y matm), and C,G0) = 3 Coli) ~ 51 Z my(m).

m=1

Also for a > 2,

1 k
Ca()() = Ef xpa—l(x;)()dx-
0

Integration by parts « — 1 times gives us

mj.m a+l rk
C on—(Z( O G0+ j x“po(x,)()dx)

But
k a+1 1 k=1
|| poCe D = €0 Gg = g . A,
m=1
from which we find
a+1 k-1
( 1)mkm 1 (_1)a "
Ca(X) = z— a-m+1(0) + mzlma x(m). (3.3)
m=

If y(—1) = +1, to obtain the formulas (3.1), we simply take @ = 2r — 1 with (r = 2) in
(3.3), taking into consideration that C,,.(y) = 0.

If y(—1) = —1, to obtain the formulas (3.2), we simply take @ = 2r with (r = 1) in (3.3),
taking into consideration that C,,_;(x) = 0. The theorem is proved.
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Corollary 3.2 For any primitive character y modulo k > 3, we have C,.(X) = C,(y) for
(r=0).

Proof. The result follows directly by using induction on 7.

Example 3.3 1. Let y3 and y, be the non-principal Dirichlet characters modulo 3 and 4,
respectively. Then we have Cyy1(¥3) = Corp1(xs) = 0 (r = 0), since y3 and y, are odd
characters. Also, it follows by using Theorem 3.1 the following table:

CO CZ C4- C6 CS ClO C12
X3 1 1 1 7 809 1847 7943
3 9 36 1080 544320 5443200 102643200
Xa 1 1 5 61 277 50521 540553
2 4 48 1440 16128 7257600 19160040

Table 1. The first values of C,.(r = 0, 2, ...,12) for y3 and y,.

2. Let x15, X25, and x35 be the Dirichlet character modulo 5 such that y;5(2) = —1,
X25(2) =i, and xs5 = ¥z5. Then we have Cp-(x15) =0 (r=0), since y;5 is even
character. Also, by using Theorem 3.1 we obtain the following:

Cl C3 CS C7 C9 Cll Cl3
X1s 2 1 67 361 412751 1150921 568591843
’ 5 3 300 2520 4536000 19958400 15567552000

Table 2. The first values of C,.(r = 1, 3, ...,13) for y; 5.

On the other hand, since y, s and y3 s are odd, we have C2r+1()(2,5) = C2r+1()(3,5) =0(r=
0). Finally, Theorem 3.1 and Corollary 3.2 allow us to get

CO CZ C4- C6 C8 ClO
X255 _311, E+1, 37 T 43 | 139 169 . 4913 _ 6047 . 279763 | 345433
X35 575 | 55 150 " 300'| 9001800 50400 ' 100800 | 4536000 9072000

Table 3. The first values of C,.(r = 0, 2, ...,10) for x, 5 and x35.

Theorem 3.4 Let y be a primitive character modulo k > 3. Then for all x € R, we have
1.If (1) =+1andr > 1:
[D2r—1(x, )| < 1Cor1 GO
2.If y(—1) =—1andr = 0:
[p2r (x, O < |G GO
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Proof. 1. Let y(—1) = +1,r = 1 and x € R,.. Then from the first formula of (2.4) we have

z ) (2nnx> |

If we put y(n) = a(n) + ib(n) for (n = 1), then we get

IE()()I( )" !

|p2r—1Ce, )| = -

— x(n) 2nmx

)= FG0 + ig(),

n=1

where

fx) = z a(zri) cos <2n:x)' and g(x) = +z°° bn(zr? cos <2nk7rx)'

from which we can write

par-ae 0l = () () + (90)"
On the other hand we have
EQOI kAT o xm)|  EQ@I kTS am) <o b(n)
IP2r-1(0,201 = T (E) ] n2r - T (%) ;an l; n2r
EQDI A\ [ Sam) [ &Sbm)\
- T (%) <;n2r) +<nZln2T>'

Now, we wish to prove that

+oo 2 +00 2
2 2 b
() < (Z D) ana (' = (3. 22).

n=1 n=1

Let X = N4 22

X2 = (f(x) — X)(f () + X), so that

) - X = ; (C;(Z) (COS <2nknx> B 1>) 0+ X = Z < a(n) ( . (annx> N 1>)

which are absolutely convergent series, i.e.

(/‘(x))2 - X% = i {(ﬁ?)z (cos2 <2nknx> - 1)} < 0.

n=1

2
By the same, we can show that (g (x))2 < ( ] 1;(;)) . Thus

[P2r-1 (201 < 1p2r-1(0,00] = [Cor—1 GO 1.
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2. Let y(—1) = —1 and r > 0. Then by the same reasoning as above we get the second
formula.

Now, let us rewrite the formula (1.2) by using the numbers C,- ().
Theorem 3.5 Let y be a primitive character modulo k > 3.
1.If y(—1) = +1 and r > 1 then:

2 2r—1
L@r D=0 s (F) Gl
2.If y(—1) = =1 and r = 0 then:
_ T 2m\%"
L@r+1.0) = U s () o,

Proof. This follows directly by taking x = 0 in the first formula of (2.4) and x = 0 in the last
formula of (2.5), taking into consideration that p,.(0, ) = C,(x).

The following corollary gives the relationship between the numbers C,_;(y) and the
generalized Bernoulli numbers B, ().

Corollary 3.6 Let y be a primitive character modulo k > 3.

1.If y(—1) = +1 and r > 1 then:

-1
Cor—1(X) = mBZrO()-

2. If y(—1) = —1 and r > 0 then:

Cor(0) = mBzrﬂO{)-

Proof. This follows directly from Theorem 3.5 and the formula (1.2).
The above corollary allows us to rewrite the formula (1.1) as:
Corollary 3.7 Let y be a primitive character modulo k > 3.
1.If y(—=1) = +1 and r > 0 then:
L(=@2r+1),0) = @r + D! Cors1 (0.
2.If y(—1) = =1 and r = 0 then:
L(=2r, ) = —(2r)! G Q0.

As an application, the following theorem gives explicit formulas for sums related to the
generalized Bernoulli numbers.

Theorem 3.8 Let y be a primitive character modulo k > 3.
1.If y(—1) = +1 and r > 1 then:
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r J2r—2m

(2r
2r—2m+1 2m

m=1
2.If y(—1) = —1 and r > 0 then:

T

k
1
Bom(1) = ;Z 2y (m)

k2r—2m

k

2r+1 1

2r —2m + 1 (Zm + 1) Bamea () = Z m*T iy (m),
m=1

m=0
Proof. 1. Let y(—1) = +1 and r = 1. Then from the formulas (3.1) we have

[ 2r-2m k-1
Cora(0) = Z(Zr T 10 ~ ),Z Ty (m).

The Corollary 3.6 allows us to write

r—1

k2r=2m(2r)!
~ 2m)!'2r—-2m+1)!

k-1
1
Bor () = - Bam(0) +3, ) mx(m)
m=1

SO

27' 2m (21,.)|

k—
1 27’
Bar G0 + Z 2r—2m+1) (2m)'(2r—2m)!Bzm(X)=E; x(m),

from which

k2‘r—2m

(7 B0 =7 Zm”x(no

2. Let y(—1) = —1 and r = 0. Then similarly we get the second formula. This proves the
theorem.

2r—2m+1

m=1

As another application, the following theorem gives asymptotic formulas for L(s,y) in
terms of the generalized Bernoulli numbers.

Theorem 3.9 Let y be a primitive character modulo k > 3 and let L(s, y) be the Dirichlet L-
function corresponding to y. Let N and r be positive integers such that R(s) = o > 1 — 2r if
x¥(=1) =+4+1ando > —2rif y(—1) = —1. Then

kN
_ X(n) Bom (X S+]j . _
L(s,x) = ; = (2m) <(kN)S+1) FR(S) XD =41, (34
Cxm BiQ) W T/ s+)
LG = ; s kNS Z (Zm +rl ((kzv)sﬂ) (3.5)

+ R,(s) if y(— 1) =
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where
|s + 2r — 1| |s + 27|
< _ <
[Ry ($)| < [Tor-1 (O X ot 2r—1° and |Ry(s)| < [T (0| % o+ o7’
with
s(s+1)-(s+2r—2) s(s+1)-(s+2r—1)
TZT‘—l(X) = CZT‘—l(X) (kN)S+27-_1 ) TZT‘(X) = CZT(X) (kN)S+2-r
Proof. First of all we can write
kN +00
L (@) x(n)
(s,x) = S + -
n=1 n>kN
It follows by using [5, Theorem 1.3] that:
+00
Z x(m) _ Sf+°°5(t.x) gt = s Lol SJ+°°po(t,x) it (3.6)
ns K tst+1 (kN)S K ts+1 '

n>kN
If y(—=1) = +1, then C,,.(y) = 0(r = 0). Integrating by parts 2r — 1 times the integral in the

right hand side of (3.6), taking into consideration that p,.(kN, y) = C,(x), we obtain:
kN
x(n) s(s+1D(s+2)
L(Sr)() :z ‘I’ls _CI(X) )
n=1

(kN)S+1 = G0 (kN)s+3
ss+1)(s+2)(s+2r—2) 3.7

(kN)s+2r—1
T Par—1(t, X)

+s(s+1D)(s+2)(s+2r—-1) » ts+—2rdt.

Now Corollary 3.6 and the formula (3.7) imply the formula (3.4) with:
TP X)

- CZr—l (X)

Ri(s)=s(s+1)(s+2)(s+2r—1) o ts+—2rdt.
According to Theorem 3.4, we have
+00 1
Ri(s) < Is(s + D)(s +2) - (s + 2r — DI X |Cor1 ()| ka ot
s+ D +2) (s +2r = DCor 1 Q)| Is + 2r — 1]
B (kN)s+2r-1 o+2r—1
|s +2r — 1]
= X ————,
|T2r—1()()| o+ 2r—1

If y(—1) = —1, then C,,._1;(y) = 0(r = 1). Integrating by parts 2r times the integral in the
right hand side of (3.6), taking into consideration that p,.(kN, y) = C,(x), we obtain:
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(kN)s*1 [COSC
ss+D(s+2)-(s+2r) (3.8)

(kN)s+2r
Fs(s4+1)(s+2) (s 4+ 2r)j Pt )
k

t5+27‘+1
N

Now Corollary 3.6 and the formula (3.8) imply the formula (3.5) with:

R,(s) = s(s + 1)(s + 2) - (s + 27) f+det.
kN

ts+2r+1

S (n) s s(s+1)
L) = ) 22 = €00 ey = Co()
n=1

- CZr (X)

According to Theorem 3.4, we have
Ry(s) < |s(s + D(s +2) - (s + 2r)| X |Cor (0]

s(s+1D(s+2)(s+2r—1)Cy-(x)
= (kN)S+27‘
|s + 27|
o+2r’

+oo0 1

f ts+2r+1 dt
kN

|s + 27|

o+ 2r

= T2 (01 %
This completes the proof.
Remark 3.10 From [3, p.37] we have

0= | (1 LT )>L<s,x*),

plk
where y* is the unique primitive character which induces y. Thus L(s, y) can be expressed in

terms of L(s,x*), so one can use this fact to generalize above theorem to an arbitrary
character y.

Remark 3.11 One can use the first formula of (2.4) and the last formula of (2.5) to get
another upper bound of R, (s) and of R, (s) as follows:

2lsIVk¢(2r) T (Is +Jl
R = G DenT Ny 1_[ ( N )

j=1
and
2r

2|sIWk¢(2r + 1) l—[<|5+j|>

s) <
2r + 0)(2m)?"*1(kN)° =z N

Ry (

3. CONCLUSION
In this paper, we define complex numbers associated with a primitive Dirichlet character y,

and we use them to rewrite some known results as formulas (1.1) and (1.2). Also, we use
them to give explicit formulas for sums related to the generalized Bernoulli numbers, as
shown by the Theorem 3.8, and to give asymptotic formulas for L(s,y) in terms of the
generalized Bernoulli numbers, as shown by the Theorem 3.9.
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