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Summary. The article is devoted to the methodology for modeling current-carrying plasma in a 
Z-pinch studied in pulsed-power experiments. We discuss simulation performed via moving 
Lagrangian-Euler difference grid. The difference scheme approximating the hydrodynamic 
equations of a high-temperature medium possesses a “complete conservation” property and 
includes energy balances between the plasma components taking into account electromagnetic 
field – matter interaction and conductive (electronic, ionic) as well as radiative heat transfer. 
Numerical experiments provide quantitative estimates of physical effects which lead to 
essential distortions of a plasma shell during its magnetically-driven implosion. Performed 
simulations show the effect of instabilities on the final pinch structure, mainly, the 
hydrodynamic Rayleigh-Taylor instability and instability of a temperature-inhomogeneous 
plasma. 

1 INTRODUCTION 

Difference schemes of summarised approximation [1], schemes of physical splitting [2] 
and their modifications are widely used since they allow reproducing accurately specific 
feature of studied physical processes and perform calculations economically. This is why such 
schemes are widely used in application codes designed for multiphysics simulations (see e.g., 
[3, 4]). In the monograph [5], algorithms for successive accounting physical processes are 
constructed for Lagrangian difference schemes of gasdynamics (GD) and magnetic 
gasdynamics (MHD). The advantage of the completely conservative difference schemes 
presented in [5] is the numerical approximation of the basic conservation laws (mass, 
momentum and energy) as well as additional balance equations, important for simulation of 
fast plasma-dynamic processes. These include the intensive energy transfer from external 
sources, the significant role of heat transfer by radiation, electron-ion energy relaxation, etc. 

In this paper, we present a numerical technique based on the summarised approximation 
scheme developed for simulation of magnetoaccelerated plasma, primarily for various types 
of Z-pinches [6, 7]. 

Electrodynamic compression caused by the action of a current pulse on a plasma body in 
the form of a liner or a shell was first proposed for achieving thermonuclear fusion conditions 
[8]. Currently, such experimental schemes are mainly studied in order to generate soft x-ray 
radiation pulses via kinetic-to-thermal energy conversion at the stage of an accelerated shell 
collapse [6, 9, 10]. The development of high-current generators with the pulse duration about 
100 nanoseconds and the peak current up to several MA, used in modern Z-pinch 
experiments, allows new prospects in this research area. High power soft x-ray sources up to 
several TW can be used not only in basic research, but also in industrial applications: 
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materials with gradient properties, x-ray photolithography, short-wave lasers etc. The problem 
of current-carrying plasma stabilization is actively studied. In the ongoing research, much 
attention is paid to the design (material and geometry) of imploding liners. Fitting of the liner 
parameters with the electrical parameters of the generator is important to ensure high 
efficiency transformation of the electricity into the kinetic energy of the liner [10-12]. 

The article consists of two parts. 
The first part is devoted to the construction of Lagrangian-Eulerian numerical method and 

algorithms for solving the MHD in the form of conservation laws.  
Implicit completely conservative difference scheme (CCDS) [1, 2] in Lagrangian variables 

is considered as a base. The Lagrangian-Eulerian approach provides opportunities for 
combining explicit and implicit approximations of convective flows. 

The algorithm developed in this paper employs local splitting of physical processes. For 
two-dimensional MHD problems, similar algorithms were considered in [14]. The system of 
difference equations is divided into groups, and each group is solved by its own iterative 
process. Local iterative processes are assembled into an overall cycle, with the convergence 
controlled by the overall energy balance. 

It is possible to remap computed Lagrangian values to a modified grid with mass, 
momentum, and total energy conservation. We also check the balances of internal and 
magnetic energy. 

We use two-level temporal approximations of convective terms to ensure the CCDS for the 
numerical MHD system. Homogeneity of calculations for flows with strong discontinuities is 
achieved by introducing artificial viscosity [5], taking into account recommendations [15] for 
its adaptation to flow properties. 

The second part of the paper gives an example of modeling the dynamics of a Z-pinch 
compression. The liner is formed during ablation and subsequent implosion of a wire array 
under the impact of a powerful current pulse. In computational experiments, we study typical 
instabilities that have the most significant effect on the magnetic implosion. Namely, we 
observe the hydromagnetic Rayleigh – Taylor instability along with instabilities of 
temperature-inhomogeneous plasma. The last may lead to matter overheating or radiative 
collapse depending on disbalance between Joule heating and radiation losses. The Conclusion 
summarizes the main results of the numerical experiments. 

2 GOVERNING MHD SYSTEM 

We use the common notation for the MHD equations in Cartesian coordinates: t is the 
time, U = (u,w,v) is the substance velocity, ρ is the density, Р is the gas pressure, Т is the 
temperature, ε is the specific internal energy, W = (Wx,Wy,Wz) is the heat flux, B = (Bx,By,Bz) 
is the magnetic induction, E = (Ex,Ey,Ez) is the electric field strength, j = (jx,jy,jz) is the 
electric current density, с is speed of light in vacuum, σ and κ are the coefficients of electrical 
and thermal conductivity. 

The kinematic equations for fluid particle positions: 

; ; ;
dx dy dz

u w v
dt dt dt

  
 

(1)

The continuity equation: 
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(2)

The momentum equation projections on the coordinate directions: 
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(3)

The hydrodynamic pressure in (3) is equal to the sum of the partial pressures P = Pe + Pi. 
The equations for the internal energies of the components: 

       
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(4)

Here Ge,i are sources (sinks) of electronic and ionic energy, Gj is the mass energy density 
of the Joule heating: 
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(6)

e,i are the internal energies of the electronic and ionic components per unit mass, 
We,i = ((We,i)x, (We,i)y, (We,i)z) are the electron and ion heat fluxes, c is speed of light in 
vacuum. 

Heat fluxes are defined by ion and electron temperature gradients: 
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where 
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The equations of the electromagnetic field are applied in the following form: 
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The MHD system (1) - (9) is closed by the plasma equation of state (EOS). 
To solve the MHD initial-boundary-value problem, the usual boundary conditions [13] are 

added to equations (1) - (9), which determine the hydrodynamic fluxes of mass, energy, and 
momentum, temperature or heat fluxes, and the conditions for the components of the 
electromagnetic field. 

3 COMPUTATIONAL ALGORITHM 

The difference model is built using staggered grid functions. Thermodynamic parameters 
(density, pressure, internal energy) as well as magnetic induction are defined in the grid cells. 
The components of the velocity and electric field strength are defined in the nodes. The 
difference equations of continuity, energy, momentum, and magnetic induction are derived by 
approximating the corresponding differential balance for control volume. The control 
volumes are either grid cells (for continuity and energy equations), or “nodal” volumes (for 
momentum balance equations), which form a grid conjugate to the original one. Time-
dependent pressure forces, ponderomotive forces, flows, etc. are included as a linear 
combination of the corresponding spatial approximations at two consecutive time layers. 
Weighting factors in time-weighted difference formulas were chosen to ensure complete 
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conservativeness of the scheme. For the dissipative processes (thermal conductivity, field 
diffusion), homogeneous flux schemes were constructed. The theoretical foundations of such 
schemes are considered in [14] for the 2D case. Here we present a 3D version of the technique 
[14]. 

The numerical solution of the governing MHD system is performed according to the two-
stage algorithm which is analogues to that first proposed in [16] and used in many successive 
works. The movement of matter is calculated in the coordinate system (, γ), which is 
moving relative to the laboratory system (x, y, z). 

If U = (u, w, v) is the velocity of a material particle in the laboratory coordinate system, 

then  ( , , |) const( , , ) ( / , / , / )x y zU U U u dx dt w dy dt v dz dt        U     is its velocity in the 
moving system. 

The time-advance begins by solving the main system of equations in Lagrange variables 
(i.e., without taking into account convective flows), then, if necessary, the Lagrangian grid is 
corrected, and the computed values are recalculated to a new difference grid. 

The first (Lagrangian) stage includes solving the grid equations, provided that the grid 
moves at the speed of the substance. In this case, the Jacobian J changes according to the 

equation ( )
t
 J J U , and the original system of equations is supplemented by the kinematic 

relation 
d ( , , , )

( )
d

t
t

  


r
U r  (r is the radius vector of the material particle). At the end of the 

Lagrangian stage of calculating the position of the grid nodes, they can be redefined based on 
the solution strategy. In this case, the second (Eulerian) stage is performed that is the 
calculation of convective fluxes in the “grid” coordinate system and the consequent changes 
in the grid functions. 

The above decomposition of the solution of the general system of equations into stages can 
be represented in the form of a summarized approximation scheme, or a physical splitting 
scheme. The advantage of the proposed algorithm is the possibility to use an implicit 
Lagrangian scheme and an explicit Eulerian scheme. This combination allows a larger time 
integration step without loss of stability. 

The overall iterative cycle is based on the sequential computation of physical processes. It 
includes several nested cycles for the subsystems of the general system. The Lagrangian stage 
can be considered as iterations of the force and energy balances. At this stage the MHD 
system is solved coupled with the equations for the nodes coordinates moving in physical 
space with the speed of the matter. In turn, the Lagrangian stage itself is split into the ideal 
MHD (hyperbolic type subsystem) and the dissipative processes (parabolic type equations). 

Lagrangian grids simulate the motion of liquid particles or liquid contours. This approach 
allows very simple and convenient form of the continuity equations, freezing of the field in 
the MHD equations, and lastly, an effective rapidly converging iterative algorithm for solving 
a system of grid equations corresponding to an implicit difference scheme. The convergence 
of the algorithm was studied in [14]. 

The Eulerian stage returns the nodes of the moving grid to their start-of-the-time-step 
positions. This is understood as the up-flow shift of the Lagrangian grid, due to which the 
substance moves through the edges of the cells. At this stage, changes in the grid functions (ρ, 
U, ε, B) caused by convection processes are calculated. Note that the return of the grid to its 
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previous position is optional, which allows lower numerical diffusion and improving the 
deformations of the moving grid. 

The power and energy balances are interconnected. The plasma momentum U(x, y, z, t) is 
determined by the pressure gradient and electromagnetic force dependent, in particular, on the 
temperature of the medium. In turn, the temperature field T(x, y, z, t) depends on the work of 
the pressure forces and the energy flows, i.e. the plasma velocity. Therefore, the individual 
steps of solving the complete system of MHD grid equations are combined into an overall 
iterative cycle. 

The system we solve includes difference equations of ideal MHD coupled with energy 
balance equations of the plasma components in a non-divergent (entropy) form and 
multigroup radiative transfer equations. The difference scheme of the Lagrangian stage is 
arranged in such a way that a difference analogue of the plasma – electromagnetic field 
integral energy balance is satisfied. This property is used to monitor the convergence of 
iterations at the Lagrangian stage and the quality of the solution in general. 

The time derivatives of any function f in the moving coordinate system are calculated 

according to the relation f f f
t

  
.

U . 

4 COMPUTATIONAL GRID, DISCRETIZATION, DIFFERENCE EQUATIONS 

The approximation on a moving grid is implemented via mapping a single-connected 
region with a piecewise-smooth boundary D  R3(x,y,z) to the unit cube D´  R3(,) [4, 9, 
10]. In general the coordinate transformation formulas are time dependent. At any point of 
time the map is defined as: 

     
   

, , ,    , , ,    , ,

, , ,    , , '

x x y y z z

x y z D D

        

  

  

 
 

(10)

We suppose the positivity of the coordinate mapping Jacobian: 

 
   , ,

0, , , '
, ,

x y z
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

  


J
 

The volume of a cell in the physical space (x, y, z) is approximated as the volume of its 
image in the reference space of the variables (α, β, γ) multiplied by the average value of the 

Jacobian J  in the cell. 

4.1 System of difference equations 

The MHD system (1) - (9) is approximated on a moving (Lagrangian) difference grid by a 
completely conservative difference scheme. 

The corresponding numerical model is as follows. 
A uniform in each direction grid is introduced in the cube D´(, , ): 
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We denote by  the set of cells of the computational grid h, is the set of nodes,  is the 
set of faces. Accordingly, we introduce the spaces of grid functions defined in the cells H, in 
the nodes H , and in the faces H. We use the indices (i, j, k) for the grid functions ƒ H: 
ƒi,j,k = ƒ  H, and indices (m, l, n) for the grid functions   H: min  H. The functions 
  H will be marked with indices (i, l, n), (m, j, n) and (m, l, k).  

The grid in the region D obtained by the mapping (10) consists of hexagons. 
The difference equations below use grid templates Ξ1, Ξ2, Ξ3: 
 Ξ1 is the cell template, it includes the incident nodes;  
 Ξ2  is the node template, it includes the incident cells;  
 Ξ3 is the pattern of faces incident to the cell (m, l, n). 

Equations (1) - (9) are approximated on the grid H by a completely conservative implicit 
difference scheme. The difference balance equations for the mass, momentum, and energy in 
a control volume are constructed using the partial derivatives of the cell volumes with respect 
to the node coordinates (for theoretical grounds see [17, 26]): 
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(15)
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(16)
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(17)

Joule heating: 
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


 

(18)

We use index-free notation to represent the system (11)-(18) in a compact form [1]. 
The grid functions U, E are defined in the nodes of the difference grid, the grid functions ρ, 

Pe,i, q, V, Te,i, B, Ge,i, Qei, κe,i, σ are defined in the cells (q is the volumetric artificial viscosity; 
V is the volume of the cell), and the grid functions We,i, S are defined on the faces of the cells. 

 , , 1,6r xr yr zr rS S S S  are the areas of the faces of the cell (m, l, n). 
The boundary values of pressure, temperature, and magnetic field are assigned to the faces 

of the boundary cells. 
At the boundary of the computational region, for the equations of motion, the pressure and 

velocity, or the absence of a plasma flow condition is specified. For Maxwell's equations, the 
magnetic induction or the electric field strength is specified. For energy equations, the 
distribution of temperature or heat fluxes is specified at the boundaries. 

4.2 Energy balance and conservation 

The difference scheme (10) – (17) is completely conservative. We define the following 
grid functionals to prove this property and to utilize it in practical calculations: 

 

1 1 1

2 2 2

1 1 1

1

2

1 1 1
, ,

8 8 8

NM NL NN

kin mln mln mln mln
m l n

mln r mln r mln r
r r r

m u w v

u u w w v v


  

    

   

  



  
(19)
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  



  
 

(20)

The following indices are used for energy balance relations: 
(i,j,k) for boundary nodes, r' for cells adjacent to the boundary, r" for “ghost” cells 

introduced into difference scheme for processing of boundary conditions: 

2 2 2' "r r r    
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2 2

2

' "
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1 1
, 1' " '

8 8

1
, 1' " '

8

r rijk ijk ijk
r rijk ijk

ijk ijk ijkr
rijk

m m
M M

V
V

  

  

  



     

  

 


 

(21)

The equation of total energy balance for the coupled plasma – electromagnetic field system 
(22) that follows from the system of difference equations (10) – (17) can be found in 
Appendix. 

From this we can conclude that for the difference model (11) – (18), the change in the total 
energy is determined by: 

1. The work of external forces, i.e. pressure and ponderomotive force; 
2. The influx (outflow) of heat trough the border of the region, including radiative heat 

transfer; 
3. The influx of magnetic energy through the outer boundary; 
4. The action of energy sources and sinks. 

4.3 Combined iterative method for the system of difference equations 

The difference equations (11) – (18) represent a system of nonlinear algebraic equations. 
An iterative method is used with separate solving groups of equations for different physical 
processes.  

The procedure for solving system (11) – (18) is as follows: 
1. The auxiliary values of velocity, density, temperature, and magnetic induction at the 

time layer (n + 1) are computed. 
2. With the fixed temperature, the equations of motion and the Maxwell equations are 

solved. The auxiliary values of the velocity, density, and electromagnetic field parameters are 
computed. 

3. With the fixed velocity, density and electromagnetic field, the system of energy 
equations is solved. The auxiliary values of the electron and ion temperature at the time layer 
(n + 1) are computed. The equation of state is a link between the equations of the “first 
group” (equations of dynamics and electromagnetic field) and the “second group” (energy 
balance equation). 

4. The satisfaction of the energy conservation law (22) is verified. If the required accuracy 
is achieved, the values of the functions at time t = (n + 1) are considered to be found. 
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Otherwise we correct the coefficient of the system and repeat the step 1 to 3. 
5. If necessary, the grid is corrected after solving the system (11) – (18). The grid functions 

found at the Lagrangian stage are recalculated to the adjusted grid. For this, the conversion 
algorithm developed in [5,6] is used.  

The steps 2 and 3 are detailed below. 

4.4 Coupled dynamics and electrodynamics equations 

At the step 2, the subsystem of difference equations (11) – (16) is split by physical 
processes: first, the motion of a substance is calculated under the frozen magnetic field 
assumption, and then the diffusion of the magnetic field is accounted. The equations are 
solved by the Newton method with the reduction of unknown quantities [4]. The convergence 
of this procedure is considered, e.g., in [18]. Advancing from iteration (s) to iteration (s+1), 
we assume that all the variables in the equations of motion depend only on the velocity 
components uijk, wijk, vijk, and the thermal pressure is locally barotropic. The transition 
formulae from iteration (s) to iteration (s+1) are the following: 
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(23)

Here Φmln is for cell functions Pmln, qmln, Bmln, and superscripts are for the iteration number. 
Substituting the values (23) into the equations (14) and neglecting the squares of the 

increments of the functions, we obtain a system of linear algebraic equations with respect to 
the increments of the velocity components uijk, wijk, vijk: 

        
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1, , 1, , 1,i NM j NL k NN    

(24)
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Here 
       1 2 3 1 2 3 1 2 3 1,2,3
1,2,3 1,2,3 1,2,3, , ,k k k k k k k k k

ijk ijk ijk ijka b c F  are numeric factors. System of equations (24) has a 
block structure matrix. 

To solve equations (24), we use iterative method [29]. 
After finding the velocity increment at the iteration (s+1), the values uijk, wijk, vijk, Vmln, 

mln, Pmln, qmln are computed, and the intermediate value of the magnetic induction B : 

 1 ,s s
mln mln B B E

 

The next step is to solve the system of equations describing the electric and magnetic fields 
with finite conductivity of the medium (15) – (16). The intermediate value B  is used for 
calculating the conductivity coefficient: 

 11 , ,ss s
mlnmln mln mlnmln T    B . 

Then the system of difference equations with respect to Bs+1, Es+1 is linear. Because some 
rarefied plasma areas may have close to zero conductivity, it is advisable to solve the system 
of field equations by excluding the magnetic induction B. The result is a system of linear 
equations with respect to Ex, Ey, Ez: 
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1, , 1, , 1,i NM j NL k NN    

(25)

Here 
       1 2 3 1 2 3 1 2 3 1,2,3
1,2,3 1,2,3 1,2,3, , ,k k k k k k k k k

ijkijk ijk ijka b c F  are numeric factors. 
The system of linear equations (25) has a block structure. After finding the electric fields, 

we have: 

 11 1,ss s
mln mln  B B E

 

The system of equations (11) – (16) is solved if the increments of velocities at the iteration 
satisfy the conditions:  

min

min
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ijk ijk
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

 
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 

 

 
 

(26)

Here  is the relative velocity error, and umin, vmin, wmin are the absolute velocity errors. 

4.5 Energy Balance 

The energy balance equations are solved in terms of electron and ion temperature (17). 
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Energy equations are solved via the Newton iterations. The transition formulae from iteration 
(s) to iteration (s+1) are the following: 
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(27)

Ξ4 is a template of the cells adjacent to the face g. 
Substituting increments of functions at the iteration (s+1) into the energy equations and 

neglecting the squares of the increments, we obtain a system of linear algebraic equations 
with respect to the temperature increments (Te)mln, (Ti)mln: 

          
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(28)

Here 
         1 2 3 1 2 30,0,0 0,0,0 1,2

, , , ,
k k k k k k

mlnmln mlnmln mlna db c F  are the coefficients obtained in the linearization 

procedure. 
Similar equations at the boundary are obtained in accordance with the type of boundary 

conditions. For example, with a fixed temperature, all the temperature increments at the 
boundary are set equal to 0.  

The system of difference equations (28) is solved similarly to systems (24) and (25). 
The energy equations are solved if the temperature increments satisfy the conditions  

   / / min, 1, 1, 1, 1, 1, 1e i e iTmln mln
m NM l NL n NNT T T        

 (29)

Here T and Tmin are the relative and absolute temperature errors. 

5  SIMULATION OF A Z – PINCH IMPLOSION DYNAMICS 

The described technique was applied to simulations of Z – pinch plasmas experiments with 
the use of pulsed-power facilities. Three-dimensional modeling was carried out by means of 
the RMHD code MARPLE-3D [22]. We have studied the Z – pinch produced by a multiwire 
array heated in a powerful electric discharge. The aim of simulations was to assess the 
current-carrying plasma instabilities that occur at the final stage of pinch formation and their 
development up to the final stage of compression of the plasma compression. The spatial 
perturbations of matter and magnetic flux distribution inside the wire array and their evolution 
at various stages of pinch compression were investigated. 
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The simulation results are compared with the experimental data obtained at the Angara-5-1 
facility (Troitsk Institute for Innovative and Thermonuclear Investigations – TRINITI, 
Moscow, Russia). The calculations were performed for multiwire configurations described, 
e.g., in [24]. Multiwire arrays proved to be a very effective electric load due to possibility of 
flexible adjustment of its parameters to that of a pulsed-power electric generator. However, as 
a wire-array has inhomogeneous structure, the resulting Z-pinch is subjected to MHD 
instabilities. 

The magnetic flux breakthrough into various multiwire arrays (tungsten, molybdenum, 
copper, and aluminum) during their implosion was studied experimentally at the Angara-5-1 
facility [25]. It is shown that breakthroughs develop in the final stage of plasma production 
from the wires and occur near the initial wire position. The spatial distribution of the 
azimuthal magnetic field B φ(z, t) was measured using magnetic probes. The characteristic 
dimensions of the regions with a nonuniform magnetic field at the outer boundary of the wire 
array plasma were determined and compared with those of the regions with depressed plasma 
radiation observed in frame and time-integrated X-ray images. The dynamics of the 
nonuniform magnetic field was compared with the pinch radiation at different stages of 
implosion exposed in the frame X-ray images. The plasma density in the magnetic flux 
breakthrough area was estimated. 

The magnetic breakthrough phenomena is illustrated by the Fig.1. The experiment No. 
5265 with a 40 aluminum wires array is typical for Z-pinch studies at ANGARA-5-1. 

 

Figure 1. Experimental results (TRINITI, shot No. 5265 [25]). 

At the left is the axial distributions of the azimuthal magnetic field inside the wire array 
measured at different instants of time (t1=30ns, … t7=90ns, t8=110ns) by the probe installed at 
rp = 0.89cm. The coordinates z = 0 and z = 1.4 cm correspond to the cathode and anode, 
respectively. At the right is the time integrated pinhole image (negative) of the wire array 
plasma recorded behind a Mylar film (hν >100 eV). To the left of the axis, the image is absent 
because of the diaphragming of the input aperture of the pinhole camera. The anode is on the 
top, and the cathode is on the bottom. 

The modeling was carried out by means of 3D RMHD code MARPLE, developed in 
KIAM RAS [22]. MARPLE is a full-scale multiphysics research code using the state-of-the-
art physics and numeric techniques. MARPLE provides a platform for high performance 
computing and functionality for solving the initial-boundary value problems using 
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unstructured computational meshes. MARPLE physics includes: one-fluid two-temperature 
MHD model with electron-ion energy relaxation; general Ohm's law; anisotropic resistivity 
and heat conductivity in the magnetic field; radiative energy transfer (diffusion model, 
multigroup spectral model); multi-component convection-diffusion; wide-range equations of 
state (EOS), transport and kinetic coefficients, opacity and emissivity [23]. MARPLE main 
numerics are: mixed unstructured / block meshes (tetrahedral, hexahedral, prismatic elements 
and their combinations); high-resolution explicit TVD approximations to the ideal MHD 
equations; implicit FV/FE/DG techniques for dissipative processes; splitting scheme for 
RMHD system (elemental solvers for different physical processes, additive approximation 
scheme, conservation laws); 2-nd order predictor-corrector time-advance scheme. MARPLE 
is designed for high performance distributed computations using domain decomposition and 
MPI parallelism. The computing environment includes a set of service functions: data IO; 
mesh processing; parallel computations support; dynamic processing of computation objects 
(solvers, approximations, boundary conditions, matter properties); configurable recovery 
points writing and automated backup; advanced events logging. We use the open-source 
products: CAD-CAE platform SALOME [30] for complex computational domains (geometry 
description, setting boundary and subregions attributes, mesh generation and refinement), and 
multi-platform data analysis and visualization application ParaView [31]. 

The purpose of the simulation was to study the plasma instabilities at the final stage of 
imploded plasma stagnation. We present here the results of a plasma implosion simulation in 
accordance with the conditions of the experiment No. 5265. We studied a 20mm diameter 
14mm high array made of 40 15μm diameter Al wires with a total linear mass of 220 μg/cm. 

The computational domain was a cylindrical sector 450 with periodic boundary conditions 
at φ = 0 and φ = π/4 (1/8 of the discharge chamber volume with 5 wires). The sector height 
was 3mm (1/5 of the array height). See Fig. 2, left. The grid contained 1.2 million cells 
(hexahedra and prisms). The grid in the (x, y) plane was refined from hх = hу ≈ 80μm near the 
initial position of the wires to hх = hу ≈ 17μm near the axis, the grid along the z axis was 
uniform, hz = 30 μm. The electrodes were considered ideally conducting. At the outer wall of 
the discharge chamber, the boundary condition was set for the magnetic induction Bφ = 2I / R, 
where R is the external radius of the discharge chamber, I=I(t) is the total generator current 
through the array (experimental data, see Fig. 4). 

Plasma emission from exploded wires was simulated using the model of prolonged plasma 
creation [21]. The rate of plasma production was calculated by the formula 
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Here m is the ablated mass, M0 is the total mass of the array, tα is defined from the 
condition m(tα)=M0. The coefficient k = 2 was chosen in accordance with the experimental 
data, so that the wire ablation ended approximately 10ns before the current maximum. 

Spatial modulation of the plasma formation rate was introduced in accordance with the 
experimental data [25] by the formula 

 = 0,9(1 – 0,45[1 + sin(2πz/λ)]), max0 z z  , 
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which corresponds to the experimentally observed electrical explosion inhomogeneities with a 
characteristic wavelength λ ~ 100μm. 

The data tables of opacities and matter properties (equation of state) for the aluminum 
plasma were previously calculated using the TERMOS code developed in KIAM RAS [32]. 

A volumetric artificial (mathematical) viscosity was introduced into the difference scheme 
to ensure calculation of flows with strong radiative shocks. The viscosity value was regulated 
according the recommendations [15]. 

The calculations were performed on the supercomputers MVS-100K (JSCC RAS) and K-
100 (KIAM RAS). A typical run using 240 computing cores required up to 70 hours. 

  

Figure 2. Left: The computational domain (sketch) with the initial positions of the wires. Right: 
Plasma density distribution in two sections (R-Z and R-φ planes in cylindrical coordinates, gcm3) 

The results of a plasma implosion simulation are summarized below. 
At the beginning of ablation the main processes are Joule heating and radiation losses. At 

the temperature Te~10-20eV, the plasma conductivity increases due to ionization 
approximately linearly with the temperature, while the emissivity increases faster, 
approximately by the factor ~2 [23]. Thus, the condition for the existence of thermal 
(overheating) instability [17, 24] cannot be satisfied. Therefore, at the early stage the 
temperature perturbations correspond to an initial density perturbation level of ~10%. 

By the time t5 ~ 70 ns, the current increases up to 1.5MA, and correspondingly the 
magnetic pressure increases enough to force the plasma implosion (i.e. active acceleration 
toward the axis). A shock wave appears at the first phase of acceleration. As some part of 
energy is spent to ionization and radiation (“ionization-radiation barrier” [17]), the matter 

compression behind the shock wave front is rather high ( 0 10p p 
 ). 

Ablation of wires creates inhomogeneous plasma distribution (see Fig. 2, right). The 
plasma density and magnetic field are modulated in the azimuthal direction. The magnetic 
force lines bend around the denser areas where the current density increases. The elasticity of 
the magnetic field lines leads to additional acceleration of plasma. 

Noticeable perturbations of density at the outer plasma boundary (Fig. 2, right) produce 
Rayleigh-Taylor hydromagnetic instability. However, this instability is damped due to 
sufficiently large aspect ratio of the formed plasma shell, the compressibility of the substance, 
and smoothing of the energy density gradient of the magnetic field, which is partially 
transferred together with the plasma to the axis,. The instability of the inner plasma boundary 
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is not expressed too.  
The inhomogeneity of current density and plasma creates the conditions for the 

development of overheating (thermal) instability in the regions where the Joule heating 
surpasses the radiation losses. Estimation of the instability increment according to [17] gives a 
characteristic overheating time  ~ 10-20ns. As a result of the instability, at t ~ 30ns the 
electron temperature in the spots near the plasma boundary is significantly higher than that in 
the surrounding matter. The computed values are: Te = 45eV in the spots, and Te = 20eV in 
the surrounding plasma.  

The thermal instability causes a change in the plasma dynamics. The magnetic field 
penetrates through the plasma to the skin depth. Due to plasma overheating, the skin layer in 
the hot spots is much thinner than in the surrounding plasma. 
Magnetic force lines take the appearance of “arches” which bend around hot spots. The initial 
inhomogeneity increases, while the thermal pressure is less than the magnetic one 
(= B2/8P ~ 0.1) due to radiation cooling. Thus the thermal pressure cannot prevent the 
development of azimuthal perturbations. The distorted shock wave triggers the instability of a 
strongly radiative thermally inhomodeneous plasma. 

By the time t7~80-90ns, the plasma velocity in the shock wave reaches 2.2107cm/s. Ions 
are heated up to Ti~1keV, and electron temperature is Te~200eV. The density/temperature 
perturbations lead to the magnetic field breakthrough, thus violating the uniformity of a 
plasma shell compression (Fig. 3). This also causes the development of instability in a 
“thermally inhomogeneous plasma” [19, 20] and the pressure difference reaches pmax/pmin~2. 
The development of non-isothermic instability lasts approximately 20-30ns. The intensive 
motion leads to equalizing the pressure in the central core and smoothing the other 
perturbations. 

At t7~90 ns the first plasma portions reach the axis and the process of stagnation begins. 
The average parameters of the “near-axis” plasma are the following: velocity ~5107cms, 
electron temperature Te~100eV, ion temperature Ti~300eV, density varies between 
~5102101gcm3, which is in good agreement with the experimental data [25]. Thus, it is 
shown that the model of prolonged plasma creation [21] correctly describes the rate of plasma 
input into the region of the forming pinch. 

Due to the fast implosion of the evaporated material of the wires and the intense process of 
radiation cooling of the stagnated plasma, its density in the axial zone significantly exceeds 
the density in the peripheral zone. The formation of the central pinch replaces the shell 
structure of the plasma. This process is activated at the time t8 ~ 110ns, when the current pulse 
reaches its maximum, and the entire plasma mass moves to the axis. At this point, the 
stagnation of the plasma bulk is observed, its warming up, and a sharp increase in the soft X-
ray radiation yield, which is shown in Fig. 4. 
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t7=90ns t8=110ns

Figure 3. Numerical results: Axial distributions of the azimuthal magnetic field and plasma density 
inside the wire array at rp = 0.89cm. 

 
 

Figure 4. SXR pulse: experiment No 5265 TRINITY [25] (left) and the simulation result (right). t0 is 
the moment of completion of plasma ablation. 

6 CONCLUSIONS 

The methods presented here for solving the equations of the Lagrangian-Eulerian RMHD 
model were tested by various computational experiments reproducing wave processes in a 
magnetized medium, e.g. Alfvén waves, magnetosonic waves, decays of MHD discontinuities 
[14, 27], flows with uniform deformation occurring in the vicinity of the zero line of the 
magnetic field [28], etc. It was shown by computational experiments and application 
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simulations, that it is advisable to use the method of physical processes splitting, if the 
thermal pressure is greater than the magnetic one p  B2/8 during the entire simulated 
process. In the opposite situation, the method of combined iterations is more resource saving. 

The splitting method is easier to implement and allows saving about 40-50% of arithmetic 
operations as compared to the combined iterations method. However, when magnetic pressure 
prevails the thermal one (B2/8> p, the separate accounting of physical processes demands 
the restriction on the integration time step, similar to that obtained in [14] for the 2D case: 

 
max2

, / , ~ 1.

2
8

Ah
t h V S A const

pB 
 

   

 
 

(30)

Here V is the mesh cell volume, Smax is the maximum value of the side face area. 
In simulations of imploding current-carrying plasma accompanied by strongly radiating 

shock waves, the method of adaptable artificial viscosity [15] appeared to be a resource 
saving and robust numerical tool. It was indicated, that this method makes possible simulation 
of transient plasma flows with a significant ion-electron temperature difference. It provides 
good practical accuracy, which allows comparison with experimental results. Note also that 
the method is well suitable for the use of real life wide-range EOS. 

The developed numerical technique was applied to simulations of Z-pinch implosion at 
Angara-5-1 facility. The magnetic flux breakthrough into an array made of thin aluminum 
wires was studied. The numerical results are in good agreement with the experimental data on 
the basic parameters such as the time when the pinch reached its final state (plasma 
cumulation near the axis of the system) and the soft x-ray radiation power. Thus we can 
conclude that it is possible to use the proposed method based on the completely conservative 
difference scheme for solving plasma dynamics problems, and carry out predictive simulation 
of experiments with plasma accelerated by electromagnetic force produced by a powerful 
current pulses. At the same time, the numerical simulation substantially supplements the 
experimental data, since it provides information on the dynamics of magnetic implosion, 
which cannot be obtained in the experiment due to the limited capabilities of diagnostics. 

Let us take up the liner implosion in cylindrical coordinates. Then, in the (R-z) plane 
perpendicular to the azimuthal magnetic field force lines, the Rayleigh-Taylor instability 
causes the most serious perturbations. In the (R-φ) plane, the instabilities of thermally 
inhomogeneous plasma are of importance due to disbalances of Joule heating and radiation 
losses. For further clarification of the instability effect, we need a detailed examination of the 
initial perturbations evolution by individual harmonics in a certain spectral range, including 
perturbations of an arbitrary form (superposition of harmonics), various initial amplitudes, 
transition to a nonlinear stage, etc. Here we concentrate on the fact that although the problem 
of instability in many cases is considered as “purely mechanical”, the energy aspect is very 
important concerning the dynamics of Z-pinch plasmas. The rate of instability depends on the 
rate of plasma acceleration as well as on the aspect ratio of a plasma shell formed due to wire 
ablation. The process in whole is determined by the energy exchange between the 
electromagnetic field and the plasma, as well as the energy balance in the plasma, where the 
radiation transfer is the largest contributor. The performed simulation, even with a mild 
Rayleigh-Taylor instability, shows that at the final stage of compression, the distribution of 
density and temperature is substantially homogeneous in space. The radiation absorption 
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coefficient, which is inversely proportional to the mean free path, varies by several orders of 
magnitude in the computational domain. The radiation is locked in the central region of the 
pinch, as a result it radiates like a surface source. 

The computations were carried out on the supercomputers MVS-100K (JSCC RAS) and K-
100 (KIAM RAS). 

APPENDIX 

The equation of total energy balance for the coupled plasma – electromagnetic field 
system: 
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