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Summary. A hydrodynamic model of shock-wave processes in a material under the action

of a short high-intensity laser pulse is considered. The simulation is carried out for the case

of an aluminum target 90 µm thick, irradiated by a laser pulse with a duration of 70 ps and a

maximum intensity of 14.7 TW/cm2. In the corresponding laboratory experiment, on the rear

side of the target after irradiation, a spall of a part of the material is recorded at a depth of

10±1 µm. Calculation of the time dependence of the pressure and density of aluminum in the

spall plane makes it possible to determine the tensile strength of aluminum at a high strain rate.

1 INTRODUCTION

The action of a short high-intensity laser pulse upon a target makes it possible to study the

properties of the target material under shock-wave loading at a high strain rate [1–9]. Numerical

modeling of such a process [2,3,6,10–16] provides additional possibilities for the interpretation

of the obtained measurement results.

In this work, an example of a laboratory experiment on the action of a 70 ps laser pulse on

an aluminum target is given. A description of the hydrodynamic model for the propagation of

shock compression waves and adiabatic unloading along the target is presented. The results of

modeling are presented and a conclusion is made about the magnitude of the spall strength of

aluminum at the considered strain rate.
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2 EXPERIMENT

The experiment was carried out on a Kamerton-T facility based on a neodymium glass laser

(wavelength λ = 0.527 µm) [8, 10, 11]. A pulse with duration τ = 70 ps and energy El =

3.57 J was focused into a spot 0.63 mm in diameter on the surface of a 90-µm-thick aluminum

target. Taking into account the measured dependence of the laser radiation intensity on time,

the maximum intensity of this pulse is estimated to be I0 = 14.7 TW/cm2.

The result of the action of such a pulse is the formation of a spall of a part of the material on

the rear side of the target. The spall occurred at a distance of 10±1 µm from the rear surface;

the diameter of the spalled plate is 0.66 mm.

3 HYDRODYNAMIC MODEL

The system of hydrodynamic equations for the one-dimensional case under consideration

has the following form [17]:

∂

∂ t
U+

∂

∂x
F = 0, (1)

U =
















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ρu
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e

















, F =

















ρu

ρu2 +P

ρuv

ρuw

(e+P)u

















, (2)

where t is the time coordinate; x is the spatial coordinate; ρ is the density of the material under

consideration; P is the pressure; e is the full energy density,

e = ρE +
1

2
ρ(u2+ v2 +w2), (3)

E is the specific internal energy; u is the particle velocity along the x-axis; v = 0 and w = 0 for

the case.

In quasilinear non-conservative form, the system of equations (1) can be written as follows:

∂

∂ t
U+A

∂

∂x
U = 0, (4)
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where

A =

















0 1 0 0 0

−u2 +θb 2u−ub −vb −wb b

−uv v u 0 0
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













, (5)

h =
e+P

ρ
, θ = q2 −

e

ρ
+

(∂P/∂ρ)E

b
, q2 = u2 + v2 +w2, b =

(∂P/∂E)ρ

ρ
. (6)

One can write matrix A in the form A = ΩΛΩ−1, where

Ω =


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
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
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





, Λ =
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
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
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

, (7)

Ω−1 =
b

2c2


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








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2h−2q2 2u 2v 2w −2
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






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





, (8)

detΩ =
2c3

b
, c =

√

(∂P/∂ρ)E +
P

ρ2
(∂P/∂E)ρ . (9)

Here, c is the adiabatic sound velocity. Using values c and h, one can obtain

θ = q2 −h+ c2b−1. (10)

The system of equations of motion (1) is closed by the equation of state of the target material

in the form of a function

P = P(ρ ,E), (11)

which is taken according to the model [18–20].
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4 SOLUTION METHOD

With the use of the formulas for matrices from the previous section, the system of equa-

tions (1) and (11) can be solved by the Courant–Isaacson–Rees method [21]. The difference

scheme of the method is as follows [17]:

Uk+1
j −Uk

j

∆t
+

F
j+1/2

−F
j−1/2

∆x
= 0, (12)

Fm+1/2 =
1

2

(

Fk
m +Fk

m+1

)

+
1

2
|A|km+1/2

(

Uk
m −Uk

m+1

)

(13)

for m = j−1 and j. Here, integer subscripts denote the values of the function at the centers of

discrete grid cells in space, and half-integer ones—at the boundaries of the cells; ∆x is the step

of a uniform grid in space; ∆t is the time step;

|A|= Ω|Λ|Ω−1, (14)

|Λ|=




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


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
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











. (15)

Matrix (15) can be represented as a sum of three matrices with multipliers:

|Λ|= |u|


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


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, (16)

where α = |u− c|− |u|; γ = |u+ c|− |u|.

Denoting ∆U = Um −Um+1 (with elements ∆U =Um −Um+1) and using (14) and (16), one

can obtain

|A|∆U = |u|

















∆ρ

∆(ρu)

∆(ρv)

∆(ρw)
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
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
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






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
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


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
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
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
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
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
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where

f =
b

2c2
[θ∆ρ −u∆(ρu)− v∆(ρv)−w∆(ρw)+∆e], g =

1

2c
[u∆ρ −∆(ρu)]. (18)

Taking into account relations (6) as well as ∆P≈ (∂P/∂ρ)E∆ρ+(∂P/∂E)ρ ∆E and ∆(ρu)≈

ρ∆u+u∆ρ , it is possible to obtain approximate expressions for the factors f and g:

f ≈
1

2c2
∆P, g ≈−

ρ

2c
∆u. (19)

So, in (13), one can use

|A|km+1/2

(
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m −Uk

m+1

)

=


















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m+1/2

([ρw]km − [ρw]km+1)+ [βw]k
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

















, (20)

β k
m+1/2 = [α

(

f +g)+ γ( f −g)]km+1/2, δ k
m+1/2 = [α( f +g)− γ( f −g)]km+1/2, (21)

f k
m+1/2 =

[

1

2c2

]k

m+1/2

(

Pk
m−Pk

m+1

)

, gk
m+1/2 =−

[

ρ

2c

]k

m+1/2

(

uk
m −uk

m+1

)

. (22)

At the initial moment of time, the entire target was divided in thickness into cells of the same

size, which were numbered from j = 1 to N j = 1000. This gives the step of the grid in space

∆x = 0.09 µm. The step in time was chosen from the condition ∆t 6 ξ ∆x/max(|u|+ c), where

ξ = 0.1.

At each time step, the boundaries of the cells shifted with a certain velocity D, which is the

particle velocity u for the case under consideration:

xk+1
m+1/2

= xk
m+1/2 +Dk

m+1/2∆t. (23)

The construction of a difference scheme for such a moving grid is based upon the system of

hydrodynamic equations in integral form:

∮

L
(Udx−Fdt) = 0, (24)

where L is the contour that bounds the region of integration on the coordinate plane (x, t). As

this contour L, it is suitable to take a difference cell with number j with height ∆t and bases

∆xk+1
j and ∆xk

j, where ∆xm = xm+1/2 − xm−1/2. Approximating integral equation (24), one can
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obtain

(U∆x)k+1
j − (U∆x)k

j +F j+1∆t −F j−1∆t = 0, (25)

or, instead of (12),

(U∆x)k+1
j − (U∆x)k

j

∆t
+F j+1 −F j−1 = 0. (26)

A local transition to a coordinate system that moves with constant velocity D relative to

the original system (Galilean transformation) changes the original form of the system of equa-

tions (1):

∂

∂ t
U+

∂

∂x
(F−DU) = 0. (27)

In this regard, the flows (13) at the boundaries of the cells change:

Fm+1/2 = (F−DU)m+1/2

=
1

2

(

Fk
m +Fk

m+1

)

−
1

2

(

Uk
m +Uk

m+1

)

Dk
m+1/2 +

1

2
|AD|

k
m+1/2

(

Uk
m −Uk

m+1

)

, (28)

|AD|= Ω|ΛD|Ω
−1, (29)

|ΛD|=

















|u−D− c| 0 0 0 0

0 |u−D| 0 0 0

0 0 |u−D| 0 0

0 0 0 |u−D| 0

0 0 0 0 |u−D+ c|

















. (30)

5 INITIAL CONDITIONS

The initial values of pressure, density and particle velocity were set constant over the target:

P = 0.1 MPa, ρ = ρ0 = 2.712 g/cm3 and u = v = w = 0. The initial value of specific internal

energy was taken according to the used equation of state for aluminum.

6 BOUNDARY CONDITIONS

On the irradiated surface of the target, a pressure profile

P(t) = Pa16−(t−t0)
2τ−2

(for 0 < t < tl), P(t) = 0 (for t 6 0 or tl 6 t) (31)
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was set, calculated using approximated dependence of the laser radiation intensity

Il(t) = I016−(t−t0)
2τ−2

(32)

and the scaling relation, which is formulated for the range 4.3 < I0 6 1000 TW/cm2 [22, 23]:

Pa = Pa0(λI0I0/λ )2/3[Au/(2Z)]3/16, (33)

where Pa0 = 1.2 TPa; λI0 = 10−2 µm cm2/TW; Au and Z are the atomic mass (u) and the atomic

number of the target material respectively, Au = 26.98154 and Z = 13 for aluminum. On the

rear side of the target, pressure was set equal to zero.

7 SIMULATION RESULTS

The simulation was performed for the case of loading pressure pulse (31) with the magnitude

Pa = 516 GPa according to equation (33); t0 = 123 ps, tl = 246 ps.

Figure 1 illustrates the change in pressure during the propagation of compression and rar-

efaction waves through the aluminum target. In figure 1(a), one can see that the rarefaction

wave follows the shock wave while both move towards the rear side of the target. After the

shock wave has reached the rear side, one more rarefaction wave begins to move backward [see

figure 1(b)]. When these two rarefaction waves meet, a spalling phenomenon occurs.

Figure 2 shows the calculated pressure and density histories in three planes, which corre-

spond to the initial distances from the rear side of the target 9, 10 and 11 µm.

The curves shown in figure 2(a) allow one to estimate the maximum possible tensile stress

σmax in the sample in the spall plane. The absolute value of the pressure at the minimum on the

curve for the plane where the spallation occurred in the experiment is this maximum possible

tensile stress. The difference in values in two adjacent planes (for which the initial position

differs from the initial position of the spall plane by the value of the error in determining the spall

depth), divided in half, gives the average error in determining the maximum possible tensile

stress in the sample.

The calculated curves shown in figure 2(b) allow one to estimate the maximum strain rate

ρ0dV/dt =−ρ0ρ−2dρ/dt in the spall plane at the stage of tension at negative pressures. Here,

V = ρ−1 is the specific volume. Starting from the point of zero pressure, when the sample is

stretched, the strain rate decreases monotonically to zero at the point of minimum pressure.

Then, with time, the tensile stress decreases, and the strain rate becomes negative (i.e., the

density increases with pressure).

In the case under consideration, σmax ±∆σmax ≈ 7.2± 0.5 GPa, ρ0dV/dt ±∆(ρ0dV/dt) ≈

0.22±0.01 ns−1 for aluminum.
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Figure 1: Pressure in the target at t = 3.6, 7.4, 11 (a), 12.7, 15.2 and 18 ns (b) along the coordinate axis x, which is

perpendicular to the irradiated surface, with the origin at the point of the initial position of this surface before the

experiment.
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Figure 2: Pressure (a) and density (b) histories in three planes that correspond to the initial distances from the back

of the target 9, 10 and 11 µm. The thin vertical lines correspond to the moments of reaching the maximum tensile

stress (negative pressure).
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8 CONCLUSIONS

Thus, in a laboratory experiment on irradiating a 90-µm-thick aluminum plate with a 70 ps

laser pulse with a maximum intensity of 14.7 TW/cm2, a spall was obtained at a distance of

10±1 µm from the rear surface of the target. A hydrodynamic model has been developed for

the propagation and interaction of shock and release waves in a target under such a pulsed

action. As a result of the calculation using the developed model, the maximum possible tensile

stress in the sample in the spall plane is determined as 7.2±0.5 GPa and the maximum strain

rate at the stage of tension at negative pressures is determined as 0.22±0.01 ns−1.
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