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Summary. We give sharp bounds on the Sombor index of chemical trees and characterize the
cases of the equalities. We stated conjectures regarding second maximal chemical trees of order
n with respect to Sombor index, when n≡ 0(mod3) and n≡ 1(mod3).

1 INTRODUCTION

Molecular descriptors are mathematical values used in evaluation and prediction of properties
of chemical compounds. They are used to describe the structure and shape of molecules of even
more not yet synthesized compounds and so play significant role in mathematical chemistry
and pharmacology [11, 13]. Topological indices are type of molecular descriptors calculated on
the graphs associated to molecules of chemical compounds. In the literature of mathematical
chemistry several dozens of topological indices have been introduced and studied [4-8,12].

Let G be a graph with the vertex set V (G) and the edge set E(G). For a vertex v ∈V (G), the
degree of v is denoted by dG(v), or simply d(v) whenever the graph is clear from the context.
The Sombor index is defined as

SO(G) = ∑
uv∈E(G)

√
d2(u)+d2(v). (1)

This index, abbreviated as SO index, has been proposed recently by Gutman in [8]. The contri-
bution of the edge uv ∈ E(G) to SO(G) is

sG(uv) =
√

d2(u)+d2(v) (2)

and we will use the next form of equation (1)

SO(G) = ∑
e∈E(G)

sG(e). (3)

A tree is connected graph with no cycles. The problem of finding extreme values of topolog-
ical indices over chemical trees, that is trees with vertex degrees less or equal 4, has attracted
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considerable attention in the mathematical-chemistry literature [1-3,9,12-14]. In this paper we
consider the problem of extreme values of SO index among chemical trees with n-vertices.
We stated conjectures regarding second maximal chemical trees with respect to Sombor index,
when n≡ 0(mod3) and n≡ 1(mod3).

2 DEFINITIONS AND PRELIMINARIES

Let T be a chemical tree of order n. Throughout the paper, the number of vertices with degree
i is denoted by ni, for every i = 1,4, and for every 1 ≤ i ≤ j ≤ n− 1, mi j denotes the number
of edges of T between a vertex with degree i and a vertex with degree j. Now, in this notation,
formula (1) takes the form

SO(T ) = ∑
1≤i≤ j≤n−1

mi j
√

i2 + j2. (4)

which will be used, for the most part.
It has be shown by Gutman [8] that the path graph and the star graph are the graphs with

extremal values of SO index among all n-vertex trees. Since the path is chemical tree, the
minimum of the SO index in the set of chemical trees with a constant number of vertices is
achieved for path graphs, while the maximum is achieved for star graphs only for n ≤ 5. Our
goal here is to characterize the chemical trees of order n≥ 6 that maximize SO index.

3 ON THE BOUNDS OF TNE NUMBERS ni AND mi j

In this section we are going to present and prove two statements that will be crucial in proving
the final theorem that gives the upper bound of SO index and complete characterization of the
chemical trees on which SO index attains the maximum value.

Lemma 1. Let T be a n-vertex, n ≥ 6, chemical tree with maximum value of SO-index. Then,
in T holds the following:

m22 = 0, m23 = 0, m33 = 0, m12 ≤ 1.

Proof. Let us prove the first claim m22 = 0. In the contrary, suppose that there is an edge
e = uv ∈ E(T ) whose endpoints u and v have degrees 2. Let uu1 and vv1 be the remaining edges
incident with vertices u and v, respectively, and let T ′ = T − vv1 + uv1. Note that, since T is
acyclic, u1 and v1 are distinct vertices. Therefore, due to (3),

SO(T ′)−SO(T ) =(sT ′(uu1)+ sT ′(uv)+ sT ′(uv1))−
− (sT (uu1)+ sT (uv)+ sT (vv1))

To obtain the contradiction with the assumption that T is maximal, we need to prove that this
difference is positive. Since dT (u) = dT (v) = 2, dT ′(u) = 3 and dT ′(v) = 1, it holds: sT (uu1)<
sT ′(uu1), sT (uv) =

√
8 <
√

10 = sT ′(uv) and sT (vv1)< sT ′(vv1), that is SO(T ′)> SO(T ).
The next claim, m23 = 0, will be proved in the same manner, by the similar graph transfor-

mation. Suppose to the contrary that in T there is an edge e0 = uv ∈ E(T ) such that d(u) = 3
and d(v) = 2. Let e1 = vw be the remaining edge incident with vertex v and let e2,e3 be the
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remaining edges incident with vertex u. Now, for the graph T ′ = T − vw+uw holds

SO(T ′)−SO(T ) =
3

∑
i=0

sT ′(ei)−
3

∑
i=0

sT (ei),

and sT ′(e0) =
√

17 <
√

13 = sT (e0). Since, vertex degree of the only one of two endpoints of
edge ei is increased and the other one is unchanged, we obtain that sT ′(ei) > sT (ei), for each
i = 1,3. Hence, SO(T ′)> SO(T ).

The claim, m33 = 0, is going to be proved similarly. Let us suppose that e0 = uv ∈ E(T )
is an edge whose the both endpoints have degrees 3. Further, let e1 = vw1 and e2 = vw2 be
the remaining edges incident with vertex v and e3 and e4 be the remaining edges incident with
vertex u. Without losing the generality, suppose that d(w1)≤ d(w2) and let us construct a new
chemical tree T ′ from T , by relocating its edge e1 as follows: T ′ = T − vw1 +uw1. Then,

SO(T ′)−SO(T ) =
4

∑
i=0

sT ′(ei)−
4

∑
i=0

sT (ei)

In view of the definition of graph T ′, dT (u) = dT (v) = 3, dT ′(u) = 4 and dT ′(v) = 2, so sT ′(ei)>
sT (ei) for i ∈ {0,3,4}. It remains to be seen how the sum of contributions of the edges e1 and
e2 has been changed.

sT (e1)+ sT (e2) =
√

9+d2
w1

+
√

9+d2
w2

sT ′(e1)+ sT ′(e2) =
√

16+d2
w1

+
√

4+d2
w2

Using the assumption that d(w1) ≤ d(w2) and d(w1),d(w2) ∈ {1, . . . ,4}, by checking of ten
cases, we obtain that sT (e1)+ sT (e2)< sT ′(e1)+ sT ′(e2). It follows that SO(T ′)> SO(T ).

At the end, we want to argue that m12 ≤ 1. Assume for contradiction that, in some maximal
tree T of order n ≥ 6, there are two edges e = uv and g = ab whose endpoints have vertex
degrees 2 and 1, that is d(u) = d(a) = 2 and d(v) = d(b) = 1. Because of assumption n≥ 6, u
and a are distinct vertices. Let us denote by w and c the remaining vertices adjacent with the
vertices u and a, respectively, and let T ′ = T −uv+av. Due to previously proved claims, w and
c are vertices, not necessarily distinct, with degree 4 and so

sT (uw) = sT (ac) =
√

20,sT (uv) = sT (ab) =
√

5,

sT ′(uw) =
√

17,sT ′(ac) = 5,sT ′(ab) =
√

10,sT ′(av) =
√

10
Hence, graph T ′ is a new chemical tree whose SO-index is greater than SO(T ), because of

SO(T ′)−SO(T ) = (
√

17+5+2
√

10)−2(
√

20+
√

5)≈ 2.031 > 0

�

Lemma 2. Let T be a chemical tree with maximum value of SO-index. Then, in T holds the
following: n2 ≤ 1, n3 ≤ 1, n2 = 1⇒ n3 = 0 and n3 = 1⇒ n2 = 0.

Proof.
Proof of the claim n2 ≤ 1: Assume that u and a are two vertices of chemical tree T with degree
2, a let us denote by v1, v2 and b1, b2 their first neighbors, respectively. Due to Lemma 1,
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degrees of the each of the four vertices vi, bi, i = 1,2 belongs to {1,4}. Since T is connected
graph, the both first neighbors of u can not be pendant vertices, that is at least on of its first
neighors has degree 4. The same holds for the vertex a. Without losing the generality suppose
that d(v1) = d(b1) = 4. Vertices v1 and b1 are not necessarily distinct. Now we construct a
graph T ′ by removing edge uv2 from graph T and inserting a new edge among a and v2, that is
T ′ = T −uv2 +av2. The following holds

sT (uv1) = sT (ab1) =
√

20,
sT (uv2) =

√
4+d(v2)2, sT (ab2) =

√
4+d(b2)2

sT ′(uv1) =
√

17, sT ′(ab1) = 5,
sT ′(ab2) =

√
9+d(b2)2, sT ′(av2) =

√
9+d(v2)2.

Hence,
SO(T ′)−SO(T ) = (5+

√
17+

√
9+d(b2)2 +

√
9+d(v2)2

−(2
√

20+
√

4+d(v2)2 +
√

4+d(b2)2

> 5+
√

17−2
√

20
≈ 0.1788337156 > 0

This is opposite with the assumption that T is a chemical tree with maximum value of Sombor
index.

Proof of the claim n3 ≤ 1: Assume for contradiction that there are two vertices u,a ∈V (T )
with degree 3, and let vi and bi, i = 1,3 be their first neighbors, respectively. Due to Lemma 1,
u and a are not adjacent vertices and degrees d(vi), d(bi), for each i = 1,3, belongs to {1,4}.
As in the proof of the previous claim, assume that d(v1) = d(b1) = 4 Now, we distinguished the
next three cases:
Case 1: d(v2) = d(v3) = d(b2) = d(b3) = 4.

In this case, we transform graph T to a new on T ′ as follows: T ′ = T −uv2 +av2. The next
is worth

sT (uvi) = sT (abi) = 5, i = 1,3
sT ′(uv1) = sT ′(uv3) = 2

√
5,

sT ′(av2) = sT ′(abi) = 4
√

2, i = 1,3.
that is

SO(T ′)−SO(T ) = (4
√

5+16
√

2)−30≈ 1.571688908 > 0.
So, T is not a chemical tree with maximum value of Sombor index. Case 2: The both of vertices
v2, v3 have degrees 1, or the both of vertices b2, b3 have degrees 1. Without losing generality,
let us assume that d(v2) = d(v3) = 1. Let T ′ = T −uv2 +av2. Then,

sT (uv1) = sT (ab1) = 5,
sT (uv2) = sT (uv3) =

√
10,

sT (abi)< sT ′(abi), i = 1,2,
sT ′(uv1) = 2

√
5, sT ′(uv3) =

√
5,

sT ′(ab1) = 4
√

2, sT ′(av2) =
√

17.

It follows that

SO(T ′)−SO(T )> (3
√

5+4
√

2+
√

17)− (10+2
√

10)≈ 0.1636 > 0,

and again T is not maximal.
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Case 3: Previous two cases have not been satisfied. In this case, without losing generality, we
may assume that d(v2) = 4 and d(v3) = 1. Since in this, third case, the both of vertices b2, b3
are not pendant, let as suppose that d(b2) = 4. Denote by T ′ chemical tree obtained from T on
the same way as in the previous, that is T ′ = T −uv2 +av2. We obtain

sT (uv1) = sT (uv2) = 5, sT (uv3) =
√

10
sT (ab1) = sT (ab2) = 5, sT (ab3) =

√
9+d(b3)2

sT ′(uv1) = 2
√

5, sT ′(uv3) =
√

5,
sT ′(av2) = sT ′(abi) = 4

√
2, i = 1,2.

sT ′(ab3) =
√

16+d(b3)2

and conclude that

SO(T ′)−SO(T )> (12
√

2+3
√

5)− (20+
√

10)≈ 0.51649 > 0,

that is T is not maximal.
Proof of the claim n2 = 1⇒ n3 = 0: Assume for the contradiction that u and a are the

vertices of T such that d(u) = 2 and d(a) = 3. In the same manner as in the previous, u and
a are not the first neighbors and there are vertices u1 and b1 with degrees 4, adjecent with the
verticees u and b, respectively. Since d(u) = 2, denote by v2 remaining vertex adjacent with
u and by by b2, b3 remaining vertices adjacent with a. We do the same graph transformation
T ′ = T −uv2 +av2 as in the previous two cases, and obtain the following values

sT (uv1) = 2
√

5, sT (uv2) =
√

4+ v2
2

sT (ab1) = 5, sT (abi) =
√

9+d(bi)2, i = 2,3
sT ′(uv1) =

√
17, sT ′(ab1) = 4

√
2,

sT ′(av2) =
√

16+ v2
2 sT ′(abi) =

√
16+d(bi)2, i = 2,3

Hence,
SO(T ′)−SO(T )> (

√
17+4

√
2)− (5+2

√
5)≈ 0.3078239 > 0,

and the claim is proven.
Proof of the claim n3 = 1⇒ n2 = 0: This claim is direct consequence of the first and the

previous one. �

4 CHEMICAL TREES WITH EXTREME VALUES OF SOMBOR INDEX

For n = 3k, k ≥ 2, let Tn be the family of chemical trees with n vertices such that: k− 1
vertices have degree 4, one vertex has degree 2, remaining vertices are pendant and its single
vertex with degree 2 is adjacent to the vertices of degree 4, in the case k ≥ 3. In the case k = 2,
that is n = 6, there is only one graph in T6 and its single vertex with degree 2 is adjacent with
one pendant vertex and one vertex with degree 4.

For n = 3k+ 1, k ≥ 2, denote by Tn the family of chemical trees with n vertices such that:
k−1 vertices have degree 4, one vertex has degree 3, all other vertices are pendant and, in the
case k ≥ 4, its single vertex with degree 3 is adjacent with vertices of degree 4. In the case
k = 2, that is n = 7, there is only one graph in T7 and its single vertex with degree 3 is adjacent
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with two pendant vertices and one vertex with degree 4. In the case k = 3, that is n = 10, there
is only one graph in T10 and its single vertex with degree 3 is adjacent with one pendant vertex
and two vertices with degree 4.

For n = 3k+ 2 ≥ 5, Tn is the family of chemical trees with n vertices such that: k vertices
have degree 4 and remaining are pendant.

Our the main result is presented through the next three theorems, in which the following easy
observation will be important:

Let T be a chemical tree with n. Then,

n1 +n2 +n3 +n4 = n (5)

and from handshaking lemma

n1 +2n2 +3n3 +4n4 = 2(n−1). (6)

From (5) and (6) we conclude that

n2 +2n3 +3n4 = n−2. (7)

Theorem 1. Let T be chemical tree of order n≥ 6, such that n≡ 0(mod3). Then

SO(T ) ≤ 2
n
3
(
√

17+2
√

2) +

+

{
4
√

5−12
√

2, n≥ 9
3
√

5−
√

17−8
√

2 n = 6

The equality is attained if and only if T ∈Tn.

Proof. Let us suppose that n = 3k, for some k ≥ 2. In this case, equality (7) implies that n4 ≤
k−1.

First, let’s see what’s going on when n4 takes values less then k−1. Substituting n4 ≤ k−2
into (7) gives n2 +2n3 ≥ 4. This is impossible because of first two claims from Lemma 2.

Otherwise, when n4 = k−1, (7) gives n2 +2n3 = 1, that is n2 = 1 and n3 = 0. This implies
that, for k ≥ 3, there are two possibilities, that is two potential types of maximal graphs:

Type 1: Chemical tree in which k− 1 vertices have degree 4, one vertex has degree 2, re-
maining vertices are pendant and the both first neighbors of its single vertex with degree 2 have
degree 4

Type 2: Chemical tree in which k− 1 vertices have degree 4, one vertex has degree 2, re-
maining vertices are pendant and only one of the first neighbors of its single vertex with degree
2 has degree 4 but the other one is pendant.

Denote by G1 graph of the first type and by G2 the graph of the second type. We will prove
that SO(G1)> SO(G2).

In the both of G1 anf G2 holds n1 = n−n4−1 = 2k. Further, in G1 holds:

SO(G1) = m24
√

20+m14
√

17+m44
√

32

= 2k(
√

17+2
√

2)+4
√

5−12
√

2 (8)

≈ 2k(
√

17+2
√

2)−8.0262908, (9)

since in this type of graphs m24 = 2, m14 = n1 = 2k, m44 = k−3 and mi j = 0 for all other values
of i and j.
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On the other side, in G2 holds:

SO(G2) = m12
√

5+m24
√

20+m14
√

17+m14
√

32

= 2k(
√

17+2
√

2)+3
√

5−
√

17−8
√

2 (10)

≈ 2k(
√

17+2
√

2)−8.728610192, (11)

since in this type of graphs m12 = 1, m24 = 1, m14 = n1−1 = 2k−1, m44 = k−2. From (9) and
(11) follows that SO(G1)> SO(G2).

In the case when k = 2, that is n = 6, there is no graph type 1. Moreover there is only one
graph G2 type 2 and from (10) we obtain that its SO index is equal 4(

√
17+ 2

√
2)+ 3

√
5−√

17−8
√

2. �

Theorem 2. Let T be chemical tree of order n≥ 7, such that n≡ 1(mod3). Then

SO(T ) ≤ 2bn
3
c(
√

17+2
√

2) +

+


15+

√
17−16

√
2, n≥ 13

10+
√

10−12
√

2, n = 10
5+2

√
10−

√
17−8

√
2, n = 7

The equality is attained if and only if T ∈Tn.

Proof. Let n = 3k+1, for some k ≥ 2. As in the previous, equality (7) implies that n4 ≤ k−1.
If n4 takes values less then k−1, substituting into (7) gives n2 +2n3 ≥ 5, which is impossible
by Lemma 2.

Let n4 = k−1. From (7) follows that n2+2n3 = 2, that is n2 = 0 and n3 = 1. Now, for k≥ 4,
we distinguish three cases, that is tree potential types of maximal trees, regarding the degrees
of the first neighbors of its single vertrex with degree 3:

Type 1: Chemical tree in which k− 1 vertices have degree 4, one vertex has degree 3, re-
maining vertices are pendant and each of the first neighbors of its single vertex with degree 3
have degree 4 .

Type 2: Chemical tree in which k− 1 vertices have degree 4, one vertex has degree 3, re-
maining vertices are pendant and two of the first neighbors of its single vertex with degree 3
have degree 4 and third one is pendant.

Type 3: Chemical tree in which k− 1 vertices have degree 4, one vertex has degree 3, re-
maining vertices are pendant and only one the first neighbors of its single vertex with degree 3
has degree 4 and the two are pendants.

In the case k = 3, that is n = 10, there is no graph type 3 and for k = 2, what is equivalent
with n = 7, there is only graph type 1.

Denote by G1 the graph of the first type, by G2 the graph of the second type and by G3 the
graph of the third type. We are going to prove that

SO(G1)> SO(G2)> SO(G3) (12)
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The number n1 of pendant vertices in each of this graphs is the same n1 = n−n4−1 = 2k+1.
In G1 holds

SO(G1) = m34
√

25+m14
√

17+m44
√

32

= 2k(
√

17+2
√

2)+15+
√

17−16
√

2 (13)

≈ 2k(
√

17+2
√

2)−3.504311372, (14)

since in the graphs of type 1 is valid: m34 = 3, m14 = n1 = 2k+1, m44 = k−4 and mi j = 0 for
all other values of i and j.

In G2 numbers mi j take the values: m13 = 1,m34 = 2,m14 = 2k,m44 = k−3, so it follows

SO(G2) = m13
√

10+m34
√

25+m14
√

17+m44
√

32

= 2k(
√

17+2
√

2)+10+
√

10−12
√

2 (15)

≈ 2k(
√

17+2
√

2)−3.808285088 (16)

Finally, in G3 nonzero numbers mi j take the values: m13 = 2,m34 = 1,m14 = 2k− 1,m44 =
k−2, so

SO(G3) = m13
√

10+m34
√

25+m14
√

17+m44
√

32

= 2k(
√

17+2
√

2)+5+2
√

10−
√

17−8
√

2 (17)

≈ 2k(
√

17+2
√

2)−4.112258804. (18)

Thefore, we get to be valid SO(G1)> SO(G2)> SO(G3).
The assertion of the theorem follows. �

Theorem 3. Let T be chemical tree of order n, such that n≡ 2(mod3). Then

SO(T )≤ 2
n−2

3
(
√

17+2
√

2)+2
√

17−4
√

2.

The equality is attained if and only if T ∈Tn.

Proof. Let n = 3k+ 2, for some k ≥ 1. In this case, equality (7) implies that n4 ≤ k. When
n4 < k, from (7) follows n2 +2n3 ≥ 3. Based on the first two claims of Lemma 2, this is valid
only for n2 = n3 = 1, but this is impossible due to the last claims of the same Lemma.

Let us assume that n4 = k. Equality (7) gives n2+2n3 = 0, that is n2 = n3 = 0. It follows that
is in this graph numbers mi j take the next values: m14 = n1 = 2k+2, m44 = k−1, and mi j = 0
for all other values of i and j. Hence,

SO(G1) = m14
√

17+m44
√

32

= 2k(
√

17+2
√

2)+2
√

17−4
√

2 (19)

= 2n−2
3 (
√

17+2
√

2)+2
√

17−4
√

2. (20)

The proof is completed. �

5 CONCLUDING REMARKS AND FURTHER WORK

Sombor index is a recently introduced vertex-degree-based topological index. This paper
is one of the several studies ([3], [12]) produced immediately after [7] became available. In

12



Žana Kovijanić Vukićević

this paper we consider its bounds of over the chemical trees and characterize the appropriate
extreme cases.

Based on the proofs of Theorem 1 and Theorem 2 we have the following conjectures

Conjecture 1. Let T be a chemical tree of order n≥ 9, such that n≡ 0 (mod 3), with the second
maximum of SO index. Then,

SO(T )≤ 2
n
3

(√
17+2

√
2
)
+3
√

5−
√

17−8
√

2.

The equality is attained if and only if T is chemical tree in which n
3 −1 vertices have degree 4,

one vertex has degree 2, remaining vertices are pendant and only one of the first neighbors of
its single vertex with degree 2 has degree 4 but the other one is pendant.

Conjecture 2. Let T be a chemical tree of order n ≥ 10, such that n ≡ 1 (mod 3), with the
second maximum of SO index. Then,

SO(T )≤ 2
n−1

3

(√
17+2

√
2
)
+10+

√
10−12

√
2.

The equality is attained if and only if T is chemical tree in which n−1
3 −1 vertices have degree

4, one vertex has degree 3, remaining vertices are pendant and two of the first neighbors of its
single vertex with degree 3 has degree 4 but the third one is pendant.
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