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Summary. In the present paper, we propose some properties of the new family 𝑘-generalized 

Fibonacci numbers which related to generalized Fibonacci numbers. Moreover, we give some 

identities involving binomial coefficients for 𝑘-generalized Fibonacci numbers. 

1 INTRODUCTION 

Fibonacci numbers have a great importance in mathematics. It is one of the most popular 

sequences that have a lot of applications in many branch of mathematics as in diverse sciences 

[1, 2, 6, 7, 10-13, 16-20]. The Fibonacci numbers 𝐹𝑛 are given by the recurrence relation

𝐹𝑛+1 = 𝐹𝑛 + 𝐹𝑛−1, 𝑛 ≥ 1 

with the initial conditions 𝐹0 = 0 and 𝐹1 = 1. Koshy [9] written one of the most popular books

of Fibonacci and Lucas numbers, and gave numerous recurrence relations, generalizations and 

applications of Fibonacci and Lucas numbers. For 𝑎, 𝑏 ∈ ℝ and 𝑛 ≥ 1, the well-known 

generalized Fibonacci numbers are defined 

𝐺𝑛+1 = 𝐺𝑛 + 𝐺𝑛−1

where 𝐺0 = 𝑎 and 𝐺1 = 𝑏.

Falcon and Plaza [4] introduced general 𝑘-Fibonacci numbers and gave some properties of 

these numbers. Guleç et al. [5] presented some properties of generalized Fibonacci numbers 

with binomial coefficients. 

El-Mikkawy and Sogabe [3] proposed a new family of 𝑘-Fibonacci numbers and gave the 

relationship between the 𝑘-Fibonacci numbers and Fibonacci numbers as follow: 

𝐹𝑛
(𝑘)

= (𝐹𝑚)𝑘−𝑟(𝐹𝑚+1)𝑟 , 𝑛 = 𝑚𝑘 + 𝑟. 

In [14], Özkan et al. defined a new family of 𝑘-Lucas numbers and gave some identities of 

the new family of 𝑘-Fibonacci and 𝑘-Lucas numbers.  Özkan et al. [15] introduced some 

identities of the new family of 𝑘-Fibonacci numbers. 

In this study, we present some identities of the new family of 𝑘-generalized Fibonacci 

numbers. We give relationships between the new family of 𝑘-Fibonacci numbers and 𝑘-

generalized Fibonacci numbers. Also, we introduce Cassini formulas of 𝑘-generalized 

Fibonacci numbers and some properties involving binomial coefficients. The rest of the paper 

is organized as follows:  In Section 2 (Preliminaries), the fundamental definitions and 

theorems are given. Then main theorems and proofs are introduced in Section 3. 
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2 PRELIMINIARIES 

Definition 2.1. [21] For 𝑛, 𝑘 (𝑘 ≠ 0) ∈ ℕ, the new family of 𝑘-generalized Fibonacci numbers 

are defined by 

𝐺𝑛
(𝑘)

=
1

(√5)
𝑘

([𝑎 + 𝑏𝛼]𝛼𝑚+1 − [𝑎 + 𝑏𝛽]𝛽𝑚+1)𝑟([𝑎 + 𝑏𝛼]𝛼𝑚 − [𝑎 + 𝑏𝛽]𝛽𝑚)𝑘−𝑟

where 𝑛 = 𝑚𝑘 + 𝑟, 0 ≤ 𝑟 < 𝑘 and 𝑚 ∈ ℕ. 

It is clear that for 𝑎 = 0 and 𝑏 = 1, 𝐺𝑛
(𝑘)

= 𝐹𝑛
(𝑘)

 and for 𝑘 = 1, 𝑟 = 0 and 𝑛 = 𝑚, 𝐺𝑛
(1)

= 𝐺𝑛.
Then they gave the relationship of between the new family of 𝑘-generalized Fibonacci numbers 

and generalized Fibonacci numbers as follow: 

𝐺𝑛
(𝑘)

= (𝐺𝑚)𝑘−𝑟(𝐺𝑚+1)𝑟, 𝑛 = 𝑚𝑘 + 𝑟. (2.1) 

Theorem 2.2. [9] 

i. 𝐺𝑛+1
3 − 𝐺𝑛

3 − 𝐺𝑛−1
3 = 3𝐺𝑛+1𝐺𝑛𝐺𝑛−1

ii. ∑ 𝐹𝑖𝐺3𝑖
𝑛
𝑖=1 = 𝐹𝑛𝐹𝑛+1𝐺2𝑛+1

iii. 𝐺𝑛
2 + 𝐺𝑛−1

2 = (3𝑎 − 𝑏)𝐺2𝑛−1 − (𝑎2 + 𝑎𝑏 − 𝑏2)𝐹2𝑛−1

iv. 𝐹2𝑛+1 = 𝐹𝑛+1
2 + 𝐹𝑛

2

v. 𝐺𝑛−1
6 + 𝐺𝑛

6 + 𝐺𝑛+1
6 = 2[2𝐺𝑛

2 + (𝑎2 + 𝑎𝑏 − 𝑏2)(−1)𝑛]3 + 3𝐺𝑛−1
2 𝐺𝑛

2𝐺𝑛+1
2

vi. 𝐺𝑛+𝑡𝐺𝑛+𝑡−2 − 𝐺𝑛+𝑡−1
2 = (𝑎2 + 𝑎𝑏 − 𝑏2)(−1)𝑛+𝑡−1𝐹𝑘

2

Theorem 2.3. [15] 

∑ 𝐹𝑖𝐹3𝑖 = 𝐹2𝑛+1
(2)

(𝐹2𝑛+3
(2)

− 𝐹2𝑛−1
(2)

)

𝑛

𝑖=1

 

Theorem 2.4. [3] 

i. ∑ (−1)𝑖(𝑘−1
𝑖

)𝐹𝑚𝑘+𝑖
(𝑘)𝑘−1

𝑖=0 = (−1)𝑘−1𝐹𝑚𝐹(𝑚−1)(𝑘−1)
(𝑘−1)

ii. ∑ (𝑘−1
𝑖

)𝑘−1
𝑖=0 𝐹𝑚𝑘+𝑖

(𝑘)
= 𝐹𝑚𝐹(𝑚+2)(𝑘−1)

(𝑘−1)
 . 

3 MAIN RESULTS 

   In this section, we present some properties of the new family of 𝑘-generalized Fibonacci 

numbers. 

Theorem 3.1. For 𝑛 ≥ 1, we have 

𝐺2𝑛+2
(2)

+ 𝐺2𝑛
(2)

= 2 𝐺2𝑛+1
(2)

+ 𝐺2𝑛−2
(2)

. 

Proof. Using Theorem 2.2 (i), we have 
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𝐺𝑛+1
3 − 𝐺𝑛

3 = 𝐺𝑛−1
3 + 3𝐺𝑛+1𝐺𝑛𝐺𝑛−1

(𝐺𝑛+1 − 𝐺𝑛)(𝐺𝑛+1
2 + 𝐺𝑛+1𝐺𝑛 + 𝐺𝑛

2) = 𝐺𝑛−1(𝐺𝑛−1
2 + 3𝐺𝑛+1𝐺𝑛)

𝐺𝑛−1(𝐺2𝑛+2
(2)

+ 𝐺2𝑛+1
(2)

+ 𝐺2𝑛
(2)

) = 𝐺𝑛−1(𝐺2𝑛−2
(2)

+ 3𝐺2𝑛+1
(2)

) 

𝐺2𝑛+2
(2)

+ 𝐺2𝑛+1
(2)

+ 𝐺2𝑛
(2)

= 𝐺2𝑛−2
(2)

+ 3𝐺2𝑛+1
(2)

 

𝐺2𝑛+2
(2)

+ 𝐺2𝑛
(2)

= 2 𝐺2𝑛+1
(2)

+ 𝐺2𝑛−2
(2)

 . 

Theorem 3.2. For 𝑛 ≥ 1, we have 

(3𝑎 − 𝑏) ∑ 𝐹𝑖𝐺3𝑖 =

𝑛

𝑖=1

𝐹2𝑛+1
(2)

(𝐺2𝑛+3
(2)

− 𝐺2𝑛−1
(2)

) + (𝑎2 + 𝑎𝑏 − 𝑏2) ∑ 𝐹𝑖𝐹3𝑖

𝑛

𝑖=1

. 

Proof. Using Theorem 2.2 (ii), (iii), (iv) and Theorem 2.3, we have 

(3𝑎 − 𝑏) ∑ 𝐹𝑖𝐺3𝑖

𝑛

𝑖=1

= (3𝑎 − 𝑏)𝐹𝑛𝐹𝑛+1𝐺2𝑛+1 

= 𝐹𝑛𝐹𝑛+1(𝐺𝑛
2 + 𝐺𝑛+1

2 + (𝑎2 + 𝑎𝑏 − 𝑏2)𝐹2𝑛+1)

= 𝐹𝑛𝐹𝑛+1(𝐺𝑛(𝐺𝑛+1 − 𝐺𝑛−1) + 𝐺𝑛+1(𝐺𝑛+2 − 𝐺𝑛)

+ (𝑎2 + 𝑎𝑏 − 𝑏2)(𝐹𝑛+1
2 + 𝐹𝑛

2))

= 𝐹𝑛𝐹𝑛+1(−𝐺𝑛𝐺𝑛−1 + 𝐺𝑛+1𝐺𝑛+2

+ (𝑎2 + 𝑎𝑏 − 𝑏2)(𝐹𝑛+2𝐹𝑛+1 − 𝐹𝑛𝐹𝑛−1))

= 𝐹2𝑛+1
(2)

(𝐺2𝑛+3
(2 )

− 𝐺2𝑛−1
(2 )

+ (𝑎2 + 𝑎𝑏 − 𝑏2)(𝐹2𝑛+3
(2)

− 𝐹2𝑛−1
(2)

)) 

= 𝐹2𝑛+1
(2)

(𝐺2𝑛+3
(2 ) − 𝐺2𝑛−1

(2 ) ) + (𝑎2 + 𝑎𝑏 − 𝑏2)𝐹2𝑛+1
(2)

(𝐹2𝑛+3
(2)

− 𝐹2𝑛−1
(2)

) 

= 𝐹2𝑛+1
(2)

(𝐺2𝑛+3
(2 ) − 𝐺2𝑛−1

(2 ) ) + (𝑎2 + 𝑎𝑏 − 𝑏2) ∑ 𝐹𝑖𝐹3𝑖.

𝑛

𝑖=1

Theorem 3.3. For 𝑛 ≥ 1, we have 

(𝐺2𝑛−2
(2)

)
3

+ (𝐺2𝑛
(2)

)
3

+ (𝐺2𝑛+2
(2)

)
3

= 2[2𝐺2𝑛
(2)

+ (𝑎2 + 𝑎𝑏 − 𝑏2)(−1)𝑛]
3

+ 3𝐺2𝑛−2
(2)

𝐺2𝑛
(2)

𝐺2𝑛+2
(2)

. 

Proof. Using Theorem 2.2 (v), we get 

(𝐺2𝑛−2
(2)

)
3

+ (𝐺2𝑛
(2)

)
3

+ (𝐺2𝑛+2
(2)

)
3

= (𝐺𝑛−1
2 )3 + (𝐺𝑛

2)3 + (𝐺𝑛+1
2 )3

= 𝐺𝑛−1
6 + 𝐺𝑛

6 + 𝐺𝑛+1
6

= 2[2𝐺𝑛
2 + (𝑎2 + 𝑎𝑏 − 𝑏2)(−1)𝑛]3 + 3𝐺𝑛−1

2 𝐺𝑛
2𝐺𝑛+1

2
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= 2[2𝐺2𝑛
(2)

+ (𝑎2 + 𝑎𝑏 − 𝑏2)(−1)𝑛]
3

+ 3𝐺2𝑛−2
(2)

𝐺2𝑛
(2)

𝐺2𝑛+2
(2)

 . 

Theorem 3.4. For 𝑛 ≥ 1, we have 

𝐺2𝑛+2
(2)

− 𝐺2𝑛
(2)

= 𝐺2𝑛−2
(2)

+ 2 𝐺2𝑛−1
(2)

. 

Proof.  From equation (2.1) and recurrence relation of generalized Fibonacci numbers, we get 

𝐺2𝑛+2
(2)

− 𝐺2𝑛
(2)

= 𝐺𝑛+1
2 − 𝐺𝑛

2

= (𝐺𝑛+1 − 𝐺𝑛)(𝐺𝑛+1 + 𝐺𝑛) 

= 𝐺𝑛−1(𝐺𝑛+1 + 𝐺𝑛) 

= 𝐺𝑛−1𝐺𝑛+1 + 𝐺𝑛−1𝐺𝑛 

= 𝐺𝑛−1(𝐺𝑛 + 𝐺𝑛−1) + 𝐺𝑛−1𝐺𝑛  

= 𝐺𝑛−1
2 + 2𝐺𝑛−1𝐺𝑛

= 𝐺2𝑛−2
(2)

+ 2 𝐺2𝑛−1.
(2)

Theorem 3.5. For 𝑛 ≥ 1, we have 

𝐺2𝑛−2
(2)

+ 𝐺2𝑛−1
(2)

= 𝐺2𝑛
(2)

+ (𝑎2 + 𝑎𝑏 − 𝑏2)(−1)𝑛 .

Proof. Using Theorem 2.2 (vi), we have 

𝐺2𝑛−2
(2)

+ 𝐺2𝑛−1
(2)

= 𝐺𝑛−1
2 + 𝐺𝑛𝐺𝑛−1

= 𝐺𝑛−1(𝐺𝑛−1 + 𝐺𝑛) 

= 𝐺𝑛−1𝐺𝑛+1 

= 𝐺𝑛
2 + (𝑎2 + 𝑎𝑏 − 𝑏2)(−1)𝑛

= 𝐺2𝑛
(2)

+ (𝑎2 + 𝑎𝑏 − 𝑏2)(−1)𝑛.

Theorem 3.6. For 𝑛 ≥ 1, we have 

𝐺4𝑛+5
(4)

= (𝐺2𝑛
(2)

)
2

+ 𝐺4𝑛+1
(4)

+ 2𝐺4𝑛−3
(4)

+ (𝐺2𝑛−2
(2)

)
2

+ 3𝐺2𝑛+3
(2)

𝐺2𝑛−1
(2)

 . 

Proof. Using Theorem 2.2 (i), we have 

𝐺4𝑛+5
(4)

= (𝐺𝑛+1)3𝐺𝑛+2

= (𝐺𝑛
3 + 𝐺𝑛−1

3 + 3𝐺𝑛+1𝐺𝑛𝐺𝑛−1)𝐺𝑛+2

= 𝐺𝑛
3𝐺𝑛+2 + 𝐺𝑛−1

3 𝐺𝑛+2 + 3𝐺𝑛+2𝐺𝑛+1𝐺𝑛𝐺𝑛−1

= 𝐺𝑛
3(𝐺𝑛 + 𝐺𝑛+1)𝐺𝑛−1

3 (2𝐺𝑛 + 𝐺𝑛−1) + 3𝐺2𝑛+3
(2)

𝐺2𝑛−1
(2)

 

= (𝐺2𝑛
(2)

)
2

+ 𝐺4𝑛+1
(4)

+ 2𝐺4𝑛−3
(4)

+ (𝐺2𝑛−2
(2)

)
2

+ 3𝐺2𝑛+3
(2)

𝐺2𝑛−1.
(2)
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Theorem 3.7. For 𝑘, 𝑛, 𝑡 ≥ 1, we have 

𝐺𝑘𝑛+𝑡
(𝑘)

𝐺𝑘𝑛+𝑡−2
(𝑘)

− (𝐺𝑘𝑛+𝑡−1
(𝑘)

)
2

= {
𝐺𝑛

2𝑘−2(−1)𝑛(𝑎2 + 𝑎𝑏 − 𝑏2), 𝑡 = 1
0, 𝑡 ≠ 1

 . 

Proof. For 𝑡 = 1, we get 

𝐺𝑘𝑛+1
(𝑘)

𝐺𝑘𝑛−1
(𝑘)

− (𝐺𝑘𝑛
(𝑘)

)
2

= (𝐺𝑛
𝑘−1𝐺𝑛+1)(𝐺𝑛−1𝐺𝑛

𝑘−1) − (𝐺𝑛
𝑘) 2

= 𝐺𝑛−1𝐺𝑛
2𝑘−2𝐺𝑛+1 − 𝐺𝑛

2𝑘

= 𝐺𝑛
2𝑘−2[𝐺𝑛−1𝐺𝑛+1 − 𝐺𝑛

2]

= 𝐺𝑛
2𝑘−2(−1)𝑛(𝑎2 + 𝑎𝑏 − 𝑏2) .

For 𝑡 ≠ 1, we get 

𝐺𝑘𝑛+𝑡
(𝑘)

𝐺𝑘𝑛+𝑡−2
(𝑘)

− (𝐺𝑘𝑛+𝑡−1
(𝑘)

)
2

= (𝐺𝑛
𝑘−𝑡𝐺𝑛+1

𝑡 )(𝐺𝑛
𝑘−𝑡+2𝐺𝑛+1

𝑡−2 ) − (𝐺𝑛
𝑘−𝑡+1𝐺𝑛+1

𝑡−1)2

= 𝐺𝑛
2𝑘−2𝑡+2𝐺𝑛+1

2𝑡−2 − 𝐺𝑛
2𝑘−2𝑡−2𝐺𝑛+1

2𝑡−2

= 0 . 

Theorem 3.8. For 𝑛 ≥ 1, we have 

𝐺2(𝑛+𝑠−1)
(2)

− 𝐺𝑛+𝑠𝐺𝑛+𝑠−2 = (−1)𝑛+𝑠(𝑎2 + 𝑎𝑏 − 𝑏2).

Proof. From the equation (2.1) and Theorem 2.2. (vi), we acquire 

𝐺2(𝑛+𝑠−1)
(2)

− 𝐺𝑛+𝑠𝐺𝑛+𝑠−2 = 𝐺𝑛+𝑠−1
2 − 𝐺𝑛+𝑠𝐺𝑛+𝑠−2 

= −(𝐺𝑛+𝑠𝐺𝑛+𝑠−2 − 𝐺𝑛+𝑠−1
2 ) 

= −((−1)𝑛+𝑠−1(𝑎2 + 𝑎𝑏 − 𝑏2)) 

= (−1)𝑛+𝑠(𝑎2 + 𝑎𝑏 − 𝑏2).

Theorem 3.9. For 𝑛 ≥ 1, we have 

∑(−1)𝑖 (
𝑘 − 1

𝑖
)

𝑘−1

𝑖=1

𝐺𝑚𝑘+𝑖
(𝑘)

= (−1)𝑘−1𝐺𝑚𝐺(𝑚−1)(𝑘−1)
(𝑘−1)

 . 

Proof. By using the equation (2.1) and the well known binomial property, we obtain 

∑(−1)𝑖 (
𝑘 − 1

𝑖
)

𝑘−1

𝑖=1

𝐺𝑚𝑘+𝑖
(𝑘)

= (−1)𝑘−1 ∑(−1)𝑘−1−𝑖 (
𝑘 − 1

𝑖
)

𝑘−1

𝑖=1

𝐺𝑚
𝑘−𝑖𝐺𝑚+1

𝑖

= (−1)𝑘−1𝐺𝑚 ∑ (
𝑘 − 1

𝑖
)

𝑘−1

𝑖=1

(−𝐺𝑚)𝑘−𝑖−1𝐺𝑚+1
𝑖
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= (−1)𝑘−1𝐺𝑚(𝐺𝑚+1 − 𝐺𝑚)𝑘−1

= (−1)𝑘−1𝐺𝑚𝐺𝑚−1
𝑘−1

= (−1)𝑘−1𝐺𝑚𝐺(𝑚−1)(𝑘−1)
(𝑘−1)

 . 

Theorem 3.10. For 𝑛 ≥ 1, we have 

∑ (
𝑘 − 1

𝑖
)

𝑘−1

𝑖=1

𝐺𝑚𝑘+𝑖
(𝑘)

= 𝐺𝑚𝐺(𝑚+2)(𝑘−1)
(𝑘−1)

 . 

Proof. By taking account the equation (2.1) and the well known binomial property, we get 

∑ (
𝑘 − 1

𝑖
)

𝑘−1

𝑖=1

𝐺𝑚𝑘+𝑖
(𝑘)

= ∑ (
𝑘 − 1

𝑖
)

𝑘−1

𝑖=1

𝐺𝑚
𝑘−𝑖𝐺𝑚+1

𝑖

= 𝐺𝑚 ∑ (
𝑘 − 1

𝑖
)

𝑘−1

𝑖=1

𝐺𝑚+1
𝑖 (𝐺𝑚)𝑘−𝑖−1

= 𝐺𝑚(𝐺𝑚+1 + 𝐺𝑚)𝑘−1

= 𝐺𝑚𝐺𝑚+2
𝑘−1

= 𝐺𝑚𝐺(𝑚+2)(𝑘−1)
(𝑘−1)

 . 

4 CONCLUSIONS 

In this study, we prove that some identities of the new family of 𝑘-generalized Fibonacci 

numbers. Then, we show that some properties of the new family of 𝑘-generalized Fibonacci 

numbers related to generalized Fibonacci numbers. Furthermore, we extend Cassini’s formula 

to the new family of 𝑘-generalized Fibonacci numbers and present identities comprising 

binomial coefficients for the new family of 𝑘-generalized Fibonacci numbers. 
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