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ON THE SOMBOR INDEX OF CHEMICAL TREES
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Summary. We give sharp bounds on the Sombor index of chemical trees and characterize the
cases of the equalities. We stated conjectures regarding second maximal chemical trees of order
n with respect to Sombor index, when n≡ 0(mod3) and n≡ 1(mod3).

1 INTRODUCTION

Molecular descriptors are mathematical values used in evaluation and prediction of properties
of chemical compounds. They are used to describe the structure and shape of molecules of even
more not yet synthesized compounds and so play significant role in mathematical chemistry
and pharmacology [11, 13]. Topological indices are type of molecular descriptors calculated on
the graphs associated to molecules of chemical compounds. In the literature of mathematical
chemistry several dozens of topological indices have been introduced and studied [4-8,12].

Let G be a graph with the vertex set V (G) and the edge set E(G). For a vertex v ∈V (G), the
degree of v is denoted by dG(v), or simply d(v) whenever the graph is clear from the context.
The Sombor index is defined as

SO(G) = ∑
uv∈E(G)

√
d2(u)+d2(v). (1)

This index, abbreviated as SO index, has been proposed recently by Gutman in [8]. The contri-
bution of the edge uv ∈ E(G) to SO(G) is

sG(uv) =
√

d2(u)+d2(v) (2)

and we will use the next form of equation (1)

SO(G) = ∑
e∈E(G)

sG(e). (3)

A tree is connected graph with no cycles. The problem of finding extreme values of topolog-
ical indices over chemical trees, that is trees with vertex degrees less or equal 4, has attracted
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considerable attention in the mathematical-chemistry literature [1-3,9,12-14]. In this paper we
consider the problem of extreme values of SO index among chemical trees with n-vertices.
We stated conjectures regarding second maximal chemical trees with respect to Sombor index,
when n≡ 0(mod3) and n≡ 1(mod3).

2 DEFINITIONS AND PRELIMINARIES

Let T be a chemical tree of order n. Throughout the paper, the number of vertices with degree
i is denoted by ni, for every i = 1,4, and for every 1 ≤ i ≤ j ≤ n− 1, mi j denotes the number
of edges of T between a vertex with degree i and a vertex with degree j. Now, in this notation,
formula (1) takes the form

SO(T ) = ∑
1≤i≤ j≤n−1

mi j
√

i2 + j2. (4)

which will be used, for the most part.
It has be shown by Gutman [8] that the path graph and the star graph are the graphs with

extremal values of SO index among all n-vertex trees. Since the path is chemical tree, the
minimum of the SO index in the set of chemical trees with a constant number of vertices is
achieved for path graphs, while the maximum is achieved for star graphs only for n ≤ 5. Our
goal here is to characterize the chemical trees of order n≥ 6 that maximize SO index.

3 ON THE BOUNDS OF TNE NUMBERS ni AND mi j

In this section we are going to present and prove two statements that will be crucial in proving
the final theorem that gives the upper bound of SO index and complete characterization of the
chemical trees on which SO index attains the maximum value.

Lemma 1. Let T be a n-vertex, n ≥ 6, chemical tree with maximum value of SO-index. Then,
in T holds the following:

m22 = 0, m23 = 0, m33 = 0, m12 ≤ 1.

Proof. Let us prove the first claim m22 = 0. In the contrary, suppose that there is an edge
e = uv ∈ E(T ) whose endpoints u and v have degrees 2. Let uu1 and vv1 be the remaining edges
incident with vertices u and v, respectively, and let T ′ = T − vv1 + uv1. Note that, since T is
acyclic, u1 and v1 are distinct vertices. Therefore, due to (3),

SO(T ′)−SO(T ) =(sT ′(uu1)+ sT ′(uv)+ sT ′(uv1))−
− (sT (uu1)+ sT (uv)+ sT (vv1))

To obtain the contradiction with the assumption that T is maximal, we need to prove that this
difference is positive. Since dT (u) = dT (v) = 2, dT ′(u) = 3 and dT ′(v) = 1, it holds: sT (uu1)<
sT ′(uu1), sT (uv) =

√
8 <
√

10 = sT ′(uv) and sT (vv1)< sT ′(vv1), that is SO(T ′)> SO(T ).
The next claim, m23 = 0, will be proved in the same manner, by the similar graph transfor-

mation. Suppose to the contrary that in T there is an edge e0 = uv ∈ E(T ) such that d(u) = 3
and d(v) = 2. Let e1 = vw be the remaining edge incident with vertex v and let e2,e3 be the
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remaining edges incident with vertex u. Now, for the graph T ′ = T − vw+uw holds

SO(T ′)−SO(T ) =
3

∑
i=0

sT ′(ei)−
3

∑
i=0

sT (ei),

and sT ′(e0) =
√

17 <
√

13 = sT (e0). Since, vertex degree of the only one of two endpoints of
edge ei is increased and the other one is unchanged, we obtain that sT ′(ei) > sT (ei), for each
i = 1,3. Hence, SO(T ′)> SO(T ).

The claim, m33 = 0, is going to be proved similarly. Let us suppose that e0 = uv ∈ E(T )
is an edge whose the both endpoints have degrees 3. Further, let e1 = vw1 and e2 = vw2 be
the remaining edges incident with vertex v and e3 and e4 be the remaining edges incident with
vertex u. Without losing the generality, suppose that d(w1)≤ d(w2) and let us construct a new
chemical tree T ′ from T , by relocating its edge e1 as follows: T ′ = T − vw1 +uw1. Then,

SO(T ′)−SO(T ) =
4

∑
i=0

sT ′(ei)−
4

∑
i=0

sT (ei)

In view of the definition of graph T ′, dT (u) = dT (v) = 3, dT ′(u) = 4 and dT ′(v) = 2, so sT ′(ei)>
sT (ei) for i ∈ {0,3,4}. It remains to be seen how the sum of contributions of the edges e1 and
e2 has been changed.

sT (e1)+ sT (e2) =
√

9+d2
w1

+
√

9+d2
w2

sT ′(e1)+ sT ′(e2) =
√

16+d2
w1

+
√

4+d2
w2

Using the assumption that d(w1) ≤ d(w2) and d(w1),d(w2) ∈ {1, . . . ,4}, by checking of ten
cases, we obtain that sT (e1)+ sT (e2)< sT ′(e1)+ sT ′(e2). It follows that SO(T ′)> SO(T ).

At the end, we want to argue that m12 ≤ 1. Assume for contradiction that, in some maximal
tree T of order n ≥ 6, there are two edges e = uv and g = ab whose endpoints have vertex
degrees 2 and 1, that is d(u) = d(a) = 2 and d(v) = d(b) = 1. Because of assumption n≥ 6, u
and a are distinct vertices. Let us denote by w and c the remaining vertices adjacent with the
vertices u and a, respectively, and let T ′ = T −uv+av. Due to previously proved claims, w and
c are vertices, not necessarily distinct, with degree 4 and so

sT (uw) = sT (ac) =
√

20,sT (uv) = sT (ab) =
√

5,

sT ′(uw) =
√

17,sT ′(ac) = 5,sT ′(ab) =
√

10,sT ′(av) =
√

10
Hence, graph T ′ is a new chemical tree whose SO-index is greater than SO(T ), because of

SO(T ′)−SO(T ) = (
√

17+5+2
√

10)−2(
√

20+
√

5)≈ 2.031 > 0

�

Lemma 2. Let T be a chemical tree with maximum value of SO-index. Then, in T holds the
following: n2 ≤ 1, n3 ≤ 1, n2 = 1⇒ n3 = 0 and n3 = 1⇒ n2 = 0.

Proof.
Proof of the claim n2 ≤ 1: Assume that u and a are two vertices of chemical tree T with degree
2, a let us denote by v1, v2 and b1, b2 their first neighbors, respectively. Due to Lemma 1,
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degrees of the each of the four vertices vi, bi, i = 1,2 belongs to {1,4}. Since T is connected
graph, the both first neighbors of u can not be pendant vertices, that is at least on of its first
neighors has degree 4. The same holds for the vertex a. Without losing the generality suppose
that d(v1) = d(b1) = 4. Vertices v1 and b1 are not necessarily distinct. Now we construct a
graph T ′ by removing edge uv2 from graph T and inserting a new edge among a and v2, that is
T ′ = T −uv2 +av2. The following holds

sT (uv1) = sT (ab1) =
√

20,
sT (uv2) =

√
4+d(v2)2, sT (ab2) =

√
4+d(b2)2

sT ′(uv1) =
√

17, sT ′(ab1) = 5,
sT ′(ab2) =

√
9+d(b2)2, sT ′(av2) =

√
9+d(v2)2.

Hence,
SO(T ′)−SO(T ) = (5+

√
17+

√
9+d(b2)2 +

√
9+d(v2)2

−(2
√

20+
√

4+d(v2)2 +
√

4+d(b2)2

> 5+
√

17−2
√

20
≈ 0.1788337156 > 0

This is opposite with the assumption that T is a chemical tree with maximum value of Sombor
index.

Proof of the claim n3 ≤ 1: Assume for contradiction that there are two vertices u,a ∈V (T )
with degree 3, and let vi and bi, i = 1,3 be their first neighbors, respectively. Due to Lemma 1,
u and a are not adjacent vertices and degrees d(vi), d(bi), for each i = 1,3, belongs to {1,4}.
As in the proof of the previous claim, assume that d(v1) = d(b1) = 4 Now, we distinguished the
next three cases:
Case 1: d(v2) = d(v3) = d(b2) = d(b3) = 4.

In this case, we transform graph T to a new on T ′ as follows: T ′ = T −uv2 +av2. The next
is worth

sT (uvi) = sT (abi) = 5, i = 1,3
sT ′(uv1) = sT ′(uv3) = 2

√
5,

sT ′(av2) = sT ′(abi) = 4
√

2, i = 1,3.
that is

SO(T ′)−SO(T ) = (4
√

5+16
√

2)−30≈ 1.571688908 > 0.
So, T is not a chemical tree with maximum value of Sombor index. Case 2: The both of vertices
v2, v3 have degrees 1, or the both of vertices b2, b3 have degrees 1. Without losing generality,
let us assume that d(v2) = d(v3) = 1. Let T ′ = T −uv2 +av2. Then,

sT (uv1) = sT (ab1) = 5,
sT (uv2) = sT (uv3) =

√
10,

sT (abi)< sT ′(abi), i = 1,2,
sT ′(uv1) = 2

√
5, sT ′(uv3) =

√
5,

sT ′(ab1) = 4
√

2, sT ′(av2) =
√

17.

It follows that

SO(T ′)−SO(T )> (3
√

5+4
√

2+
√

17)− (10+2
√

10)≈ 0.1636 > 0,

and again T is not maximal.
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Case 3: Previous two cases have not been satisfied. In this case, without losing generality, we
may assume that d(v2) = 4 and d(v3) = 1. Since in this, third case, the both of vertices b2, b3
are not pendant, let as suppose that d(b2) = 4. Denote by T ′ chemical tree obtained from T on
the same way as in the previous, that is T ′ = T −uv2 +av2. We obtain

sT (uv1) = sT (uv2) = 5, sT (uv3) =
√

10
sT (ab1) = sT (ab2) = 5, sT (ab3) =

√
9+d(b3)2

sT ′(uv1) = 2
√

5, sT ′(uv3) =
√

5,
sT ′(av2) = sT ′(abi) = 4

√
2, i = 1,2.

sT ′(ab3) =
√

16+d(b3)2

and conclude that

SO(T ′)−SO(T )> (12
√

2+3
√

5)− (20+
√

10)≈ 0.51649 > 0,

that is T is not maximal.
Proof of the claim n2 = 1⇒ n3 = 0: Assume for the contradiction that u and a are the

vertices of T such that d(u) = 2 and d(a) = 3. In the same manner as in the previous, u and
a are not the first neighbors and there are vertices u1 and b1 with degrees 4, adjecent with the
verticees u and b, respectively. Since d(u) = 2, denote by v2 remaining vertex adjacent with
u and by by b2, b3 remaining vertices adjacent with a. We do the same graph transformation
T ′ = T −uv2 +av2 as in the previous two cases, and obtain the following values

sT (uv1) = 2
√

5, sT (uv2) =
√

4+ v2
2

sT (ab1) = 5, sT (abi) =
√

9+d(bi)2, i = 2,3
sT ′(uv1) =

√
17, sT ′(ab1) = 4

√
2,

sT ′(av2) =
√

16+ v2
2 sT ′(abi) =

√
16+d(bi)2, i = 2,3

Hence,
SO(T ′)−SO(T )> (

√
17+4

√
2)− (5+2

√
5)≈ 0.3078239 > 0,

and the claim is proven.
Proof of the claim n3 = 1⇒ n2 = 0: This claim is direct consequence of the first and the

previous one. �

4 CHEMICAL TREES WITH EXTREME VALUES OF SOMBOR INDEX

For n = 3k, k ≥ 2, let Tn be the family of chemical trees with n vertices such that: k− 1
vertices have degree 4, one vertex has degree 2, remaining vertices are pendant and its single
vertex with degree 2 is adjacent to the vertices of degree 4, in the case k ≥ 3. In the case k = 2,
that is n = 6, there is only one graph in T6 and its single vertex with degree 2 is adjacent with
one pendant vertex and one vertex with degree 4.

For n = 3k+ 1, k ≥ 2, denote by Tn the family of chemical trees with n vertices such that:
k−1 vertices have degree 4, one vertex has degree 3, all other vertices are pendant and, in the
case k ≥ 4, its single vertex with degree 3 is adjacent with vertices of degree 4. In the case
k = 2, that is n = 7, there is only one graph in T7 and its single vertex with degree 3 is adjacent
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with two pendant vertices and one vertex with degree 4. In the case k = 3, that is n = 10, there
is only one graph in T10 and its single vertex with degree 3 is adjacent with one pendant vertex
and two vertices with degree 4.

For n = 3k+ 2 ≥ 5, Tn is the family of chemical trees with n vertices such that: k vertices
have degree 4 and remaining are pendant.

Our the main result is presented through the next three theorems, in which the following easy
observation will be important:

Let T be a chemical tree with n. Then,

n1 +n2 +n3 +n4 = n (5)

and from handshaking lemma

n1 +2n2 +3n3 +4n4 = 2(n−1). (6)

From (5) and (6) we conclude that

n2 +2n3 +3n4 = n−2. (7)

Theorem 1. Let T be chemical tree of order n≥ 6, such that n≡ 0(mod3). Then

SO(T ) ≤ 2
n
3
(
√

17+2
√

2) +

+

{
4
√

5−12
√

2, n≥ 9
3
√

5−
√

17−8
√

2 n = 6

The equality is attained if and only if T ∈Tn.

Proof. Let us suppose that n = 3k, for some k ≥ 2. In this case, equality (7) implies that n4 ≤
k−1.

First, let’s see what’s going on when n4 takes values less then k−1. Substituting n4 ≤ k−2
into (7) gives n2 +2n3 ≥ 4. This is impossible because of first two claims from Lemma 2.

Otherwise, when n4 = k−1, (7) gives n2 +2n3 = 1, that is n2 = 1 and n3 = 0. This implies
that, for k ≥ 3, there are two possibilities, that is two potential types of maximal graphs:

Type 1: Chemical tree in which k− 1 vertices have degree 4, one vertex has degree 2, re-
maining vertices are pendant and the both first neighbors of its single vertex with degree 2 have
degree 4

Type 2: Chemical tree in which k− 1 vertices have degree 4, one vertex has degree 2, re-
maining vertices are pendant and only one of the first neighbors of its single vertex with degree
2 has degree 4 but the other one is pendant.

Denote by G1 graph of the first type and by G2 the graph of the second type. We will prove
that SO(G1)> SO(G2).

In the both of G1 anf G2 holds n1 = n−n4−1 = 2k. Further, in G1 holds:

SO(G1) = m24
√

20+m14
√

17+m44
√

32

= 2k(
√

17+2
√

2)+4
√

5−12
√

2 (8)

≈ 2k(
√

17+2
√

2)−8.0262908, (9)

since in this type of graphs m24 = 2, m14 = n1 = 2k, m44 = k−3 and mi j = 0 for all other values
of i and j.
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On the other side, in G2 holds:

SO(G2) = m12
√

5+m24
√

20+m14
√

17+m14
√

32

= 2k(
√

17+2
√

2)+3
√

5−
√

17−8
√

2 (10)

≈ 2k(
√

17+2
√

2)−8.728610192, (11)

since in this type of graphs m12 = 1, m24 = 1, m14 = n1−1 = 2k−1, m44 = k−2. From (9) and
(11) follows that SO(G1)> SO(G2).

In the case when k = 2, that is n = 6, there is no graph type 1. Moreover there is only one
graph G2 type 2 and from (10) we obtain that its SO index is equal 4(

√
17+ 2

√
2)+ 3

√
5−√

17−8
√

2. �

Theorem 2. Let T be chemical tree of order n≥ 7, such that n≡ 1(mod3). Then

SO(T ) ≤ 2bn
3
c(
√

17+2
√

2) +

+


15+

√
17−16

√
2, n≥ 13

10+
√

10−12
√

2, n = 10
5+2

√
10−

√
17−8

√
2, n = 7

The equality is attained if and only if T ∈Tn.

Proof. Let n = 3k+1, for some k ≥ 2. As in the previous, equality (7) implies that n4 ≤ k−1.
If n4 takes values less then k−1, substituting into (7) gives n2 +2n3 ≥ 5, which is impossible
by Lemma 2.

Let n4 = k−1. From (7) follows that n2+2n3 = 2, that is n2 = 0 and n3 = 1. Now, for k≥ 4,
we distinguish three cases, that is tree potential types of maximal trees, regarding the degrees
of the first neighbors of its single vertrex with degree 3:

Type 1: Chemical tree in which k− 1 vertices have degree 4, one vertex has degree 3, re-
maining vertices are pendant and each of the first neighbors of its single vertex with degree 3
have degree 4 .

Type 2: Chemical tree in which k− 1 vertices have degree 4, one vertex has degree 3, re-
maining vertices are pendant and two of the first neighbors of its single vertex with degree 3
have degree 4 and third one is pendant.

Type 3: Chemical tree in which k− 1 vertices have degree 4, one vertex has degree 3, re-
maining vertices are pendant and only one the first neighbors of its single vertex with degree 3
has degree 4 and the two are pendants.

In the case k = 3, that is n = 10, there is no graph type 3 and for k = 2, what is equivalent
with n = 7, there is only graph type 1.

Denote by G1 the graph of the first type, by G2 the graph of the second type and by G3 the
graph of the third type. We are going to prove that

SO(G1)> SO(G2)> SO(G3) (12)

11
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The number n1 of pendant vertices in each of this graphs is the same n1 = n−n4−1 = 2k+1.
In G1 holds

SO(G1) = m34
√

25+m14
√

17+m44
√

32

= 2k(
√

17+2
√

2)+15+
√

17−16
√

2 (13)

≈ 2k(
√

17+2
√

2)−3.504311372, (14)

since in the graphs of type 1 is valid: m34 = 3, m14 = n1 = 2k+1, m44 = k−4 and mi j = 0 for
all other values of i and j.

In G2 numbers mi j take the values: m13 = 1,m34 = 2,m14 = 2k,m44 = k−3, so it follows

SO(G2) = m13
√

10+m34
√

25+m14
√

17+m44
√

32

= 2k(
√

17+2
√

2)+10+
√

10−12
√

2 (15)

≈ 2k(
√

17+2
√

2)−3.808285088 (16)

Finally, in G3 nonzero numbers mi j take the values: m13 = 2,m34 = 1,m14 = 2k− 1,m44 =
k−2, so

SO(G3) = m13
√

10+m34
√

25+m14
√

17+m44
√

32

= 2k(
√

17+2
√

2)+5+2
√

10−
√

17−8
√

2 (17)

≈ 2k(
√

17+2
√

2)−4.112258804. (18)

Thefore, we get to be valid SO(G1)> SO(G2)> SO(G3).
The assertion of the theorem follows. �

Theorem 3. Let T be chemical tree of order n, such that n≡ 2(mod3). Then

SO(T )≤ 2
n−2

3
(
√

17+2
√

2)+2
√

17−4
√

2.

The equality is attained if and only if T ∈Tn.

Proof. Let n = 3k+ 2, for some k ≥ 1. In this case, equality (7) implies that n4 ≤ k. When
n4 < k, from (7) follows n2 +2n3 ≥ 3. Based on the first two claims of Lemma 2, this is valid
only for n2 = n3 = 1, but this is impossible due to the last claims of the same Lemma.

Let us assume that n4 = k. Equality (7) gives n2+2n3 = 0, that is n2 = n3 = 0. It follows that
is in this graph numbers mi j take the next values: m14 = n1 = 2k+2, m44 = k−1, and mi j = 0
for all other values of i and j. Hence,

SO(G1) = m14
√

17+m44
√

32

= 2k(
√

17+2
√

2)+2
√

17−4
√

2 (19)

= 2n−2
3 (
√

17+2
√

2)+2
√

17−4
√

2. (20)

The proof is completed. �

5 CONCLUDING REMARKS AND FURTHER WORK

Sombor index is a recently introduced vertex-degree-based topological index. This paper
is one of the several studies ([3], [12]) produced immediately after [7] became available. In

12



Žana Kovijanić Vukićević

this paper we consider its bounds of over the chemical trees and characterize the appropriate
extreme cases.

Based on the proofs of Theorem 1 and Theorem 2 we have the following conjectures

Conjecture 1. Let T be a chemical tree of order n≥ 9, such that n≡ 0 (mod 3), with the second
maximum of SO index. Then,

SO(T )≤ 2
n
3

(√
17+2

√
2
)
+3
√

5−
√

17−8
√

2.

The equality is attained if and only if T is chemical tree in which n
3 −1 vertices have degree 4,

one vertex has degree 2, remaining vertices are pendant and only one of the first neighbors of
its single vertex with degree 2 has degree 4 but the other one is pendant.

Conjecture 2. Let T be a chemical tree of order n ≥ 10, such that n ≡ 1 (mod 3), with the
second maximum of SO index. Then,

SO(T )≤ 2
n−1

3

(√
17+2

√
2
)
+10+

√
10−12

√
2.

The equality is attained if and only if T is chemical tree in which n−1
3 −1 vertices have degree

4, one vertex has degree 3, remaining vertices are pendant and two of the first neighbors of its
single vertex with degree 3 has degree 4 but the third one is pendant.
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Summary. Let � be a primitive Dirichlet character modulo � ≥ 3. In this paper, we define complex 
numbers associated with �, which we denote by ��(�)(� = 0,1, … ), and we discuss their properties 
and their relationships with the generalized Bernoulli numbers. 

1. INTRODUCTION

Let � be a Dirichlet character modulo � ≥ 3. Then the classical generalized Bernoulli
numbers ��(�) for (� = 0,1, … ) are defined by: 

� �(�)

�

���

����

��� − 1
= � ��(�)

��

���

��

�!
, |�| <

2�

�
. 

They can be expressed in terms of Bernoulli polynomials as (see [2, formula (4.1)]): 

��(�) = ���� � �(�)

�

���

�� �
�

�
�, 

where the Bernoulli polynomials ��(�) are defined by: 

����

�� − 1
= � ��(�)

��

���

��

�!
, |�| < 2�. 

The Dirichlet L-function corresponding to � is defined by: 

�(�, �) = �
�(�)

��

��

���

, ℜ(�) > 1. 

Now, let � be a primitive character. It is well known [2, Theorem 9.10] that the values of 
�(�, �) at � = −�, (� = 0,1, … ) can be expressed by the generalized Bernoulli numbers as:   

�(−�, �) = −
����(�)

� + 1
. 

(1.1) 

Also from [2, Theorem 9.6] if �(−1) = (−1)�(� = 1,2, … ), then the special values of 
�(�, �) at � = � are given by: 

�(�, �) = (−1)���
�(�)

2�!
�
2��

�
�

�

��(χ�), 
(1.2) 

where  �(�) = ∑ �(�)�
����

��
��� is the Gaussian sum associated with �. 
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In this paper, based on a definition given by Davies and Haselgrove in [4], we rewrite the 
formulas (1.1) and (1.2) in terms of the numbers ��(�). We also give some results, properties 
and applications of these numbers, and their relationship with the generalized Bernoulli 
numbers.  

 

2. DEFINITION AND LEMMAS  

     In order to prove our main results, we give the following definition and we need the later 
lemmas. 

Definition 2.1 Let � be a non-principal character modulo � ≥ 3. For an integer � ≥ 0 we 
define the function ��(�, �) for � ∈ ℝ� as follows:  

��(�, �) = �(�, �) + ��(�),			where	�(�, �) = � �(�)

���

, 

����(�, �) = � ��(�, �)��
�

�

+ ����(�), 

� ��(�, �)�� = 0.
�

�

 

 

 

(2.1) 

 

 

 

Lemma 2.2 Let � be a non-principal character modulo � ≥ 3.  Then 

1. The function �(�, �) is �-periodic. 
2. For any function � defined from [0, �) to ℂ which has an antiderivative � we have 

� �(�, �)
�

�

�(�)�� = − � �(�)

���

���

�(�). 

3. If � is primitive, then the Fourier series expansion of �(�, �) is given by: 

�(�, �) =
1

�
� �

���

���

�(�) +
�(�)

�
�

χ�(�)

�
sin �

2���

�
� 	if	�(−1) = +1,

��

���

 

�(�, �) =
1

�
� �

���

���

�(�) −
�(�)

�
�

χ�(�)

�
cos �

2���

�
� 	if	�(−1) = −1,

��

���

 

where  

�(�) = � �(�)
cos
sin

�
2��

�
� 	if		�(−1) = ±1.

�

���

 

 
 
(2.2) 

Proof. 1. For any integer �, we have 

�(� + ��, �) = � �(�) = � �(� + ��) = � �(�)

���

= �(�, �),

���������

 

so �(�, �) is �-periodic. 
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2. This follows at once from the integration by parts and the fact that ∑ �(�) = 0���
���  (see 

e.g. [1, p. 30]). 

3. The Fourier series expansion of  �(�, �) is given by: 

�� + � ��� cos �
2���

�
� + �� sin �

2���

�
��

��

���

, 

where 

�� =
1

�
� �(�, �)��

�

�

=
−1

�
� ��(�)

���

���

, 

�� =
2

�
� �(�, �)	cos �

2���

�
� ��

�

�

=
−1

��
� �(�)

���

���

sin �
2���

�
� for	� ≥ 1, 

�� =
2

�
� �(�, �)	sin �

2���

�
� 	��

�

�

=
1

��
� �(�)

���

���

cos �
2���

�
� for	� ≥ 1. 

If �(−1) = +1, we put � =
���

�
 and we show that �� = 0 for � ≥ 1. Indeed 

�� =
−1

��
� �(�)

���

���

sin(��) =
−1

��
� �(� − �)

���

���

sin((� − �)�) 

																																																=
1

��
� �(�)

���

���

sin(��) = −��. 

Also �� = 0, since 

� ��(�)

���

���

= �(� − �)�(� − �) = � � �(�)

���

���

���

���

− � ��(�)

���

���

= − � ��(�)

���

���

. 

If �(−1) = −1, we show by the same way that �� = 0 for � ≥ 1.                              
According to [1, Theorem 8.15] we have 

χ�(�)�(�) = � �(�)
cos
sin

�
2���

�
� 	if	�(−1) = ±1,

�

���

 

from which we can write for � ≥ 1: 

�� =
1

��
× �(�)χ�(�)	if	�(−1) = +1,			and	�� =

−1

��
× �(�)χ�(�)	if	�(−1) = −1. 

This completes the proof.  
 

Lemma 2.3 Let � be a primitive character modulo � ≥ 3. Then 

1. For � ≥ 1, the function ��(�, �) is continuous and �-periodic. 

     2. The Fourier series expansion of ��(�, �) is given by: 
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��(�, �) = ±
�(�)

�
�

χ�(�)

�
sin
cos

�
2���

�
� 	if	�(−1) = ±1.

��

���

 
(2.3) 

For � ≥ 1 and �(−1) = +1, we have 

�����(�, �) = (−1)�
�(�)

�
�

�

2�
�

����

�
χ�(�)

���
cos �

2���

�
� ,

��

���

 

���(�, �) = (−1)�
�(�)

�
�

�

2�
�

��

�
χ�(�)

�����
sin �

2���

�
� .

��

���

 

(2.4) 

For � ≥ 1 and �(−1) = −1, we have 

�����(�, �) = (−1)�
�(�)

�
�

�

2�
�

����

�
χ�(�)

���
sin �

2���

�
� ,

��

���

 

���(�, �) = (−1)���
�(�)

�
�

�

2�
�

��

�
χ�(�)

�����
cos �

2���

�
� .

��

���

 

(2.5) 

Proof. 1. It is clear that, for � ≥ 1 the function ��(�, �) is continuous, since it is the primitive 
of piece-wise continuous function. The properties of the Dirichlet characters and formulas 
(2.1) allow us to show by induction that, for any � ∈ ℤ and � ∈ ℕ: 

� ��(�, �)�� = 0,
(���)�

��

		and	��(� + ��, �) = ��(�, �), 

from which the periodicity of ��(�, �) follows. 

2. The formulas (2.3), (2.4) and (2.5) are obtained by successive integrations of (2.2), taking
into consideration the formulas (2.1). The lemma is proved. 

3. MAIN RESULTS

     In this section we give our main results. Let us start by the explicit formulas for the 
numbers ��(�).  

Theorem 3.1 Let � be a primitive character modulo � ≥ 3. Then the numbers ��(�) are 
explicit as follows:  

If �(−1) = +1, 

��(�) =
−1

2�
� ���(�)

���

���

,			���(�) = 0(� ≥ 0), 
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�����(�) = − �
������

(2� − 2� + 1)!
�����(�) −

1

�(2�)!
� ����(�)

���

���

(� ≥ 2).

���

���

 
(3.1) 

 

If �(−1) = −1, 

��(�) =
1

�
� ��(�)

���

���

,			�����(�) = 0(� ≥ 1), 

���(�) = − �
������

(2� − 2� + 1)!
���(�) +

1

�(2� + 1)!
� ������(�)

���

���

(� ≥ 1).

���

���

 

 

 

(3.2) 

 

Proof. The first formula of (2.4) and the last formula of (2.5) show that for � ≥ 1: 

���(�) = ���(0, �) = 0	if	�(−1) = +1,			and	�����(�) = �����(0, �) = 0	if	�(−1) = −1. 

According to the last formula of (2.1), we have 

��(�) =
1

�
� ��(�),

���

���

		and	��(�) =
�

2
��(�) −

1

2�
� ���(�)

���

���

. 

Also for � ≥ 2, 

��(�) =
1

�
� �����(�, �)��

�

�

. 

Integration by parts � − 1 times gives us 

��(�) = ��
(−1)���

�!
������(�)

�

���

+
(−1)���

�!
� ����(�, �)��

�

�

�. 

But  

� ����(�, �)��
�

�

= ��(�)
����

� + 1
−

1

� + 1
� �����(�)

���

���

, 

from which we find 

��(�) = �
(−1)�����

�!
������(�)

���

���

+
(−1)�

�(� + 1)!
� �����(�)

���

���

. 
 

(3.3) 

 

If �(−1) = +1, to obtain the formulas (3.1), we simply take � = 2� − 1 with (� ≥ 2) in 
(3.3), taking into consideration that ���(�) = 0. 

If �(−1) = −1, to obtain the formulas (3.2), we simply take � = 2� with (� ≥ 1) in (3.3), 
taking into consideration that �����(�) = 0. The theorem is proved. 
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Corollary 3.2 For any primitive character � modulo � ≥ 3, we have ��(χ�) = ��(�)������� for 
(� ≥ 0). 

Proof. The result follows directly by using induction on �. 

Example 3.3 1. Let �� and �� be the non-principal Dirichlet characters modulo 3 and 4, 
respectively. Then we have �����(��) = �����(��) = 0	(� ≥ 0), since �� and �� are odd 
characters. Also, it follows by using Theorem 3.1 the following table: 

 �� �� �� �� �� ��� ��� 

�� �
�

�
 

�

�
 �

�

��
 

�

����
 �

���

������
 

����

�������
 �

����

���������
 

�� �
�

�
 

�

�
 �

�

��
 

��

����
 �

���

�����
 

�����

�������
 �

������

��������
 

Table 1. The first values of ��(� = 0, 2, … ,12) for �� and ��.   

2. Let ��,�, ��,�, and ��,� be the Dirichlet character modulo 5 such that ��,�(2) = −1, 

��,�(2) = �, and ��,� = ��,������. Then we have ������,�� = 0 (� ≥ 0), since ��,� is even 
character. Also, by using Theorem 3.1 we obtain the following: 

 �� �� �� �� �� ��� ��� 

��,� �
�

�
 

�

�
 �

��

���
 

���

����
 �

������

�������
 

�������

��������
 �

���������

�����������
 

Table 2. The first values of ��(� = 1, 3, … ,13) for ��,�. 

On the other hand, since ��,� and ��,� are odd, we have ��������,�� = ��������,�� = 0	(� ≥
0). Finally, Theorem 3.1 and Corollary 3.2 allow us to get 

 

 

 

Table 3. The first values of ��(� = 0, 2, … ,10) for ��,� and ��,�.   

 
Theorem 3.4 Let � be a primitive character modulo � ≥ 3. Then for all � ∈ ℝ� we have 

1. If �(−1) = +1 and � ≥ 1: 

|�����(�, �)| ≤ |�����(�)|. 

2. If �(−1) = −1 and � ≥ 0: 

|���(�, �)| ≤ |���(�)|. 

 �� �� �� �� �� ��� 

��,�

��,�
 �

�

�
∓

�

�
� 

�

�
±

�

�
� �

��

���
∓

��

���
� 

���

���
±

���

����
� �

����

�����
∓

����

������
� 

������

�������
±

������

�������
� 
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Proof. 1. Let �(−1) = +1, � ≥ 1 and � ∈ ℝ�. Then from the first formula of (2.4) we have 

|�����(�, �)| =
|�(�)|

�
�

�

2�
�

����

��
�̅(�)

���
cos �

2���

�
�

��

���

�. 

If we put �̅(�) = �(�) + ��(�) for (� ≥ 1), then we get 

�
�̅(�)

���
cos �

2���

�
�

��

���

= �(�) + ��(�), 

where 

�(�) = �
�(�)

���
cos �

2���

�
� ,

��

���

	and	�(�) = �
�(�)

���
cos �

2���

�
� ,

��

���

 

from which we can write 

|�����(�, �)| =
|�(�)|

�
�

�

2�
�

����

���(�)�
�

+ ��(�)�
�
. 

On the other hand we have 

|�����(0, �)| 	=
|�(�)|

�
�

�

2�
�

����

��
�̅(�)

���

��

���

� =
|�(�)|

�
�

�

2�
�

����

��
�(�)

���
+ � �

�(�)

���

��

���

��

���

�

=
|�(�)|

�
�

�

2�
�

����

���
�(�)

���

��

���

�

�

+ ��
�(�)

���

��

���

�

�

. 

Now, we wish to prove that 

��(�)�
�

≤ ��
�(�)

���

��

���

�

�

,			and		��(�)�
�

≤ ��
�(�)

���

��

���

�

�

. 

Let � = ∑
�(�)

���
��
��� . Then ��(�)�

�
− �� = (�(�) − �)(�(�) + �), so that   

�(�) − � = � �
�(�)

���
�cos �

2���

�
� − 1��

��

���

, �(�) + � = � �
�(�)

���
�cos �

2���

�
� + 1��

��

���

 

which are absolutely convergent series, i.e. 

��(�)�
�

− �� = � ��
�(�)

���
�

�

�cos� �
2���

�
� − 1�� ≤ 0.

��

���

 

By the same, we can show that ��(�)�
�

≤ �∑
�(�)

���
��
��� �

�

. Thus 

|�����(�, �)| ≤ |�����(0, �)| = |�����(�)|. 
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2. Let �(−1) = −1 and � ≥ 0. Then by the same reasoning as above we get the second 
formula. 

     Now, let us rewrite the formula (1.2) by using the numbers ��(�).  

Theorem 3.5 Let � be a primitive character modulo � ≥ 3. 

1. If �(−1) = +1 and � ≥ 1 then: 

�(2�, �̅) = (−1)�
�

�(�)
�
2�

�
�

����

�����(�). 

2. If �(−1) = −1 and � ≥ 0 then: 

�(2� + 1, �̅) = (−1)���
�

�(�)
�
2�

�
�

��

���(�). 

Proof. This follows directly by taking � = 0 in the first formula of (2.4) and � = 0 in the last 
formula of (2.5), taking into consideration that ��(0, �) = ��(�). 

The following corollary gives the relationship between the numbers ����(�) and the 
generalized Bernoulli numbers ��(�). 

Corollary 3.6 Let � be a primitive character modulo � ≥ 3. 

1. If �(−1) = +1 and � ≥ 1 then: 

�����(�) =
−1

(2�)!
���(�). 

2. If �(−1) = −1 and � ≥ 0 then: 

���(�) =
1

(2� + 1)!
�����(�). 

Proof. This follows directly from Theorem 3.5 and the formula (1.2). 

     The above corollary allows us to rewrite the formula (1.1) as: 

Corollary 3.7 Let � be a primitive character modulo � ≥ 3. 

1. If �(−1) = +1 and � ≥ 0 then: 

�(−(2� + 1), �) = (2� + 1)! �����(�). 

2. If �(−1) = −1 and � ≥ 0 then: 

�(−2�, �) = −(2�)! ���(�). 

     As an application, the following theorem gives explicit formulas for sums related to the 
generalized Bernoulli numbers. 

Theorem 3.8 Let � be a primitive character modulo � ≥ 3.  

1. If �(−1) = +1 and � ≥ 1 then: 
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�
������

2� − 2� + 1

�

���

�
2�
2�

� ���(�) =
1

�
� ����(�).

�

���

 

2. If �(−1) = −1 and � ≥ 0 then: 

�
������

2� − 2� + 1

�

���

�
2� + 1
2� + 1

� �����(�) =
1

�
� ������(�),

�

���

 

Proof. 1. Let �(−1) = +1 and � ≥ 1. Then from the formulas (3.1) we have 

�����(�) = − �
������

(2� − 2� + 1)!
�����(�) −

1

�(2�)!
� ����(�)

���

���

.

���

���

 

The Corollary 3.6 allows us to write 

���(�) = − �
������(2�)!

(2�)! (2� − 2� + 1)!
���(�) +

1

�
� ����(�),

���

���

���

���

 

so 

���(�) + �
������

(2� − 2� + 1)

(2�)!

(2�)! (2� − 2�)!
���(�) =

1

�
� ����(�),

���

���

���

���

 

from which 

�
������

2� − 2� + 1

�

���

�
2�
2�

� ���(�) =
1

�
� ����(�).

�

���

 

2. Let �(−1) = −1 and � ≥ 0. Then similarly we get the second formula. This proves the 
theorem. 

     As another application, the following theorem gives asymptotic formulas for �(�, �) in 
terms of the generalized Bernoulli numbers. 

Theorem 3.9 Let � be a primitive character modulo � ≥ 3 and let  �(�, �) be the Dirichlet �-
function corresponding to �. Let � and � be positive integers such that ℜ(�) = � > 1 − 2� if 
�(−1) = +1 and � > −2� if �(−1) = −1. Then 

�(�, �) = �
�(�)

��

��

���

+ �
���(�)

(2�)!

�

���

� �
� + �

(��)���
�

����

���

+ ��(�)		if	�(−1) = +1, 
 

(3.4) 

�(�, �) = �
�(�)

��

��

���

− �
��(�)

(��)�
− �

�����(�)

(2� + 1)!

�

���

� �
� + �

(��)���
�

����

���

						

+ ��(�)		if	�(−1) = −1, 

 

(3.5) 
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where  

|��(�)| ≤ |�����(�)| ×
|� + 2� − 1|

� + 2� − 1
,			and	|��(�)| ≤ |���(�)| ×

|� + 2�|

� + 2�
, 

with  

�����(�) = �����(�)
�(� + 1) ⋯ (� + 2� − 2)

(��)������
, 	���(�) = ���(�)

�(� + 1) ⋯ (� + 2� − 1)

(��)����
. 

Proof. First of all we can write 

�(�, �) = �
�(�)

��

��

���

+ �
�(�)

��

��

����

. 

It follows by using [5, Theorem 1.3] that: 

�
�(�)

��

��

����

= � �
�(�, �)

����
��

��

��

= −�
��(�)

(��)�
+ � �

��(�, �)

����
��

��

��

. 
(3.6) 

If �(−1) = +1, then ���(�) = 0(� ≥ 0). Integrating by parts 2� − 1 times the integral in the 
right hand side of (3.6), taking into consideration that ��(��, �) = ��(�), we obtain: 

�(�, �) = �
�(�)

��

��

���

− ��(�)
�

(��)���
− ��(�)

�(� + 1)(� + 2)

(��)���
− ⋯

− �����(�)
�(� + 1)(� + 2) ⋯ (� + 2� − 2)

(��)������

+ �(� + 1)(� + 2) ⋯ (� + 2� − 1) �
�����(�, �)

�����
��

��

��

. 

Now Corollary 3.6 and the formula (3.7) imply the formula (3.4) with: 

��(�) = �(� + 1)(� + 2) ⋯ (� + 2� − 1) �
�����(�, �)

�����
��

��

��

. 

According  to Theorem 3.4, we have  

��(�) ≤ |�(� + 1)(� + 2) ⋯ (� + 2� − 1)| × |�����(�)| ��
1

�����
��

��

��

� 

= �
�(� + 1)(� + 2) ⋯ (� + 2� − 1)�����(�)

(��)������
�
|� + 2� − 1|

� + 2� − 1
 

 

 
 
 

(3.7) 

																								= |�����(�)| ×
|� + 2� − 1|

� + 2� − 1
. 

If �(−1) = −1, then �����(�) = 0(� ≥ 1). Integrating by parts 2� times the integral in the 
right hand side of (3.6), taking into consideration that ��(��, �) = ��(�), we obtain: 
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�(�, �) = �
�(�)

��

��

���

− ��(�)
�

(��)���
− ��(�)

�(� + 1)

(��)���
− ⋯

− ���(�)
�(� + 1)(� + 2) ⋯ (� + 2�)

(��)����

+ �(� + 1)(� + 2) ⋯ (� + 2�) �
���(�, �)

�������
��

��

��

. 

Now Corollary 3.6 and the formula (3.8) imply the formula (3.5) with: 

��(�) = �(� + 1)(� + 2) ⋯ (� + 2�) �
���(�, �)

�������
��

��

��

. 

According  to Theorem 3.4, we have 

��(�) ≤ |�(� + 1)(� + 2) ⋯ (� + 2�)| × |���(�)| ��
1

�������
��

��

��

� 

	= �
�(� + 1)(� + 2) ⋯ (� + 2� − 1)���(�)

(��)����
�
|� + 2�|

� + 2�

(3.8) 

	= |���(�)| ×
|� + 2�|

� + 2�
. 

This completes the proof. 
Remark 3.10 From [3, p.37] we have 

�(�, �) = � �1 −
�∗(�)

��
� �(�, �∗),

�|�

 

where �∗ is the unique primitive character which induces �. Thus �(�, �) can be expressed in 
terms of �(�, �∗), so one can use this fact to generalize above theorem to an arbitrary 
character �. 
Remark 3.11 One can use the first formula of (2.4) and the last formula of (2.5) to get 
another upper bound of ��(�) and of ��(�) as follows: 

��(�) ≤
2|�|√��(2�)

(2� + � − 1)(2�)��(��)�
� �

|� + �|

�
�

����

���

, 

and 

��(�) ≤
2|�|√��(2� + 1)

(2� + �)(2�)����(��)�
� �

|s + j|

N
� .

��

���

 

3. CONCLUSION
In this paper, we define complex numbers associated with a primitive Dirichlet character �,

and we use them to rewrite some known results as formulas (1.1) and (1.2). Also, we use 

them to give explicit formulas for sums related to the generalized Bernoulli numbers, as 

shown by the Theorem 3.8, and to give asymptotic formulas for �(�, �) in terms of the 

generalized Bernoulli numbers, as shown by the Theorem 3.9. 

Acknowledgements: The authors would like to thank the anonymous referee for their careful 
reading and valuable suggestions which certainly improved the readability of this paper. 
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Summary. The contamination game of a grid graph        is a dynamic variant of the 

domination, similar to the power domination. This standard is introduced by Haynes, 

Hedetniemi and Henning in 2002, which is initially defined as a basic domination for a set of 

vertices   in a graph  , and then a propagation of this domination in all vertices of  , while 

starting with  . On the other hand, the contamination phenomena in        is interpreted by 

an evolutionary automaton cellular, which aims to propagate viruses according to a given 

propagation rules. In this paper, we define a mathematical self-playing game called a 

contamination game based on the power domination, in which, we identify the minimum 

number of contaminant cells for       , called the contamination number and denoted 

         . 

1 INTRODUCTION 

Electric power systems need to be monitored in real-time. One way to achieve this task is 

to place phase measurement units at selected locations in the system. The power system 

monitoring problem is a combinatorial optimization problem that consists of minimizing the 

number of measurement devices to be put in an electric power system. The power system 

monitoring problem has been formulated as a graph theory domination problem by Haynes, 

Hedetniemi, Hedetniemi, and Henning in [1]. This problem is of somehow different flavor 

than standard domination type problems, since putting a phase measurement unit into a vertex 

of a graph can have global effects. For instance, if an electric power system can be modeled 

by a path, then a single measurement unit suffices to monitor the system no matter how long 

is the path. 

Let         be a connected graph. For a vertex   of  , let      denote the open 

neighbor-hood of  , and for a subset     let                  . We denote by     
the set monitored by  , defined algorithmically as follows [2]: 

Algorithm 1 Construction of a monitored set      

Input: Graph         and    . 

Output:      the monitored set by  . 

1: Initiate      ←       ; 

2: While there exists        such that                   do 

3:      ←         ; 
4: EndWhile; 

5: Return     ; 
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The set   is called a power dominating set of   if        and the power domination 

number, denoted by      , is the minimum cardinality of a power dominating set. 

Various papers have addressed the power domination number, in which they essentially 

concentrate on its algorithmic point of view (see [3], [4], [5], [6], [7] and [8]). This problem is 

proven to be NP-complete even when restricted to bipartite graphs, chordal graphs, planar 

graphs, circle graphs and split graphs [9]. In contrast, the problem can be solved in 

polynomial time for trees and interval graphs [10]. Dorfling and Henning obtained closed 

formulas for the power domination numbers of grid graphs [11]. This result is in striking 

contrast with the fact that a determination of such formulas for the usual domination number 

of grid graphs is an open problem [1]. Now, a natural description of a grid is a cartesian 

product of two paths. However, there exist other graph products such as the strong, the direct, 

and the lexicographic product [1]. Hence, it is natural to ask whether the power domination 

number can also be determined for these products of paths. 

In this paper we introduce a new variant of domination characterized as a virus-

contamination in grid graph       , which is defined in two steps: 

(1) Local domination for a few cells of       . 

(2) Propagation on all cells of        according to a given initial contamination rules. 

2 POWER CONTAMINATION ON THE GRID 

Let              be a grid graph, and    . The set   is said to be a contaminating 

set if a full contamination of        can be achieved from        and the power 

contamination number           is the minimum cardinality of a power contaminating set. 

In the following, we will illustrate the problem as a self-playing game, in order to deal with 

the problem of contamination in       . 

For a vertex   of       , let      and       denote, respectively, Moore neighborhood 

(see Fig.1(a)) and Von Neumann neighborhood (see Fig.1(b)) of  , extended to the cells at the 

edge of       . 

 

Figure 1: Moore and Von Newmann neighborhoods of the black cell. 
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2.1 Contamination rules in        

The contamination game of        can be seen as a cellular automaton, or a model where 

each state leads automatically to the next state from predefined rules. This game takes place 

on       , whose cells are considered by analogy as living cells, which can take two 

different states "sick" or "healthy". At each step, the state of any cell is determined by the 

state of its eight neighbors, in regards to a given initial contamination rules. The goal of this 

game is to find the minimum number of initial contaminated cells           , such that the 

entire grid is contaminated. This kind of contamination can be seen as an evolutionary cellular 

automaton, which models an epidemiological phenomenon, illustrating the propagation of 

viruses in living cells. 

The space of states is a two-dimensional grid of sick or healthy living cells. The chosen 

transition rule depends on the number and position of the contaminated living neighboring 

cells that surround a cell, it corresponds to Moore neighborhood. 

A cell   is contaminated by two sick cells    and    if one of the following conditions is 

fulfilled: 

(i)             , 

(ii)             and                  

The possible configurations which satisfy these conditions are given in Fig.2. 

 

Figure 2: The contamination rules of the blue cell. 

 

The following algorithm illustrates the contamination and spread process which yield the 

contaminated set  , according to the contamination rules: 

 

Algorithm 2 Construction of a contaminated set      
Input: Graph         and    . 

Output:      the subset of vertices contaminated by  . 

1: Initiate      ←  ; 

2: While there exists          such that (i) and (ii) are satisfied do 

3:      ←         ; 
4: EndWhile; 

5: Return     ; 
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2.2 Mathematical model 

Let    
   

 be the decision variable at the step  , 

 

   
   

  
                                                 

                                                                              

  

The goal of this game is to find the minimum number of contaminating cells  
 
         at 

the step 0, so that the entire grid is contaminated after    steps, according to Algorithm 2. 

The objective is the following: 

            
   

 

   

 

   

     
          

 
         

    

 

   

 

   

      

according to the contamination rules presented above, which are written as follows: 
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3 CONTAMINATION ON STRONG PRODUCT OF TWO PATHS 

A natural representation of a grid        is as the strong product of two paths      , 

such that (see Fig.3): 

(1) each cell of        is represented by a vertex   in      , 

(2) the neighboring between two cells in        is represented by an edge in      . 

 

Figure 3:        modeled as the strong product of paths. 

The number of neighboring of each cell in        represents the degree of the 

corresponding vertex in      , as shown in Fig.3. This implies that the virus-contamination 

on        is equivalent as on      . 

Fig.4 represents an optimal contamination of       . The red cells (equivalently the red 

vertices in      ) represent the contaminated cells in step 0. 

 

Figure 4:             . 

The evolution of the total contamination of the grid        is shown in Fig.5. 

Figure 5: The evolution of the total contamination of       .  

4 MAIN RESULTS 

Lemma 4.1. For any positive integer $m$, the contamination number of the path           is: 
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Proof. Let        , with               and for            ,        . In order to 

have a full contamination of   , we should deploy viruses on the extremities of the path,    and   , 

and then we deploy the viruses alternatively on   , according to the contamination rule Fig.2(d). Thus, 

we should deployed    
   

 
  viruses, which implies that         + 

 

 
  (see for instance Fig.6). 

Figure 6: Optimal contamination in    and    . 

 

Theorem 4.2. Let     be two positive integers. Then we have 

          

 
 
 

 
      

 

 
   

 

 
                                          

     
 

 
   

 

 
                                                               

  

Proof. Let us first observe that the minimum number of viruses contaminating the grid        is the 

same as       , simply rotate        through 
 

 
. For this reason, we assume throughout the proof 

that      .  

In the following we give a construction of a contaminant set with the given cardinality. We 

conjecture that the construction is optimal; therefore this upper bound gives the exact value. 

If      the contamination is achieved with the given cardinality, using Lemma 1. Suppose that 

       and set         . In order to have a full contamination, it suffices to decompose   

into    and   , such that          and           . The contamination of    and    

induces a full contamination of  . For that, we distinguish fourth cases: 

Case 1:   and   are even. 

Let     
  be a diagonal of       of order   and size    , such that            . The main 

diagonal   
 , which is a path, is fully contaminated using 

 

 
   viruses, according to Lemma 1. From 

the contamination rules defined above, more precisely Fig.2(f) and Fig.2(h), the parallel paths     
  of 

size     are fully contaminated. The contamination continues to spread according to the same rules 

until reaching the last diagonal. Thus we have a full contamination of           . 

Now we move to the contamination of  . To contaminate this latter it suffices to alternatively 

deploy 
   

 
 viruses on the first path from the top of  , starting by the last vertex according to the 

contamination rules Fig.2(d) and Fig.2(e). Hence, we get a full contamination of    , and then a full 

contamination of         , using 
 

 
   viruses (see Fig.7). 
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Figure 7: Contamination strategy in       . 

Case 2:   and   are odd. 

The contamination of   is done in two steps, as seen in the first case. A full contamination of 

      is attained by deploying alternatively  
 

 
 +1 viruses on the main diagonal of    using Lemma 

1 and the contamination rules Fig2(a), Fig.2 (f) and Fig.2(h). The contamination of    is obtained by 

deploying alternatively 
   

 
 viruses on the first path from the top of  , starting by the last vertex 

according to the contamination rules Fig.2 (d) and Fig.2(e). Hence, we get a full contamination of    , 

and then a full contamination of         , by using  
 

 
  

   

 
    

 

 
    viruses (see Fig.8). 

 

Figure 8: Contamination of      .  

Case 3:   odd and   even. 

As seen in the second case,    is fully contaminated by using  
 

 
     

 

 
 +1 viruses. To 

contaminate    it suffices to alternatively deploy  
   

 
  

 

 
  

 

 
  viruses on the first path from the 

top of  , starting with the second vertex of    then add a virus at the last vertex (see Fig.9). Hence, we 

have a full contamination of    , according to the contamination rules Fig.2(d) and Fig.2(e) and then a 

full contamination of         , using  
 

 
   

   

 
    

 

 
  . 

 

Figure 9: Contamination of      .  

Case 4:   even and   odd. 

The graph    is fully contaminated by using 
 

 
  , as seen in the first case. To contaminate    it 

suffice to alternatively deploy  
   

 
   

 

 
  

 

 
 viruses on the first path from the top of  , starting 

with the second vertex of    then add a virus at the last vertex (see Fig.10). Hence, we have a full 

contamination of    , according to the contamination rules Fig.2 (d) and Fig.2(e) and then a full 
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contamination of         , using 
 

 
  

   

 
     

 

 
   . 

 

Figure 10: Contamination of      .  

 

As a consequence of the above theorem, we can give the following Corollary. 

Corollary 4.3. For any positive integer  , we have: 

           
 

 
     

Our investigation therefore puts us in a position to conjecture the following result: 

Conjecture. Let     be two positive integers. Then we have 

          

 
 
 

 
      

 

 
   

 

 
                                          

     
 

 
   

 

 
                                                               

  

5 CONCLUSION 

In this work, we have introduced a new dynamic variant of domination, which has the same 

principle of unfolding as power domination. This type of domination can be interpreted as a biological 

phenomenon or an evolutionary social phenomenon, which is called a contamination game and takes 

place in the grid graph       . We identified an upper bound for the minimum number of 

contaminant cells            and conjectured that it gives the exact value. 
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Summary. This note considers some number theoretic properties of the orthonormal

Neyman polynomials which are related to Delannoy numbers and certain complex Delannoy 

numbers. 

1 INTRODUCTION 

Rayner and Best point out that “the concept of smooth goodness of fitness tests was 

introduced in Neyman (1937)” [22]. Goodness of fit concepts in general usually go back to 

Karl Pearson [20]. Rayner [21] further pointed out that Jerzy Neyman’s smooth alternative of 

order k to the uniform distribution on (0,1) has probability density for 

                       

   

                (1.1) 

where K(θ) is a normalising constant and the       are orthonormal polynomials (Freeman) 

related to the Legendre polynomials. 

It is the purpose of this note to consider some number theoretic properties of the      
polynomials (i = 0,1,2,3,4 in Rayner) which, for convenience, we label as Neyman 

polynomials. In Deveci and Shannon [9] complex-type k -Fibonacci numbers are defined and 

the relationships between the k -step Fibonacci numbers and the complex-type k -Fibonacci 

numbers are provided together with miscellaneous properties of the complex-type k -

Fibonacci numbers. In addition, they studied the complex-type k -Fibonacci sequence modulo 

m . Finally, they obtained the period of the complex-type 2 -Fibonacci sequences in the 

Dihedral group 2nD ,  2n  .

In this paper, we define the complex-type Delannoy numbers and then give the 

relationships between the Delannoy numbers and the complex-type Delannoy numbers. 

Furthermore, we study the complex-type Delannoy sequence modulo m . 
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2 NEYMAN POLYNOMIALS 

Rayner elsewhere lists the first five such polynomials and we add some more in order to 

build up a picture of patterns. To help with this we have slightly modified some aspects of his 

notation as in Bera and Ghosh [3]: 

      =      

      =         

      =              

      =                    

      =                              

      =                                    

      =                                              

Blinov and Lemeshko [4] have set out corresponding Legendre polynomials as, in effect, 

      =      

      =        

      =            

      =             

      =                      

3 NEYMAN TRIANGLE 

We assemble the absolute values of the polynomial coefficients into a triangle, as the row 

sums are all unity if we include the signed values of the coefficients. The row sums are in the 

right-most column, and the pertinent OIES references [23] are in the bottom row. 

1 1 

2 1 3 

6 6 1 13 

20 30 12 1 63 

70 140 90 20 1 321 

252 630 560 210 30 1 1683 

924 2772 3150 1680 420 42 1 8989 

A000984 A002457 A002544 A007744 A106440 A013613 --- A001850 

Table 1: Neyman triangle 

The leading diagonals in this table generate the sequence {1,2,7,26,101,404,1645,…} 

which does not seem to be in OEIS, but the anti-diagonals can related to OEIS sequences in 

Table 2(a). 
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1 1 1 1 1 1 1 1 A000012 

2 6 12 20 30 42 56 72 A002378 

6 30 90 210 420 756 1260 1980 A033487 

20 140 560 1680 4200 9240 18480 34320 A105939 

70 630 3150 11550 34650 90090 210210 450450 70xA000581 

Table 2(a): Anti-diagonals in Neyman triangle 

The patterns are clearer when we express the Neyman anti-diagonals as multiples of the 

first element in each row, as in Table 2 (b). The leading diagonal here yields a known 

sequence (A005809) as do the anti-diagonals (A001519), the odd Fibonacci numbers as a 

bisection of the Fibonacci sequence, but we shall not pursue these here. 

1 X 1 1 1 1 1 1 1 1 A000012 

2 X 1 3 6 10 15 21 28 36 A000217 

6 X 1 5 15 35 70 126 210 330 A000332 

20 X 1 7 28 84 210 462 924 1716 A000579 

70 X 1 9 45 165 495 1287 3003 6435 A000581 

A0….. 00012 05408 0384 000447 53134 02299 53135 53136 

Table 2(b): Anti-diagonals in Neyman triangle 

The leading diagonals in Table 2(a) generate the sequence {1,3,13,63,321,1683,8989,…} 

[A001850] the elements of which are the Central Delannoy numbers [2], so called because 

they constitute the central anti-diagonal in the infinite square Delannoy array [A008288] in 

Table 3. The leading anti-diagonal here is A005809. 

n↓ 

m→ 0 1 2 3 4 5 6 7 

0 1 1 1 1 1 1 1 1 

1 1 3 5 7 9 11 13 15 

2 1 5 13 25 41 61 85 113 

3 1 7 25 63 129 231 377 575 

4 1 9 41 129 321 681 1289 2241 

5 1 11 61 231 681 1683 3653 7183 

6 1 13 85 377 1289 3653 8989 19825 

7 1 15 113 575 2241 7183 19825 48639 

Table 3: Square Delannoy array 

The leading diagonals in this array generate the Pell numbers {1,2,5,12,29,…}, and, in the 

sense of this paper, Alladi and Hoggatt [1] further related these numbers to Tribonacci 

triangles.  When this array is turned clockwise through 45
0
 we have the Pell triangle.

We also see regular intersections (as common elements) among the row and column 

sequences, which is a topic worth exploring as in Stein [24] who found it necessary to 

examine the intersection of Fibonacci sequences in order to answer the question of whether 

every member of a variety is a quasigroup given that every finite member is [25]. 

The Central Delannoy numbers           can be expressed as 
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(3.1) 

and 

   
     

  
 

(3.2) 

in terms of the Neyman numbers, which would appear to be new. This suggests we consider 

in turn 

     

  
                           

which is A006442, the expansion of            
 

  , which is also related to the Delannoy 

numbers. Likewise A084768 is 

     

  
                                     

and so on. 

4 THE COMPLEX-TYPE DELANNOY NUMBERS 

Now we define a new sequence that we call the complex-type Delannoy sequence 

  ,iD m n  as follows: 

          
     

1 if 0 or 0,
,

1, , 1 1, 1 otherwise.

i

i i i

m n
D m n

i D m n i D m n D m n

 
 

       
         (1) 

Note that when m n a  , the complex-type Delannoy sequence   ,iD m n  is reduced to the 

central complex-type sequence   ,iD a a . 

A table for the values of the complex-type Delannoy numbers is given by below: 

 n↓ 

m→ 

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

 0 1 1 1 1 1 1 1 1  

 1 1 2i-1 -3 -2i-1 1 2i-1 -3 -2i-1  

 2 1 -3 -8i+1 13 16i+1 -19 -24i+1 29  

 3 1 -2i-1 13 34i-1 -63 -98i-1 141 194i-1  

 4 1 1 16i+1 -63 -160i+1 321 560i+1 -895  

 5 1 2i-1 -19 -98i-1 321 802i-1 -1683 -3138i-1  

 6 1 -3 -24i+1 141 560i+1 -1683 -4168i+1 8989  

 7 1 -2i-1 29 194i-1 -895 -3138i-1 8989 22146i-1  

Table 4: Square complex-type Delannoy numbers 
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From the definitions of the Delannoy numbers and the complex-type Delannoy numbers, we 

derive the following relations:  

i. For , 1m n   

 

       

       

       

       

1

2

3

2 1, 1 1, 1 , 1 mod 4 ,

2 1, 1 1, 1 , 2 mod 4 ,
,

2 1, 1 1, 1 , 3 mod 4 ,

2 1, 1 1, 1 , 0 mod 4 .

n i

n i

i

n i

n i

i D m n D m n n

i D m n D m n n
D m n

i D m n D m n n

i D m n D m n n







       

       

 
      


      

 

ii. For , 0m n  ,    , ,i iD m n D n m . 

iii. For , 0m n  ,        1, , 1 1 ,
ni iD n n D n n D n n      . 

It is well-known that a sequence is periodic if, after a certain point, it consists only of 

repetitions of a fixed subsequence. The number of elements in the repeating subsequence is 

the period of the sequence. 

The research on the conformity of a single term,  modna p , has a long history forming 

most known Pascal's oldest fractal problem, which was originally created by the parities of 

binomial coefficients 
n

k

 
 
 

; see for example, [5,6,7,8,10,12,14,16,17,18,29,30]. We now 

extend the concept to the complex-type Delannoy numbers. 

Consider the sequence  

         , 0, , 1, , 2, ,i i i iD m n D n D n D n  

where n  is a fixed positive integer and 0,1, 2,m  . 

If we reduce the sequence   ,iD m n  modulo  , taking least nonnegative residues, then 

we can get the repeating sequence, denoted by 

             , 0, , 1, , 2, ,i i i iD m n D n D n D n     

where   ,iD u n   is used to mean the thu element of the sequence    ,iD m n   modulo 

  for the positive integer constant n . 

We note here that the sequence    ,iD m n   has the same recurrence relation as in (1). 

Theorem 4.1. The sequence    ,iD m n   is periodic. 

Proof. It is clear that sequence    ,1iD m   is a constant sequence. Since the sequence 

   ,1iD m   is a constant sequence; that is, since it consists only the repetitions of a 

constant subsequence, we can say that the sequence    , 2iD m   is also a periodic 

sequence, using the recurrence relation in the sequence    ,iD m n  . Similarly, since the 
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sequences    ,1iD m   and    , 2iD m   are periodic; that is, they consist only the 

repetitions of constant sub-sequences, the sequence    ,iD m n   is also periodic. By a 

similar idea, we get the repeating sequences  

   ,1iD m  ,    , 2iD m  ,…,    , 1iD m n   

are periodic; that is, they consist only the repetitions of constant sub-sequences, using the 

recurrence relation in the sequence    ,iD m n  . Thus, this implies that the sequence 

   ,iD m n   is periodic.                                                                                                         □ 

Example 2.1. We have 

   
1, 1,1, 1,0, 1,0,2 1,0,2 1,1, 1,

,3 3
1, 1,1, 1,0, 1,0,2 1,0,2 1,1, 1,

i
i i i i i i

D m
i i i i i i

      
  

      
 

and its terms repeat so we get    ,3 3 12iL D m  , where the period of the sequence 

   ,iD m n   is denoted by    ,iL D m n  . 

Conjecture 4.1. Let p  be prime, let n  be a fixed positive integer and 0,1, 2,m  . If u  is 

the smallest positive integer such that        1, ,i u i uL D m n p L D m n p  , then 

       , ,i v v u i uL D m n p p L D m n p  . 

Theorem 4.2. Let 1  and 2   be positive integers with 1 2, 2   , then  

             1 2 1 2, , , , ,i i iL D m n lcm lcm L D m n L D m n    
 

. 

Proof. Let  1 2,lcm    . Then,  

           

       

, , , , 1

, , 1 0 mod

i i i i

i i

D m n L D m n D m n L D m n

D m n L D m n n

 

 

    
   

     
 

 

and 

           

       

, , , , 1

, , 1 0 mod

i i i i

k k

i i

k k

D m n L D m n D m n L D m n

D m n L D m n n

 

 

    
   

     
 

 

for 1,2k  . Using the least common multiple operation this implies that  

           

       

, , , , 1

, , 1 0 mod

i i i i

i i

k

D m n L D m n D m n L D m n

D m n L D m n n

 

 

    
   

     
 
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for 1,2k  . So we have        1, ,i iL D m n L D m n   and        2, ,i iL D m n L D m n  , 

which means that        1 2, , ,i ilcm L D m n L D m n  
 

 divides 

     1 2, ,iL D m n lcm   . We also know that 

                     

            

1 2 1 2

1 2

, , , , , , , , 1

, , , , 1 0 mod .

i i i i i i

i i i

k

D m n lcm L D m n L D m n D m n lcm L D m n L D m n

D m n lcm L D m n L D m n n

   

  

    
   

     
 

Then, 

                     

            

1 2 1 2

1 2

, , , , , , , , 1

, , , , 1 0 mod .

i i i i i i

i i i

D m n lcm L D m n L D m n D m n lcm L D m n L D m n

D m n lcm L D m n L D m n n

   

  

    
   

     
 

and it follows that      1 2, ,iL D m n lcm   divides 

       1 2, , ,i ilcm L D m n L D m n  
 

. Therefore, we have the following conclusions.    □ 

Corollary 4.1. Let v  and u  be positive integers. If 2vn  , then     1, 2 2i u u vL D m n    for 

2u v  . 

Corollary 4.2. Let n  be a positive integer and u  a positive integer such that 2u  . Then 

    1, 2 2i u uL D m n  . 

5 CONCLUDING COMMENTS 

Lavers’ Lemma 5 [15] suggests a way to generalize (3.1) to produce corresponding 

pyramids, and Horadam [13] and Subba Rao [26,27,28] contain further ideas on the study of 

intersections of sequences. 
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Summary. A sequence  of strictly positive integers is said to be primitive if none of its terms 

divides the others. In this paper, we give a new proof of a result,  conjectured by P. Erdős and 

Z. Zhang in 1993, on a primitive sequence whose the number of the prime factors of the 

termes counted with multiplicity is at most  . The objective of this proof is to improve the 

complexity, which helps to prove this conjecture. 
 

1.  INTRODUCTION 

A sequence   of strictly positive integers is said to be primitive if none of its terms divides 

the others. We define the degree of   by                      where      is the 

number of prime factors of  counted with multiplicity, we take          if       or  . 

Erdős      showed that for a primitive set  ,   
 

          . Later in    , Erdős asked if is 

true that for any primitive sequence    
 

 
 

     
 

          

 
 

     
          

          

 

where   denotes the set of prime numbers. After a few years, Zhang    , proved the 

following: 

  Theorem. For any primitive sequence   whose the number of the prime factors of the 

termes counted with multiplicity is at most  , we have 

 

 
 

     
 

          

 
 

     
          

          

 

 In our work, by using the new estimations of the n-th prime number, we simplify the 

complexity (the number         decreased to   ). Throughout the paper we denotes by 

   the m-th prime number and we put       
 

          where,        if         . 
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For a primitive sequence   and    , we pose 

 

          the prime factors of   are       
  

                                                        

  
    

 

  
     

                                              

 

Clearly, the union      
 

     is disjoint and       
           when   is finit. Our 

method based on the fact that a primitive sequence   does not contain simultaneously    and 

  
 . 

 

2.  MAIN RESULTS 

We need the following lemmas. 

 

Lemma 2.1 Let     be an integer, put                      then  

 

                                                                                                                   

                                                                                              

                                                                                                             
 

where         and        . 

 

Proof. Consider the function   defined on N  by  

 

       
  

 
                          

 

then according to (1), we have            where  

 

              
         

    
   

 

 the study of the real function              gives us               , then   

        , which is equivalent to  

 

                          . 

 

 A computer calculation shows that for          , we have 

 

              
 

and on the other hand we have                           where           ,                    
therefore the inequality (3) is verified for     . This completes the proof. 
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Lemma 2.2  For     and          , we have  

 

 
 

            
 

 

          
             

  

 

where                                         . 

 

Proof. Put                
 

                                    

                                                                        
 

It is clear that for     and           we have              and 

 

                   
 

 
                                    

                                                                                                                 

                                                                                               
 

Now Put 

 

       
 

            
             

  

 

By (1) and (2) we have, for     and            
 

                                             

 

Since  7!             increases for    , we have  

 

         
  

                              

 

 

  

 

use the change of variable         we obtain  

 

         
  

                 

 

    

                          

 

Since, for       ,  
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then 

         
   

 
      

        

                 

 

    

  

 

by setting        and             we get  

 

         
       

                

 

  

  

 

For     and           we put 

 

      
 

          
, 

 

then according to (3) and (4) we have  

 

        
 

                         
 

                 
 

             

  
  

       
 

 

  

 

 

We have for     and             
 

           
                      

 

So, for     and            we have                 i.e. 

 

                         
 

A computer calculation gives for       and            
 

       
 

            

 

             

                                                       

  
 

            

 

             

 
 

             

         

 

This completes the proof. 

 

Lemma 2.3 Let     be fixed and let      be primitive with            For 

                   we have  
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Proof. For     and              put  

 

       
 

              
              

   

     

 

By induction on         If          and       we have              
        and       when      then by lemma 2 we get  

 

       
 

              
   

   

 
 

            
             

 
 

          
  

 

If            and          we know that         
  is disjoint  so, 

 

                     

   

  
      

   

 

We have two cases: if            then 

 

        
 

            
                                                                                                 

 

if            then  

 

         
 

                    
  

      

 

        
 

  
                   

       
    

 

since              and                 we have  

 

            
 

        
         

          
    

 

thus  
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So, from (7), (8) and lemma 2 we obtain 

 

      
 

          
         

        

 

For     we get the inequality (6), which ends the proof. 

 

Proof of theorem 2.4 Let   be fixed and let               be subsequence of      

where         Put         the number of primes   ; then           
  is disjoint 

and           
          Let        we distinguish the two following cases:  

case 1: we suppose that    
     i.e. ,   

    
    If          then     

   
 

       
  and 

if      
    then  

 

    
   

 

  
 

 

             
    

  

 

 

where   
    

   and      
        

       
so, according to (6), we get  

 

 
 

             
      

 
 

        
 

 

     
         

    
    

 

therefore  

 

    
   

 

       
                                                                                              

 

Case 2: if    
     since   is a primitive sequence then      

   so,       
     

       
i.e. , 

 

    
     

     
 

            
  

 

Thus 
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And from (9) we have      
   

 

       
 for        

Then 

 

    
   

 

       
                                                                                          

 

thus, by (9) and (10) we get  

 

      
 

       
 

     

 

 

This completes the proof. 

 

3.  CONCLUSION 

Using a new estimate of n-th prime with appropriate division of primitive sequence lead us to 

simplify the complexity. It would of interest to apply  the obtained result  to study the Erdős 

conjecture for primitive sequences of higher degree. 
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Summary. In this paper, we generalize the concept of homomorphism from BE-semigroups 
to generalized BE-semigroups. In order to show the existence, we construct some examples. 
Furthermore, we characterize generalized BE-semigroups by using homomorphism. In 
particular, we show that through every homomorphism, we may get factor generalized BE-
semigroup. 

1    INTRODUCTION 

 Two classes of abstract algebras had been defined by Tanaka and Iseki. These are called 
BCK-algebras [1] and BCI-algebras [2]. It is well known that every BCK-algebra is a BCI-
algebra, i.e. in other words, BCI-algebra is a generalization of a BCK-algebra. Moreover, 
Neggers and Kim [3] introduced the idea of a d-algebra which is a generalized structure for a 
BCK-algebra. Furthermore, Jun et al. [4] defined a new class of an abstract algebra, named as 
a BH-algebra. It is known that a BH-algebra is a generalized structure of BCK and BCI-
algebras. Later on, H.S. Kim and Y. H. Kim [5] introduced another generalized structure of a 
BCK-algebra known as a BE-algebra. The authors of [5] provided equivalent conditions for 
the filters in a BE-algebra and for this they used the concept of upper sets. Again in [6], Ahn 
and So defined ideals in BE-algebras and explored a number of associated properties of such 
ideals. The authors of [6, 7] also discussed upper sets and generalized upper sets and 
characterized them by different properties. In [8], Ahn and Kim combined two structures, i.e. 
BE-algebra and semigroup and defined the structure of a BE-semigroup. In the research 
article [9], the author introduced the idea of BE-homomorphisms of BE-semigroups and 
characterized BE-semigroups by the properties of BE-homomorphisms. Moreover, he 
introduced the concept of factor self-distributive BE-semigroups and investigated some of 
their properties. Recently the authors of [10] have given a new generalization of a BE-algebra 
known as PSRU-algebra. They have discussed left (resp. right) ideal as well as filter in the 
same structure and investigated a relationship between left ideal and filter.  

2    PRELIMINARIES 

 In this portion, we discuss generalized BE-semigroup which is a generalization of a BE-
semigroup. We give some examples and discuss some of their properties. Furthermore, we 
discuss different classes of generalized BE-semigroups. Firstly, we are going to define 
generalized BE-algebra and for the definition, we refer the readers to [11]. 
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Definition 2.1 

Let     Ṟ be a set together with a binary operation “ ” and a constant “1Ṟ”, then it is said 
to be a generalized BE-algebra (shortly denoted by GBE-algebra) if the following conditions 
are satisfied: 

(i)   ⱱ   Ṟ, ⱱ   ⱱ = 1Ṟ, 

(ii)   ⱱ   Ṟ, ⱱ   1Ṟ = 1Ṟ, 

(iii)   ⱱ, ệ, ⱳ   Ṟ, ⱱ   (ệ   ⱳ) = ệ   (ⱱ   ⱳ).    

The example which is given below shows the existence of the above structure. 

Example 2.2 [11]  

Let Ẃ = {1Ẃ, 2, 3} be a set and “ ” is defined in Ẃ in the following table. 

    Then (Ẃ;  , 1Ẃ) is a GBE-algebra. 

Note that in GBE-algebra (Ṟ;  , 1Ṟ), we define a relation “ ’’ by ự ≤ ʂ   ự   ʂ = 1Ṟ. 
Throughout this paper, we shall always assume that ự ≤ ʂ and ʂ ≤ ự implies that ự = ʂ. Now 
one can easily see that the following identities are true in a GBE-algebra.  

(i) ự   (ʂ   ự) = 1Ṟ, 

(ii) ự   ((ự   ʂ)   ʂ) =1Ṟ.   

We now have the following definition which is taken from [11]. 

Definition 2.3 

A GBE-algebra (Ủ;  , 1Ủ) is said to be self-distributive if   ự, ệ, ṱ   Ủ,  

 ự   (ệ   ṱ) = ( ự   ệ)   (ự   ṱ). 

     Let us give an example in order to show the existence of a self-distributive GBE-algebra. 

Example 2.4 [11] 

Assume that Ẃ = {1Ẃ, 2, 3} be a set and “ ” is defined in Ẃ in the following table: 

1Ẃ 2 3 
1Ẃ 1Ẃ 1Ẃ 1Ẃ 
2 1Ẃ 1Ẃ 3 
3 1Ẃ 2 1Ẃ 
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    Then Ẃ is a self-distributive GBE-algebra. 

     Further, we have the following definitions which are taken from [11]. 

Definition 2.5 

A GBE-algebra (L;  , 1L) is said to be transitive if for any ự, ñ, ⱱ   L 

ñ   ⱱ ≤ (ự   ñ)   (ự    ⱱ). 

     Note that if (L;  , 1L) is a GBE-algebra which is self-distributive, then (L;  , 1L) must be 
transitive.  

Definition 2.6 

Let us suppose that (Ⱳ,  ) and (M, *) are two GBE-algebras. A mapping    : Ⱳ   M is 
said to be a homomorphism from Ⱳ into M if  

  (ệ   ṱ) =   (ệ) *   (ṱ)    ệ, ṱ   Ⱳ.  

Definition 2.7    

Let we have a non-empty set Ҝ along with two binary operations “⨀” and “ ” and a 
constant “1Ҝ”, then Ҝ is known to be a GBE-semigroup if it satisfies the conditions given 
below:  

(i) (Ҝ; ⨀) is a semigroup,  

(ii) (Ҝ;  , 1Ҝ) is a GBE-algebra, 

(iii) “⨀” is distributive (left and right) over “ ”, that is, 

ệ ⨀ (ṱ   ⱳ) = (ệ ⨀ ṱ)   (ệ ⨀ ⱳ) and (ệ   ṱ) ⨀ ⱳ = (ệ ⨀ ⱳ)   (ṱ ⨀ ⱳ)   ệ, ṱ, ⱳ   Ҝ. 

Let us give some examples. 

Example 2.8 [11] 

Let Ⱳ = {1Ⱳ, 2, 3, 4} and define “⨀” and “ ” in Ⱳ in the following tables: 

 

 

  1Ẃ 2 3 
1Ẃ 1Ẃ 1Ẃ 1Ẃ 
2 1Ẃ 1Ẃ 3 
3 1Ẃ 2 1Ẃ 
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    Then (Ⱳ; ⨀,  , 1Ⱳ) is a GBE-semigroup.  

Example 2.9 

Let Ủ = {1Ủ, 2, 3, 4, 5} and define “⨀”and ‘‘ ’’ in Ủ in the following tables: 

   

 

 

 

 

 

 

 

 

    Then (Ủ; ⨀,  , 1Ủ) is a GBE-semigroup. 

Let us give some properties. 

Proposition 2.10 [11] 

The following are true for a GBE-semigroup (Ẃ; ⨀,  , 1Ẃ).  

(i) 1Ẃ ⨀ ệ = ệ ⨀ 1Ẃ = 1Ẃ   ệ   Ẃ,  

(ii) ệ   ʂ   ệ ⨀ ⱱ   ʂ ⨀ ⱱ, ⱱ ⨀ ệ   ⱱ ⨀ ʂ    ệ, ʂ, ⱱ   Ẃ.    

⨀ 1Ⱳ 2 3 4 
1Ⱳ 1Ⱳ 1Ⱳ 1Ⱳ 1Ⱳ 
2 1Ⱳ 1Ⱳ 1Ⱳ 1Ⱳ 
3 1Ⱳ 1Ⱳ 1Ⱳ 2 
4 1Ⱳ 1Ⱳ 1Ⱳ 1Ⱳ 

  1Ⱳ 2 3 4 
1Ⱳ 1Ⱳ 1Ⱳ 1Ⱳ 1Ⱳ 
2 1Ⱳ 1Ⱳ 1Ⱳ 1Ⱳ 
3 1Ⱳ 2 1Ⱳ 2 
4 1Ⱳ 1Ⱳ 1Ⱳ 1Ⱳ 

⨀ 1Ủ 2 3 4 5 
1Ủ 1Ủ 1Ủ 1Ủ 1Ủ 1Ủ 
2 1Ủ 1Ủ 1Ủ 1Ủ 1Ủ 
3 1Ủ 1Ủ 1Ủ 1Ủ 1Ủ 
4 1Ủ 1Ủ 1Ủ 1Ủ 1Ủ 
5 1Ủ 1Ủ 1Ủ 1Ủ 5 

  1Ủ 2 3 4 5 
1Ủ 1Ủ 3 3 4 1Ủ 
2 1Ủ 1Ủ 1Ủ 4 1Ủ 
3 1Ủ 1Ủ 1Ủ 1Ủ 5 
4 1Ủ 2 3 1Ủ 1Ủ 
5 1Ủ 1Ủ 1Ủ 1Ủ 1Ủ 
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We are now going to define unit divisor. For the following definition we refer the readers 
to [11]. 

Definition 2.11  

In a GBE-semigroup (Y; ⨀, , 1Y), 1Y   ⱱ   Y  is a left unit divisor if   1Y   ʂ   Y such that        
ⱱ ⨀ ʂ = 1Y.  Similarly we may define a right unit divisor. 

Let 1Y   ⱱ   Y, which is right as well as left unit divisor of Y, then it is called a unit divisor 
of Y. 

3    MAIN RESULTS THROUGH HOMOMORPHISMS 

In this section, we discuss factor GBE-semigroups through homomorphism. We show that 
every homomorphism defines a congruence relation on every GBE-semigroup. Once we get 
the said congruence relation, we shall get factor GBE-semigroup.    

Definition 3.1 

Let us suppose that (Ҝ; ⨀,  , 1Ҝ) and (M; ʘ, *, 1M) are two GBE-semigroups. A mapping          
  : Ҝ   M is said to be a homomorphism if     

 (ⱱ   ʂ) =  (ⱱ) *  (ʂ) and  (ⱱ ⨀ ʂ) =  (ⱱ) ʘ  (ʂ) for all ⱱ, ʂ   Ҝ.            

A homomorphism   is called a monomorphism (resp. epimorphism) if it is one-one (resp. 
onto). A homomorphism which is both one-one and onto is called an isomorphism. For any 
homomorphism  : Ҝ → M, the set {ṅ   Ҝ :  (ṅ) = 1M} is called the kernel of   and is 
represented by the symbol Ker ( ) while the set { (ṅ) : ṅ   Ҝ} is known as the image of   
and is represented by Im( ). The set of all homomorphisms from a GBE-semigroup Ҝ to a 
GBE-semigroup M is denoted by Hom(Ҝ, M).   

Let us give some examples in order to show the existence of homomorphisms.  

Example 3.2 

1) The identity function on any GBE-semigroup is always a homomorphism.  
Moreover, as the identity function is always a bijective function so it follows that 
the identity function on any GBE-semigroup is an isomorphism. 

2) Let T = {1T, 2, 3, 4} and Ṅ = {1Ṅ, 2, 3, 4, 5} be the sets with the following Cayley 
tables: 
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    Then (T; ⨀,  , 1T) and (Ṅ; ʘ, *, 1Ṅ) are GBE-semigroups.  

Define    : T → Ṅ by 

 (1T) = 1Ṅ,  (2) = 1Ṅ,  (3) = 1Ṅ and  (4) = 4. 

    Then we can easily check that   is a homomorphism from (T; ⨀,  , 1T) into (Ṅ; ʘ, *, 1Ṅ).  

     Let us state and prove some properties. The properties are true in case of BE-semigroups. 
We convert them into GBE-semigroups. 

Proposition 3.3  

Let   : L → Ҝ be a homomorphism of GBE-semigroups (L; ⨀,  , 1L) and (Ҝ; ʘ, *, 1Ҝ). 
Then 

(i)   (1L) = 1Ҝ, 

(ii) Let ṱ   ⱳ =1L for all ṱ, ⱳ   L, then  (ṱ) *   (ⱳ) = 1Ҝ.  

ʘ 1Ṅ 2 3 4 5 
1Ṅ 1Ṅ 1Ṅ 1Ṅ 1Ṅ 1Ṅ 
2 1Ṅ 1Ṅ 1Ṅ 1Ṅ 1Ṅ 
3 1Ṅ 1Ṅ 1Ṅ 1Ṅ 1Ṅ 
4 1Ṅ 1Ṅ 1Ṅ 1Ṅ 1Ṅ 
5 1Ṅ 1Ṅ 1Ṅ 1Ṅ 5 

* 1Ṅ 2 3 4 5 
1Ṅ 1Ṅ 3 3 1Ṅ 1Ṅ 
2 1Ṅ 1Ṅ 1Ṅ 4 1Ṅ 
3 1Ṅ 1Ṅ 1Ṅ 1Ṅ 5 
4 1Ṅ 2 3 1Ṅ 1Ṅ 
5 1Ṅ 1Ṅ 1Ṅ 1Ṅ 1Ṅ 

⨀ 1T 2 3 4 
1T 1T 1T 1T 1T 
2 1T 1T 1T 1T 
3 1T 1T 1T 2 
4 1T 1T 1T 1T 

  1T 2 3 4 
1T 1T 1T 1T 1T 
2 1T 1T 1T 1T 
3 1T 2 1T 2 
4 1T 1T 1T 1T 
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Proof. 

Here   (1L) =   (1L   1L) =   (1L) *   (1L) = 1Ҝ. Therefore (i) is satisfied. Let ṱ, ⱳ   L and          
ṱ   ⱳ = 1L. By using (i), we have   (ṱ) *   (ⱳ) =   (ṱ   ⱳ) =   (1L) = 1Ҝ.     

Proposition 3.4 

Assume that (Ṯ; ⨀,  , 1Ṯ) and (M; ʘ, *, 1M) are GBE-semigroups. Let   : Ṯ → M be a 
homomorphism. Then   is 1-1  Ker ( ) = {1Ṯ}.   

Proof. 

Let   : Ṯ → M is a monomorphism. Let ẽ    Ker ( )      (ẽ) = 1M     (ẽ) =   (1Ṯ), by 
Proposition 3.3. As    is 1-1, so it follows that ẽ = 1Ṯ. Thus Ker ( ) = {1Ṯ}.  

Conversely, suppose that Ker ( ) = {1Ṯ}. We need to show that    is 1-1. For this let ẽ, ⱱ  
  Ṯ be such that   (ẽ) =   (ⱱ)     (ẽ) *   (ⱱ) =   (ⱱ) *   (ⱱ)     (ẽ   ⱱ) = 1M   ẽ   ⱱ   
  Ker ( ) = {1Ṯ}   ẽ   ⱱ = 1Ṯ   ẽ   ⱱ. Similarly, again taking   (ẽ) =   (ⱱ)                   
   (ẽ) *   (ẽ) =   (ⱱ) *   (ẽ)  1M =   (ⱱ   ẽ)   ⱱ   ẽ   Ker ( ) = {1Ṯ}   ⱱ   ẽ = 1Ṯ     
ⱱ ≤ ẽ. It follows that ẽ = ⱱ      is a monomorphism.   

Proposition 3.5 

Let us suppose that    : Ⱳ → M is a monomorphism of two GBE-semigroups                
(Ⱳ; ⨀,  , 1Ⱳ) and (M; ʘ, *, 1M). Let ⱱ   Ⱳ be a unit divisor of Ⱳ. Then   (ⱱ) is a unit 
divisor of M.  

Proof. 

Suppose 1Ⱳ    ⱱ   Ⱳ is a left unit divisor of Ⱳ, then   1Ⱳ   t   Ⱳ such that ⱱ ⨀ t = 1Ⱳ 
    (ⱱ ⨀ t) =  (1Ⱳ)     (ⱱ) ʘ   (t) = 1M, as   (1Ⱳ) = 1M and   is a homomorphism. It 
implies that   (ⱱ) is a left unit divisor of M. Similarly let 1Ⱳ  ≠ ⱱ   Ⱳ be a right unit divisor 
of Ⱳ, then   1Ⱳ  ≠ t   Ⱳ   t ⨀ ⱱ = 1Ⱳ     (t ⨀ ⱱ) =   (1Ⱳ)     (t) ʘ   (ⱱ) = 1M, as        
  (1Ⱳ) = 1M and   is a homomorphism. It implies that   (ⱱ) is a right unit divisor of M. This 
proves what we wanted.    

Proposition 3.6  

Suppose that (L; ⨀1,  1, 1L), (Ḿ; ⨀2,  2, 1Ḿ) and (Ṅ; ⨀3,  3, 1Ṅ) are GBE-semigroups. Let 
    Hom(L, Ḿ) and suppose that     Hom(Ḿ, Ṅ), then   o     Hom(L, Ṅ).  

Proof.  

Let  : L   Ḿ and  : Ḿ   Ṅ be homomorphisms, then we show   o  : L   Ṅ is a 
homomorphism. Let ⱱ, ệ   L, then                                     

                                           o   (ⱱ  1 ệ) =   (  (ⱱ  1 ệ)) 

                                                                 =   ( (ⱱ)  2   (ệ))         (∵   is a homomorphism) 
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                                                                =   ( (ⱱ))  3   ( (ệ))    (∵   is a homomorphism) 

                                                                =   o  (ⱱ)  3   o  (ệ).   

Similarly,    

                                         o   (ⱱ ⨀1 ệ) =   (  (ⱱ ⨀1 ệ)) 

                                                                =   (  (ⱱ) ⨀2  (ệ))       (∵    is a homomorphism)      

                                                                =   ( (ⱱ)) ⨀3   (  (ệ)) (∵   is a homomorphism) 

                                                                =   o   (ⱱ) ⨀3   o   (ệ).   

It follows that  o   : L  Ṅ is a homomorphism or in other words,   o     Hom(L, Ṅ).        

Theorem 3.7                        

Let us assume that (Ⱳ; ⨀,  , 1Ⱳ) and (M; ʘ, *, 1M) are two GBE-semigroups and                         
    Hom(Ⱳ, M) and furthermore suppose that Ⱳ is transitive, then  (Ⱳ) is transitive. 

Proof.  

     Let  (ệ),  (ṙ),  (ⱳ)    (Ⱳ). Then 

( (ệ) *  (ⱳ)) * (( (ệ) *  (ṙ)) * ( (ệ) *  (ⱳ))) =   (ṙ   ⱳ) * ( (ệ   ṙ) *  (ệ   ⱳ)) 

                                                                                    =   (ṙ   ⱳ) *   ((ệ   ṙ)   (ệ   ⱳ))  

                                                                                    =   ((ṙ   ⱳ)   ((ệ     ṙ)   (ệ   ⱳ))) 

                                                                                    =   (1Ⱳ) 

                                                                                   = 1M.   

Hence, ( (ệ) *  (ⱳ))   (( (ệ) *  (ṙ)) * ( (ệ) *  (ⱳ))). Therefore,  (Ⱳ) is transitive. 

Theorem 3.8   

Let (Ҝ; ⨀,  , 1Ҝ) and (M; ʘ, *, 1M) be two GBE-semigroups. Assume that    : Ҝ   M is a 
monomorphism and  (Ҝ) is transitive, then Ҝ is transitive.    

Proof.       

Let us suppose that ṙ, ệ, ⱱ   Ҝ. Then ( (ệ) *  (ⱱ)) * (( (ṙ) *  (ệ)) * ( (ṙ) *  (ⱱ))) = 1M, 
and thus   ((ệ   ⱱ)   ((ṙ   ệ)   (ṙ   ⱱ))) = 1M implies that   ((ệ   ⱱ)   ((ṙ   ệ)   (ṙ   ⱱ))) =      
  (1Ҝ). As   is a monomorphism, so by Proposition 3.4, (ệ   ⱱ)   ((ṙ   ệ)   (ṙ   ⱱ)) = 1Ҝ.Thus, 
Ҝ is transitive.   
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Theorem 3.9  

Suppose (L; ⨀1,  1, 1L), (M; ⨀2,  2, 1M) and (N; ⨀3,  3, 1N) are GBE-semigroups. Let      
p: L   M be an epimorphism and ḡ: L   N a homomorphism. Further suppose that          
Ker (p)   Ker (ḡ), then   one and only one homomorphism ⱱ : M   N   ⱱ o p = ḡ, i.e. in 
other words the diagram   

                                                         L           p              M 

                                                                                    

                                                              ḡ                 ⱱ  

                                                                       N 

commutes. 

Proof. 

Let ʂ   M. As p is surjective so   ṅ   L   p (ṅ) = ʂ. Let us define a mapping 

ⱱ : M   N  by ⱱ (ʂ) = ⱱ (p (ṅ)) = ḡ (ṅ). 

Well-defined: Let ⱳ, ự   L. If ʂ = p (ⱳ) = p (ự) then, 1M = p (ⱳ)  2 p (ự). Now as p is a 
homomorphism, so it follows that 1M = p (ⱳ  1 ự). Hence, ⱳ  1 ự   Ker (p). As Ker (p)           

Ker (ḡ), we have 1N = ḡ (ⱳ)  3 ḡ (ự) = ḡ (ⱳ  1 ự). Similarly, we get ḡ (ự)  3 ḡ (ⱳ) = 1N. Thus, 
it follows that ḡ (ⱳ) = ḡ (ự)   ⱱ is well-defined. Furthermore, we prove that ⱱ is a 
homomorphism. Now assume ệ, ṱ   M, then   ⱳ, ự   L such that ệ = p (ⱳ) and ṱ = p (ự), as p 
is onto. Now we have,    

ⱱ (ệ ⨀2 ṱ) = ⱱ (p (ⱳ) ⨀2 p (ự)) 

                                                           = ⱱ (p (ⱳ ⨀1 ự))        (∵ p is a homomorphism) 

                                                                 = ḡ (ⱳ ⨀1 ự)              (∵ ⱱ (p (ṅ)) = ḡ (ṅ))  

                                                                 = ḡ (ⱳ) ⨀3 ḡ (ự)        (∵ ḡ is a homomorphism) 

                                                                 = ⱱ (p (ⱳ)) ⨀3 ⱱ (p (ự)) 

                                                                 = ⱱ (ệ) ⨀3 ⱱ (ṱ) 

and 

ⱱ (ệ  2 ṱ) = ⱱ (p (ⱳ)  2 p (ự)) 

                                                                 = ⱱ (p (ⱳ  1 ự))         (∵ p is a homomorphism) 

                                                                 = ḡ (ⱳ  1 ự)               (∵ ⱱ (p (ṅ)) = ḡ (ṅ))  

                                                                 = ḡ (ⱳ)  3 ḡ (ự)         (∵ ḡ is a homomorphism) 

59



S.Saleem, F.Hussain, B.Davvaz and M.T. Rahim. 

= ⱱ (p (ⱳ))  3 ⱱ (p (ự)) 

= ⱱ (ệ)  3 ⱱ (ṱ). 

Hence ⱱ is a homomorphism. 

Now 

ⱱ o p (ṅ) = ⱱ (p (ṅ)) = ḡ (ṅ)   ⱱ o p = ḡ. 

Uniqueness: 

Let ⱱ 1: M   N be homomorphism such that ⱱ 1o p = ḡ. 

Now

ⱱ 1o p (ṅ) = ḡ (ṅ) = ⱱ o p (ṅ)   ⱱ 1(p (ṅ)) = ⱱ (p (ṅ))   ⱱ 1(ʂ) = ⱱ (ʂ)   ⱱ 1 = ⱱ. 

Hence ⱱ is unique. 

Theorem 3.10 

Let us suppose that (L; ⨀1,  1, 1L), (M; ⨀2,  2, 1M) and (N; ⨀3,  3, 1N) are GBE-
semigroups. Let  : L   N be a homomorphism and  : M   N be a monomorphism. 
Further, suppose that Im( )   Im( ) then there is one and only one homomorphism
  : L   M such that   o   =  , i.e. the diagram 

 L  N 

   

   M 

commutes. 

Proof. 

For ᵶ   L, then   (ᵶ)   Im( )   Im( )     (ᵶ)   Im( ). Since   is a monomorphism so   
one and only one element m   M     (m) =   (ᵶ). Let us define a mapping  : L   M by      
  (ᵶ) = m, then   o   (ᵶ) =   (  (ᵶ)) =   (m) =   (ᵶ). It follows that   o   =  . Now in order 
to prove that   is a homomorphism, assume ⱳ, ȿ   L, then  

  (  (ⱳ  1 ȿ)) =   (ⱳ  1 ȿ))   (since   o   (ᵶ) =   (ᵶ)) 

=   (ⱳ)  3   (ȿ)           (since   is a homomorphism) 

=   (  (ⱳ))  3   (  (ȿ))           (since   (  (ᵶ)) =   (ᵶ)) 
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                                            =   (  (ⱳ)  2   (ȿ))                     (since   is a homomorphism) 

As   is a one-one so we have   (ⱳ  1 ȿ) =   (ⱳ)  2   (ȿ). Similarly, 

                          (  (ⱳ ⨀1 ȿ)) =   (ⱳ ⨀1 ȿ) 

                                            =   (ⱳ) ⨀3   (ȿ)                          (since   is a homomorphism)   

                                                 =   (  (ⱳ)) ⨀3   (  (ȿ)) 

                                            =   (  (ⱳ) ⨀2   (ȿ))                    (since   is a homomorphism) 

As   is a monomorphism so we obtain   (ⱳ ⨀1 ȿ) =   (ⱳ) ⨀2   (ȿ). Now let  1: L   M 

be a homomorphism such that   o  1=  . Now,   

  o  1(ᵶ) =   (ᵶ)  

      o  1(ᵶ) =   o   (ᵶ) 

                                                           ( 1(ᵶ)) =   (  (ᵶ)) 

                                                          1(ᵶ) =   (ᵶ)                (since   is a monomorphism) 

                                                          1 =  .  

Thus,   is unique.  

     We are now going to define left (resp. right) congruence relations in a GBE-semigroup. 

Definition 3.11 

Let (Ⱳ; ⨀,  , 1Ⱳ) be a GBE-semigroup and let   be a relation on Ⱳ, then   is known to be 
a left compatible relation if for all ệ, ṅ, ⱳ   Ⱳ   (ệ , ṅ)       (ⱳ ⨀ ệ, ⱳ ⨀ ṅ)     and      
(ⱳ   ệ, ⱳ   ṅ)    . In the same way, let   be a relation on a GBE-semigroup (Ⱳ; ⨀,  , 1Ⱳ), 
then   is known to be a right compatible relation if for all ệ, ṅ, ⱳ   Ⱳ   (ệ, ṅ)                  
(ệ ⨀ ⱳ, ṅ ⨀ ⱳ)     and (ệ   ⱳ, ṅ   ⱳ)    .    

Definition 3.12  

Let   be a relation on a GBE-semigroup (Ҝ; ⨀,  , 1Ҝ), then   is called compatible if for all 
ệ, ṅ, ⱱ, ʂ   Ҝ   (ệ , ṅ), (ⱱ , ʂ)       (ệ ⨀ ⱱ, ṅ ⨀ ʂ), (ệ   ⱱ, ṅ   ʂ)     .     

It should be noted that if a relation is left compatible as well as equivalence relation, then it 
is known to be a left congruence relation. Also note that if a relation is right compatible as 
well as equivalence relation, then it is known to be a right congruence relation. Furthermore, 
note that if a relation is compatible as well as equivalence relation, then it known to be a 
congruence relation. 

Let us give some examples in order to understand the above concepts. 
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Example 3.13                                                       

(i) It is obvious that   = Ⱳ   Ⱳ and   = {(ʂ, ʂ): ʂ   Ⱳ} are congruence relations on a          

     GBE-semigroup (Ⱳ; ⨀,  , 1Ⱳ).  

    (ii) Let Ṵ = {1Ṵ, 2, 3, 4} and the operations “ ” and “⨀” be defined as follows:  

 

 

 

 

    Then (Ṵ; ⨀,  , 1Ṵ) is a GBE-semigroup. Let   =     {(2, 1Ṵ), (1Ṵ, 2)}. Here   is a 
congruence relation on Ṵ. 

Let us state and prove some results. The results are true in case of semigroups and we 
convert them into GBE-semigroups. The following result gives us equivalent conditions for 
congruence relations in GBE-semigroups.   

Proposition 3.14 

     Let   be an equivalence relation on a GBE-semigroup (Ҝ; ⨀,  , 1Ҝ). Then the following 
are equivalent: 

(i)   is a congruence relation on the GBE-semigroup Ҝ.  

(ii)   is left and right congruence relation on the GBE-semigroup Ҝ.  

Proof. 

(i)   (ii) In order to prove that   is left as well as right congruence relation, assume that ệ, 
ñ, ⱱ   Ҝ such that (ệ, ñ)     . Now (ⱱ, ⱱ)    , because   is reflexive. As   is compatible, so it 
follows that (ⱱ ⨀ ệ, ⱱ ⨀ ñ), (ⱱ   ệ, ⱱ   ñ)    . It follows that   is a left congruence relation. 
Similarly, we can also prove that (ệ ⨀ ⱱ, ñ ⨀ ⱱ), (ệ   ⱱ, ñ   ⱱ)    . It follows that   is a right 
congruence relation.  

(ii)   (i) In order to prove that   is a congruence relation suppose ệ, ñ, ⱱ, ʂ   Ҝ   (ệ, ñ), 
(ⱱ, ʂ)    . Now (ệ ⨀ ⱱ, ñ ⨀ ⱱ), (ệ   ⱱ, ñ   ⱱ)    , because   is right compatible and             
(ñ ⨀ ⱱ, ñ ⨀ ʂ), (ñ   ⱱ, ñ   ʂ)    , because   is left compatible. By transitivity, it follows that 
(ệ ⨀ ⱱ, ñ ⨀ ʂ), (ệ   ⱱ, ñ   ʂ)    . It proves what we wanted.   

The below theorem confirms that every homomorphism gives us a congruence relation. 

 

⨀ 1Ṵ 2 3 4 
1Ṵ 1Ṵ 1Ṵ 1Ṵ 1Ṵ 
2 1Ṵ 1Ṵ 1Ṵ 1Ṵ 
3 1Ṵ 1Ṵ 1Ṵ 2 
4 1Ṵ 1Ṵ 1Ṵ 1Ṵ 

  1Ṵ 2 3 4 
1Ṵ 1Ṵ 1Ṵ 1Ṵ 1Ṵ 
2 1Ṵ 1Ṵ 1Ṵ 1Ṵ 
3 1Ṵ 2 1Ṵ 2 
4 1Ṵ 1Ṵ 1Ṵ 1Ṵ 
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Theorem 3.15  

Suppose (Ⱳ; ⨀,  , 1Ⱳ) and (T; ʘ, *, 1T) are two GBE-semigroups. Let ȟ: Ⱳ   T be a 
homomorphism. Then ȟ defines a congruence relation   on Ⱳ as follows: 

  = {(ʂ, ⱱ)   Ⱳ   Ⱳ: ȟ (ʂ) = ȟ (ⱱ)}.   

Proof. 

In order to prove that ȟ defines the above congruence relation   on Ⱳ, we need to prove 
that   is a compatible equivalence relation on Ⱳ. First, we prove that    is an equivalence 
relation on Ⱳ. 

Reflexive: 

As ȟ(ʂ) = ȟ(ʂ)   ʂ   Ⱳ, so it follows that (ʂ, ʂ)       ʂ   Ⱳ. Thus   is reflexive. 

Symmetric: 

Assume ʂ, ⱱ   Ⱳ   (ʂ, ⱱ)       ȟ(ʂ) = ȟ(ⱱ)   ȟ(ⱱ) = ȟ(ʂ)   (ⱱ, ʂ)    . Thus   is 
symmetric. 

Transitive: 

Let ʂ, ⱱ, ự   Ⱳ such that (ʂ, ⱱ), (ⱱ, ự)       ȟ(ʂ) = ȟ(ⱱ) and ȟ(ⱱ) = ȟ(ự). By transitive 
property of equality, it follows that ȟ(ʂ) = ȟ(ự)   (ʂ , ự)    . Thus   is transitive.  

We now show that   is a compatible relation on Ⱳ. Assume that ʂ, ⱱ, ự, ệ   Ⱳ   (ʂ, ⱱ),  
(ự, ệ)       ȟ(ʂ) = ȟ(ⱱ) and ȟ(ự) = ȟ(ệ).    

Now,  

ȟ(ʂ) ʘ ȟ(ự) = ȟ(ⱱ) ʘ ȟ(ệ) and ȟ(ʂ) * ȟ(ự) = ȟ(ⱱ) * ȟ(ệ) 

   ȟ(ʂ ⨀ ự) = ȟ(ⱱ ⨀ ệ) and ȟ(ʂ   ự) = ȟ(ⱱ   ệ) 

   (ʂ ⨀ ự, ⱱ ⨀ ệ) and (ʂ   ự, ⱱ   ệ)    .   

Hence, it follows that   is a compatible relation on Ⱳ. This completes the proof.    

We are now going to define congruence class and then discuss factor GBE-semigroup. 

Definition 3.16 

Let (W; ⨀,  , 1W) be a GBE-semigroup. If   is a congruence relation on W then we define 
for ự   W  

ự   = {ʂ   W: (ʂ, ự)    }  

which is called a congruence class corresponding to an element ự. Let W /   =               
{ự  : ự   W}, that is W /   consists of all congruence classes corresponding to the elements of 
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W. Our aim is to show that W /   is a GBE-semigroup. For this, we define “ʘ” and “*” on     
W /   as follows:  

ự   ʘ ʂ   = (ự ⨀ ʂ)   

and 

ự   * ʂ   = (ự   ʂ)      ự  , ʂ     W /  . 

Well-defined:   

Assume ⱱ1  , ⱱ2  , ṡ1  , ṡ2     W /    such that   

                            ⱱ1   = ⱱ2   and ṡ1   = ṡ 2   

                         (ⱱ1, ⱱ2)    and (ṡ1, ṡ2)     

                        (ⱱ1 ⨀ ṡ1, ⱱ2 ⨀ ṡ2) and (ⱱ1   ṡ1, ⱱ2   ṡ2)        (∵   is a congruence relation) 

                         (ⱱ1 ⨀ ṡ1)    = (ⱱ2 ⨀ ṡ2)   and (ⱱ1   ṡ1)    = (ⱱ2   ṡ2)   

                         ⱱ1   ʘ ṡ1   = ⱱ2   ʘ ṡ2   and ⱱ1   * ṡ1   = ⱱ2   * ṡ2  . 

We now prove that (W /  , ʘ) is a semigroup. 

Closure property: 

It is clear from the definition. 

Associative property: 

Let ṙ  , ⱱ  , ṱ     W /  , then  

                                        (ṙ   ʘ ⱱ  ) ʘ ṱ   = (ṙ ⨀ ⱱ)   ʘ ṱ   

                                                                    = ((ṙ ⨀ ⱱ) ⨀ ṱ)                          

                                                                    = (ṙ ⨀ (ⱱ ⨀ ṱ))     (∵ W is a GBE-semigroup) 

                                                                    = ṙ   ʘ (ⱱ ⨀ ṱ)    

                                                                    = ṙ   ʘ (ⱱ   ʘ ṱ  ).   

Thus associative property holds under “ʘ”. Thus, (W /  , ʘ) is a semigroup. 

We now show that (W /  ; *, 1W  ) is a GBE-algebra. For this we have  

(i) ⱱ   * ⱱ   = (ⱱ   ⱱ)   = 1W   for all ⱱ     W /  .    

(ii) ⱱ   * 1W   = (ⱱ   1W)   = 1W   for all ⱱ     W /  .  

(iii) ⱱ   * (ự   * ệ  ) = ⱱ  * (ự   ệ)    
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                                                   = (ⱱ   (ự   ệ))   

                                                   = (ự   (ⱱ   ệ))                       (∵ W is a GBE-semigroup) 

                                                   = ự   * (ⱱ   ệ)   

                                                   = ự   * (ⱱ   * ệ  ) for all ⱱ  , ự  , ệ     W /  .  

We now show that distributive laws hold in W /  . For this, let ẽ  , ⱳ  , ṅ     W /  , then   

                      ẽ   ʘ (ⱳ   * ṅ  ) = ẽ   ʘ (ⱳ   ṅ)   

                                                   = (ẽ ⨀ (ⱳ   ṅ))   

                                                   = ((ẽ ⨀ ⱳ)   (ẽ ⨀ ṅ))           (∵ W is a GBE-semigroup) 

                                                   = (ẽ ⨀ ⱳ)   * (ẽ ⨀ ṅ)                        

                                                   = (ẽ   ʘ ⱳ  ) * (ẽ   ʘ ṅ  ).  

Also    

                     (ẽ   * ⱳ  ) ʘ ṅ   = (ẽ   ⱳ)   ʘ ṅ   

                                                  = ((ẽ   ⱳ) ⨀ ṅ)   

                                                  = ((ẽ ⨀ ṅ)   (ⱳ ⨀ ṅ))            (∵ W is a GBE-semigroup) 

                                                  = (ẽ ⨀ ṅ)   * (ⱳ ⨀ ṅ)       

                                                  = (ẽ   ʘ ṅ  ) * (ⱳ   ʘ ṅ  ).      

The above calculation shows (W /  , ʘ, *, 1W  ) is a GBE-semigroup and is called quotient 
or factor GBE-semigroup. 

The following results give us some properties of quotient GBE-semigroups. 

Theorem 3.17 

Let   be a congruence relation on a GBE-semigroup (Ẃ; ⨀1,  1, 1Ẃ). Then Ẃ /   is a GBE- 

semigroup with respect to the following binary operations. 

(i) ẃ   ʘ1 ᶊ   = (ẃ ⨀1 ᶊ)  , 

(ii) ẃ   *1 ᶊ   = (ẃ  1 ᶊ)      ẃ  , ᶊ     Ẃ /  . 

Let us define  #: Ẃ   Ẃ/   by  #(ẃ) = ẃ     ẃ   Ẃ, then  # is an epimorphism. Let                
  : Ẃ   T be a homomorphism, where (Ẃ; ⨀1,  1, 1Ẃ) and (T; ⨀2,  2, 1T) are GBE-
semigroups, then the relation  

Ker   = {(ẃ, ᶊ)   Ẃ   Ẃ:  (ẃ) =  (ᶊ)}  
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is a congruence relation on Ẃ. Moreover, there is a monomorphism  : Ẃ / Ker     T   
Im( ) = Im( ) and  (Ker  ) # =  .

Proof. 

Ẃ /   is a GBE-semigroup with respect to the binary operation “ʘ” and “*” and it is clear 
from the above discussion. We now prove that  #: Ẃ   Ẃ /   is an epimorphism.

Well-defined: 

Let ệ, ⱱ   Ẃ be   ệ = ⱱ  ệ   = ⱱ     #(ệ) =  #(ⱱ)  # is well-defined. 

Homomorphism:   

Let ⱳ1, ⱳ 2   Ẃ, then 

 #(ⱳ 1 ⨀1 ⱳ 2) = (ⱳ 1 ⨀1 ⱳ 2)   

= ⱳ 1   ʘ1 ⱳ 2   

=  #(ⱳ 1) ʘ1  #(ⱳ 2)

and 

 #(ⱳ 1  1 ⱳ 2) = (ⱳ 1  1 ⱳ 2)   

= ⱳ 1   *1 ⱳ 2  

=  #(w1) *1  #(ⱳ 2).

It follows that,  # is a homomorphism. 

Onto: 

Clearly  # is onto, because for each ẃ     Ẃ /   there exists ẃ   Ẃ such that  #(ẃ) = ẃ  .
Thus,  # is an epimorphism. 

The relation Ker   = {(ẃ, ᶊ)   Ẃ   Ẃ:  (ẃ) =  (ᶊ)} is a congruence relation because of  
Theorem 3.15.  

Now define,  : Ẃ / Ker    T by  (w Ker  ) =  (w)   w Ker     Ẃ / Ker  . First we 
show that the defined map is a monomorphism. For this, 

Well-defined: 

Let ⱳ1Ker  , ⱳ 2Ker     Ẃ / Ker   be such that 

ⱳ 1Ker   = ⱳ 2Ker   

  (ⱳ 1, ⱳ 2)   Ker   
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    (ⱳ 1) =  (ⱳ 2) 

                    (ⱳ 1Ker  ) =  (ⱳ 2Ker  ). 

Thus,   is well-defined. 

Homomorphism: 

Let ⱱKer  , ệ Ker     Ẃ / Ker  , then 

 (ⱱKer   *2 ệ Ker  ) =  ((ⱱ  1 ệ) Ker  ) 

                      =  (ⱱ  1 ệ) 

                                                                           =  (ⱱ)  2  (ệ)     (∵   is a homomorphism) 

                                                =  (ⱱKer  )  2  (ệ Ker  ) 

and  

 (ⱱKer   ʘ2 ệ Ker  ) =  ((ⱱ ⨀1 ệ) Ker  ) 

                       =  (ⱱ ⨀1 ệ) 

                                                                          =  (ⱱ) ⨀2  (ệ)    (∵   is a homomorphism) 

                                                 =  (ⱱKer  ) ⨀2  (ệ Ker  ) 

Thus,   is a homomorphism.  

One-One: 

 Let ự1 Ker  , ự 2Ker     Ẃ / Ker   be such that  

 (ự 1 Ker   ) =  (ự 2 Ker  ) 

   (ự 1) =  (ự 2) 

      (ự 1, ự 2)   Ker   

             ự 1 Ker   = ự 2Ker  . 

Thus,   is one-one. It follows that   is a monomorphism. We now prove Im( ) = Im( ). 

Here,  

Im( ) = { (w) : w   Ẃ } = { (w Ker  ) : w Ker     Ẃ / Ker  } = Im( ). 

At the end, we show that  (Ker  ) # =  . In other words, ( (Ker  ) #)(ự) =  (ự)   ự   Ẃ.  

Here, 
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( (Ker  ) #)(ự) =  ((Ker  ) #(ự)) =  (ự Ker  ) =  (ự). 

Theorem 3.18 

Let   be a congruence relation on a GBE-semigroup (V; ⨀1,  1, 1V) and let  : V   T be a 
monomorphism from (V; ⨀1,  1, 1V) to (T; ⨀2,  2, 1T) such that     Ker  . Then there is a 
unique homomorphism   : V ∕     T   Im( ) = Im( ) and   o   # =  .  

Proof.  

Define  : V ∕     T  as follows: 

 (ⱱ  ) =  (ⱱ)    ⱱ     V ∕  . 

Well-defined:  

Assume that ẃ  , ᶊ      V ∕   are such that 

ẃ   = ᶊ   

  (ẃ, ᶊ)       Ker   

                                                         (ẃ, ᶊ)   Ker   

                                                               (ẃ) =  (ᶊ) 

                                                          (ẃ  ) =  (ᶊ  ). 

Thus,   is well-defined. 

Homomorphism: 

Let ự  , ệ     V   then, 

 (ự   * ệ  ) =  ((ự   1 ệ)  ) 

                                                                       =  (ự   1 ệ) 

                                                                       =  (ự)  2  (ệ)          (∵   is a homomorphism) 

                                                                       =  (ự  )  2  (ệ  ) 

and  

 (ự   ʘ ệ  ) =  ((ự  ⨀1 ệ)  ) 

                                                                       =  (ự  ⨀1 ệ) 

                                                                       =  (ự) ⨀2  (ệ)         (∵   is a homomorphism) 

                                                                       =  (ự  ) ⨀2  (ệ  ). 
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Thus,   is a homomorphism. We now prove Im( ) = Im( ). 

Here,  

Im( ) = { (ⱱ) : ⱱ   V} = { (ⱱ  ) : ⱱ     V ∕  } = Im( ). 

We now show that   o   # =  . In other words, (    #)(ⱱ) =  (ⱱ)   ⱱ   V. Here

(  #)(ⱱ) =  (  #(ⱱ)) =  (ⱱ  ) =  (ⱱ).

Uniqueness: 

Let  1: V /     T be a homomorphism such that  1  
 # =  . 

Now,  

 1  
#(ⱱ) =  1(  #(ⱱ)) =  1(ⱱ  ) =  (ⱱ) =    #( ⱱ) =  (ⱱ  ).

It follows that  1(ⱱ   ) =  (ⱱ  ) and so  1 =  . 

Theorem 3.19 

Let  ,   be congruence relations on a GBE-semigroup (Ⱳ; ⨀,  , 1Ⱳ) such that      . 
Then 

  ∕   = {(ự  , ệ  )   Ⱳ ∕    Ⱳ ∕   : (ự, ệ)    } 

is a congruence relation on Ⱳ ∕   and (Ⱳ ∕  ) ∕ (   ∕  )   Ⱳ ∕  . 

Proof. 

First we show that   ∕   is a congruence relation on Ⱳ  . 

Reflexive: 

As (ự, ự)      ự   Ⱳ, because   is reflexive, so it follows that (ự  , ự  )    ∕  . Thus, 
  ∕   is reflexive.   

Symmetric: 

Take ự  , ệ     Ⱳ∕     (ự  , ệ  )     ∕     (ự, ệ)       (ệ, ự)    , because   is 
symmetric. Thus, (ệ  , ự  )     ∕  . This implies that   ∕   is symmetric.   

Transitive: 

Let ự  , ệ  , ⱱ     Ⱳ ∕   be such that (ự  , ệ  ), (ệ  , ⱱ  )     ∕     (ự, ệ), (ệ, ⱱ)       
(ự, ⱱ)    , because   is transitive. Thus, (ự  , ⱱ  )     ∕   and so   ∕    is transitive.  

It follows that   ∕   is an equivalence relation.   
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For compatibility: 

Let ự  , ệ  , ⱱ  , ñ      Ⱳ ∕   be such that (ự  , ệ  ), (ⱱ  , ñ  )     ∕     (ự, ệ), (ⱱ, ñ)     
  (ự ⨀ ⱱ, ệ ⨀ ñ), (ự   ⱱ, ệ   ñ)    , because   is compatible. Thus, it follows that 

((ự ⨀ ⱱ)  , (ệ ⨀ ñ)  ), ((ự   ⱱ)  , (ệ   ñ)  )    ∕  . 

In other words, 

 (ự   ⨀1 ⱱ  , ệ   ⨀1 ñ  ), (ự    1 ⱱ  , ệ   1 ñ  )     ∕   .  

It follows that   ∕   is a compatible relation. Hence,   ∕    is a congruence relation. 

Define  : Ⱳ ∕     Ⱳ /    by  (ự  ) = ự     ự     Ⱳ ∕  . 

Well-defined:  

Suppose ⱳ1  , ⱳ 2     Ⱳ ∕     

ⱳ 1   = ⱳ 2   

  (ⱳ 1, ⱳ 2)     

  (ⱳ 1, ⱳ 2)         

  (ⱳ 1, ⱳ 2)     

  ⱳ 1   = ⱳ 2   

   (ⱳ 1  ) =  (ⱳ 2  ). 

 Thus,   is well-defined. 

Homomorphism: 

Let ẃ  , ʂ     Ⱳ ∕   then, 

 (ẃ    1 ʂ  ) =  ((ẃ   ʂ) ) 

= (ẃ   ʂ)   

= ẃ    2 ʂ  

=  (ẃ  )  2  (ʂ  ). 

Also, 

 (ẃ   ⨀1 ʂ  ) =  ((ẃ ⨀ ʂ) ) 

= (ẃ ⨀  ʂ)  

= ẃ   ⨀2 ʂ             
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=  (ẃ  ) ⨀2  (ʂ  ). 

Thus,   is a homomorphism. Now by Theorem 3.17, there is a monomorphism
: (Ⱳ ∕  ) / Ker    Ⱳ /    which may be defined by 

(ự  (Ker  )) = ự    ự  (Ker  )   (Ⱳ ∕  ) / Ker  . 

Onto: 

As for each ự     Ⱳ    ự  (Ker  )   (Ⱳ ∕  ) / Ker   such that  (ự  (Ker  )) = ự  , so 
it follows that   is onto. Thus, (Ⱳ ∕  ) / Ker    Ⱳ /   . We now show that Ker   =   ∕  . 

Here, 

Ker   = {(ự  , ệ  )   Ⱳ ∕    Ⱳ ∕  :  (ự  ) =  (ệ  )} 

 = {(ự  , ệ  )   Ⱳ ∕    Ⱳ ∕  : ự   = ệ  )} 

= {(ự  , ệ  )   Ⱳ ∕    Ⱳ ∕  : (ự, ệ)    } 

=   ∕  . 

Thus, (Ⱳ ∕  ) / (   ∕    )   Ⱳ ∕  . 

4    CONCLUSION 

     In this paper, a homomorphism between two generalized BE-semigroups has been defined 
with some non-trivial examples. Further, it has been shown that each such homomorphism 
defines a congruence relation. The congruence relation has been utilized to obtain quotient 
generalized BE-semigroups. Properties analogous to first, second and third isomorphism 
theorems have been explored. Results discussed in this paper have applications in different 
fields of mathematics and computer science for defining and developing various algebraic 
structures. 
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Summary. In the present paper, we propose some properties of the new family 𝑘-generalized 

Fibonacci numbers which related to generalized Fibonacci numbers. Moreover, we give some 

identities involving binomial coefficients for 𝑘-generalized Fibonacci numbers. 

1 INTRODUCTION 

Fibonacci numbers have a great importance in mathematics. It is one of the most popular 

sequences that have a lot of applications in many branch of mathematics as in diverse sciences 

[1, 2, 6, 7, 10-13, 16-20]. The Fibonacci numbers 𝐹𝑛 are given by the recurrence relation

𝐹𝑛+1 = 𝐹𝑛 + 𝐹𝑛−1, 𝑛 ≥ 1 

with the initial conditions 𝐹0 = 0 and 𝐹1 = 1. Koshy [9] written one of the most popular books

of Fibonacci and Lucas numbers, and gave numerous recurrence relations, generalizations and 

applications of Fibonacci and Lucas numbers. For 𝑎, 𝑏 ∈ ℝ and 𝑛 ≥ 1, the well-known 

generalized Fibonacci numbers are defined 

𝐺𝑛+1 = 𝐺𝑛 + 𝐺𝑛−1

where 𝐺0 = 𝑎 and 𝐺1 = 𝑏.

Falcon and Plaza [4] introduced general 𝑘-Fibonacci numbers and gave some properties of 

these numbers. Guleç et al. [5] presented some properties of generalized Fibonacci numbers 

with binomial coefficients. 

El-Mikkawy and Sogabe [3] proposed a new family of 𝑘-Fibonacci numbers and gave the 

relationship between the 𝑘-Fibonacci numbers and Fibonacci numbers as follow: 

𝐹𝑛
(𝑘)

= (𝐹𝑚)𝑘−𝑟(𝐹𝑚+1)𝑟 , 𝑛 = 𝑚𝑘 + 𝑟. 

In [14], Özkan et al. defined a new family of 𝑘-Lucas numbers and gave some identities of 

the new family of 𝑘-Fibonacci and 𝑘-Lucas numbers.  Özkan et al. [15] introduced some 

identities of the new family of 𝑘-Fibonacci numbers. 

In this study, we present some identities of the new family of 𝑘-generalized Fibonacci 

numbers. We give relationships between the new family of 𝑘-Fibonacci numbers and 𝑘-

generalized Fibonacci numbers. Also, we introduce Cassini formulas of 𝑘-generalized 

Fibonacci numbers and some properties involving binomial coefficients. The rest of the paper 

is organized as follows:  In Section 2 (Preliminaries), the fundamental definitions and 

theorems are given. Then main theorems and proofs are introduced in Section 3. 

Erzincan, Turkey.
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2 PRELIMINIARIES 

Definition 2.1. [21] For 𝑛, 𝑘 (𝑘 ≠ 0) ∈ ℕ, the new family of 𝑘-generalized Fibonacci numbers 

are defined by 

𝐺𝑛
(𝑘)

=
1

(√5)
𝑘

([𝑎 + 𝑏𝛼]𝛼𝑚+1 − [𝑎 + 𝑏𝛽]𝛽𝑚+1)𝑟([𝑎 + 𝑏𝛼]𝛼𝑚 − [𝑎 + 𝑏𝛽]𝛽𝑚)𝑘−𝑟

where 𝑛 = 𝑚𝑘 + 𝑟, 0 ≤ 𝑟 < 𝑘 and 𝑚 ∈ ℕ. 

It is clear that for 𝑎 = 0 and 𝑏 = 1, 𝐺𝑛
(𝑘)

= 𝐹𝑛
(𝑘)

 and for 𝑘 = 1, 𝑟 = 0 and 𝑛 = 𝑚, 𝐺𝑛
(1)

= 𝐺𝑛.
Then they gave the relationship of between the new family of 𝑘-generalized Fibonacci numbers 

and generalized Fibonacci numbers as follow: 

𝐺𝑛
(𝑘)

= (𝐺𝑚)𝑘−𝑟(𝐺𝑚+1)𝑟, 𝑛 = 𝑚𝑘 + 𝑟. (2.1) 

Theorem 2.2. [9] 

i. 𝐺𝑛+1
3 − 𝐺𝑛

3 − 𝐺𝑛−1
3 = 3𝐺𝑛+1𝐺𝑛𝐺𝑛−1

ii. ∑ 𝐹𝑖𝐺3𝑖
𝑛
𝑖=1 = 𝐹𝑛𝐹𝑛+1𝐺2𝑛+1

iii. 𝐺𝑛
2 + 𝐺𝑛−1

2 = (3𝑎 − 𝑏)𝐺2𝑛−1 − (𝑎2 + 𝑎𝑏 − 𝑏2)𝐹2𝑛−1

iv. 𝐹2𝑛+1 = 𝐹𝑛+1
2 + 𝐹𝑛

2

v. 𝐺𝑛−1
6 + 𝐺𝑛

6 + 𝐺𝑛+1
6 = 2[2𝐺𝑛

2 + (𝑎2 + 𝑎𝑏 − 𝑏2)(−1)𝑛]3 + 3𝐺𝑛−1
2 𝐺𝑛

2𝐺𝑛+1
2

vi. 𝐺𝑛+𝑡𝐺𝑛+𝑡−2 − 𝐺𝑛+𝑡−1
2 = (𝑎2 + 𝑎𝑏 − 𝑏2)(−1)𝑛+𝑡−1𝐹𝑘

2

Theorem 2.3. [15] 

∑ 𝐹𝑖𝐹3𝑖 = 𝐹2𝑛+1
(2)

(𝐹2𝑛+3
(2)

− 𝐹2𝑛−1
(2)

)

𝑛

𝑖=1

 

Theorem 2.4. [3] 

i. ∑ (−1)𝑖(𝑘−1
𝑖

)𝐹𝑚𝑘+𝑖
(𝑘)𝑘−1

𝑖=0 = (−1)𝑘−1𝐹𝑚𝐹(𝑚−1)(𝑘−1)
(𝑘−1)

ii. ∑ (𝑘−1
𝑖

)𝑘−1
𝑖=0 𝐹𝑚𝑘+𝑖

(𝑘)
= 𝐹𝑚𝐹(𝑚+2)(𝑘−1)

(𝑘−1)
 . 

3 MAIN RESULTS 

   In this section, we present some properties of the new family of 𝑘-generalized Fibonacci 

numbers. 

Theorem 3.1. For 𝑛 ≥ 1, we have 

𝐺2𝑛+2
(2)

+ 𝐺2𝑛
(2)

= 2 𝐺2𝑛+1
(2)

+ 𝐺2𝑛−2
(2)

. 

Proof. Using Theorem 2.2 (i), we have 
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𝐺𝑛+1
3 − 𝐺𝑛

3 = 𝐺𝑛−1
3 + 3𝐺𝑛+1𝐺𝑛𝐺𝑛−1

(𝐺𝑛+1 − 𝐺𝑛)(𝐺𝑛+1
2 + 𝐺𝑛+1𝐺𝑛 + 𝐺𝑛

2) = 𝐺𝑛−1(𝐺𝑛−1
2 + 3𝐺𝑛+1𝐺𝑛)

𝐺𝑛−1(𝐺2𝑛+2
(2)

+ 𝐺2𝑛+1
(2)

+ 𝐺2𝑛
(2)

) = 𝐺𝑛−1(𝐺2𝑛−2
(2)

+ 3𝐺2𝑛+1
(2)

) 

𝐺2𝑛+2
(2)

+ 𝐺2𝑛+1
(2)

+ 𝐺2𝑛
(2)

= 𝐺2𝑛−2
(2)

+ 3𝐺2𝑛+1
(2)

 

𝐺2𝑛+2
(2)

+ 𝐺2𝑛
(2)

= 2 𝐺2𝑛+1
(2)

+ 𝐺2𝑛−2
(2)

 . 

Theorem 3.2. For 𝑛 ≥ 1, we have 

(3𝑎 − 𝑏) ∑ 𝐹𝑖𝐺3𝑖 =

𝑛

𝑖=1

𝐹2𝑛+1
(2)

(𝐺2𝑛+3
(2)

− 𝐺2𝑛−1
(2)

) + (𝑎2 + 𝑎𝑏 − 𝑏2) ∑ 𝐹𝑖𝐹3𝑖

𝑛

𝑖=1

. 

Proof. Using Theorem 2.2 (ii), (iii), (iv) and Theorem 2.3, we have 

(3𝑎 − 𝑏) ∑ 𝐹𝑖𝐺3𝑖

𝑛

𝑖=1

= (3𝑎 − 𝑏)𝐹𝑛𝐹𝑛+1𝐺2𝑛+1 

= 𝐹𝑛𝐹𝑛+1(𝐺𝑛
2 + 𝐺𝑛+1

2 + (𝑎2 + 𝑎𝑏 − 𝑏2)𝐹2𝑛+1)

= 𝐹𝑛𝐹𝑛+1(𝐺𝑛(𝐺𝑛+1 − 𝐺𝑛−1) + 𝐺𝑛+1(𝐺𝑛+2 − 𝐺𝑛)

+ (𝑎2 + 𝑎𝑏 − 𝑏2)(𝐹𝑛+1
2 + 𝐹𝑛

2))

= 𝐹𝑛𝐹𝑛+1(−𝐺𝑛𝐺𝑛−1 + 𝐺𝑛+1𝐺𝑛+2

+ (𝑎2 + 𝑎𝑏 − 𝑏2)(𝐹𝑛+2𝐹𝑛+1 − 𝐹𝑛𝐹𝑛−1))

= 𝐹2𝑛+1
(2)

(𝐺2𝑛+3
(2 )

− 𝐺2𝑛−1
(2 )

+ (𝑎2 + 𝑎𝑏 − 𝑏2)(𝐹2𝑛+3
(2)

− 𝐹2𝑛−1
(2)

)) 

= 𝐹2𝑛+1
(2)

(𝐺2𝑛+3
(2 ) − 𝐺2𝑛−1

(2 ) ) + (𝑎2 + 𝑎𝑏 − 𝑏2)𝐹2𝑛+1
(2)

(𝐹2𝑛+3
(2)

− 𝐹2𝑛−1
(2)

) 

= 𝐹2𝑛+1
(2)

(𝐺2𝑛+3
(2 ) − 𝐺2𝑛−1

(2 ) ) + (𝑎2 + 𝑎𝑏 − 𝑏2) ∑ 𝐹𝑖𝐹3𝑖.

𝑛

𝑖=1

Theorem 3.3. For 𝑛 ≥ 1, we have 

(𝐺2𝑛−2
(2)

)
3

+ (𝐺2𝑛
(2)

)
3

+ (𝐺2𝑛+2
(2)

)
3

= 2[2𝐺2𝑛
(2)

+ (𝑎2 + 𝑎𝑏 − 𝑏2)(−1)𝑛]
3

+ 3𝐺2𝑛−2
(2)

𝐺2𝑛
(2)

𝐺2𝑛+2
(2)

. 

Proof. Using Theorem 2.2 (v), we get 

(𝐺2𝑛−2
(2)

)
3

+ (𝐺2𝑛
(2)

)
3

+ (𝐺2𝑛+2
(2)

)
3

= (𝐺𝑛−1
2 )3 + (𝐺𝑛

2)3 + (𝐺𝑛+1
2 )3

= 𝐺𝑛−1
6 + 𝐺𝑛

6 + 𝐺𝑛+1
6

= 2[2𝐺𝑛
2 + (𝑎2 + 𝑎𝑏 − 𝑏2)(−1)𝑛]3 + 3𝐺𝑛−1

2 𝐺𝑛
2𝐺𝑛+1

2
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= 2[2𝐺2𝑛
(2)

+ (𝑎2 + 𝑎𝑏 − 𝑏2)(−1)𝑛]
3

+ 3𝐺2𝑛−2
(2)

𝐺2𝑛
(2)

𝐺2𝑛+2
(2)

 . 

Theorem 3.4. For 𝑛 ≥ 1, we have 

𝐺2𝑛+2
(2)

− 𝐺2𝑛
(2)

= 𝐺2𝑛−2
(2)

+ 2 𝐺2𝑛−1
(2)

. 

Proof.  From equation (2.1) and recurrence relation of generalized Fibonacci numbers, we get 

𝐺2𝑛+2
(2)

− 𝐺2𝑛
(2)

= 𝐺𝑛+1
2 − 𝐺𝑛

2

= (𝐺𝑛+1 − 𝐺𝑛)(𝐺𝑛+1 + 𝐺𝑛) 

= 𝐺𝑛−1(𝐺𝑛+1 + 𝐺𝑛) 

= 𝐺𝑛−1𝐺𝑛+1 + 𝐺𝑛−1𝐺𝑛 

= 𝐺𝑛−1(𝐺𝑛 + 𝐺𝑛−1) + 𝐺𝑛−1𝐺𝑛  

= 𝐺𝑛−1
2 + 2𝐺𝑛−1𝐺𝑛

= 𝐺2𝑛−2
(2)

+ 2 𝐺2𝑛−1.
(2)

Theorem 3.5. For 𝑛 ≥ 1, we have 

𝐺2𝑛−2
(2)

+ 𝐺2𝑛−1
(2)

= 𝐺2𝑛
(2)

+ (𝑎2 + 𝑎𝑏 − 𝑏2)(−1)𝑛 .

Proof. Using Theorem 2.2 (vi), we have 

𝐺2𝑛−2
(2)

+ 𝐺2𝑛−1
(2)

= 𝐺𝑛−1
2 + 𝐺𝑛𝐺𝑛−1

= 𝐺𝑛−1(𝐺𝑛−1 + 𝐺𝑛) 

= 𝐺𝑛−1𝐺𝑛+1 

= 𝐺𝑛
2 + (𝑎2 + 𝑎𝑏 − 𝑏2)(−1)𝑛

= 𝐺2𝑛
(2)

+ (𝑎2 + 𝑎𝑏 − 𝑏2)(−1)𝑛.

Theorem 3.6. For 𝑛 ≥ 1, we have 

𝐺4𝑛+5
(4)

= (𝐺2𝑛
(2)

)
2

+ 𝐺4𝑛+1
(4)

+ 2𝐺4𝑛−3
(4)

+ (𝐺2𝑛−2
(2)

)
2

+ 3𝐺2𝑛+3
(2)

𝐺2𝑛−1
(2)

 . 

Proof. Using Theorem 2.2 (i), we have 

𝐺4𝑛+5
(4)

= (𝐺𝑛+1)3𝐺𝑛+2

= (𝐺𝑛
3 + 𝐺𝑛−1

3 + 3𝐺𝑛+1𝐺𝑛𝐺𝑛−1)𝐺𝑛+2

= 𝐺𝑛
3𝐺𝑛+2 + 𝐺𝑛−1

3 𝐺𝑛+2 + 3𝐺𝑛+2𝐺𝑛+1𝐺𝑛𝐺𝑛−1

= 𝐺𝑛
3(𝐺𝑛 + 𝐺𝑛+1)𝐺𝑛−1

3 (2𝐺𝑛 + 𝐺𝑛−1) + 3𝐺2𝑛+3
(2)

𝐺2𝑛−1
(2)

 

= (𝐺2𝑛
(2)

)
2

+ 𝐺4𝑛+1
(4)

+ 2𝐺4𝑛−3
(4)

+ (𝐺2𝑛−2
(2)

)
2

+ 3𝐺2𝑛+3
(2)

𝐺2𝑛−1.
(2)
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Theorem 3.7. For 𝑘, 𝑛, 𝑡 ≥ 1, we have 

𝐺𝑘𝑛+𝑡
(𝑘)

𝐺𝑘𝑛+𝑡−2
(𝑘)

− (𝐺𝑘𝑛+𝑡−1
(𝑘)

)
2

= {
𝐺𝑛

2𝑘−2(−1)𝑛(𝑎2 + 𝑎𝑏 − 𝑏2), 𝑡 = 1
0, 𝑡 ≠ 1

 . 

Proof. For 𝑡 = 1, we get 

𝐺𝑘𝑛+1
(𝑘)

𝐺𝑘𝑛−1
(𝑘)

− (𝐺𝑘𝑛
(𝑘)

)
2

= (𝐺𝑛
𝑘−1𝐺𝑛+1)(𝐺𝑛−1𝐺𝑛

𝑘−1) − (𝐺𝑛
𝑘) 2

= 𝐺𝑛−1𝐺𝑛
2𝑘−2𝐺𝑛+1 − 𝐺𝑛

2𝑘

= 𝐺𝑛
2𝑘−2[𝐺𝑛−1𝐺𝑛+1 − 𝐺𝑛

2]

= 𝐺𝑛
2𝑘−2(−1)𝑛(𝑎2 + 𝑎𝑏 − 𝑏2) .

For 𝑡 ≠ 1, we get 

𝐺𝑘𝑛+𝑡
(𝑘)

𝐺𝑘𝑛+𝑡−2
(𝑘)

− (𝐺𝑘𝑛+𝑡−1
(𝑘)

)
2

= (𝐺𝑛
𝑘−𝑡𝐺𝑛+1

𝑡 )(𝐺𝑛
𝑘−𝑡+2𝐺𝑛+1

𝑡−2 ) − (𝐺𝑛
𝑘−𝑡+1𝐺𝑛+1

𝑡−1)2

= 𝐺𝑛
2𝑘−2𝑡+2𝐺𝑛+1

2𝑡−2 − 𝐺𝑛
2𝑘−2𝑡−2𝐺𝑛+1

2𝑡−2

= 0 . 

Theorem 3.8. For 𝑛 ≥ 1, we have 

𝐺2(𝑛+𝑠−1)
(2)

− 𝐺𝑛+𝑠𝐺𝑛+𝑠−2 = (−1)𝑛+𝑠(𝑎2 + 𝑎𝑏 − 𝑏2).

Proof. From the equation (2.1) and Theorem 2.2. (vi), we acquire 

𝐺2(𝑛+𝑠−1)
(2)

− 𝐺𝑛+𝑠𝐺𝑛+𝑠−2 = 𝐺𝑛+𝑠−1
2 − 𝐺𝑛+𝑠𝐺𝑛+𝑠−2 

= −(𝐺𝑛+𝑠𝐺𝑛+𝑠−2 − 𝐺𝑛+𝑠−1
2 ) 

= −((−1)𝑛+𝑠−1(𝑎2 + 𝑎𝑏 − 𝑏2)) 

= (−1)𝑛+𝑠(𝑎2 + 𝑎𝑏 − 𝑏2).

Theorem 3.9. For 𝑛 ≥ 1, we have 

∑(−1)𝑖 (
𝑘 − 1

𝑖
)

𝑘−1

𝑖=1

𝐺𝑚𝑘+𝑖
(𝑘)

= (−1)𝑘−1𝐺𝑚𝐺(𝑚−1)(𝑘−1)
(𝑘−1)

 . 

Proof. By using the equation (2.1) and the well known binomial property, we obtain 

∑(−1)𝑖 (
𝑘 − 1

𝑖
)

𝑘−1

𝑖=1

𝐺𝑚𝑘+𝑖
(𝑘)

= (−1)𝑘−1 ∑(−1)𝑘−1−𝑖 (
𝑘 − 1

𝑖
)

𝑘−1

𝑖=1

𝐺𝑚
𝑘−𝑖𝐺𝑚+1

𝑖

= (−1)𝑘−1𝐺𝑚 ∑ (
𝑘 − 1

𝑖
)

𝑘−1

𝑖=1

(−𝐺𝑚)𝑘−𝑖−1𝐺𝑚+1
𝑖
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= (−1)𝑘−1𝐺𝑚(𝐺𝑚+1 − 𝐺𝑚)𝑘−1

= (−1)𝑘−1𝐺𝑚𝐺𝑚−1
𝑘−1

= (−1)𝑘−1𝐺𝑚𝐺(𝑚−1)(𝑘−1)
(𝑘−1)

 . 

Theorem 3.10. For 𝑛 ≥ 1, we have 

∑ (
𝑘 − 1

𝑖
)

𝑘−1

𝑖=1

𝐺𝑚𝑘+𝑖
(𝑘)

= 𝐺𝑚𝐺(𝑚+2)(𝑘−1)
(𝑘−1)

 . 

Proof. By taking account the equation (2.1) and the well known binomial property, we get 

∑ (
𝑘 − 1

𝑖
)

𝑘−1

𝑖=1

𝐺𝑚𝑘+𝑖
(𝑘)

= ∑ (
𝑘 − 1

𝑖
)

𝑘−1

𝑖=1

𝐺𝑚
𝑘−𝑖𝐺𝑚+1

𝑖

= 𝐺𝑚 ∑ (
𝑘 − 1

𝑖
)

𝑘−1

𝑖=1

𝐺𝑚+1
𝑖 (𝐺𝑚)𝑘−𝑖−1

= 𝐺𝑚(𝐺𝑚+1 + 𝐺𝑚)𝑘−1

= 𝐺𝑚𝐺𝑚+2
𝑘−1

= 𝐺𝑚𝐺(𝑚+2)(𝑘−1)
(𝑘−1)

 . 

4 CONCLUSIONS 

In this study, we prove that some identities of the new family of 𝑘-generalized Fibonacci 

numbers. Then, we show that some properties of the new family of 𝑘-generalized Fibonacci 

numbers related to generalized Fibonacci numbers. Furthermore, we extend Cassini’s formula 

to the new family of 𝑘-generalized Fibonacci numbers and present identities comprising 

binomial coefficients for the new family of 𝑘-generalized Fibonacci numbers. 
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Summary. In the work within the framework of "entropic cosmology", the scenario of the cos-

mological accelerated expansion of a flat, homogeneous and isotropic Universe under the influ-

ence of entropic forces is considered without the concept of dark energy a hypothetical medium 

with negative pressure. Assuming that the horizon of the Universe has its own temperature and 

entropy, which arises during the holographic storage of information on the screen of the horizon 

surface, the entropy models of the Universe associated with the BekensteinHawking entropy 

and the non-extensive Barrow and Tsallis–Cirto entropies are considered. The modified equa-

tions of acceleration and continuity of Friedman with governing power terms having an entropic 

nature are derived both within the framework of Einstein's general theory of relativity and on the 

basis of a thermodynamic approach that allows modeling the non-adiabatic evolution of the Uni-

verse. At the same time, models based on nonextensive entropies predict the existence of both a 

decelerating and accelerating Universe. 

1. INTRODUCTION

In the last years of the twentieth century (1998), an unexpected discovery was made in cos-

mology related to the accelerating expansion of the Universe. Currently, this fact has been con-

firmed by a huge number of observational data and numerous cosmological experiments con-

cerning the microwave background, large-scale structure, and other dimensions of the Universe 

(see, for example, [1-2]). In this regard, modern cosmological concepts are fully consistent with 

the Friedman−Robertson−Walker model of a homogeneous, isotropic, and almost flat (infinite) 

and open Universe, continuously expanding with acceleration [3-5]. 

Despite the growing amount of observational evidence for the existence of an accelerated ex-

pansion of the Universe, its nature and fundamental origin are still an unresolved issue. As it is 

know, the ratio of ordinary (baryonic) matter, dark matter and dark energy is approximately. 

1 : 10 : 25 . Consequently, the evolution of the Universe is completely dominated by cold dark 

matter and dark energy − the so-called cosmic vacuum [6-7], the energy density of which is cur-

rently associated with the cosmological constant 56 21.1 10 sm   . 
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The constant  determines antigravity in the Einstein modified general theory of relativity 

(GR) by Einstein [4]. 

The cosmological vacuum has everywhere and always constant positive density 
2/ 8c G    and negative pressure 2P c    . According to Friedman's cosmology of a ho-

mogeneous and isotropic universe, gravitation is created not only by the density of the material 

medium, but also by its pressure in combination 23 /P c . The vacuum causes antigravity pre-

cisely because its effective gravitating energy vvvG cP  23 2   is negative at positive 

density. Since the density of the vacuum (dark energy) exceeds the total density of all other types 

of cosmic energy, then antigravitation is stronger than gravitation. Under this condition, the 

cosmological expansion must occur with acceleration [8]. Thus, the cosmological accelerated 

expansion of the Universe is completely determined by the acting in parallel gravitational and 

antigravitational forces described by the modified general relativity approach.  

It should be noted, however, that at present there are a number theories in support that of 

gravity are called. In contrast to the Standard Model, which combines three interactions in na-

ture but gravity, the "Theory of Everything" (or M-theory), unifies all forces and particles in na-

ture, but it not fully complies with General relativity [9]. 

Among the many scenarios for the accelerated expansion of the Universe, the so-called "en-

tropic cosmology" has recently attracted much attention, according to which gravity is perceived 

as a kind of force associated with a change in entropy. The concept of the cosmological entropic 

force was proposed by the Dutch physicist ("string theorist") Eric Verlinde, who in his article 

[10] developed a rather "crazy" theory, according to which the phenomenon of gravity is ex-

plained through entropy, i.e. the force of gravity is inherently thermodynamic in origin [11], 

2010). In this work, the author argues that the central concept necessary for the emergence of 

gravity is information (more precisely, the amount of information associated with matter and its 

distribution) in terms of entropy. The most important assumption of the theory is that infor-

mation associated with a certain region of space obeys the holographic principle (see, for exam-

ple, [12] and relies heavily on the physics of black holes [13-14]. 

In the cited article, it was shown that within the holographic principle of the formation of 

space
i)
 gravity inevitably arises, which is identified with the entropy force caused by changes in

information
ii)

, associated with the growth of the area occupied by material bodies. According to

the holographic picture of the world, entropy is stored on holographic screens, and space appears 

between two similar screens. With this approach, the gravitational force in space is determined 

by the entropy gradient, or the so-called entropic force. 

Nearly the same time, within the framework of the Verlinde hypothesis, Easson et al. [15] de-

veloped a heuristic theory of the accelerated expansion of the Universe, based on the entropic 

force.  Authors of that work have demonstrated that accelerated expansion is an inevitable con-

sequence of an increase in entropy associated with the storage of holographic information on a 

surface screen located on the event horizon (space-time region) of the Universe. As a result, with 

this approach, the progress in physical understanding of the process of accelerated expansion of 

i
) Here, holography refers to information about the Universe encoded on a screen, which is interpreted as a two-

dimensional surface of the Universe. 
ii
) According to the holographic principle, the growth of information associated with an increase in the surface of 

the Universe occupied by material bodies leads to an increase in entropy; hence the emergence of a gradient of en-

tropy (entropy force) directed against the increase in the radius of the specified surface area. And this is gravity. 
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the Universe was achieved based on entropic forces, without the concept of dark energy − hypo-

thetical medium with negative pressure. 

In other words, contrary to the widespread explanation of the observed accelerated expansion 

of the Universe, which appears in the presence of a driving force (in the Friedman equations) due 

to dark energy, an alternative interpretation of such a force was proposed - an entropic force. The 

latter was associated with the entropy and temperature of the horizon of the Universe, which 

arise when storing information on the screen of the surface of the horizon. 

Finally, in a number of subsequent works (see, for example, [16-29]) devoted to entropic 

cosmology, the scenario of the accelerated expansion of the Universe under the influence of en-

tropic forces of various nature was discussed, proceeding from the idea that the horizon of the 

Universe (like the event horizon of a black hole) has its own entropy and temperature. In all the-

se studies, along with the de Sitter temperature [30], various entropy entities were used (in par-

ticular, the Bekenstein−Hawking entropy [13], the non-extensive Tsallis−Cirto entropy [31], the 

modified (equally-distributed) entropy Renyi [32] and others). Instead of the cosmological con-

stant in the equations of Einstein's general theory of relativity, an additional so-called governing 

term was added, associated with the entropy and temperature of the event horizon of the Uni-

verse. Using modified Friedman equations, it was shown that such models explain the current 

accelerating expansion of the Universe and they are in good agreement with the data on superno-

vae. Let us note that the cosmological acceleration found in this case (considered as a conse-

quence of the entropic force) turns out to be relatively small (of the order of the Hubble con-

stant), in contrast to the huge value of accelerated expansion, which is confusing to most cos-

mologists, predicted by quantum field theory in combination with general relativity
iii)

.

Thus, the study of the influence of entropic forces on the accelerated expansion of the Uni-

verse is of interest, since due to the anti-gravitational action, it is these forces that can play the 

role of mysterious dark energy both in the form of a cosmological constant and in the form of 

scalar fields [33]. In entropic cosmology, it is assumed that the horizon of the Universe has asso-

ciated temperature and entropy due to information stored on the surface of the event horizon 

holographically.  

Here we concern some elementary considerations intended to show how the entropy force, 

which has a thermodynamic nature, is related to the entropy of a large body. For this, we use 

the second law of thermodynamics for a macroscopic body, in the form of the Gibbs relation

dE TdS PdV  . Since for a very large body with a change in its volume (due to the displace-

ment of the boundary dr ), the surface area A and internal energy E  practically do not change, 

then one can write 0 ( )TdS P Adr  . Hence, it follows that if the entropy changes due to in-

crease of radius of the volume, then the force /sF PA TdS dr   arises. Since the space-time-

dependent entropy (evolving in time and reaching a maximum in the final thermal state), ex-

pands in space, its gradient appears, which is interpreted as an entropic force. 

iii
) The identification of the cosmological constant with the vacuum energy does not allow, unfortunately, to pen-

etrate into the essence of dark energy and leads to a still unsolvable problem, which consists in the fact that the ob-

served value of the dark energy density  4310 eV
abs


   and its theoretically predicted value  41810 GeV

th


differ by 120 orders of magnitude (here, ( )V V  the potential of the scalar fields   (inflaton) [4]. 
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In the presented work, which is related to modeling the accelerated expansion of a flat, homo-

geneous and isotropic Universe, modified Friedman equations are obtained, in which instead of 

the cosmological constant there appears an additional control term (driving force) associated 

with changes in entropy and temperature on the Hubble horizon of the Universe. The surface ar-

ea of the Universe is a key characteristic that determines its entropy and information content. 

Along with the traditional Bekenstein−Hawking entropy [15], which is proportional to the area 

of the Hubble horizon, we also incorporate the non-additive Tsallis−Cirto entropy [31], which is 

proportional to the horizon volume, and the non-additive entropy of Barrow [34-36], taking into 

account the fractal structure of the Hubble horizon. For these entropies, modified Friedman equa-

tions have been constructed to explain the cosmological expansion of the Universe without dark 

energy. In this case, the corresponding entropic forces predetermine both deceleration and/or ac-

celerated expansion of the Universe. It is important to note that the construction of new models 

of the evolution of the Universe is carried out on the basis of the recently introduced non-

additive Barrow entropy, which is a new holographic model of entropy associated with the modi-

fication of the horizon of the Universe surface due to quantum gravitational effects.  

2. SOME ELEMENTS OF CLASSICAL COSMOLOGY

2.1 Gravitational field equations 

First, we will consider a flat evolutionary model of the Universe, which is infinite in space, 

homogeneous, isotropic and expanding. In this case, the Universe is modeled by some cosmolog-

ical fluid, the particles of which are galaxies. At this level of large-scale averaging, the structure 

of the Universe is symmetric and has no singularities. In classical cosmology, models of the 

evolving Universe are constructed on the basis of Einstein's equations of general relativity (see, 

for example, [4, 33, 37]. 

The expansion of the Universe is governed by the equations of the gravitational field, which 

have the following general form [4, 8]:  

1
( )

2
R g R t g T       .  (1) 

Here 2ds g dx dx 
  four-dimensional space-time interval in general relativity, g   met-

ric tensor, g g 
   ; R g R

    Ricci tensor; R   the Riemann−Christoffel

tensor, composed of the products of the first derivatives ( / ) ( / )p pg x g x        and the second

derivatives 2 /g x x      of the metric tensor; R g R
  scalar curvature of four-

dimensional space; 
48 /G c     Einstein gravitational constant; T   the energy-momentum

tensor, which plays the role of the source of the gravitational field; c  speed of light in vacuum, 

   the cosmological "constant" introduced by Einstein, which can often be omitted; G   grav-

itational constant.  
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In flat hyperspace, the space-time linear interval has the form 

2 2 2 2 2 2 2( ) ( )ds c dt a t dx dy dz    , which corresponds to the metric tensor with Galilean com-

ponents
iv)

2 2
00 11 22 33; ( ) ; 0 at ;g c g g g a t g g g           , (2) 

where t − the space time coordinate; ( )a t − expansion coefficient (Robertson−Walker scale fac-

tor [4]. For the case of an ideal cosmological fluid
v)

 the energy-momentum tensor in a locally

inertial Cartesian coordinate system has the form 2( )T c P u u Pg       , where ( ),t  

( )P P   are, respectively, the density and scalar pressure of the cosmological fluid (including 

matter and radiation) at the moment of time .t  Here a four-dimensional velocity /u x s    is

introduced, which is determined by the condition that in the accompanying locally inertial Carte-

sian coordinate system its components are equal 0 1u  and 0 0u  . Thus, at rest, the tensor

components T  have the following form [3]:

2
00 11 22 33; ; 0T c T T T P T при          . (3) 

Note that in a flat model of the Universe, the three-dimensional curvature is zero, but the four-

dimensional space remains curved. 

2.2 Friedman's cosmological model 

Let us consider Friedman's standard model for a flat open universe
vi)

.

From Einstein's equations (1) under the above assumptions
 vii)

 two Friedman equations for the

scale factor ( )a t  follow [3] 

2
2, 8

( ) ( ) /33
t

omitted

a G
H t t

a

  
     

 
,     (4) 

iv)
 Almost all modern cosmology is based on this Robertson-Walker metric. 

v)
 An ideal fluid is defined as a medium for which at each point there is a locally inertial Cartesian frame of ref-

erence moving with the fluid, in which the fluid itself looks the same in all directions. 
vi)

 Space is flat only if the ratio : / 1cr     , where 2
: 3 / 8

cr
H G    is the critical mass density (matter + radiation),

29 3
10 /

cr
g sm


  . According to modern observational data, the value 1.02 0.02   . 

vii)
 Space is flat only if the ratio : / 1cr     , where 2

: 3 / 8
cr

H G    is the critical mass density (matter + radiation),

29 3
10 /

cr
g sm


  . According to modern observational data, the value 1.02 0.02   . 
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2
2

1 ( ) 4 3 ( )
, ( ) ( ) /3( ) 3tt

omitted

dH t G P t
a H t t

a t dt c

  
         
   

,  (5) 

which describe an expansion of the Universe. Here, the dot denotes the time derivatives; 

( ) : , /tH t a a  − the Hubble parameter, or the Hubble expansion rate of the Universe (in the

modern period 18 1
0 2.2 10H c   ); m      total density of matter and radiation. Equa-

tions (4) and (5) include an additional governing parameter / 3  that, if properly defined, can 

explain the accelerated expansion of the late Universe [33]. 

From equations (4) and (5) it is easy to obtain the following continuity equation − "energy 

conservation law" 

2

, ( ) ( )
, ( ) 3 ( ) 0

( )
t

t
a t P t

t t
a t c

 
     

 
.  (6) 

To do this, it is necessary to differentiate (4) and combine the result with the ratio (5), which the 

pressure satisfies. Note that equation (6) can also be derived directly from the first law of ther-

modynamics, if we consider the Universe as a thermodynamic system bounded by the visible 

horizon and expanding adiabatically ([38], see also Section 5.1. of this work). 

Equation (6) can be written as 
2/ 3( / )ad da P c     , or, which is the same

3 2 2( ) / 3d a da Pc a   .  (7) 

If the dependence of pressure ( )P t on ( )a t is known, it is possible, by solving equation (4) (at

0  ), to determine ( )a t for all times. Thus, the fundamental equations of dynamic cosmology 

are the Einstein equations (4), the energy conservation equation (6) and the equation of state. 

Cosmological models based on the Robertson−Walker metric, in which ( )a t it is determined 

from these equations, are called Friedman models [39]. Note that the solution ( )a t obtained in 

this way automatically satisfies Eq. (5), since differentiating (4) with respect to time and using 

(7), we obtain 

2 3 2 2
2

8 8
2 , , , ( ) , 3

3 3t tt t t
G d G P

a a a a a a a a
a da a c

   
        

   
 

which is equivalent to equation (5). 

Equation (7) can be easily solved in the case of an equation of state in the form P w  with 

a time-independent coefficient w . In this case, equation (6) leads to a solution 
3 3wP a 

,

which, in particular, is applicable in the following frequently encountered limiting cases: 

− if the main contribution to the energy density of the Universe is made by nonrelativistic 

matter with negligible pressure, then it follows from (7) that 

3( ) ( )t a t   when P   ;  (8) 
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− if the contribution of relativistic particles, such as photons, prevails in the energy density, 

then / 3P   , and from (7) one obtains 

4( ) ( )t a t   when / 3P   ;  (9) 

− in the case of a cosmological vacuum, when 
2P c   , equation (7) has a solution in the

form of a constant  , known (up to generally accepted numerical factors) as the cosmological 

constant  , or vacuum density. 

The currently known observations of the accelerating expansion of the Universe are consistent 

with the existence of a constant vacuum energy equal to 2c . The very existence of an accelerat-

ing expansion, in accordance with equation (5), requires that a significant part of the energy den-

sity of the Universe should be in such a form for which 23 / 0P c  , in contrast to ordinary

matter and radiation. This form is called dark energy in cosmology [4]. 

3. ACCELERATED EXPANSION OF THE UNIVERSE

3.1. Entropy force associated with the Bekenstein−Hawking entropy 

In this work, to explain the accelerated expansion of the Universe, we will use a different ap-

proach (without dark energy), in which the ideas of information, holography, entropy and tem-

perature play a central role (see [10, 22, 40]). Consideration of the entropic force on the holo-

graphic horizon of an expanding flat Universe, which has associated entropy and temperature, 

leads to the so-called entropic cosmology, which assumes that it is the entropic force acting on 

the Hubble horizon and directed outward towards the horizon that is responsible for the phenom-

enon of accelerated expansion. For this reason, there is no ambiguous dark energy component in 

the cosmological equations.  

With this approach, by analogy with the thermodynamic characteristics of the Hubble horizon 

of a black hole described by its temperature and entropy, entropy cosmology assumes that the 

region of the expanding flat Universe (coinciding with the Hubble horizon) has a temperature 

proportional to the de Sitter temperature [30] and the associated Bekenstein−Hawking entropy 

[15]. In this case, the problem of the relationship between the cosmological constant and the en-

tropic force is solved in a natural way [10]. 

In entropic cosmology, the Hubble horizon (radius) HR  and the temperature of the cosmolog-

ical horizon of the Universe H ST T  are determined by the expressions [15]

1
HR cH ,   (10) 

2 2H
B B H

c
T H

k k R
  

 
,  (11) 
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where Bk  and / 2h   are the Boltzmann constant and the reduced Dirac constant, respective-

ly; − non-negative free order parameter (1)O  (usually 1/ 2 or 3 / 2 , which corresponds to 

the parameter for the screen temperature obtained in [15].  

The temperature of the horizon of the Universe, closely related to the de Sitter temperature

/ 2S BT H k  , can be estimated as

30(1) 3 10
2Н

B

H
T K

k
 


,  (12) 

which is much lower than the temperature of the cosmic microwave background, 2.73T К . 

The entropy associated with the horizon of the Universe is given by the following Beken-

stein−Hawking relation [13] 

3
H

BH B B H
Pl

A c
S k k A

A G

 
  

 
,  (13) 

where HA  is the size of the area of the standard horizon (surface area of the Hubble radius area

)HR ; 
3 70 2/ 2.612 10PlA G c m   − Planck area. Substituting the quantity 

2 2 2
H HA R c H     into relation (13), we obtain 

53
2 122

2 2

1
(2.6 0.3) 10B

BH B H B
k cс K

S k R k
G G H H

   
       

   
   

.  (14) 

A positive constant is introduced here 

5 2 2

2
: 0B B B

PlPl

k c k c k c
K

G AL

  
    ,  (15) 

where 
3/PlL G c is the Planck length.

Increasing the radius HR by HdR increases the entropy BHS  by BHdS  in accordance with the

formula 

3

2B
BH H H

k с
dS R dR

G

 
   
 
 

3
1222 (2.6 0.3) 10 .B H

H B
H

k c dRc
dR k

G H R

   
         

The entropy force BHF corresponding to the growth of the Bekenstein−Hawking entropy can be

defined as 
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BH
BH H

H

dS
F T

dr
  .  (16) 

Here, the minus sign indicates the direction of increasing entropy or screen, which in this case is 

the event horizon [15]. 

Substituting now relations (11) and (13) into (16) and using the formula for the area HA  of

the standard horizon, we obtain the following expression for the entropic force 

2 3

2

2 2
BH

BH H
H B H B H

dS H d K H K dH
F T

dR k dr k drH H

 
         

 

5 6 4

2 2 2

1 1 1

H H

c dH c c

G dR G GH H R
      .  (17) 

The pressure BHP  of this force on the cosmological horizon of the Universe is determined by

the formula 

4 2
2 2

2

21

4 4 34

crBH
BH

H H

F c c
P H c

A G GR


      


 (18) 

(where 2: 3 / 8cr H G  is the critical mass density of matter and radiation). This value is close

to the measured negative pressure (tension) of dark energy in the form of a cosmological con-

stant [4]. Thus, in the holographic approach, pressure arises not due to the negative pressure of 

dark energy, but due to the entropic tension due to the entropic content on the horizon of the 

Universe. The presence of such tension is equivalent to outward cosmic acceleration viii). In other 

words, the acceleration of the universe arises as a natural consequence of the entropy change at 

the horizon of the Universe. 

3.2. Accelerated expansion of the Universe under the influence of the 

Bekenstein−Hawking entropy force 

We will now assume that in entropy cosmology the effective pressure BHP  based on the

Bekenstein−Hawking entropy is determined by the relation  

2
2

4BH BH
c

P P P P H
G

     


 .  (19) 

When using BHP , equations (5) and (6) take the following form:

viii) Note that from the possibility of describing the cosmic acceleration of the Universe by an entropic force, it

does not follow that gravity itself is an entropic force [10]. 
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2
2

, 4 3 ( )
( ) ( )

3
tta G P t

t H t
a c

 
      

 
,  (20) 

3
2

3
, 3 ( ) ( ) ( )

4t
P

H t t H t
Gc

 
      

 
.  (21) 

These equations can be considered as modified equations of acceleration (5) and continuity (6) 

for entropy cosmology, obtained using the Bekenstein−Hawking entropy. The quantity H2 in 
these equations is related to the entropic force, which can explain the accelerated expansion of the 
Universe without introducing the concept of dark energy − the cosmic vacuum (associated with 
the cosmological constant), the energy density of which is negative. Note that the Beken-stein
−Hawking entropy is proportional to the area of the cosmological horizon of the Universe, due to 
which the model based on this entropy predicts only the Universe expanding with uniform 
acceleration. This model of the accelerated expansion of the Universe is capable to provide a good 
fit with supernova data [15, 22]. 

4. ENTROPIC FORCE ASSOCIATED WITH NON-ADDITIVE ENTROPY

OF BARROW AND TSALLIS−CIRTO 

Recently [35] proposed a model of the quantum gravitational foam of space-time was pro-

posed to estimate the entropy of black holes and the Universe, the surface of which can have a 

complex fractal structure of the cosmological horizon down to arbitrarily small scales (up to a 

scale of the order of the Planck length) due to quantum gravitational effects. The introduction of 

the fractal structure of the horizon (space-time region) of the Universe leads to an increase in its 

surface area. As you know, the surface area of the Universe is a key characteristic that deter-

mines its entropy and information content. 

The complex fractal structure of the horizon of the Universe results in a finite volume, but 

with an infinite (or finite) area [35]. According to the thermodynamics of black holes, the possi-

ble effects of the quantum-gravitational foam of space-time in the region of the cosmological 

horizon lead to a new definition of the entropy of the Universe − to the non-additive entropy of 

Barrow BS  [35] related to the additive Bekenstein−Hawking entropy as follows:

 
1 /2

/ /
D

B B BH BS k S k


 . Substituting the values BHS and Bk  into this ratio yields

120(1 /2)10 D
BS


. Here, the parameterD (0 1)D   is the fractal mass dimension of the quan-

tum-gravitational foam, which quantitatively determines the deformation of the structure of the 

horizon of the Universeix).  

ix) It should be noted that when defining the Barrow entropy, the complex fractal structure of the cosmological

horizon is modeled by an analogue of the spherical "Koch snowflake" using an infinite decreasing hierarchy of 

touching spheres around the Schwarzschild event horizon. Nevertheless, this simple model of possible manifesta-

tions of quantum-gravitational effects has important implications for estimates of the entropy of the Universe, which 

is usually slightly larger than in the baseline scenario.  

A.V. Kolesnichenko, M. Ya. Marov  

89



It is easy to show that Barrow's entropy obeys the following pseudo-additive law for two in-

dependent systems N  and M :  
2

2 2 2
2 2(N M) (N) (M)

D

D DB B B

B B B

S S S

k k k



 

 
    

     
    
 

. 

Entropy BS can be written as follows:

1 /2 /21 /2 2 3 2
2

D DD
H H B H

B B B H
Pl Pl Pl

A R k c R
S k k R

A A G A

        
       
        

 

  

/2 /22 1 /2
2 2 2 2 2 2

2 /2

D D D
DH

H H H HD
Pl B B

R K K
Kс R Kс R R R

A k с k


  

    
      
       

.  (22) 

Here 
3 70 2/ 2.612 10PlA G c m    Planck area; 

2: / 0B PlK k c A   ; HA   standard

horizon area;. In the case 0D   that corresponds to the simplest structure of the cosmological 

horizon of the Universe, the standard  /B BH B H PlS S k A A   Bekenstein−Hawking entropy

considered above is restored. 

When 1D , then there is a smooth space-time structure of the horizon of the Universe, at 

which

3/2
H

B ТС B
Pl

A
S S k

A

 
   

 
. In this case, formula (22) is similar to that for the non-additive

entropy of Tsallis and Cirto [31], introduced by these authors, when studying the evolution of a 

black hole on the basis of completely different physical principles, different from the fractal in-

terpretation (see [41-44]). In order to obtain modified cosmological equations, we apply the pro-

cedure considered in the previous section to derive an expression for the entropy force, but now 

involving the Barrow entropy (22). It is  evident that in the general case of a medium with fractal 

dimension (0 1)D  , these equations, in contrast to the Friedman equations (20) and (21), will 

contain new additional terms that allow modeling the cosmological behavior of the Universe [34, 

36, 45]. 

4.1. Entropic Force Associated with Barrow's Entropy 

At this point, we will consider the possibility of an accelerated cosmological expansion of the 

Universe, but using the Barrow entropy at its horizon. Barrow's entropy arises, in particular, due 

to the fact that the surface of the horizon of the Universe can deform due to quantum-

gravitational effects, and its deviation from the Bekenstein−Hawking entropy is quantitatively 

determined by the fractal dimension index D .  

Increasing the radius HR  by HdR  increases the entropy BS  by BdS  in accordance with the

expression 
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 
1 /2 1( ) (2 ) /
D D

B B Pl H HdS D k D A R dR
    .  (23) 

Then for the entropic force BF  arising from the modification of the horizon of the Universe,

which is associated with quantum-gravitational effects, we will have: 

/23
1(2 )

2

D
DB

B H B H
H B H Pl

dS c c
F T k D R

dR k R G A
    

       
   

/2 /24 42 (2 )

2 2

D DD
D D
H

Pl B

D c D c K
R H

G A G k


     

      
  

.  (24) 

Accordingly, the pressure BP  of this force on the cosmological horizon of the Universe is de-

fined by the formula  

/2 /24 2
2 2(2 ) (2 )

4 4 2 2 4

D DD
D DB

B H
H B B

F c K D D c K
P R H

A G k G k


     

       
    

.     (25) 

In what follows, we will assume that in entropy cosmology the effective pressure BP  based

on the Barrow entropy is determined by the relation  

/22
2(2 )

2 4

DD
D

B B
B

D c K
P P P P H

G k


 

       
  

.  (26) 

     When using P′B the equations of acceleration (5) and continuity (6) take the form

/2
2

2

1 4 3 (2 )
, ( ) ( ) ( )

( ) 3 2

D
D D

tt
B

G D K
a t P t c H t

a t kc

   
        

   
 ,  (27) 

/2
3

2

( ) 3 2
, ( ) 3 ( ) ( ) ( )

4 2

D
D D

t
B

P t D K
t H t t c H t

G kc

   
        

   
.  (28) 

     It is important to note that in the case of fractal dimension D  =0 these equations will 
coincide with the modified Friedman equations (20) and (21), i.e., the deformation of the 

Bekenstein− Hawking holographic entropy is measured by a new index D, whereas the case of 

zero defor-mation ( D  =0 ) corresponds to the entropy force Barrow, which fully  complies with 
the stand-ard entropy force considered in [15]. 

At the same time, the authors of [34], based on observational data from a sample of the 
collec-tion (SNIa) of supernovae and using direct measurements of the Hubble parameter by 

cosmic chronometers, showed that the value deformation parameter equal to D  =0.094 , 
assuming that a small deviation from the standard holographic Bekenstein−Hawking entropy is 
preferable. 
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The case 1D corresponds to the maximum deformation associated with the Tsallis−Cirto 

cosmological entropy [31]. The scenario for the manifestation of this entropy predicts both de-

celeration and/or accelerated expansion of the Universe [46].  

In the general case, when 0 1D  we have a new cosmological scenario for the manifesta-

tion of the entropic force, based on the Barrow entropy associated with the quantum-

gravitational effects of the horizon of the Universe. This scenario allows simulating the cosmo-

logical behavior of the Universe for the case of various modifications of Barrow's governing 

gravitational force [36].  

4.2. Entropic force associated with the entropy of Tsallis−Cirto 

Let us now consider entropic cosmology under the assumption that the cosmological horizon 

of the Universe has a temperature 

2 2H
B H B

c
T H

k R k
   

 

and that the non-additive entropy of Tsallis−Cirto,  is defined as follows [31] 

3/2 1/23/2 2 3 2
2(1) : H H B H

TC B B B H
Pl Pl Pl

A R k c R
S S k k R

A A G A

       
        
        

1/21/2 1/23
2 3 3

4 3

1
H H

Pl BB

K K
Kс R R cK

A kk c H


    
      
      

.  (29) 

It follows from formula (29) that the non-additive entropy TCS  is proportional to the volume of

the horizon of the Universe, in contrast to the Bekenstein−Hawking entropy (14), which is pro-

portional to its area. 

Increasing the radius HR  by HdR  increases the Tsallis−Cirto entropy TCdS  in accordance

with the ratio 

 
1/2

3 4 23 /TC B H HdS K k c R dR .  (30) 

Using (30), we obtain the following expressions for the entropy force and pressure on the 

cosmic horizon of the Universe, corresponding to the Tsallis−Cirto entropy: 

1/243

2
B

ТС H H
H Pl

dS c
F T R

dR G A

 
     

 

1/2 1/2
3 4 33 3

2 2H H
B B B

K c K
R R

k c k KG k

     
        

         

,  (31) 
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1/2 1/24 2
1

2

3 3

2 4 4 24

ТС
TC H

B BH

F c K c c K
P R H

G k G kR

   
        

     
.  32) 

Assuming, as it was made before, that in entropy cosmology the effective pressure ТСP  based

on the Tsallis−Cirto entropy is determined by the relation ТС ТСP P P   , and substituting ТСP

in the equations of acceleration (5) and continuity (6); we will obtain: 

1/2

2

, 4 3 ( ) 3
( ) ( )

3 2
tt

B

a G P t c K
t H t

a kc

  
       

   
,  (33) 

1/2
2

2

( ) 3 3
, 3 ( ) ( ) ( )

4 2t
B

P t c K
H t t H t

G kc

  
       

   
.  (34) 

Equations (33) and (34) can be considered as modified equations of acceleration and continui-

ty based on the generalized Tsallis−Cirto entropy. From equation (33) it follows that the govern-

ing force term in this model is proportional to the Hubble rate H expansion of the Universe, in 

contrast to the analogous entropy force term in the Bekenstein−Hawking model, which is propor-

tional to 2H .

It should be noted that cosmological equations similar to equations (33) and (34) have been 

repeatedly discussed in the literature when modeling the evolution of the Universe based on dif-

ferent approximations of the variable cosmological term (see, for example, [46]). On the other 

hand, the entropy force (31) obtained from the generalized entropy Tsallis− Cirto behaves in the 

same way as the driving force of a viscous cosmological fluid with bulk viscosity  , which is 

used to explain the accelerated expansion of the Universe in models of viscous cosmology. In-

deed, the expression for the effective pressure 

1/233
( ) ( ) ( )

8ТС
B

c K
P t P t H t

G k

 
    

  
 in equation 

(34) is similar to the expression ( ) ( ) 3 ( )P t P t H t     for pressure in viscous cosmology models 

designed to simulate dark matter. Models of this type assume that the Universe is filled with a 

cosmological fluid with bulk viscosity that can generate the entropy of a homogeneous and iso-

tropic Universe (see [47-51). This similarity became possible due to the fact that the nonadditive 

entropy of Tsallis Cirto, introduced on the basis of the holographic principle, behaves as if it 

were the classical entropy of a homogeneous and isotropic Universe generated by the volumetric 

viscous stress of a cosmological fluid [48, 52-54]. 

Thus, using the holographic principle, which is associated with the existence of the Barrow 

entropy on the horizon of the Universe, in this work two models of the entropic force were con-

sidered: model (17) based on the Bekenstein−Hawking entropy, and model (31) based on non-

additive Tsallis−Cirto entropy. These models describe the evolution of an accelerating Universe 

without using the concept of the cosmological constant or dark energy. 
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 This implies that the Bekenstein−Hawking entropy force model predicts a uniformly acceler-

ating Universe, while the Tsallis−Cirto model predicts both deceleration and accelerated expan-

sion of the Universe [46, 55]. 

5. THERMODYNAMIC APPROACH TO THE DEVELOPMENT OF

THE EQUATION OF ENERGY CONSERVATION 

Let us now proceed to consideration of the non-adiabatic expansion of the Universe caused by 

Barrow's cosmological entropy on the Hubble horizon. For this purpose, we derive the general-

ized energy equation (6), modifying the thermodynamic approach developed in the monograph 

[38]. 

5.1. Adiabatic expansion of the Universe 

According to the first law of thermodynamics, the principle of conservation of total energy for 

non-additive systems can be written in the form / / /dQ dt dE dt PdV dt  or in the form of the 

Gibbs relation [56, 57] 

/ / / /TdS dt dQ dt dE dt PdV dt   ,  (35) 

expressing the rate /TdS Dt of change in entropy S  when an element of a non-additive medium 

moves along its trajectory. Here dQ  is the heat transferred across the border from the environ-

ment to the element of the environment, dE and dV  changes in the internal energy and volume 

of the area of matter and radiation, respectively. Relation (35) can be rewritten as 

( , , )t t
dS dE PdV

TdS dQ T dt dt E PV dt
dt dt


     .  (36) 

Let us now consider a sphere of initial radius ŝr , expanding together with the universal ex-

pansion of the Universe, so that its own radius ( )HR t at the moment of time t is determined by

the expression ˆ( )H sR a t r . Then the volume ( )V t  of the sphere is

3 3ˆ( ) (4 / 3) ( )sV t r a t   .  (37) 

From this it follows 

3 2 ,4
ˆ, (3 , ) 3 3

3
t

t s t
a

V r a a V VH
a

 
   

 
,   ( , / )t aa H  .  (38) 

For the internal energy of the sphere, we have ( ) ( ) ( )E t t V t  , where ( )t is the internal energy 

density, determined by the relation 2( ) ( )t t c   . Hence, the rate of change in the internal energy

of the sphere ( )E t  is determined as  

 , , , , 3t t t tE V V H V        .  (39) 
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Substituting equations (38) and (39) into , ,t tE PV , we obtain

 , , , 3 3 , 3 ( )t t t tE PV H V PVH H P V             

 2 2, 3 /t H P c c V    
  

.  (40) 

Finally, substituting relations (37) and (39) into equation (36), we obtain the first law of ther-

modynamics for an expanding or contracting Universe: 

2
2

( , , ) , 3t t t
dS P

T E PV H c V
dt c

  
         

  

 2 2 3, 3 / (4 / 3)t Hc H P c R     
  

.  (41) 

Let us now consider such motions of cosmic matter for which the entropy of each particle of 

the medium remains in the first approximation constant throughout the entire path of an element 

of the medium, i.e.  / 0dS dt  . Such reversible and adiabatic motions are isentropic. For them, 

equation (41) is reduced to the previously obtained continuity equation (6) for the adiabatic ex-

pansion of the Universe  

2, ( )
, ( ) 3 ( ) ( ) / 0

( )
t

t
a t

t t P t c
a t

     
  

. 

5.2. Modified energy equation for modeling non-adiabatic expansion of the Universe 

If the evolution of the Universe within the framework of non-adiabatic entropic cosmology is 

modeled, then / 0dS dt   (see [58-60]. To calculate /TdS dt in equation (41), we will use for-

mula (24) related to the Barrow entropy [35], as the most general in the case under consideration. 

As a result, we will have  

/23
1(2 )

2

D
DB H

H B H
B H Pl

dS dRc c
T k D R

dt k R G A dt
    

     
   

/2 /24 5
22 (2 )

,
2 2

D DD
D DH
H t

Pl B

dRD c D c K
R H H

G A dt G k


      

      
  

.  (42) 

Taking into account expression (42), the energy equation (41) 

2 3
2

3
, 3

4
B

t H H
dSP

H T c R
dtc

     
        

   
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in the case of non-adiabatic expansion of the Universe under the influence of the driving entropy 

force (associated with the Barrow entropy) takes the form 

/2
2 1

2

, 2 3
, 3 ,

2 4

D
D Dt

t t
Ba

a P D K
c H H

k Gc

     
          

    
.  (43) 

This is a modified equation of continuity obtained from the first law of thermodynamics under 

the assumption of non-adiabatic expansion of the Universe. The right-hand side of equation (43) 

is associated with a non-adiabatic process. If 0H   or if H const , then equation (43) is re-

duced to the continuity equation for the adiabatic expansion of the Universe. Note that a similar 

modification of the continuity equation for entropy cosmology has been studied for other cosmo-

logical models of the expansion of the Universe (see, for example, [18, 19]. 

Using equation (43), the following equations of continuity can be obtained in the case of non-

adiabatic expansion of the Universe under the influence of the Bekestein−Hawking and Tsal-

lis−Cirto entropic forces: 

2

, 3
, 3 ,

4
t

t ta

a P
HH

Gc

   
        

  
,    ( 0)D  ,  (44) 

1/22

2

, 3 3
, 3 ,

2 4
t

t t
Ba

a P c K
H

k Gc

    
          

    
,    ( 1)D  .  (45) 

5.3. Simple models of non-adiabatic expansion of the Universe 

In this subsection, using the modified continuity equation (43), we’ll analyze two generalized 

Friedman equations (4) and (5) for the scale factor in the case of non-adiabatic expansion of the 

Universe under the influence of the Barrow entropy force. 

For this purpose, we write equation (4) in the form 

2 2 28
( , ) ( )

3t a a
G

a f t


   ,  (46) 

where ( )f t  is a function depending on the type of entropy force, including high-order correc-

tions. Differentiating this equation with respect to t , we obtain 

 2 28
2 , , , 2 , , 2 ,

3t tt t t t ta a a a
G

a a a f f a


    
, 

or, after dividing by 2 ,ta a ,

, 4 1 1
, 2 ,

3 2
tt

t ta

a G
f f

H H


  
     

 
.  (47) 

Now multiplying the energy equation (43) by / 1 /,ta Ha  , as a result we will have
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 
/2

2, 2 3
3 1 ,

2 4

D
D Dt

t
B

D K
w c H H

H k G
    

        
  

.  (48) 

where the notation is introduced  2/w P c  . Substituting relation (48) into equation (47), we 

finally obtain 

 
/2

2, 4 2 1
1 3 , ,

3 2 2

D
D Dtt

t t
Ba

a G D K
w c H H f f

k H



  

       
 

 (49) 

Further, for the purpose of simulation, one should follow the work [15, 22] concept, where it was 

assumed that the term associated with the entropy force does not depend on the time derivative 

of the Hubble parameter. Following this assumption, we define the functions ( )f t   in such a way 

that the term with ,tH  is absent in equation (49). If we put

/2
2 22

( ) ( )
2

D
D D

B

D K
f t c H t

D k
 

   
  

,  (50) 

we then obtain the following simple system of self-consistent equations,  composed of the modi-

fied Friedman equations, acceleration and continuity: 

/22
2 2 2, 8 2

3 2

D
D Dt

B

a
a

a G D K
c H

D k
    

      
   

,  (51) 

 
/2

2 2, 4 2
1 3

3 2

D
D Dtt

Ba

a G D K
w c H

D k



  

      
  

,  (52) 

/2
2 1

2

, 2 3
, 3 ,

2 4

D
D Dt

t t
Ba

a P D K
c H H

k Gc

     
          

    
.  (53) 

This system of equations makes it possible to simulate a new scenario of the evolution of the 

Universe, if one considers it as a thermodynamic system bounded by the visible horizon, which 

expands nonadiabatically under the influence of the entropic force associated with the nonaddi-

tive entropy of Barrow. 

Using the system of equations (51)-(53), it is possible to obtain a number of models that de-

scribe the non-adiabatic evolution of the Universe without using the concept of the cosmological 

constant, or dark energy. These models include, in particular, the non-adiabatic model based on 

the Bekenstein−Hawking entropy and the non-adiabatic model based on the Tsallis−Cirto non-

additive entropy. 
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Assuming parameter 0D   in formula (50), we will have 
2( ) ( )f t H t   for the function ( )f t .

In this case, a simple entropy model of the non-adiabatic expansion of the Universe based on the 

Bekenstein−Hawking entropy takes the form 

 
2 2 28

,
3t a
G

a H


    ,  (54) 

  2, 4
1 3

3
tt

a

a G
w H


     ,  (55) 

2

, 3
, 3 ,

4
t

t ta

a P
HH

Gc

   
        

  
.  (56) 

Entropic force 
2f H  in the equation. (54) coincides with the corresponding term in formula

(55). The modified Friedman equations (54) and (55) correspond to equations (4) and (5) of the 

Friedman cosmological model. Using this system, it is possible to establish a number of proper-

ties of a non-adiabatically expanding Universe (see, for example, [23, 25]. 

If we put 1D in formula (50), then for the function ( )f t  we obtain the following expression 

 
1/223 / Bf c K k H  ,  (57) 

and taking it into account  the system (51)-(53) takes the form 

1/22
2 2, 8

3
3

t

B

a
a

a G K
c H

k

   
      

   
,  (58) 

 
1/2

2, 4
1 3 3

3
tt

Ba

a G K
w c H

k


 
      

 
,  (59) 

1/22

2

, 3 3
, 3 ,

2 4
t

t t
Ba

a P c K
H

k Gc

    
          

    
.  (60) 

This system of equations underlies the simulation of the evolution of the non-adiabatically ex-

panding Universe under the influence of the Tsallis−Cirto entropy force [31]. 

Thus, entropy cosmology using the procedure of "gravitational thermodynamics" using the 

Barrow entropy is quite effective for constructing a number of models describing the evolution 

of the Universe and allowing one to find quantitative estimates of the non-adiabatic accelerated 

expansion of the Universe in accordance with observational data.  
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CONCLUSION 

Progress in astrophysics rooted in the ground-based and space astronomy greatly influenced 

the key concepts of our views about space environment, origin, evolution and fate of our Uni-

verse. For less than half a century since the beginning of space exploration [61] cosmology expe-

rienced dramatic changes and this process continuously escalates. New projects and break-

throughs in theoretical approaches in the coming years open extremely challenging horizons in 

this intriguing branch of astrophysics and general science.  

The modern cosmological data indicate that the Universe is expanding with acceleration. Un-

fortunately, a simple modified general relativity, which includes a key parameter − the cosmo-

logical constant  , characterizing an expansion cannot describe this phenomenon convincingly 

enough. Therefore, it becomes necessary to search for an approach that could be used to describe 

the accelerated expansion of the Universe more effectively.  

One of the directions along this path consists in the construction of a modified theory of 

gravity, according to which the entropic force underlies the accelerated expansion of the Uni-

verse. The emergence of this force is an inevitable consequence of the growth of entropy at the 

post-inflationary stage of the quantum canvas of space-time, which can be associated with the 

storage of holographic information on the “surface screen of the Universe”, similar in a certain 

sense to the event horizon of a black hole. 

It should be noted that the holographic principle was put forward  earlier in the study of  phys-

ics of the black holes as an important property of quantum gravity, which states that the proper-

ties of space are encoded at its boundary (on the gravitational horizon of events). Based on this 

principle, Verlinde proposed an extended holographic picture in which Einstein's gravity arises 

from the statistical effect of a holographic screen. This approach proved to be effective for de-

scribing quantitatively the accelerated expansion of the Universe. A number of authors general-

ized the basic scenario of the evolution of the Universe, based on the use of entropic forces of 

various nature, with involvement of the assumption that the horizon of the Universe, like the 

event horizon of a black hole, has its own entropy and temperature. 

Recently, Barrow proposed a model of the quantum gravitational canvas of space-time to es-

timate the entropy of black holes and the Universe, the surface of which can have a complex 

fractal structure of the cosmological horizon down to arbitrarily small scales (an order of the 

Planck length) due to quantum gravitational effects. As it is known, many solutions of the classi-

cal Einstein equations, in particular, the isotropic homogeneous cosmological model of Fried-

man−Robertson−Walker, contain singularities and cannot be analytically continued beyond 

them. In this regard, we face the fundamental problem of modern cosmology: what caused the 

growth of fluctuations and the emergence of a fragment of space-time on the infinite quantum 

canvas of the Universe, which concentrated within itself a huge energy ("vacuum energy") and 

why and how it was followed by inflation (de Sitter phase) and subsequently, the Big Bang left 

behind observed echo in the form of microwave background radiation (CMB). One way or an-

other, the basis of such a scenario, which gave rise to the birth of the Universe, is addressed to 

quantum-gravitational effects [62]. 

In this work, an attempt is undertaken to better understand the physical mechanism of the ac-

celerated expansion of a flat, homogeneous and isotropic Universe. Modified cosmological equa-

tions are obtained, containing new additional terms that coincide with the basic Friedman equa-

tions in the case when the Barrow deformation exponent corresponds to the fractal dimension 

0D  . However, in the general case 0 1D  , new governing terms appear associated with 
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changes in the entropy of Barrow on the Hubble horizon of the Universe. It significantly exceeds 

its age, which affect the evolution of the main cosmological criteria, such as the scale factor, the 

deceleration parameter, the density of matter (involving visible and dark matter, radiation, neu-

trinos, etc.) and the growth of linear perturbations of matter. This should lead to a new phenome-

nological description of the thermal history of the Universe. The core for this conclusion is based 

on the results of this work, in which the validity of using the generalized second law of thermo-

dynamics for the Barrow entropy was thoroughly investigated. On this basis, modified Friedman 

equations were obtained, which made it possible to explain the non-adiabatic expansion of the 

Universe in terms of entropy, without involving hypothetical dark energy as a texture (fabric) of 

the very expanding space. It seems reasonable to find out in this approximation a solution to the 

modified Einstein equations with quantum corrections and to establish whether there are physi-

cally interesting nonsingular solutions among them. 

As one may see, entropy cosmology, based on the concepts of "gravitational thermodynam-

ics" using the entropy of Barrow, is regarded as quite effective approach for quantitative assess-

ment of the non-adiabatic accelerated expansion of the Universe and its possible change with 

time. The results of the analysis of possible solutions of the cosmological equations analyzed in 

this work will be presented in the following publications of the authors. 
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Summary.Two waves model where shock wave is combined with rarefaction wave appearing 

in laser ablation due to metal-nonmetal transition effect is investigated using conservation 

laws for mass and momentum fluxes for the steady-state regime of the process. This approach 

permits to obtain the relation between front velocities of the waves which shows that the 

rarefaction wave can be rather slow compared with the generated shock wave.  

1. INTRODUCTION

Compression shock waves with supersound propagation speed are well known in

mathematics and physics due to its practical importance and rather simple generation [1-3]. 

Rarefaction shock waves are not so widespread phenomena because, in particular, for its 

generation more special conditions are needed [3-6]. Laser ablation due to surface 

vaporization process can be considered as an example of slow speed rarefaction waves 

moving into the irradiated condensed matter. In [7] it was suggested that during laser metal 

ablation “ induced transparency wave” arisen from metal- nonmetal transition (MNT) [8] can 

propagate into some metals which, in contrast to vaporization process, remain in liquid state 

with diminished density. The laser ablation with possible MNT effect is considered in many 

papers (see, e.g. [9-11] and references therein) without sufficient attention to hydrodynamic 

aspects of the problem. 

In the present paper some properties of combined compression and rarefaction waves are 

investigated which, to our knowledge, have not been discussed before.  

2. STATEMENT OF THE PROBLEM

In the considered condensed matter (liquid) which was initially at rest in the half-space z 

0 with pressure P0 , density 0 and velocity V0 = 0 two combined compression  and rarefaction 

waves are propagating with constant velocities, respectively, D > d > 0. The rarefaction wave 

movement is due to MNT effect mentioned above. Between compression and rarefaction 

wave fronts one has for velocity, pressure, and density the relations: V1 > 0, P1 > P0 , and 1 

> 0 while after rarefaction wave front V2 < 0 , P2 > P0, and с <   2, where с means 

critical density for liquid-vapor phase transition and P2 at the irradiated surface depends on 

the metal ablation regime conditions. 

Conservation laws for mass and momentum fluxes at the two fronts are as follows: 

                       (1) 

                   
 (2) 
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                   (3) 

           
                

 (4) 

From these equation it is possible to obtain useful relation between velocities of shock and 

rarefaction waves. 

3. RESULTS AND DISCUSSION

To obtain the relation between d and D it is necessary to exclude from (1)-(4) velocities V1, 

V2 and pressure P1, which can be done in a straightforward manner. From (1), (2) it follows: 

           (5) 

                 (6) 

where В01 = 0//1. Taking into account eqs. (1), (2) and notation В12 = 1/2 one obtains 

for P1:  

              
                          

         (7) 

From (6), (7) then it follows: 

                          
             (8) 

After using the relation m = d/D one can rewrite (8) in the form: 

 
 
     
                

     
              (9) 

 
 
     
                

     
              (9a) 

It is clear that in (9) the expression in brackets {}  cannot be negative while  its numerator 

cannot be positive because (1-В12 ) < 0. At the threshold where the expression in brackets  is 

zero one  has for maximum value of В01M and  corresponding value of mM: 

         
     

    (10) 

            (11) 

These equations permit to estimate  approximately the threshold value of mM  and d  for the  

experiment conditions  [9,10]  because in this case D differs  from sound velocity but  

slightly.  For example,  at  P2 -  P0  300 bar (310
8
 g/s

2
cm) and  0D

2
  310

11
 g/s

2
cm this

gives  mM 10
-3

 . Above  the  threshold  evolution of m is determined by the  expression:

         
    

       

           

     
 

 

 

(12) 

where the solution with  sign (+) is appropriate for В01 < В01M due to the condition m > 0 

while it is not so for the second solution  with  sign (-).  Dependence of  both  solutions (12) 
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on В01 is shown in Fig.1 at different values of В12 and constant  other parameters  for 

simplicity.  It should be mentioned that В01 , В12 , D and P2 vary in accordance with  equation 

of state  and  with MNT properties  as well as  with laser ablation  regime  which determines 

also value of  d. 

0,9950 0,9955 0,9960 0,9965
-5,00x10

-2

-2,50x10
-2

0,00

2,50x10
-2
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B
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B
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Fig.1 Dependencies of the value m on the ratio B01 for three fixed ratio B12 and one fixed 

ratio (P2 -  P0)/ 0D
2
 =1- В01M = 3.5∙10

-3

4. CONCLUSION

Presented here investigation of mathematical properties pertinent to suggested model of

combined  compression and  rarefaction waves permits to obtain the relation  between the 

propagation velocities of the waves. The investigation is based on analysis of conservation  

laws for the steady-state  mass and momentum fluxes.  More detailed information  on the 

considered regime  can be obtained taking into account  the energy flux  conservation  law as 

well as using  time-dependent  mathematical modeling .of laser ablation  with  MNT  effect. 
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Summary. A hydrodynamic model of shock-wave processes in a material under the action

of a short high-intensity laser pulse is considered. The simulation is carried out for the case

of an aluminum target 90 µm thick, irradiated by a laser pulse with a duration of 70 ps and a

maximum intensity of 14.7 TW/cm2. In the corresponding laboratory experiment, on the rear

side of the target after irradiation, a spall of a part of the material is recorded at a depth of

10±1 µm. Calculation of the time dependence of the pressure and density of aluminum in the

spall plane makes it possible to determine the tensile strength of aluminum at a high strain rate.

1 INTRODUCTION

The action of a short high-intensity laser pulse upon a target makes it possible to study the

properties of the target material under shock-wave loading at a high strain rate [1–9]. Numerical

modeling of such a process [2,3,6,10–16] provides additional possibilities for the interpretation

of the obtained measurement results.

In this work, an example of a laboratory experiment on the action of a 70 ps laser pulse on

an aluminum target is given. A description of the hydrodynamic model for the propagation of

shock compression waves and adiabatic unloading along the target is presented. The results of

modeling are presented and a conclusion is made about the magnitude of the spall strength of

aluminum at the considered strain rate.

2010 Mathematics Subject Classification: 74J40, 76L05, 82D20, 82D35.

Key words and phrases: laser pulse action, aluminum, shock wave loading, adiabatic release, spall, tensile

strength, high strain rate.
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2 EXPERIMENT

The experiment was carried out on a Kamerton-T facility based on a neodymium glass laser

(wavelength λ = 0.527 µm) [8, 10, 11]. A pulse with duration τ = 70 ps and energy El =

3.57 J was focused into a spot 0.63 mm in diameter on the surface of a 90-µm-thick aluminum

target. Taking into account the measured dependence of the laser radiation intensity on time,

the maximum intensity of this pulse is estimated to be I0 = 14.7 TW/cm2.

The result of the action of such a pulse is the formation of a spall of a part of the material on

the rear side of the target. The spall occurred at a distance of 10±1 µm from the rear surface;

the diameter of the spalled plate is 0.66 mm.

3 HYDRODYNAMIC MODEL

The system of hydrodynamic equations for the one-dimensional case under consideration

has the following form [17]:

∂

∂ t
U+

∂

∂x
F = 0, (1)

U =

















ρ

ρu

ρv

ρw

e

















, F =

















ρu

ρu2 +P

ρuv

ρuw

(e+P)u

















, (2)

where t is the time coordinate; x is the spatial coordinate; ρ is the density of the material under

consideration; P is the pressure; e is the full energy density,

e = ρE +
1

2
ρ(u2+ v2 +w2), (3)

E is the specific internal energy; u is the particle velocity along the x-axis; v = 0 and w = 0 for

the case.

In quasilinear non-conservative form, the system of equations (1) can be written as follows:

∂

∂ t
U+A

∂

∂x
U = 0, (4)
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where

A =

















0 1 0 0 0

−u2 +θb 2u−ub −vb −wb b

−uv v u 0 0

−uw w 0 u 0

−uh+uθb h−u2b −uvb −uwb u+ub

















, (5)

h =
e+P

ρ
, θ = q2 −

e

ρ
+

(∂P/∂ρ)E

b
, q2 = u2 + v2 +w2, b =

(∂P/∂E)ρ

ρ
. (6)

One can write matrix A in the form A = ΩΛΩ−1, where

Ω =

















1 0 0 1 1

u− c 0 0 u u+ c

v 1 0 v v

w 0 1 w w

h−uc v w h− c2b−1 h+uc

















, Λ =

















u− c 0 0 0 0

0 u 0 0 0

0 0 u 0 0

0 0 0 u 0

0 0 0 0 u+ c

















, (7)

Ω−1 =
b

2c2

















θ +ucb−1 −u− cb−1 −v −w 1

−2vc2b−1 0 2c2b−1 0 0

−2wc2b−1 0 0 2c2b−1 0

2h−2q2 2u 2v 2w −2

θ −ucb−1 −u+ cb−1 −v −w 1

















, (8)

detΩ =
2c3

b
, c =

√

(∂P/∂ρ)E +
P

ρ2
(∂P/∂E)ρ . (9)

Here, c is the adiabatic sound velocity. Using values c and h, one can obtain

θ = q2 −h+ c2b−1. (10)

The system of equations of motion (1) is closed by the equation of state of the target material

in the form of a function

P = P(ρ ,E), (11)

which is taken according to the model [18–20].
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4 SOLUTION METHOD

With the use of the formulas for matrices from the previous section, the system of equa-

tions (1) and (11) can be solved by the Courant–Isaacson–Rees method [21]. The difference

scheme of the method is as follows [17]:

Uk+1
j −Uk

j

∆t
+

F
j+1/2

−F
j−1/2

∆x
= 0, (12)

Fm+1/2 =
1

2

(

Fk
m +Fk

m+1

)

+
1

2
|A|km+1/2

(

Uk
m −Uk

m+1

)

(13)

for m = j−1 and j. Here, integer subscripts denote the values of the function at the centers of

discrete grid cells in space, and half-integer ones—at the boundaries of the cells; ∆x is the step

of a uniform grid in space; ∆t is the time step;

|A|= Ω|Λ|Ω−1, (14)

|Λ|=

















|u− c| 0 0 0 0

0 |u| 0 0 0

0 0 |u| 0 0

0 0 0 |u| 0

0 0 0 0 |u+ c|

















. (15)

Matrix (15) can be represented as a sum of three matrices with multipliers:

|Λ|= |u|

















1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

















+α

















1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

















+ γ

















0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

















, (16)

where α = |u− c|− |u|; γ = |u+ c|− |u|.

Denoting ∆U = Um −Um+1 (with elements ∆U =Um −Um+1) and using (14) and (16), one

can obtain

|A|∆U = |u|

















∆ρ

∆(ρu)

∆(ρv)

∆(ρw)

∆e

















+α( f +g)

















1

u− c

v

w

h−uc

















+ γ( f −g)

















1

u+ c

v

w

h+uc

















, (17)
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where

f =
b

2c2
[θ∆ρ −u∆(ρu)− v∆(ρv)−w∆(ρw)+∆e], g =

1

2c
[u∆ρ −∆(ρu)]. (18)

Taking into account relations (6) as well as ∆P≈ (∂P/∂ρ)E∆ρ+(∂P/∂E)ρ ∆E and ∆(ρu)≈

ρ∆u+u∆ρ , it is possible to obtain approximate expressions for the factors f and g:

f ≈
1

2c2
∆P, g ≈−

ρ

2c
∆u. (19)

So, in (13), one can use

|A|km+1/2

(

Uk
m −Uk

m+1

)

=



















|u|k
m+1/2

(ρk
m −ρk

m+1)+β k
m+1/2

|u|k
m+1/2

([ρu]km− [ρu]km+1)+ [βu−δc]k
m+1/2

|u|k
m+1/2

([ρv]km− [ρv]km+1)+ [βv]k
m+1/2

|u|k
m+1/2

([ρw]km − [ρw]km+1)+ [βw]k
m+1/2

|u|k
m+1/2

(ek
m − ek

m+1)+ [βh−δuc]k
m+1/2



















, (20)

β k
m+1/2 = [α

(

f +g)+ γ( f −g)]km+1/2, δ k
m+1/2 = [α( f +g)− γ( f −g)]km+1/2, (21)

f k
m+1/2 =

[

1

2c2

]k

m+1/2

(

Pk
m−Pk

m+1

)

, gk
m+1/2 =−

[

ρ

2c

]k

m+1/2

(

uk
m −uk

m+1

)

. (22)

At the initial moment of time, the entire target was divided in thickness into cells of the same

size, which were numbered from j = 1 to N j = 1000. This gives the step of the grid in space

∆x = 0.09 µm. The step in time was chosen from the condition ∆t 6 ξ ∆x/max(|u|+ c), where

ξ = 0.1.

At each time step, the boundaries of the cells shifted with a certain velocity D, which is the

particle velocity u for the case under consideration:

xk+1
m+1/2

= xk
m+1/2 +Dk

m+1/2∆t. (23)

The construction of a difference scheme for such a moving grid is based upon the system of

hydrodynamic equations in integral form:

∮

L
(Udx−Fdt) = 0, (24)

where L is the contour that bounds the region of integration on the coordinate plane (x, t). As

this contour L, it is suitable to take a difference cell with number j with height ∆t and bases

∆xk+1
j and ∆xk

j, where ∆xm = xm+1/2 − xm−1/2. Approximating integral equation (24), one can
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obtain

(U∆x)k+1
j − (U∆x)k

j +F j+1∆t −F j−1∆t = 0, (25)

or, instead of (12),

(U∆x)k+1
j − (U∆x)k

j

∆t
+F j+1 −F j−1 = 0. (26)

A local transition to a coordinate system that moves with constant velocity D relative to

the original system (Galilean transformation) changes the original form of the system of equa-

tions (1):

∂

∂ t
U+

∂

∂x
(F−DU) = 0. (27)

In this regard, the flows (13) at the boundaries of the cells change:

Fm+1/2 = (F−DU)m+1/2

=
1

2

(

Fk
m +Fk

m+1

)

−
1

2

(

Uk
m +Uk

m+1

)

Dk
m+1/2 +

1

2
|AD|

k
m+1/2

(

Uk
m −Uk

m+1

)

, (28)

|AD|= Ω|ΛD|Ω
−1, (29)

|ΛD|=

















|u−D− c| 0 0 0 0

0 |u−D| 0 0 0

0 0 |u−D| 0 0

0 0 0 |u−D| 0

0 0 0 0 |u−D+ c|

















. (30)

5 INITIAL CONDITIONS

The initial values of pressure, density and particle velocity were set constant over the target:

P = 0.1 MPa, ρ = ρ0 = 2.712 g/cm3 and u = v = w = 0. The initial value of specific internal

energy was taken according to the used equation of state for aluminum.

6 BOUNDARY CONDITIONS

On the irradiated surface of the target, a pressure profile

P(t) = Pa16−(t−t0)
2τ−2

(for 0 < t < tl), P(t) = 0 (for t 6 0 or tl 6 t) (31)
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was set, calculated using approximated dependence of the laser radiation intensity

Il(t) = I016−(t−t0)
2τ−2

(32)

and the scaling relation, which is formulated for the range 4.3 < I0 6 1000 TW/cm2 [22, 23]:

Pa = Pa0(λI0I0/λ )2/3[Au/(2Z)]3/16, (33)

where Pa0 = 1.2 TPa; λI0 = 10−2 µm cm2/TW; Au and Z are the atomic mass (u) and the atomic

number of the target material respectively, Au = 26.98154 and Z = 13 for aluminum. On the

rear side of the target, pressure was set equal to zero.

7 SIMULATION RESULTS

The simulation was performed for the case of loading pressure pulse (31) with the magnitude

Pa = 516 GPa according to equation (33); t0 = 123 ps, tl = 246 ps.

Figure 1 illustrates the change in pressure during the propagation of compression and rar-

efaction waves through the aluminum target. In figure 1(a), one can see that the rarefaction

wave follows the shock wave while both move towards the rear side of the target. After the

shock wave has reached the rear side, one more rarefaction wave begins to move backward [see

figure 1(b)]. When these two rarefaction waves meet, a spalling phenomenon occurs.

Figure 2 shows the calculated pressure and density histories in three planes, which corre-

spond to the initial distances from the rear side of the target 9, 10 and 11 µm.

The curves shown in figure 2(a) allow one to estimate the maximum possible tensile stress

σmax in the sample in the spall plane. The absolute value of the pressure at the minimum on the

curve for the plane where the spallation occurred in the experiment is this maximum possible

tensile stress. The difference in values in two adjacent planes (for which the initial position

differs from the initial position of the spall plane by the value of the error in determining the spall

depth), divided in half, gives the average error in determining the maximum possible tensile

stress in the sample.

The calculated curves shown in figure 2(b) allow one to estimate the maximum strain rate

ρ0dV/dt =−ρ0ρ−2dρ/dt in the spall plane at the stage of tension at negative pressures. Here,

V = ρ−1 is the specific volume. Starting from the point of zero pressure, when the sample is

stretched, the strain rate decreases monotonically to zero at the point of minimum pressure.

Then, with time, the tensile stress decreases, and the strain rate becomes negative (i.e., the

density increases with pressure).

In the case under consideration, σmax ±∆σmax ≈ 7.2± 0.5 GPa, ρ0dV/dt ±∆(ρ0dV/dt) ≈

0.22±0.01 ns−1 for aluminum.
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Figure 1: Pressure in the target at t = 3.6, 7.4, 11 (a), 12.7, 15.2 and 18 ns (b) along the coordinate axis x, which is

perpendicular to the irradiated surface, with the origin at the point of the initial position of this surface before the

experiment.
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Figure 2: Pressure (a) and density (b) histories in three planes that correspond to the initial distances from the back

of the target 9, 10 and 11 µm. The thin vertical lines correspond to the moments of reaching the maximum tensile

stress (negative pressure).
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8 CONCLUSIONS

Thus, in a laboratory experiment on irradiating a 90-µm-thick aluminum plate with a 70 ps

laser pulse with a maximum intensity of 14.7 TW/cm2, a spall was obtained at a distance of

10±1 µm from the rear surface of the target. A hydrodynamic model has been developed for

the propagation and interaction of shock and release waves in a target under such a pulsed

action. As a result of the calculation using the developed model, the maximum possible tensile

stress in the sample in the spall plane is determined as 7.2±0.5 GPa and the maximum strain

rate at the stage of tension at negative pressures is determined as 0.22±0.01 ns−1.
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Summary. The article is devoted to the methodology for modeling current-carrying plasma in a 
Z-pinch studied in pulsed-power experiments. We discuss simulation performed via moving 
Lagrangian-Euler difference grid. The difference scheme approximating the hydrodynamic 
equations of a high-temperature medium possesses a “complete conservation” property and 
includes energy balances between the plasma components taking into account electromagnetic 
field – matter interaction and conductive (electronic, ionic) as well as radiative heat transfer. 
Numerical experiments provide quantitative estimates of physical effects which lead to 
essential distortions of a plasma shell during its magnetically-driven implosion. Performed 
simulations show the effect of instabilities on the final pinch structure, mainly, the 
hydrodynamic Rayleigh-Taylor instability and instability of a temperature-inhomogeneous 
plasma. 

1 INTRODUCTION 

Difference schemes of summarised approximation [1], schemes of physical splitting [2] 
and their modifications are widely used since they allow reproducing accurately specific 
feature of studied physical processes and perform calculations economically. This is why such 
schemes are widely used in application codes designed for multiphysics simulations (see e.g., 
[3, 4]). In the monograph [5], algorithms for successive accounting physical processes are 
constructed for Lagrangian difference schemes of gasdynamics (GD) and magnetic 
gasdynamics (MHD). The advantage of the completely conservative difference schemes 
presented in [5] is the numerical approximation of the basic conservation laws (mass, 
momentum and energy) as well as additional balance equations, important for simulation of 
fast plasma-dynamic processes. These include the intensive energy transfer from external 
sources, the significant role of heat transfer by radiation, electron-ion energy relaxation, etc. 

In this paper, we present a numerical technique based on the summarised approximation 
scheme developed for simulation of magnetoaccelerated plasma, primarily for various types 
of Z-pinches [6, 7]. 

Electrodynamic compression caused by the action of a current pulse on a plasma body in 
the form of a liner or a shell was first proposed for achieving thermonuclear fusion conditions 
[8]. Currently, such experimental schemes are mainly studied in order to generate soft x-ray 
radiation pulses via kinetic-to-thermal energy conversion at the stage of an accelerated shell 
collapse [6, 9, 10]. The development of high-current generators with the pulse duration about 
100 nanoseconds and the peak current up to several MA, used in modern Z-pinch 
experiments, allows new prospects in this research area. High power soft x-ray sources up to 
several TW can be used not only in basic research, but also in industrial applications: 
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materials with gradient properties, x-ray photolithography, short-wave lasers etc. The problem 
of current-carrying plasma stabilization is actively studied. In the ongoing research, much 
attention is paid to the design (material and geometry) of imploding liners. Fitting of the liner 
parameters with the electrical parameters of the generator is important to ensure high 
efficiency transformation of the electricity into the kinetic energy of the liner [10-12]. 

The article consists of two parts. 
The first part is devoted to the construction of Lagrangian-Eulerian numerical method and 

algorithms for solving the MHD in the form of conservation laws.  
Implicit completely conservative difference scheme (CCDS) [1, 2] in Lagrangian variables 

is considered as a base. The Lagrangian-Eulerian approach provides opportunities for 
combining explicit and implicit approximations of convective flows. 

The algorithm developed in this paper employs local splitting of physical processes. For 
two-dimensional MHD problems, similar algorithms were considered in [14]. The system of 
difference equations is divided into groups, and each group is solved by its own iterative 
process. Local iterative processes are assembled into an overall cycle, with the convergence 
controlled by the overall energy balance. 

It is possible to remap computed Lagrangian values to a modified grid with mass, 
momentum, and total energy conservation. We also check the balances of internal and 
magnetic energy. 

We use two-level temporal approximations of convective terms to ensure the CCDS for the 
numerical MHD system. Homogeneity of calculations for flows with strong discontinuities is 
achieved by introducing artificial viscosity [5], taking into account recommendations [15] for 
its adaptation to flow properties. 

The second part of the paper gives an example of modeling the dynamics of a Z-pinch 
compression. The liner is formed during ablation and subsequent implosion of a wire array 
under the impact of a powerful current pulse. In computational experiments, we study typical 
instabilities that have the most significant effect on the magnetic implosion. Namely, we 
observe the hydromagnetic Rayleigh – Taylor instability along with instabilities of 
temperature-inhomogeneous plasma. The last may lead to matter overheating or radiative 
collapse depending on disbalance between Joule heating and radiation losses. The Conclusion 
summarizes the main results of the numerical experiments. 

2 GOVERNING MHD SYSTEM 

We use the common notation for the MHD equations in Cartesian coordinates: t is the 
time, U = (u,w,v) is the substance velocity, ρ is the density, Р is the gas pressure, Т is the 
temperature, ε is the specific internal energy, W = (Wx,Wy,Wz) is the heat flux, B = (Bx,By,Bz) 
is the magnetic induction, E = (Ex,Ey,Ez) is the electric field strength, j = (jx,jy,jz) is the 
electric current density, с is speed of light in vacuum, σ and κ are the coefficients of electrical 
and thermal conductivity. 

The kinematic equations for fluid particle positions: 

; ; ;
dx dy dz

u w v
dt dt dt

  
 

(1)

The continuity equation: 
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0
d u w v

dt x y z

     
   

    
(2)

The momentum equation projections on the coordinate directions: 

     22 1
,

8 4
x x y x z

B B B B Bdu B
P

dt x x y z


 

                    

     22 1
,

8 4
yx y y zBB B B Bdw B

P
dt y x y z


 

                   

 

     22 1

8 4
zy zx z

BB BB Bdv B
P

dt z x y z


 

                    

(3)

The hydrodynamic pressure in (3) is equal to the sum of the partial pressures P = Pe + Pi. 
The equations for the internal energies of the components: 
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(4)

Here Ge,i are sources (sinks) of electronic and ionic energy, Gj is the mass energy density 
of the Joule heating: 
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(6)

e,i are the internal energies of the electronic and ionic components per unit mass, 
We,i = ((We,i)x, (We,i)y, (We,i)z) are the electron and ion heat fluxes, c is speed of light in 
vacuum. 

Heat fluxes are defined by ion and electron temperature gradients: 
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where 
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The equations of the electromagnetic field are applied in the following form: 
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(9)

The MHD system (1) - (9) is closed by the plasma equation of state (EOS). 
To solve the MHD initial-boundary-value problem, the usual boundary conditions [13] are 

added to equations (1) - (9), which determine the hydrodynamic fluxes of mass, energy, and 
momentum, temperature or heat fluxes, and the conditions for the components of the 
electromagnetic field. 

3 COMPUTATIONAL ALGORITHM 

The difference model is built using staggered grid functions. Thermodynamic parameters 
(density, pressure, internal energy) as well as magnetic induction are defined in the grid cells. 
The components of the velocity and electric field strength are defined in the nodes. The 
difference equations of continuity, energy, momentum, and magnetic induction are derived by 
approximating the corresponding differential balance for control volume. The control 
volumes are either grid cells (for continuity and energy equations), or “nodal” volumes (for 
momentum balance equations), which form a grid conjugate to the original one. Time-
dependent pressure forces, ponderomotive forces, flows, etc. are included as a linear 
combination of the corresponding spatial approximations at two consecutive time layers. 
Weighting factors in time-weighted difference formulas were chosen to ensure complete 
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conservativeness of the scheme. For the dissipative processes (thermal conductivity, field 
diffusion), homogeneous flux schemes were constructed. The theoretical foundations of such 
schemes are considered in [14] for the 2D case. Here we present a 3D version of the technique 
[14]. 

The numerical solution of the governing MHD system is performed according to the two-
stage algorithm which is analogues to that first proposed in [16] and used in many successive 
works. The movement of matter is calculated in the coordinate system (, γ), which is 
moving relative to the laboratory system (x, y, z). 

If U = (u, w, v) is the velocity of a material particle in the laboratory coordinate system, 

then  ( , , |) const( , , ) ( / , / , / )x y zU U U u dx dt w dy dt v dz dt        U     is its velocity in the 
moving system. 

The time-advance begins by solving the main system of equations in Lagrange variables 
(i.e., without taking into account convective flows), then, if necessary, the Lagrangian grid is 
corrected, and the computed values are recalculated to a new difference grid. 

The first (Lagrangian) stage includes solving the grid equations, provided that the grid 
moves at the speed of the substance. In this case, the Jacobian J changes according to the 

equation ( )
t
 J J U , and the original system of equations is supplemented by the kinematic 

relation 
d ( , , , )

( )
d

t
t

  


r
U r  (r is the radius vector of the material particle). At the end of the 

Lagrangian stage of calculating the position of the grid nodes, they can be redefined based on 
the solution strategy. In this case, the second (Eulerian) stage is performed that is the 
calculation of convective fluxes in the “grid” coordinate system and the consequent changes 
in the grid functions. 

The above decomposition of the solution of the general system of equations into stages can 
be represented in the form of a summarized approximation scheme, or a physical splitting 
scheme. The advantage of the proposed algorithm is the possibility to use an implicit 
Lagrangian scheme and an explicit Eulerian scheme. This combination allows a larger time 
integration step without loss of stability. 

The overall iterative cycle is based on the sequential computation of physical processes. It 
includes several nested cycles for the subsystems of the general system. The Lagrangian stage 
can be considered as iterations of the force and energy balances. At this stage the MHD 
system is solved coupled with the equations for the nodes coordinates moving in physical 
space with the speed of the matter. In turn, the Lagrangian stage itself is split into the ideal 
MHD (hyperbolic type subsystem) and the dissipative processes (parabolic type equations). 

Lagrangian grids simulate the motion of liquid particles or liquid contours. This approach 
allows very simple and convenient form of the continuity equations, freezing of the field in 
the MHD equations, and lastly, an effective rapidly converging iterative algorithm for solving 
a system of grid equations corresponding to an implicit difference scheme. The convergence 
of the algorithm was studied in [14]. 

The Eulerian stage returns the nodes of the moving grid to their start-of-the-time-step 
positions. This is understood as the up-flow shift of the Lagrangian grid, due to which the 
substance moves through the edges of the cells. At this stage, changes in the grid functions (ρ, 
U, ε, B) caused by convection processes are calculated. Note that the return of the grid to its 
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previous position is optional, which allows lower numerical diffusion and improving the 
deformations of the moving grid. 

The power and energy balances are interconnected. The plasma momentum U(x, y, z, t) is 
determined by the pressure gradient and electromagnetic force dependent, in particular, on the 
temperature of the medium. In turn, the temperature field T(x, y, z, t) depends on the work of 
the pressure forces and the energy flows, i.e. the plasma velocity. Therefore, the individual 
steps of solving the complete system of MHD grid equations are combined into an overall 
iterative cycle. 

The system we solve includes difference equations of ideal MHD coupled with energy 
balance equations of the plasma components in a non-divergent (entropy) form and 
multigroup radiative transfer equations. The difference scheme of the Lagrangian stage is 
arranged in such a way that a difference analogue of the plasma – electromagnetic field 
integral energy balance is satisfied. This property is used to monitor the convergence of 
iterations at the Lagrangian stage and the quality of the solution in general. 

The time derivatives of any function f in the moving coordinate system are calculated 

according to the relation f f f
t

  
.

U . 

4 COMPUTATIONAL GRID, DISCRETIZATION, DIFFERENCE EQUATIONS 

The approximation on a moving grid is implemented via mapping a single-connected 
region with a piecewise-smooth boundary D  R3(x,y,z) to the unit cube D´  R3(,) [4, 9, 
10]. In general the coordinate transformation formulas are time dependent. At any point of 
time the map is defined as: 

     
   

, , ,    , , ,    , ,

, , ,    , , '

x x y y z z

x y z D D

        

  

  

 
 

(10)

We suppose the positivity of the coordinate mapping Jacobian: 

 
   , ,

0, , , '
, ,

x y z
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

  


J
 

The volume of a cell in the physical space (x, y, z) is approximated as the volume of its 
image in the reference space of the variables (α, β, γ) multiplied by the average value of the 

Jacobian J  in the cell. 

4.1 System of difference equations 

The MHD system (1) - (9) is approximated on a moving (Lagrangian) difference grid by a 
completely conservative difference scheme. 

The corresponding numerical model is as follows. 
A uniform in each direction grid is introduced in the cube D´(, , ): 
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We denote by  the set of cells of the computational grid h, is the set of nodes,  is the 
set of faces. Accordingly, we introduce the spaces of grid functions defined in the cells H, in 
the nodes H , and in the faces H. We use the indices (i, j, k) for the grid functions ƒ H: 
ƒi,j,k = ƒ  H, and indices (m, l, n) for the grid functions   H: min  H. The functions 
  H will be marked with indices (i, l, n), (m, j, n) and (m, l, k).  

The grid in the region D obtained by the mapping (10) consists of hexagons. 
The difference equations below use grid templates Ξ1, Ξ2, Ξ3: 
 Ξ1 is the cell template, it includes the incident nodes;  
 Ξ2  is the node template, it includes the incident cells;  
 Ξ3 is the pattern of faces incident to the cell (m, l, n). 

Equations (1) - (9) are approximated on the grid H by a completely conservative implicit 
difference scheme. The difference balance equations for the mass, momentum, and energy in 
a control volume are constructed using the partial derivatives of the cell volumes with respect 
to the node coordinates (for theoretical grounds see [17, 26]): 
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Joule heating: 
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(18)

We use index-free notation to represent the system (11)-(18) in a compact form [1]. 
The grid functions U, E are defined in the nodes of the difference grid, the grid functions ρ, 

Pe,i, q, V, Te,i, B, Ge,i, Qei, κe,i, σ are defined in the cells (q is the volumetric artificial viscosity; 
V is the volume of the cell), and the grid functions We,i, S are defined on the faces of the cells. 

 , , 1,6r xr yr zr rS S S S  are the areas of the faces of the cell (m, l, n). 
The boundary values of pressure, temperature, and magnetic field are assigned to the faces 

of the boundary cells. 
At the boundary of the computational region, for the equations of motion, the pressure and 

velocity, or the absence of a plasma flow condition is specified. For Maxwell's equations, the 
magnetic induction or the electric field strength is specified. For energy equations, the 
distribution of temperature or heat fluxes is specified at the boundaries. 

4.2 Energy balance and conservation 

The difference scheme (10) – (17) is completely conservative. We define the following 
grid functionals to prove this property and to utilize it in practical calculations: 
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(20)

The following indices are used for energy balance relations: 
(i,j,k) for boundary nodes, r' for cells adjacent to the boundary, r" for “ghost” cells 

introduced into difference scheme for processing of boundary conditions: 
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(21)

The equation of total energy balance for the coupled plasma – electromagnetic field system 
(22) that follows from the system of difference equations (10) – (17) can be found in 
Appendix. 

From this we can conclude that for the difference model (11) – (18), the change in the total 
energy is determined by: 

1. The work of external forces, i.e. pressure and ponderomotive force; 
2. The influx (outflow) of heat trough the border of the region, including radiative heat 

transfer; 
3. The influx of magnetic energy through the outer boundary; 
4. The action of energy sources and sinks. 

4.3 Combined iterative method for the system of difference equations 

The difference equations (11) – (18) represent a system of nonlinear algebraic equations. 
An iterative method is used with separate solving groups of equations for different physical 
processes.  

The procedure for solving system (11) – (18) is as follows: 
1. The auxiliary values of velocity, density, temperature, and magnetic induction at the 

time layer (n + 1) are computed. 
2. With the fixed temperature, the equations of motion and the Maxwell equations are 

solved. The auxiliary values of the velocity, density, and electromagnetic field parameters are 
computed. 

3. With the fixed velocity, density and electromagnetic field, the system of energy 
equations is solved. The auxiliary values of the electron and ion temperature at the time layer 
(n + 1) are computed. The equation of state is a link between the equations of the “first 
group” (equations of dynamics and electromagnetic field) and the “second group” (energy 
balance equation). 

4. The satisfaction of the energy conservation law (22) is verified. If the required accuracy 
is achieved, the values of the functions at time t = (n + 1) are considered to be found. 
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Otherwise we correct the coefficient of the system and repeat the step 1 to 3. 
5. If necessary, the grid is corrected after solving the system (11) – (18). The grid functions 

found at the Lagrangian stage are recalculated to the adjusted grid. For this, the conversion 
algorithm developed in [5,6] is used.  

The steps 2 and 3 are detailed below. 

4.4 Coupled dynamics and electrodynamics equations 

At the step 2, the subsystem of difference equations (11) – (16) is split by physical 
processes: first, the motion of a substance is calculated under the frozen magnetic field 
assumption, and then the diffusion of the magnetic field is accounted. The equations are 
solved by the Newton method with the reduction of unknown quantities [4]. The convergence 
of this procedure is considered, e.g., in [18]. Advancing from iteration (s) to iteration (s+1), 
we assume that all the variables in the equations of motion depend only on the velocity 
components uijk, wijk, vijk, and the thermal pressure is locally barotropic. The transition 
formulae from iteration (s) to iteration (s+1) are the following: 
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(23)

Here Φmln is for cell functions Pmln, qmln, Bmln, and superscripts are for the iteration number. 
Substituting the values (23) into the equations (14) and neglecting the squares of the 

increments of the functions, we obtain a system of linear algebraic equations with respect to 
the increments of the velocity components uijk, wijk, vijk: 
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1, , 1, , 1,i NM j NL k NN    

(24)
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Here 
       1 2 3 1 2 3 1 2 3 1,2,3
1,2,3 1,2,3 1,2,3, , ,k k k k k k k k k

ijk ijk ijk ijka b c F  are numeric factors. System of equations (24) has a 
block structure matrix. 

To solve equations (24), we use iterative method [29]. 
After finding the velocity increment at the iteration (s+1), the values uijk, wijk, vijk, Vmln, 

mln, Pmln, qmln are computed, and the intermediate value of the magnetic induction B : 

 1 ,s s
mln mln B B E

 

The next step is to solve the system of equations describing the electric and magnetic fields 
with finite conductivity of the medium (15) – (16). The intermediate value B  is used for 
calculating the conductivity coefficient: 

 11 , ,ss s
mlnmln mln mlnmln T    B . 

Then the system of difference equations with respect to Bs+1, Es+1 is linear. Because some 
rarefied plasma areas may have close to zero conductivity, it is advisable to solve the system 
of field equations by excluding the magnetic induction B. The result is a system of linear 
equations with respect to Ex, Ey, Ez: 
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1, , 1, , 1,i NM j NL k NN    

(25)

Here 
       1 2 3 1 2 3 1 2 3 1,2,3
1,2,3 1,2,3 1,2,3, , ,k k k k k k k k k

ijkijk ijk ijka b c F  are numeric factors. 
The system of linear equations (25) has a block structure. After finding the electric fields, 

we have: 

 11 1,ss s
mln mln  B B E

 

The system of equations (11) – (16) is solved if the increments of velocities at the iteration 
satisfy the conditions:  
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(26)

Here  is the relative velocity error, and umin, vmin, wmin are the absolute velocity errors. 

4.5 Energy Balance 

The energy balance equations are solved in terms of electron and ion temperature (17). 
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Energy equations are solved via the Newton iterations. The transition formulae from iteration 
(s) to iteration (s+1) are the following: 
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(27)

Ξ4 is a template of the cells adjacent to the face g. 
Substituting increments of functions at the iteration (s+1) into the energy equations and 

neglecting the squares of the increments, we obtain a system of linear algebraic equations 
with respect to the temperature increments (Te)mln, (Ti)mln: 
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(28)

Here 
         1 2 3 1 2 30,0,0 0,0,0 1,2

, , , ,
k k k k k k

mlnmln mlnmln mlna db c F  are the coefficients obtained in the linearization 

procedure. 
Similar equations at the boundary are obtained in accordance with the type of boundary 

conditions. For example, with a fixed temperature, all the temperature increments at the 
boundary are set equal to 0.  

The system of difference equations (28) is solved similarly to systems (24) and (25). 
The energy equations are solved if the temperature increments satisfy the conditions  

   / / min, 1, 1, 1, 1, 1, 1e i e iTmln mln
m NM l NL n NNT T T        

 (29)

Here T and Tmin are the relative and absolute temperature errors. 

5  SIMULATION OF A Z – PINCH IMPLOSION DYNAMICS 

The described technique was applied to simulations of Z – pinch plasmas experiments with 
the use of pulsed-power facilities. Three-dimensional modeling was carried out by means of 
the RMHD code MARPLE-3D [22]. We have studied the Z – pinch produced by a multiwire 
array heated in a powerful electric discharge. The aim of simulations was to assess the 
current-carrying plasma instabilities that occur at the final stage of pinch formation and their 
development up to the final stage of compression of the plasma compression. The spatial 
perturbations of matter and magnetic flux distribution inside the wire array and their evolution 
at various stages of pinch compression were investigated. 
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The simulation results are compared with the experimental data obtained at the Angara-5-1 
facility (Troitsk Institute for Innovative and Thermonuclear Investigations – TRINITI, 
Moscow, Russia). The calculations were performed for multiwire configurations described, 
e.g., in [24]. Multiwire arrays proved to be a very effective electric load due to possibility of 
flexible adjustment of its parameters to that of a pulsed-power electric generator. However, as 
a wire-array has inhomogeneous structure, the resulting Z-pinch is subjected to MHD 
instabilities. 

The magnetic flux breakthrough into various multiwire arrays (tungsten, molybdenum, 
copper, and aluminum) during their implosion was studied experimentally at the Angara-5-1 
facility [25]. It is shown that breakthroughs develop in the final stage of plasma production 
from the wires and occur near the initial wire position. The spatial distribution of the 
azimuthal magnetic field B φ(z, t) was measured using magnetic probes. The characteristic 
dimensions of the regions with a nonuniform magnetic field at the outer boundary of the wire 
array plasma were determined and compared with those of the regions with depressed plasma 
radiation observed in frame and time-integrated X-ray images. The dynamics of the 
nonuniform magnetic field was compared with the pinch radiation at different stages of 
implosion exposed in the frame X-ray images. The plasma density in the magnetic flux 
breakthrough area was estimated. 

The magnetic breakthrough phenomena is illustrated by the Fig.1. The experiment No. 
5265 with a 40 aluminum wires array is typical for Z-pinch studies at ANGARA-5-1. 

 

Figure 1. Experimental results (TRINITI, shot No. 5265 [25]). 

At the left is the axial distributions of the azimuthal magnetic field inside the wire array 
measured at different instants of time (t1=30ns, … t7=90ns, t8=110ns) by the probe installed at 
rp = 0.89cm. The coordinates z = 0 and z = 1.4 cm correspond to the cathode and anode, 
respectively. At the right is the time integrated pinhole image (negative) of the wire array 
plasma recorded behind a Mylar film (hν >100 eV). To the left of the axis, the image is absent 
because of the diaphragming of the input aperture of the pinhole camera. The anode is on the 
top, and the cathode is on the bottom. 

The modeling was carried out by means of 3D RMHD code MARPLE, developed in 
KIAM RAS [22]. MARPLE is a full-scale multiphysics research code using the state-of-the-
art physics and numeric techniques. MARPLE provides a platform for high performance 
computing and functionality for solving the initial-boundary value problems using 
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unstructured computational meshes. MARPLE physics includes: one-fluid two-temperature 
MHD model with electron-ion energy relaxation; general Ohm's law; anisotropic resistivity 
and heat conductivity in the magnetic field; radiative energy transfer (diffusion model, 
multigroup spectral model); multi-component convection-diffusion; wide-range equations of 
state (EOS), transport and kinetic coefficients, opacity and emissivity [23]. MARPLE main 
numerics are: mixed unstructured / block meshes (tetrahedral, hexahedral, prismatic elements 
and their combinations); high-resolution explicit TVD approximations to the ideal MHD 
equations; implicit FV/FE/DG techniques for dissipative processes; splitting scheme for 
RMHD system (elemental solvers for different physical processes, additive approximation 
scheme, conservation laws); 2-nd order predictor-corrector time-advance scheme. MARPLE 
is designed for high performance distributed computations using domain decomposition and 
MPI parallelism. The computing environment includes a set of service functions: data IO; 
mesh processing; parallel computations support; dynamic processing of computation objects 
(solvers, approximations, boundary conditions, matter properties); configurable recovery 
points writing and automated backup; advanced events logging. We use the open-source 
products: CAD-CAE platform SALOME [30] for complex computational domains (geometry 
description, setting boundary and subregions attributes, mesh generation and refinement), and 
multi-platform data analysis and visualization application ParaView [31]. 

The purpose of the simulation was to study the plasma instabilities at the final stage of 
imploded plasma stagnation. We present here the results of a plasma implosion simulation in 
accordance with the conditions of the experiment No. 5265. We studied a 20mm diameter 
14mm high array made of 40 15μm diameter Al wires with a total linear mass of 220 μg/cm. 

The computational domain was a cylindrical sector 450 with periodic boundary conditions 
at φ = 0 and φ = π/4 (1/8 of the discharge chamber volume with 5 wires). The sector height 
was 3mm (1/5 of the array height). See Fig. 2, left. The grid contained 1.2 million cells 
(hexahedra and prisms). The grid in the (x, y) plane was refined from hх = hу ≈ 80μm near the 
initial position of the wires to hх = hу ≈ 17μm near the axis, the grid along the z axis was 
uniform, hz = 30 μm. The electrodes were considered ideally conducting. At the outer wall of 
the discharge chamber, the boundary condition was set for the magnetic induction Bφ = 2I / R, 
where R is the external radius of the discharge chamber, I=I(t) is the total generator current 
through the array (experimental data, see Fig. 4). 

Plasma emission from exploded wires was simulated using the model of prolonged plasma 
creation [21]. The rate of plasma production was calculated by the formula 
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Here m is the ablated mass, M0 is the total mass of the array, tα is defined from the 
condition m(tα)=M0. The coefficient k = 2 was chosen in accordance with the experimental 
data, so that the wire ablation ended approximately 10ns before the current maximum. 

Spatial modulation of the plasma formation rate was introduced in accordance with the 
experimental data [25] by the formula 

 = 0,9(1 – 0,45[1 + sin(2πz/λ)]), max0 z z  , 
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which corresponds to the experimentally observed electrical explosion inhomogeneities with a 
characteristic wavelength λ ~ 100μm. 

The data tables of opacities and matter properties (equation of state) for the aluminum 
plasma were previously calculated using the TERMOS code developed in KIAM RAS [32]. 

A volumetric artificial (mathematical) viscosity was introduced into the difference scheme 
to ensure calculation of flows with strong radiative shocks. The viscosity value was regulated 
according the recommendations [15]. 

The calculations were performed on the supercomputers MVS-100K (JSCC RAS) and K-
100 (KIAM RAS). A typical run using 240 computing cores required up to 70 hours. 

  

Figure 2. Left: The computational domain (sketch) with the initial positions of the wires. Right: 
Plasma density distribution in two sections (R-Z and R-φ planes in cylindrical coordinates, gcm3) 

The results of a plasma implosion simulation are summarized below. 
At the beginning of ablation the main processes are Joule heating and radiation losses. At 

the temperature Te~10-20eV, the plasma conductivity increases due to ionization 
approximately linearly with the temperature, while the emissivity increases faster, 
approximately by the factor ~2 [23]. Thus, the condition for the existence of thermal 
(overheating) instability [17, 24] cannot be satisfied. Therefore, at the early stage the 
temperature perturbations correspond to an initial density perturbation level of ~10%. 

By the time t5 ~ 70 ns, the current increases up to 1.5MA, and correspondingly the 
magnetic pressure increases enough to force the plasma implosion (i.e. active acceleration 
toward the axis). A shock wave appears at the first phase of acceleration. As some part of 
energy is spent to ionization and radiation (“ionization-radiation barrier” [17]), the matter 

compression behind the shock wave front is rather high ( 0 10p p 
 ). 

Ablation of wires creates inhomogeneous plasma distribution (see Fig. 2, right). The 
plasma density and magnetic field are modulated in the azimuthal direction. The magnetic 
force lines bend around the denser areas where the current density increases. The elasticity of 
the magnetic field lines leads to additional acceleration of plasma. 

Noticeable perturbations of density at the outer plasma boundary (Fig. 2, right) produce 
Rayleigh-Taylor hydromagnetic instability. However, this instability is damped due to 
sufficiently large aspect ratio of the formed plasma shell, the compressibility of the substance, 
and smoothing of the energy density gradient of the magnetic field, which is partially 
transferred together with the plasma to the axis,. The instability of the inner plasma boundary 
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is not expressed too.  
The inhomogeneity of current density and plasma creates the conditions for the 

development of overheating (thermal) instability in the regions where the Joule heating 
surpasses the radiation losses. Estimation of the instability increment according to [17] gives a 
characteristic overheating time  ~ 10-20ns. As a result of the instability, at t ~ 30ns the 
electron temperature in the spots near the plasma boundary is significantly higher than that in 
the surrounding matter. The computed values are: Te = 45eV in the spots, and Te = 20eV in 
the surrounding plasma.  

The thermal instability causes a change in the plasma dynamics. The magnetic field 
penetrates through the plasma to the skin depth. Due to plasma overheating, the skin layer in 
the hot spots is much thinner than in the surrounding plasma. 
Magnetic force lines take the appearance of “arches” which bend around hot spots. The initial 
inhomogeneity increases, while the thermal pressure is less than the magnetic one 
(= B2/8P ~ 0.1) due to radiation cooling. Thus the thermal pressure cannot prevent the 
development of azimuthal perturbations. The distorted shock wave triggers the instability of a 
strongly radiative thermally inhomodeneous plasma. 

By the time t7~80-90ns, the plasma velocity in the shock wave reaches 2.2107cm/s. Ions 
are heated up to Ti~1keV, and electron temperature is Te~200eV. The density/temperature 
perturbations lead to the magnetic field breakthrough, thus violating the uniformity of a 
plasma shell compression (Fig. 3). This also causes the development of instability in a 
“thermally inhomogeneous plasma” [19, 20] and the pressure difference reaches pmax/pmin~2. 
The development of non-isothermic instability lasts approximately 20-30ns. The intensive 
motion leads to equalizing the pressure in the central core and smoothing the other 
perturbations. 

At t7~90 ns the first plasma portions reach the axis and the process of stagnation begins. 
The average parameters of the “near-axis” plasma are the following: velocity ~5107cms, 
electron temperature Te~100eV, ion temperature Ti~300eV, density varies between 
~5102101gcm3, which is in good agreement with the experimental data [25]. Thus, it is 
shown that the model of prolonged plasma creation [21] correctly describes the rate of plasma 
input into the region of the forming pinch. 

Due to the fast implosion of the evaporated material of the wires and the intense process of 
radiation cooling of the stagnated plasma, its density in the axial zone significantly exceeds 
the density in the peripheral zone. The formation of the central pinch replaces the shell 
structure of the plasma. This process is activated at the time t8 ~ 110ns, when the current pulse 
reaches its maximum, and the entire plasma mass moves to the axis. At this point, the 
stagnation of the plasma bulk is observed, its warming up, and a sharp increase in the soft X-
ray radiation yield, which is shown in Fig. 4. 
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t7=90ns t8=110ns

Figure 3. Numerical results: Axial distributions of the azimuthal magnetic field and plasma density 
inside the wire array at rp = 0.89cm. 

 
 

Figure 4. SXR pulse: experiment No 5265 TRINITY [25] (left) and the simulation result (right). t0 is 
the moment of completion of plasma ablation. 

6 CONCLUSIONS 

The methods presented here for solving the equations of the Lagrangian-Eulerian RMHD 
model were tested by various computational experiments reproducing wave processes in a 
magnetized medium, e.g. Alfvén waves, magnetosonic waves, decays of MHD discontinuities 
[14, 27], flows with uniform deformation occurring in the vicinity of the zero line of the 
magnetic field [28], etc. It was shown by computational experiments and application 
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simulations, that it is advisable to use the method of physical processes splitting, if the 
thermal pressure is greater than the magnetic one p  B2/8 during the entire simulated 
process. In the opposite situation, the method of combined iterations is more resource saving. 

The splitting method is easier to implement and allows saving about 40-50% of arithmetic 
operations as compared to the combined iterations method. However, when magnetic pressure 
prevails the thermal one (B2/8> p, the separate accounting of physical processes demands 
the restriction on the integration time step, similar to that obtained in [14] for the 2D case: 

 
max2

, / , ~ 1.

2
8

Ah
t h V S A const

pB 
 

   

 
 

(30)

Here V is the mesh cell volume, Smax is the maximum value of the side face area. 
In simulations of imploding current-carrying plasma accompanied by strongly radiating 

shock waves, the method of adaptable artificial viscosity [15] appeared to be a resource 
saving and robust numerical tool. It was indicated, that this method makes possible simulation 
of transient plasma flows with a significant ion-electron temperature difference. It provides 
good practical accuracy, which allows comparison with experimental results. Note also that 
the method is well suitable for the use of real life wide-range EOS. 

The developed numerical technique was applied to simulations of Z-pinch implosion at 
Angara-5-1 facility. The magnetic flux breakthrough into an array made of thin aluminum 
wires was studied. The numerical results are in good agreement with the experimental data on 
the basic parameters such as the time when the pinch reached its final state (plasma 
cumulation near the axis of the system) and the soft x-ray radiation power. Thus we can 
conclude that it is possible to use the proposed method based on the completely conservative 
difference scheme for solving plasma dynamics problems, and carry out predictive simulation 
of experiments with plasma accelerated by electromagnetic force produced by a powerful 
current pulses. At the same time, the numerical simulation substantially supplements the 
experimental data, since it provides information on the dynamics of magnetic implosion, 
which cannot be obtained in the experiment due to the limited capabilities of diagnostics. 

Let us take up the liner implosion in cylindrical coordinates. Then, in the (R-z) plane 
perpendicular to the azimuthal magnetic field force lines, the Rayleigh-Taylor instability 
causes the most serious perturbations. In the (R-φ) plane, the instabilities of thermally 
inhomogeneous plasma are of importance due to disbalances of Joule heating and radiation 
losses. For further clarification of the instability effect, we need a detailed examination of the 
initial perturbations evolution by individual harmonics in a certain spectral range, including 
perturbations of an arbitrary form (superposition of harmonics), various initial amplitudes, 
transition to a nonlinear stage, etc. Here we concentrate on the fact that although the problem 
of instability in many cases is considered as “purely mechanical”, the energy aspect is very 
important concerning the dynamics of Z-pinch plasmas. The rate of instability depends on the 
rate of plasma acceleration as well as on the aspect ratio of a plasma shell formed due to wire 
ablation. The process in whole is determined by the energy exchange between the 
electromagnetic field and the plasma, as well as the energy balance in the plasma, where the 
radiation transfer is the largest contributor. The performed simulation, even with a mild 
Rayleigh-Taylor instability, shows that at the final stage of compression, the distribution of 
density and temperature is substantially homogeneous in space. The radiation absorption 
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coefficient, which is inversely proportional to the mean free path, varies by several orders of 
magnitude in the computational domain. The radiation is locked in the central region of the 
pinch, as a result it radiates like a surface source. 

The computations were carried out on the supercomputers MVS-100K (JSCC RAS) and K-
100 (KIAM RAS). 

APPENDIX 

The equation of total energy balance for the coupled plasma – electromagnetic field 
system: 
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Summary. The results of numerical experiments upon modeling thermodynamic parameters

such as value of pressure and compression of germanium and its alloys with gold are pre-

sented. The calculations were performed using the model TEC (thermodynamic equilibrium

components). The model allows us to take into account the phase transition of germanium un-

der shock-wave action. The interest in investigating of the compressibility for such materials

is related both to the possibility of creating materials with the necessary properties and to the

properties of the materials themselves. The results of calculations are compared with the known

experimental results of different authors. The value of pressure and compression for shock wave

loading of pure germanium and alloys with germanium as a component of various compositions

are calculated.

1 INTRODUCTION

The researches of shock loading on heterogeneous materials are of interest for many prob-

lems of modern science, which causes the emergence of new models for describing the ther-

modynamic parameters of mixtures, alloys and composites [1–4]. It is preferable to use a fairly

simple model of the equation of state given a large number of components with different proper-

ties. The construction of equations of state has been carried out for many years, while taking into

account the complexity and diversity of the materials studied, the problem of creating simple

equations of state with a small number of parameters is relevant [5–13]. Modern approaches to

the choice of equations of state of a condensed medium are given in [14]. A significant change

in the volume in the phase transition region of the components that make up the mixtures makes

it possible to expand the range of changes in the thermodynamic parameters of mixtures under

shock-wave loading.

The interest in researching the compressibility of alloys that include germanium as a compo-

nent is related to its properties, in particular, the presence of a phase transition under shock-wave

2010 Mathematics Subject Classification: 74A15, 74J40, 76L05, 80A10, 82D35.

Key words and phrases: equation of state, germanium, shock wave, high pressure, phase transition.
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action [15, 16]. The alloys containing germanium [17] and materials including germanium in

their composition are being investigated [18].

2 CALCULATION MODEL

The thermodynamically equilibrium model of shock-wave loading, taking into account the

presence of gas in the pores, was used to describe the thermodynamic parameters of alloys

and mixtures under shock-wave action [19–21]. The model is based on the assumption that

all components of the mixture, including the gas in the pores, have equal values of velocities,

pressures and temperatures. The equations of state of Mie–Grüneisen type are used to describe

the behavior of condensed phases. The equations are written out:

P(ρ ,T ) = PC(ρ)+PT (ρ ,T ), E(ρ ,T ) = EC(ρ)+ET (T ), (1)

PT (ρ ,T ) = ΓρET (T ), ET (T ) = cV (T −T0). (2)

Here PC and EC are potential components of the pressure and specific energy; PT and ET are

thermal components; cV is the specific heat capacity; T0 is the initial temperature; The initial

energy E0 of the substance under normal conditions is neglected, taking into account the range

of pressure values greater than 5 GPa for this model. cV is assumed to be a constant value, by

analogy with [22]. The function Γ = PTV/ET that determines the contribution of the thermal

component depends explicitly only on the temperature Γ(T ) in the model [19–21]. Therefore,

the thermal and caloric forms of the equation of state for a condensed component with current

density ρ and initial density ρ0 are as follows:

P(ρ ,T ) = A
[

(ρ/ρ0)
k −1

]

+ΓρcV (T −T0), (3)

E(ρ ,T ) = A/ρ0

[

1/(k−1)(ρ/ρ0)
k−1 +ρ0/ρ − k/(k−1)

]

+ET . (4)

The ideal gas equation of state is taken for a gas. The conditions of conservation of the mass

flux for each component of the material and the conditions of conservation of momentum and

energy fluxes for the media considered as a whole are written at the wave front. The obtained

equations, together with the equations of state of each component, are sufficient to find depen-

dences P(U) or D(U) (P, U , and D are pressure, mass and wave velocities; A, k are coefficients

in the equations of state of condensed component). The following expression can be obtained

for a material with n condensed components (µi0 is the volume fraction of i-th condensed com-

ponent):

P =
∑n

i=1
µi0

σi
Ai

[(

hi −
ki+1
ki−1

)

σ ki

i + 2kiσi

ki−1
−hi −1

]

∑n
i=1

µi0

σi
hi +

hg

σg
(1−∑n

i=1 µi0)−1
. (5)
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Figure 1: The shock adiabat of germanium: solid line corresponds to calculations taking into account the phase

transition, dash-dotted line for low pressure phase, dotted line for high pressure phase; markers—experimental

data (1—[24]; 2—[15]; 3—[17]; 4—[25]).

Here hi = 2/Γi+1, i = 1, . . . ,n; hg = 2/(γ −1)+1; σi = ρi/ρi0, σg = ρg/ρg0 are the compres-

sion ratios of the corresponding component, µi0 are the volume fraction, ρi0, ρi are the density

of the i-th phase of the substance ahead of the shock wave front and behind it, respectively

(i = 1, . . . ,n, and g); γ = 1.41 (ratio of specific heats). By adding to equation (5) relationships

that follow from the equations of state of components and expressing equality in temperatures

of all components, we finally have equations which allow us to construct the shock adiabat of

investigated material. In the case of calculation for solid material, we assume that ∑n
i=1 µi0 = 1.

The phase transition of components under shock-wave action is taken into account in this

model. Germanium is considered as the mixture of low-pressure phase and high-pressure phase

in the phase transition region. The conditions of dynamic compatibility are written on the shock

wave front taking into account the phase transition [23].

3 MODELING RESULTS

The results of modeling for germanium and the data from experiments [15, 17, 24, 25] are

shown in figure 1 in the variables pressure–mass velocity, in figure 2 in the variables wave-mass

velocities. As noted in [26], the transition pressure of germanium depends on how close the ap-

142



K. K. Maevskii

Figure 2: The shock adiabat of germanium: the notation is similar to figure 1.

plied pressure is to the hydrostatic pressure and on the presence of shear stress components. The

phase transformation of germanium I–II was determined at pressure about 9 GPa with a volume

decrease of 19%. This transition was investigated at shear stresses and high pressures [27–36].

The coefficients of the equation of state (3) and (4) for germanium I (low-pressure phase) are

as follows: ρ0 = 5.328 g/cm3, A = 17.25 GPa, k = 4.0, cV = 375 J/(kg K); for germanium II

(high-pressure phase): ρ0 = 6.572 g/cm3, A = 18.5 GPa, k = 4.0, cV = 375 J/(kg K). The begin-

ning of the phase transition for germanium in the calculations according to the author’s model

is also assumed at a pressure value of 9 GPa. The curve break at 30 GPa corresponds to the end

of the phase transition. A reliable description of the available data is obtained. There is a lot of

work on the definition of phase transitions in germanium at the moment. However, the presence

of drop-down points confirms the need for further work in this direction.

The parameters that made it possible to reliably describe the thermodynamic parameters of

germanium in a wide range of pressure and compression values made it possible to describe the

shock wave loading of gold and germanium alloys with experimental accuracy. It is necessary

to know only the composition and density of the alloy to describe its dynamic loading. The fol-

lowing parameters are determined for gold with a density of ρ0 = 19.302 g/cm3, A = 47.9 GPa,

k = 4.0, cV = 277 J/(kg K).
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Figure 3: The shock adiabats of gold–germanium alloys: curves correspond to the present calculations for ρ0 =
16.851 (1), 16.111 (2) and 15.536 g/cm3 (3); markers—experimental data (4, 5, 6—[37]).

The simulation results and available experimental data are shown in figure 3. For three al-

loys of gold in combination with germanium with mass fractions wt % Au(94.2)Ge (5.8), re-

spectively, ρ0 = 16.851 g/cm3; Au(92.1)Ge(7.9), ρ0 = 16.111 g/cm3; Au(90.7)Ge (9.3), ρ0 =

15.536 g/cm3 [37]. For clarity, the calculations and data are shown with a pressure shift of

50 GPa. It is assumed that the phase transition of germanium in the alloy begins under the same

conditions as for pure germanium. Due to the fact that the calculation was carried out for alloys

with low porosity, the assumed pressure values for the beginning of the phase transition can be

considered justified. This assumption was confirmed in the calculations of mixtures with two

components experiencing a phase transition [38].

It can be concluded that the proposed scheme for describing thermodynamic parameters un-

der dynamic loads allows us to describe the behavior of pure germanium and materials with it as

a component. The calculations correspond well to the data of experiments for germanium-gold

alloys. The deviation of the calculated points from the experimental data is probably due, in par-

ticular, to the influence of other phase transitions for germanium. Only the phase transformation

of germanium I–II was considered in this paper.
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4 CONCLUSIONS

Thus, the model allows calculating thermodynamic parameters of germanium and alloys with

germanium as a component under shock wave loading. The Mie–Grüneisen equation of state,

together with the condition of thermodynamic equilibrium of the mixture components under

shock-wave loading, gives a closed system of equations that determines the parameters under

dynamic loads. The assumption of thermodynamic equilibrium allows us to take into account

the interaction of components with each other, which becomes essential when using materials

experiencing a phase transition at high dynamic loads. The simulation results show that it is

possible to determine the thermodynamic parameters of heterogeneous materials taking into

account the phase transition of its components under shock-wave loading.
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