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Summary. The integral inequalities concerning the inverse Hardy inequalities have been 

studied by a large number of authors during this century, of these articles have appeared, the 

work of Sulaiman in 2012, followed by Banyat Sroysang who gave an extension to these 

inequalities in 2013. In 2020 B. Benaissa presented a generalization of inverse Hardy 

inequalities. In this article, we establish a new generalization of these inequalities by 

introducing a weight function and a second parameter. The results will be proved using the 

Hölder inequality and the Jensen integral inequality. Several the reverses weighted Hardy’s 

type inequalities and the reverses Hardy’s type inequalities were derived from the main 

results. 

1 INTRODUCTION 

In recent years, several researchers have obtained extensions and generalizations of 

Hardy's inequality in the literature, for more details see [1], Hardy type inequalities for 

fractional integral operators [2], Hardy type inequalities involving functions of two variables 

[3]- [4], Hardy-type inequalities via the Steklov operator [5], a new version of inverse Hardy 

inequalities on time scales that appeared in 2021 see [6]- [7] . Many researchers have obtained 

results of refinements and generalizations of inverse Hardy inequalities, in 2020, B. Benaissa 

presented the following generalizations [8, Theorem 2.2]. 
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Taking          , we get Sulaiman result inequalities, [9, theorem 3.1] and if we putting 

             , we get Banyat Sroysang result inequalities, [10, theorem 2.1 and 

theorem 2.2]. On the other hand, convex functions play an important role in inequality theory, 

this class of functions has many applications in different mathematical branches (numerical 
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calculation, probability theory,...), match results are obtained by the Jensen inequality and 

many articles relating to different versions of this inequality have been published see for 

example [11].  Motivated by above literature, in this work we give a generalization of Hardy’s 

integral inequality by using a weight function   and a second parameter   , this results will be 

proved by Hölder inequality and Jensen integral inequality. 

All along this paper,     are measurable non-negatives functions on interval       where 

          +  and   is a weight function (measurable and positive) on     . In the set of 

monotone functions, non-increasing (non-decreasing) function means the function is 

decreasing (increasing) or constant. 

2  PRELIMINARIES 

In this section we state the following Lemmas which are useful in the proofs of main 

Theorems. 

Lemma2.1. Let         and      be non-negative measurable functions on       

and suppose that 0                 
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The inequality (3) holds for          and inverted for         . 

Proof. Using Hölder inequality for using the parameter 
 

 
  , we have 

                                        
 

 

    
   
      

 

 

         
 
      

 

 

                                   

                                              
 

 

 

   
 

             
 

 

 

 
 

                                  

(See the version on time scales in [6]). 

The version of the Jensen integral inequality is given below: 

Lemma 2.2. Let   be an integrable function defined on        and let              be a 

convex function. If                , then 

  
 

   
       
 

 

  
 

   
           

 

 

                                  

The above inequality is inverted if   is a concave function. The inequality in the Lemma 

2.2 can be rewritten in the following forms. 

• If   is a convex function, then 

           
 

 

         
 

   
       
 

 

                                    

• If   is a concave function, then 
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3 MAIN RESULTS 

Theorem 3.1. Let     be integrable positives functions on       ,   be a weight function on 
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If   is non-decreasing and   is non-increasing, then  
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Proof.     For          , Apply the Hölder inequality for  
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Using the inequality     and since   is non-increasing function, we deduce that 
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   be a concave function and   be non-decreasing function, apply the 

inequality    , hence 
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thus we get     . 

     For              , using the reverse Hölder inequality, we get 

 
    

 
   

    
  

 

 

                      
 

 

          
 

 

 

   

   
 

 

 

Apply the reverse of the inequality     and since   is non-increasing function, we deduce 

that 
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Let         
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inequality    , hence 
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So, the proof of Theorem 3.1. is complete. 

In the same data on the functions     and  , with                    
 

 
and by reasoning 

analogously to the proof of Theorem 3.1, we obtain the following remarks. 

Remark 3.1.  If   and   are non-decreasing functions, then  
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Remark 3.2.  If   is non-increasing and   is non-decreasing, then  
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Remark 3.3. If   and   are non-increasing functions, then  
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4. APPLICATIONS 

We now give some new consequences of the above results. 

4.1. The reverses weighted Hardy’s type inequalities 

If we set       in Theorem     , we obtain the following corollary. 

Corollary 4.1. Let     be integrable positives functions on       ,   be a weight function on 
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According to remarks             above and with the same condition       , one can 

deduce new results, in a similar way to the inequalities      and      via to the monotonicity 

of the functions   and  . 

4.2. The reverses Hardy’s type inequalities 

If we set      in Theorem      and remarks            , we result some new inequalities 

with two parameters in the following corollaries. 

Corollary 4.2. Let       be positive functions defined on [a; b] and              
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Inequalities      and      are new generalizations of inequalities     and      

Corollary 4.3. Let     be positive functions defined on [a; b] and             
 

 
. If   is 

non-increasing, then  
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(i) for            
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The inequalities      and      are new results with two parameters in the case where   is 

a non-increasing function. If we     put in the Corollary4.2. we obtain the following new 

result. 

Remark4.1 Let       be positive functions defined on [a; b] and              
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5 CONCLUSIONS 

By applying Hölder's inequality to two integrability parameters and Jensen's integral 

inequality, new generalization integral inequalities relating to the inverse-weighted Hardy 

inequalities have been established and proven. Some particular cases are studied according to 

the monotony of the functions. 
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