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Summary. In this paper we introduce the notion of pair of weakly chain separated sets in a
topological space. If two sets are chain separated in the topological space, then they are weakly
chain separated in the same space. We give an example of weakly chain separated sets in a
topological space that are not chain separated in the space. Then we study the properties of these
sets. Also we mention the criteria for two kind of topological spaces by using the notion of
chain. The topological space is totally separated if and only if any two different singletons (unit
subsets) are weakly chain separated in the space, and it is the discrete if and only if any pair of
different nonempty subsets are chain separated. Moreover we give a criterion for chain
connected set in a topological space by using the notion of weakly chain separateness. This
criterion seems to be better than the criterion of chain connectedness by using the notion of pair
of chain separated sets. Then we prove the properties of chain connected, and as a consequence
of connected sets in a topological space by using the notion of weakly chain separateness.

1 INTRODUCTION

The definition of connectedness, that is considered as standard, was first given in the
beginning of 20th century by Riesz and Hausdorff.

In 1883, Cantor gave the definition of connectedness in R” by using the notion of chain.
Later the definition is generalized to all topological spaces: The topological space X is
connected if for every x,y € X and every open covering U of X there exists a chain in U
that connects x and y ([3, 4]). For more details about connectedness see [5-8].

In papers [1] and [2], rather than as a space, is generalized the notion of connectedness as a
set in a topological space that is called a chain connected set.

We will write some definitions and statements from article [1].

By a covering we understand a covering consisting of open sets.

Suppose X is a set, U/ is a family of subsets of X, and x,y € X. A chain in I/ that
connects x and y (from x to y, from y to x) is a finite sequence U ,U,,...,U, in U,

such that U, NnU
topological subspace, and a chain is a chain that consists of open sets.

#0, i=12,..,n—-1, and xeU,, yeU,. In this paper a set is a

i+1

Let X be a topological space and C < X .

Definition 1.1. The set C is chain connected in X, if for every covering U/ of X in X
and every x,y €C, there exists a chain in ¢/ that connects x and y.
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So, the space X is connected if and only if X is chain connected in X .
Let X be a topological space, and let 4 and B be nonempty subsets of X .

Definition 1.2. The sets 4 and B are chain separated in X , if there exists a covering U
of X in X such that for every point x € 4 and every y € B, there is no chain in ¢/ that

connects x and y.

Theorem 1.1. The sets 4 and B are separated if and only if 4 and B are chain separated
in AUB .=

Theorem 1.2. The set C is chain connected in X, if and only if C cannot be represented
as a union of two chain separated sets 4 and B in X .m

Let X be a topological space and x,y € X .

Definition 1.3. The element x is chain related to y in X, and we denote it by Xy, if

for every covering U of X in X there exists a chain in I/ that connects x and y.

The chain relation in a topological space X is an equivalence relation, and it depends on
the set X and the topology 7 of X . The chain relation splits the space into classes.

We denote X~V if for the covering U of X in X there exists a chain in U that

connects x and y.

We denote by A4, (x,U) the set that consists of all elements y € X such that x ~ y. The

set A4, (x,Z/{ ) is nonempty, open, and closed.

Let X be a topological space, x € X and U be a covering of X . The infinite star of
xeX and U in X is denoted by st” (x,U)[1,9].

2 PAIR OF WEAKLY CHAIN SEPARATED SETS

Let X be a topological space, and let 4,Bc X .

Definition 2.1. The nonempty sets 4 and B are weakly chain separated in X, if for
every point x € 4 and every y € B, there exists a covering U =U (x, y) of X in X such

that there is no chain in ¢/ that connects x and y.

The notion is similar to the notion of pair of chain separated sets in a topological space.
Therefore, the analogue theorems to chain separated sets, presented in [1], are valid for
weakly chain separated sets.
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From the definition, it follows that:

Proposition 2.1. If 4 and B are weakly chain separated in X , then any pair of nonempty
sets Cand D, where C — A and D c B, are weakly chain separated in X .m

The following theorem will show us that two sets, which are weakly chain separated in a
space, are also weakly chain separated in every subspace.

Let X be a topological space, let Y < X, and let 4 and B be nonempty subsets of Y .

Theorem 2.1. If 4 and B are weakly chain separated in X , then 4 and B are weakly
chain separated in Y .

Proof. Let the sets 4 and B be weakly chain separated in X andlet x4 and yeB. It
follows that there exists a covering U/ of X in X such that there is no chain in ¢/ that
connects x and y . Then

U =UNY={UNY|U U]
is covering of ¥ in Y such that there is no chain in I/, that connects x and y.m

Remark 2.1. The most important case of the previous theorem is when ¥ = AU B .m

The definition of pair of chain separated sets, the definition of pair weakly chain separated
sets, and the properties of quantifiers, leads to the following statement.

Theorem 2.2. If the sets 4 and B are chain separated in X, then 4 and B are weakly
chain separated in X .m

The next example shows that the converse statement does not hold in general.

Example 2.1. Let 4= {0}, B :{l
n

neN}, and X =A4UB. The sets 4 and B are

weakly chain separated in X, but 4 and B are not chain separated in X i.e. 4 and B are
not separated.

1 .
Proof. Let b € B. Then b = — for some n, €N, and for the covering:
nO

R TIERS!

there is no chain in U/ that connects 0 and b . It follows that 4 and B are weakly chain
separated in X .

On the other hand, since the topology on X is relative to R, every element of arbitrary
covering of X that contains the point 0, also contains a point from the set B . It follows that
A and B are not chain separated in X .m
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The definition of pair of chain separated sets, the definition of pair weakly chain separated
sets, and the criterion of chain separated sets in their union by using the notion of separated
sets (see introduction), leads to the following two statements.

Corollary 2.1. If 4 and B are separated then 4 and B are weakly chain separated in
AUB .=

Theorem 2.3. Singletons 4 and B are weakly chain separated in X if and only if they
are chain separated in X .m

The definition of pair of weakly chain separated sets and the definition of chain relation,
lead to the following statement which is a criterion for weakly chain separated sets by using
the chain relation. The chain relation has a short notation and therefore we will use this
criterion in the proofs.

Proposition 2.2. Two sets 4 and B are weakly chain separated in X if and only if for
every xed and yeB, x+y.m
X

The last proposition in case of chain separateness (remark 4.4 in [1]) is valid in one
direction. From the last proposition it follows the next statement:

Corollary 2.2. Let x,y € X. Then X~ if and only if X cannot be represented as a

union of two weakly chain separated sets 4 and B that contain x and y, respectively.m
It is easily seen that the next statement is valid:

Theorem 2.4. If the function f:X—){O,l}, such that f(A): {0} and f(B): {1}, is
continuous then the sets 4 and B are chain separated (weakly chain separated) in X .m

According to [1], two nonempty sets 4 and B are functionally separated in X if there
exists a continuous function f: X — {0,1} such that f (A): {0} and f (B): {1} So, the next
statement is valid.

Corollary 2.3. If 4 and B are functionally separated in X then A4 and B are chain
separated (weakly chain separated) in X .

From the last corollary it follows that if 4 and B are functionally separated in 4\ B then
A and B are weakly chain separated in 4w B. This statement in the case of chain
separateness (corollary 4.3 in [1]) is valid in both direction.

Corollary 2.4. If f:X —>[0,1] is a continuous function such that f (A):{O} and
f (B)z {1}, then the sets 4 and B are chain separated (weakly chain separated) in

FH0)u s (1).m
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From the last corollary it follows that if f: X — [0,1] is a continuous function such that
f (A) = {0} and f (B) = {1}, then the sets 4 and B are chain separated (weakly chain
separated) in 4 B . The reverse claim does not have to be valid.

Example 2.2. Let X = [— 1,1], A= [— 1,0) and B = (0,1]. Then sets A and B are weakly
chain separated in 4U B, but there is no continuous function f:X —>[O,1] such that

/(4)=1{0} and f(8)={1}.

At the end we mention the criteria for two kind of topological spaces by using the notion of
chain.

Let X be a topological space.

Theorem 2.5. The space X is the discrete if and only if any two disjoint nonempty
subsets of X are chain separated in X .
Proof. Let the space X be the discrete space and let x,ye X, x# y. Then for the

covering U = {{x},X \{x}} it follows that x + y i.e. {x} and { y} are chain separated in
ux
X.
Let any two disjoint subsets of X be chain separated in X, and let x € X. Then {x} is

open set, since otherwise {x} and X'\ {x} will not be chain separated.m

So, X is the discrete if and only if for every 4,Bc X such that 4,B# and
AN B =, there exist a covering U of X, such that for every x € 4 and every y € B there is
no chain in U that connects x and y . From the last theorem it follows that we can prove the
properties of the discrete space by using the notion of chain.

Theorem 2.6. The space X is totally separated if and only if any two disjoint singletons
subsets are weakly chain separated in X .
Proof. (=) Let X be totally separated and let x,ye X, x#y. Since X is totally

separated, then there is an open and closed subset U < X such that xeU and ye X \U.
Then for the covering U = {U,X \ U} it follows that x + y, hence x+y.
u,x X

(<) Let any two different singletons be weakly chain separated and let x,ye X', x# y.
Since x+ y, then there exists a covering U such that there is no chain in ¢/ that connects x
X

and y. Then the sets 4=4, (x,U ) and X'\ A4 are open and closed in X such that x € 4 and
yeX\ 4. Itfollows that X is totally separated.m

At the end of the section we generalise the notion of totally separated space by using the
notion of chain, to a set in a topological space.

Let X be a topolgical space and let 4 be a subspace of X .
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Definition 2.2. The set A4 is totally weakly chain separated in X if any two disjoint
singletons subsets of A4 are weakly chain separated in X .

So, the set A is totally weakly chain separated in X if for every x,y e A there exists a
covering U of X such that there is no chain in ¢/ that connects x and y .

3 STRONGLY CHAIN CONNECTED SETS

Let X be a topological space, and C < X .

Definition 3.1. A set C is strongly chain connected in X if C cannot be represented as
a union of two weakly chain separated sets 4 and B in X .

From the definition it follows that a space X is strongly chain connected in X if it cannot
be represented as a union of two weakly chain separated sets 4 and B in X .

Since the property of weak chain connectedness is weaker then the property of chain
connectedness, we expect the property of strong chain connectedness to be stronger then the
property of chain connectedness. Actually, the next theorem shows that they are equivalent.

Theorem 3.1. The set C is strongly chain connected in X if and only if C is chain
connected in X .

Proof. (=) If the set C is not chain connected in X, then there exists a pair of chain
separated sets 4 and B in X, such that C= AU B. But then 4 and B are weakly chain
separated in X i.e. C is not strongly chain connected in X .

(<) If C is not strongly chain connected in X i.e. C can be represented as a union of
two weakly chain separated sets 4 and B in X it follows that there exist x,y € C and a
covering U of X in X such that there is no chain in I/ that connects x and y. Therefore

C is not chain connected in X .m
Remark 3.1. The most important case of the theorem is when C = X .m

From the last definition it follows that if the set C is strongly chain connected in X then
for every covering & of X in X andevery x,y € C, there is no chain in U/ that connects x

and y.

4 PROPERTIES OF STRONGLY CHAIN CONNECTED SET

In this section we reformulate the statements from [1], by changing the notion of chain
connected set with strongly chain connected set and we rewrite some of the proofs to be more
readable. In the proofs we use the new chain sonnected criterion by using weakly chain
separated sets or we use the short notation of chain connected relation. We also formulate and
prove some analogoues statements by changing the notion of chain separated (case of chain
separateness) with weakly chain separated sets (case of weakly chain separateness).

The next proposition follows from the definition of strongly chain connected set in a
topological space.

10
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Proposition 4.1. If the set C is strongly chain connected in X , then each subset of C is
strongly chain connected in X .m

Let X be a topological spaceand Cc Y c X .

Theorem 4.1. If the set C is strongly chain connected in Y, then C is strongly chain
connected in X .

Proof. If the set C is not strongly chain connected in X then C can be represented as a
union of two weakly chain separated sets 4 and B in X . From theorem 2.3. it follows that
A and B are weakly chain separated sets in Y i.e. C is not strongly chain connected in ¥ .m

Remark 4.1. The most important case of the previous theorem is when C =7 .m

Example 4.1. Let X = [— 1,1] and Y =[—1, O)U(O,l]. Then Y is strongly chain connected
in X, but it is not strongly chain connected in ¥ . Moreover Y is not connected.m

From the theorem 3.1 it follows that:

Corollary 4.1. The set C is strongly chain connected in X if and only if for every
x,yeC, X~y.m

Remark 4.2. The most important case of the previous corollary is when C = X .m

Therefore, C is not strongly chain connected in X if and only if there exist x, y € C such
that x+y.
X

Theorem 4.2. A space X is connected if and only if X is strongly chain connected in X .

Proof. If X is empty or a singleton, then X is connected and strongly chain connected in
X . Let X be composed of at least two elements.

(=) If X is not strongly chain connected in X i.e., from theorem 3.1, it is not chain
connected in X then it follows that there exists a covering &/ of X and there exist elements

x,y €X, such that x + y. Hence 4 and X\ A4 where 4=4, (x,l/l ) are nonempty, open
u,x

and closed sets whose union is X . It follows that X is not connected.
(<) If X is not connected then X can be represented as a union of two open and closed

sets 4 and B. Hence {A,B} is covering of X such that for every x €4 and y € B, x+y,

X
i.e. 4 and B are chain separated sets in X . Therefore 4 and B are weakly chain separated
setsin X i.e. X is not strongly chain connected in X .m

The last theorem allows us to prove the properties of connected spaces by using the notion
of weakly chain connectedness.

Notice that, as a consequence, it follows that if C is connected, then C is strongly chain

connected in every super space X . In addition, a topological space C is strongly chain
connected in C, if and only if it cannot be represented as a union of two separated sets.

11
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Let X be a topological spaceand Cc Y < X .

Theorem 4.3. Let X = AU B, where 4 and B are weakly chain separated sets in X , and
C is a strongly chain connected setin X . Then C < 4 or C < B.

Proof. Let C be a strongly chain connected set in X, i.e. forevery x,y €C, X~y

If there exist x e AN C and y e BN C, since 4 and B are weakly chain separated sets in
X , it follows that x+ y, which contradicts the assumption. So, Cc 4 or CC B.m
X

A direct consequence of the last theorem are the next two corollaries:

Corollary 4.2. Let X = AU B, where A and B are chain separated setsin X ,and C isa
strongly chain connected setin X . Then Cc 4 or Cc B.m

Corollary 4.3. Let X =AU B, where 4 and B are separated. If C is a connected set,
then Cc 4 or Cc B.m

The next theorem and its remark show that chain relation and strongly chain connected set
is invariant with respect to continuous function.

Theorem 4.4. Let x,yeX. If X~y and f:X —Y is a continuous function, then

10 5,/ 0)

Proof. The function f: X — Y is continuous if and only if /: X — f (X ) is continuous.
Let f(x),f(y) ef(X) and V be a covering of f(X).
Then U = ' (V) is a covering of X and since X~y, there exists a chain
) )
in U that connects x and y . Since f'l(Vl.)m f"l(V,.H);t @,i=12,..,n—-1, it follows that
o= (W) W) =vav.,, i=12,.n-1,

ie. V,,V,,...,V, isachainin V that connects f(x) and f(y). Therefore f(x) f(y) N |

1)

Corollary 4.4. If C is strongly chain connected in X and f:X — Y is a continuous
function, then f (C ) is strongly chain connected in f (X ) N

The next well known result is a consequence of the last corollary:

Remark 4.3. Let C < X . If C is a connected setand f: X — Y is a continuous function,
then f (C) is connected.m

12
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Theorem 4.5. If Cc Dc C — X . The set C is strongly chain connected in X, if and
only if D is strongly chain connected in X .
Proof. Clearly, if D is strongly chain connected in X then proposition 4.1 implies that C
is strongly chain connected in X .
Let C be strongly chain connected in X', let x,y € D, and let &/ be a covering of X .

Since D C, members U and V of U that contain x and v, also contain some elements
x, €C and y, €C, respectively. Then X=X %V and y, =V, ie. X~y It follows that D

is strongly chain connected in X .m

Remark 4.4. The most important case of the theorem is when D =C .m

As a consequence, an analogous statement for connected sets holds, but only in one
direction.

Corollary 4.5. Let X be a topological space and C < X . If C is a connected set and

Cc Dc C ,then D is connected.

Proof. If C is a connected set i.e. C is strongly chain connected in C it follows that C is
strongly chain connected in D and, by the last theorem, D is strongly chain connected in D
i.e. D is connected.m

Lemma 4.1. Let C,Dc X. If C and D are strongly chain connected in X and
CnD#0 , then the union C' U D is strongly chain connected in X .

Proof. Let x,y eCuUD and let z eCnD. Since C and D are strongly chain connected
in X , by using the previous theorem it follows that X~z and =y, hence x~y.m

Theorem 4.6. Let C,,i €/ be a family of strongly chain connected subsets of X . If there

exists 7, €/ such that for every iel, C_‘io NC, # @, then the union UC_‘I is chain connected
iel
in X.
Proof. Let x,y eU(_?l ,ie. xeC, and y eC_‘y for some x,y /. Let x, e(j’l.0 NC. and

iel

Y eC_’,.U m@y. Then X=X X~ and Ny It follows that X~y.m

From the theorem it follows that if C,,i €/ is a family of strongly chain connected subsets
of UC,. , then the union UCi is chain connected in UCI. . A direct consequence of the last
iel iel iel
statement is:
Corollary 4.6. Let C, c X,i €/ be a family of connected sets. If there exists i, €/ such

that forevery iel, C, NC, # @, then the union UCl. is connected.m

iel

13
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Note that we can not use the assumption C,

o

NC. #@ in the last corollary since from

C, N C.#@ in X we cannot conclude that CO NC. #@ in UCI. .

I
iel

It is clear that if every two points x and y of X are in a strongly chain connected set C

in X, then X is strongly chain connected. The next corollary follows.

Corollary 4.7. If for every two points x and y of X there exists a connected set C, in

X containing them, then X is connected.m
Theorem 3.7 from [1] is not walid in the case of weakly chain separateness.

Theorem 4.7. Set C is strongly chain connected in X, if and only if for every x € C and
every covering U of X, CCst™(x,U).m

Corollary 4.8. Space X is connected, if and only if for every x € X and every covering
U of X, X:stm(x,l/{).l

In the next theorem we will give a strong chain connectedness criterion using continuous
function.

Theorem 4.8. A space X is strongly chain connected, if and only if every continuous
function f: X — {O,l} is constant.m

As a consequence, it follows that X is strongly chain connected, if and only if there is no
continuous function f: X — [0,1], such that f (A): {0} and f(B)= {1} for every nonempty
pair of sets 4 and B suchthat AU B=X.

Let X be a topological space and x eC < X .

Definition 4.1. The strongly chain connected component of the point x of C in X,
denoted by V., (x) , 1s the biggest chain connected subset of C in X that contains x.m

From the last definition and the definition of chain relation follow the next three
statements:

Proposition 4.2. The strongly chain connected component V., (x) of the point x of C in

X is the set of all points y € C such that X~y..

Proposition 4.3. The set of all strongly chain connected subsets of C in X consist of all
strongly chain connected components of C in X and their subsets.m

14
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Proposition 4.4. For every x eC, V., (x) =CnV,, (x) Each strongly chain connected

component of X in X contains at most one strongly chain connected component of C in
X.m

Since the chain relation is an equivalence relation, from the last proposition it follow the
next two statements.

Proposition 4.5. Let x,y €C.If y €V, (x) , then V., (x) =V, (y) N |

Proposition 4.6. Let x,y eC.If V., (x) =V, (y) , then V., (x) NV (y) =0.m

As a consequence of the definition of strongly chain connected component and the last two
statemenents, the next proposition is valid.

Proposition 4.7. For every x €C,

Vee (x) < Vex (x) = U )VCC (y) ;-

_VEVCX(X

The proposition shows that every strongly chain connected component of C in X is a
union of strongly chain connected components of C in C.

Proposition 4.8. The strongly chain connected components of X in X are closed sets, i.e.
forevery x e X, V,, (x) =V (x)

Proof. Let y eV, (x) and U be a covering of X . Then there exists a neighbourhood

U e U such that y eU and there exists a point z eU NV,, . Then X~z and zZ~y 1e. X~y.

So, y eV, (x) Le. Vy, (x) is closed set.m

Proposition 4.9. Let xe€X and C(x) be a connected component of X . Then
C(x) Vi (x) N |

Quasicomponent of the element x in a topological space X, denoted with O, (x), is the
intersection of all clopen (closed and open) sets in X that contain x .

Theorem 4.9. Quasicomponents and strongly chain connected components in a
topological space X coincide, i.e., forevery x e X, O, (x): Vi (x)

Proof. (<) If y 20, (x), since O, (x) is the quasicomponent of x, it follows that y ¢ 4
for some open and closed set 4 such that O, (x) c A. But then for the covering

U=1{4,X/4},itfollows that x + y,and hence x+y ie. y eV, (x).
u,x X

(=) If yeV,(x)= ﬂ( )AX (x,U) where Cov(x) consists of all coverings of X it
X

UeCov

follows that yg A=4, (x,L{ ) where U is some covering of X . Since A is an open and

closed set that contain x, it follows that O, (x) c A.Then y 20, (x) N |

15
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From the last theorem it follows that quasicomponent of the point x is the biggest strongly
chain connected set in X that contains x.

There exists a criterion for quasicomponenet by using the notion of chain: The
quasicomponent of the point x in X consits of all y € X such that for every covering U of

X there exists a chain in U/ that connects x and y [1]. Hence the quasicomponent of x in
X consists of all y € X such that x~y. Therefore the propositions 4.8 and 4.9 and the
X

theorem 4.9 are reformulations of two properties and a criterion of the quasicomponents.
The next proposition is the summary of the propositions 4.8, 4.9, and the theorem 4.9.

Proposition 4.10. For every x €C,
Oc (x)=Vee (¥) < U )Qc () =Vex (%) Vi (x) = O (%) m

yeley (x

So strongly chain connected components of a set in a topological space are a union of
quasicomponents of the set i.e. forevery x eC,

Vex (x) = U( )Qc (y),

yeVex (x

and if the set agrees with the space, the strongly chain connected components match with
the quasicomponents.

S CONCLUSIONS

In this work we defined a pair of weakly chain separated sets, and strongly chain
connected set in a topological space, and studied the properties of these sets. As a
consequence, by using the notion of weakly chain separateness i.e. a chain, the properties of
connected sets are proven.
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Summary. We introduce Mersenne-Lucas hybrid numbers. We give the Binet formula, the
generating function, the sum, the character, the norm and the vector representation of these
numbers. We find some relations among Mersenne-Lucas hybrid numbers, Jacopsthal hybrid
numbers, Jacopsthal-Lucas hybrid numbers and Mersenne hybrid numbers. Then we present
some important identities such as Cassini identities for Mersenne-Lucas hybrid numbers.

1 INTRODUCTION

Number sequences continue to attract the attention of researchers for a long time. Number
sequences, especially Fibonacci sequences, find application in many departments of
mathematics as well as in other branches of science.

Many researchers have studied Fibonacci numbers and new number sequences created by
their generalizations. [1-8].

Koshy [9] written one of the most popular books of Fibonacci and Lucas numbers, and gave
numerous recurrence relations, generalizations and applications of Fibonacci and Lucas
numbers.

Catarino et. al defined the Mersenne sequence and some identities of the the Mersenne
sequence. Later, Saba et.al introduced Mersenne-Lucas nembers and some identity of this sequence.

Later, many researchers studied on hybrid numbers. These researchers developed hybrid
numbers by relating them to other number sequences and created other number sequences. [10-
18].

In this study, Mersenne-Lucas hybrid numbers will be defined by using the hybrid numbers.
A generating function and a Binet formula for the Mersenne-Lucas hybrid numbers will be
found. Furthermore, the sum, the character, the norm and the vector representation of these
numbers will be given. Some relations among Mersenne-Lucas hybrid numbers, Jacopsthal
hybrid numbers, Jacopsthal-Lucas hybrid numbers and Mersenne hybrid numbers wil be
presented.

2010 Mathematics Subject Classification: 11B37, 11B39, 05A15
Key words and Phrases: Mersenne hybrid numbers, Mersenne-Lucas hybrid numbers, Binet formula, Generating
function, Cassini identity, Catalan identity
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Later, we give Cassini identity, Catalan identitiy, Vajda identity, D’ocagne identity and
Honsberger identity for Mersenne-Lucas hybrid numbers.

2 PRELIMINIARIES

Ozdemir introduced the hybrid numbers [13]. The set of hybrid numbers is
K={a+bi+cs+dh:ab,cde€ R} Letbe

Zy =aq + byi +cie+dqh, Z, = ay + byi + ce +dyh

any two hybrid numbers. Then we have the following properties.

o z,=z,9a,=a, by=by, ¢, =c,and d; = d,.

o z,+2z,=(a;+ay)+ (by+by)i+ (c; +c)e+ (dy +dy)h

o z1—27;=(a; —ay) + (by —by)i+ (c; —cx)e+ (dy —dy)h

o k.Zl = ka1 + kbll + kC1€ + kdlh y Where keR.
Some basic properties of hybrid counts are given by the following definition.

Definition 2.1. There are the following definitions where z is any hybrid number such as
z=a+ bi + ce+ dh [13].
e The conjugate of z is
Z=a— bi— ce— dh.

e The character of z is
C(z)=zz=a*+ (b—c)>—c?—d? =a®+ b*—2bc — d>.
e The norm for z has the form
llzll = N(z) = /C(2).

e zisaspacelike, timelike or lightlike if
C(z)< 0,C(z) > 00rC(z) = 0.

respectively.

e The vector representation for z is
V,=(a,b—ccAd).

e The scalar section of z is
S(z) =a.

e The vector section of z is
V(z) =bi + ¢ + dh.

Definition 2.2. The Mersenne numbers {M,},—, are defined by the following recurrence
relations

Mn+1 = ZMn + 1
or
Mny2 = 3Myyq — 2My,

18



Engin Ozkan and Mine Uysal.

with My, = 0 and M; = 1 [19].
Definition 2.3. The Binet formula of the Mersenne numbers are defined by the following. [19]

M,=2"-1
Definition 2.4. The Mersenne-Lucas numbers {m,},_, are defined by the following recurrence
my = 3My_q —2My_,

Other definition is given by,

Myyq = 2my — 1
Definition 2.5. The Binet formula for Mersenne- Lucas numbers is defined by [20],
m, =2"+1
Definition 2.6. The sum of the Mersenne- Lucas numbers is given by [20],

n

ka=2”+1+n

k=0
or

n
ka=2mn+n—2
k=0

Definition 2.7. The Jacobsthal numbers {J,},—, are defined by the following recurrence
relation,

Jn+2 = Jns1 + 25

with J,=0andJ; = 1. [9]
Definition 2.8. The Jacobsthal -Lucas numbers {j,, }n=, are given by

Jn+2 = Jn+1 T 2Jn
with jo=2andj, = 1. [9]
Definition 2.9. The Mersenne hybrid number, {MH,, };-, is defined as

MHn = MTl + iMTl+1 + gMn+2 + th+3, n = 0

where M,, is the nth Mersenne number. [18]

Now let's give the preliminary information.

3 MERSENNE-LUCAS HYBRID NUMBERS

Definition 3.1. Let n = 0 be integer, Mersenne-Lucas hybrid numbers {mh,,} forn =0, ...,
is defined as,

mhy = my + iMyyq + EMpyp + hmys 1)
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where, m,, is nth Mersenne-Lucas number.

Let us give a few terms of Mersenne-Lucas hybrid numbers in Table 1.

n mh,,

0 2+ 3i+5s+9h

1 3+5i4+9+17h
2 5+ 9i+17¢+ 33h
3 9+ 17i+ 33e+ 65h

Table 1: Same values of Mersenne-Lucas hybrid numbers

Theorem 3.2. The Binet formula for {mh,},_, is defined as,
mh, =2"(1+2i+4+8h)+(1+i+e+h),n = 0.
Proof. From (1) and the Binet formula for Mersenne-Lucas numbers, we have
mhy, = 2"+ 1+ 2" + 1) + (2" + 1) + h(2™*3 + 1)
=2"(14+2i+4e+8h)+(1+i+e+h)
Thus, the proof is complete. i

Lemma 3.3. Let n > 0 be integer, the recurrance relation of Mersenne-Lucas hybrid numbers
{mh,}n, is given as,

mh,,,, = 3mh,,, — 2mh,
Proof. From (1), we obtain
Mhpyy = Mpyp + iMyyz + EMp g + Amys
= (3mn+1 - zmn) + i(gmn+2 - 27nn+1) + g(3mn+3 - 2Tnn+2) + h(3My4q — 2Mypy3)
= 3(Mpy1 + iMpyp + eMpys + hmpyy) — 2(my + imyyy + €My, + hmyys)

= 3mh, 1 — 2mh,
Thus, the desired is obtained. O

Theorem 3.4. The generating function for {mh, };—, is given as follows,

G(t)_i p gn _ 230+ 56+ 9h— (3 +4i + 6c + 10h)
- Om” - (1— 3t + 2t2)
n=
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Proof. We have
G(t) = mhy + mhyt + mhyt? + - + mht™ + - )
Let us multiply Equation (2) by —3¢, 2t respectively. So, the following equations are obtained.
G(t) = mhy + mhyt + mhyt* + -+ + mhyt™ + -
—3tG(t) = —3tmhy — 3t?mh, — 3t3mh, — --- — 3t"*tmh, — -
2t2G(t) = 2t>mhy + 2t3mh, + 2t*mh, + - + 2t"2mh, + -

If we take the necessary calculations to take advantage of the recurrence relation, we obtain the
following equations

G(t)(1 — 3t + 2t?) = mhy + mhyt — 3tmh,
2+3i+5e+9h+t(3+5i+9¢e+17h) — 3t(2 + 3i + 5¢ + 9h)

G(t) =

(1 -3t + 2t?)
(0 =2+3i+5<~z+9h—t(3+4i+6<~3+10h)
(1 -3t + 2t?)
In this case, the desired formula is obtained. o

Theorem 3.5. Let S(t) be sum of {mh,}5-,. Then we have,
(o) =thk = 2mh, +n—2+i(n—3) +e(n—5)+hn—9)
k=0

Proof. We have,

S(t) = mhy + mhy + mhy, + -+ mh,
From (2.1), we have

S(t) =mgy+imy + emy + hmz + my + im, + emz + hmy + -+ my,
Fimyyq + EMpyp + hmys
=(mo+my+--+my) +ilmg + - +myyq)
+e(my + - +Mpy2) + h(mz + -+ Myy3)
From the sum of Mersenne numbers, we get the following
=(C2my+n-2)+i(Cmy +n—-1-2)+e@myip +n—2-3)
+h(Zmyz3 +n+1—-2-3-5)

=2(my +imyyq +emp, +hmy ) +n—-2+in—-3)+en—-5+h(n—-9)
=2mh,+n—-2+i(n—3)+e(n—-5)+h(n—-9)
Thus, proof is complete. O

Theorem 3.6. The character of {mh,}o—, is
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C(mh,) = —35m?, — 54m?,,, + 88m,m,,;, n = 0
where m,, is the nth Mersenne-Lucas number.
Proof. From definition character of hybrid numbers, we get
C(mhy) = mhymh, = (M, + iMpyq + EMpyy + hMyyz) (My — iMpyq
—EMpy2 — hmn+3 )
=m?p + Mg — 2Mp My — M2 45
Using reccurance relation of Mersenne numbers are the following,
Myt = 3Mpyq — 2My
and
Mpy3 = 3Mpip — 2Mpyq
= 3(8mpy1 — 2my) — 2myyy
= TMyyq — 6My
Then, we have,
C(mhy) = m?, + m?, 41 — 2mp 1 (3Mpyq — 2my) — (7Tmp4q — 6mn)2
=m?, + m?,,, — 6m?,,, + 4m, ., m, — 49m?,,, + 84m, ., m, — 36m?,
= —35m?,, — 54m?,,, + 88m,, m,
Thus, the proof is complete. o

Theorem 3.7. For any n = 0, Mersenne-Lucas hybrid number is spacelike.

Proof. From the definitions of Character and Binet formula of Mersenne-Lucas numbers, we
obtain that,

C(mh,) = —35m?, — 54m?,,, + 88m,,;m,
= —-35(2" + 1)? — 542" + 1)2 + 88(2"*"1 + 1)(2" + 1)
= —75.22" —22.2" -1
Since C(mh,) < 0 forany n > 0, Mersenne-Lucas hybrid number is spacelike. i

Theorem 3.8. The vector representation of Mersenne-Lucas Hybrid numbers provide the
following identities.

Vi, = 3Vimnsy = 2Vim

hnt1 hn+2

Proof. By using definition the vector representation of Mersenne in Definition 1.1., we get

3V .. — 2V

hn+1 hTL+2

= (3Mypy1,3Mpi2 — 3Myy3, 3Myya, 3Myys) — (2Mpgg, 2Mpyz — 2My g4, 2My 5, 2Myg6)
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= (BMpy1 = 2Mypy2, 3Mpy2 — 2Mpy3 — 3Myyz — 2Myyg, 3Myyg — 2Myyy5, 3Mpyys

_zmn+6)

From the reccurence relation of Mersenne numbers,

= (mn' Myt1 — Myt Mpy3, mn+4)

Thus,

thn = (mw Mpt1 — mn+2'mn+3rmn+4) = 3thn+1 - Zthn+2

is obtained. O

Definition 3.9. Let N(mh,,) be norm of the Mersenne-Lucas hybrid numbers. Then we have,

N(mh,) = \/C(mh,) = \/—35m2,, — 54m2,,,, + 88m, . m, .
Theorem 3.10. We have the following properties,
iymh, + mh,,; =3.2"(1+2i+4e+8h)+2(1+i+e+h)
iiymhy,y; =2mh, —(1+i+e+h)
Proof. From (2.1), we have
i) mh, + mhy, 4
= (My + iMpyq + eMpyg + hMyyz) + (Mpgg + iMpyy + EMpyz + hmpyy)
=2"+1+i(2"1+ 1)+ 22+ 1)+ h(2"3 + 1)
+2™MT + 1) +i(2M2 + 1) + (23 + 1) + (2™ + 1)
=32"(1+2i+4s+8h)+2(1+i+e+h)
So, the proof is complete.
D) Mhyyq = Mpypq + iMpyp + EMpyz + AMgyy
From reccurance relation of Mersenne-Lucas number, we have
=2m, —1+iC2my; — 1) +e(@myy, — 1) + h(2my 53— 1)
=2(m, +imy +emyy +hmy3) —(1+i+e+h)
=2mh,—(1+i+e+h)
Thus, the proof is complete. m
Lemma 3.11. We have the following relations

. _ 3. if nis even
D) mn = {3]n +2,  ifnisodd

.. | Jn if nis even
i) mn = {jn + 2, if nis odd
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Proof. The proof is easily shown by induction over n. o

Theorem 3.12. By the following identities between Mersenne-Lucas hybrid number, Jacobshtal
hyrid numbers and Jacobshtal-Lucas hyrid numbers are provided.

i) mh, + mhy,,; =3(JH, +JHps1) +2(1+i+ €+ h)
i) mhy, + mhy, ., = jH, + jHy4q1 + 2 + 3i + 56 + 5h
Proof. i) Let’s n is even. From Lemma 2.2., we obtain
mh, = my, +imy,q + My, + himy,s
=3, +i(3Jp41 + 2) + €(3Jn+2) + h(3Jn43 + 2)
=3J, +i3]ps1 + €3Jpsn + h3Jpes + 20 + 2i
=3(n + Uns1 + €ngz T hings) + 2R + 20
From the definition of Jacobshtal hyrid numbers, we have
mh, = 3JH, + 2h + 2i
Mhpyy = Mpgq +iMyyp + EMpyz + hmpyy
= BJn+1 +2) +iBJn+2) + €BJnsz +2) + h(3Jn+a)
=3Uns1 t Unsz + Enys + Wnga) + 2+ 2¢
From the definition of Jacobshtal hybrid numbers, we get
=3JHpq + 2+ 2¢
So, we obtain the following equation,
mhy, + Mhy 41 = 3JH, + 2h + 2i + 3J/Hp4q + 2 + 2¢
=3(H, +JHp) +2(1+ i+ e+ h)
Similarly, it is shown in the state of the n.

ii) Let’sniseven. From Lemma 2.2, we get

mh, =my, +imy, 1 +emy,, + himy,;
= (n +2) +i(n+1) + €(ns+2 + 2) + h(jns3)
=Jjnt Jns1 + Ensz t Wngs +2+ 1+ 2 +3h
From the definition of Jacobshtal-Lucas hybrid numbers, we have

mhyq = .Tnn+1 + l:m:n+2 temyy; + hmy, 4 .
=Jn+1 + +L(]n+2 + 2) + 5(]n+3) + h(]n+4 + 2)
= Jn+1 t Unsz + Enez + Rjnpa + 20 + 36 + 2h
= jHy41 + 20+ 3+ 2h
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So, we get

mh, + mh,,, =jH, + 2+ i+ 2+ 3h+ jH, ;1 + 2i+ 3¢+ 2h
= jH, + jHps1 + 2+ 3i + 56 + 5h

Similarly, it is shown in the state of the n.
Thus the proof is complete. o

Theorem 3.13. There is a relationship between Mersenne-Lucas hybrid numbers and Mersenne
hyrid numbers

mh,, = 2MH,,,, — 3MH,,
Proof. Let's use the Binet formula for the right hand side of the equation. Then we get

2MH, ., —3MH, =22""Y(1+2i+4s+8h)—2(1+i+c+h)
—3.2"(1+2i+4s+8h)+3(1+i+e+h)

=2"(1+2i+4¢+8h)+(1+i+e+h)=mh,
Thus,
mh, = 2MH,,,, — 3MH,,
is obtained. O
Theorem 3.14. For n > 0, the following equations are provided

] _( 3Jn ifniseven
D) S(mhn) = {3]n +2, if nisodd

.. A Jn if nis even
i) S(mhn) = {jn +2,  ifnisodd

where S(mh,,) are the scalar parts of Mersenne-Lucas humbers.
Proof. i). By using the definition of the scalar parts of Mersenne in Definition 1.1., we have
S(mhy,) =m,
From Lemma 2.2., if n is even then we get
S(mhy,) = my, = 3],
If n is odd, then we have
S(mh,) =m, =3J,+2

ii). From the definition of the scalar parts of Mersenne, we get
S(mhy,) =m,

From Lemma 2.2., if n is even, then we get

S(mhy,) =m, =j,
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If n is odd, then we have
S(mhy) =my, =j, +2
Thus, the proof is obtained. m

We will now give some important identities regarding the Mersenne-Lucas hybrid numbers.

Theorem 3.15. Cassini identity of Mersenne-Lucas hybrid numbers for n > 0 as follows:
mh,_ymhy,,, —mh?, = 2" 1(13 + 21i + 11¢ + 3h)
Proof. For proof, let's write the left side of the equality by using the binet formula, we get
Mh(-1yMhns1) — mh?,
=211 4+2i+4e+8n)(A+i+e+h)+2™ (A +i+e+h)(1+2i+4e+8h)
—2"(14+2i+4c+8W)(1+i+e+h)—2"(1+i+e+h)(1+2i+4e+8h)

=2"1(13 —3i+ 3¢ + 11h) + 2"*1(13 + 9i + 7¢ + 7h) — 2"(13 — 3i + 3¢ + 11h)
—2"(13 + 9i + 7¢ + 7h)

= —-2""1(13 - 3i+3e+11h) + 2"(13 + 9i + 7¢ + 7h)
= 2""1(13 + 21i + 11& + 3h)
Thus the proof is obtained. o

Theorem 3.16. Catalan identity of Mersenne-Lucas hybrid numbers for n,r > 0 as follows:
mh,_,mh,,, —mh?, = 2"7(1 — 2")(13 — 3i + 3¢ + 11h
—27(13 + 9i + 7¢ + 7h))

Proof.
mhn—rmhn+r - mhzn
=2"T(A+2i+4e+80)(A+i+e+h)+2"" (1 +i+e+h)(1+2i+4e+8h)

—2M(1+2i4+4c+8h)(1+i+e+h)—2"(1+i+e+h)(1+2i+4e+8h)

= 2"T(13 — 3i + 3¢ + 11h) + 2"+ (13 + 9i + 7 + 7h) — 2"(13 — 3i + 3¢ + 11h)
—2"(13 + 9i + 7¢ + 7h)

=2""T(13 — 3i + 3e + 11h)(1 — 2") + 2" (13 + 9i + 7¢ + 7h) (2" — 1)
=2"T(1 = 2")[13 — 3i + 3¢ + 11h — 2" (13 + 9i + 7¢ + 7h)]

Thus the proof is obtained. o

If we write r = 1, then we get the Cassini identity.

Theorem 3.17. Vajda identity of Mersenne-Lucas hybrid numbers for n,m,r = 0 as follows:

Mmhyymhy e — Mhymhg gk
= 22"T(2" —1)[(13 — 3i + 3e + 11h — 2X(13 + 9i + 7 + 7h)]
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Proof. For proof, let's write the left side of the equality by using the Binet formula, we get

mhn+rmhn+k - mhnmhn+r+k

= 2™7T(13 —3i + 3¢ + 11h) + 2""*(13 + 9i + 7¢ + 7h) — 2"(13 — 3i + 3¢ + 11h)
—2MT*k(13 4+ 9i + 72 + 7h)

=2"(13 - 3i+3e+ 11h)(2" — 1) — 2% (13 + 9i + 7e + 7Th)(2" — 1)
=2"(2" = 1)((13 — 3i + 3¢ + 11h) — 2X(13 + 9i + 7¢ + 7h))
Thus, the desired expression is obtained. i

Theorem 3.18. D’ocagne identity of Mersenne-Lucas hybrid numbers for n,m > 0 as
follows:

mh,mh,,; — mhymh,,,; = 2" (13 + 2i + 11¢ + 3h)
Proof. For proof, let's write the left side of the equality by using the Binet formula,then we get

mhmmhn+1 _mhnmhm+1
=21 +2i+4e+8h)+(1+i+e+h)][2"(1+2i+4e+8h)+(1+i+¢e+h)]
—[2"(1 + 2i +4e+8h) + (1 + i+ &+ h)][2™*1(1 + 2i + 4 + 8h)

=2™(13 —3i + 3+ 11h) + 2"*1(13 + 9i + 7¢ + 7h) — 2"(13 — 3i + 3¢ + 11h)
—2M*1(13 + 9i + 7¢ + 7h)

=(13-3i+3c+11R)(2™ — 2™) + (13 + 9i + 7 + 7h)(2"*1 — 2m+1)
=2""™(13 + 2i + 11¢ + 3h)

Thus, the proof is obtained. o

Theorem 3.19. Honsberger identity of Mersenne-Lucas hybrid numbers for n,m > 0 as
follows:

mh,mh,, + mhy, . mh,, 1 = (2"™385 + 2"39 + 2™39 + 6)
+(2™™M20 — 2™9 4+ 2M27 + 4)i + (240 + 2"9 4+ 2™21 + 4)¢
+(2"*™M80 + 2"33 + 2™m21 + 4)h
Proof. For proof, let's write the left side of the equality by using the Binet formula, then we get

mh, mh,, + mh, ;mh,, 1
=2"1+2i+4e+8h)+ (A +i+e+h)][2™(1 + 2i+ 4+ 8h)

+(1+i+e+h)]+ 2" (1 +2i+4e+8R)+ (1 +i+e+h)]
[2"*1(1+2i+4e+8h)+ (1 +i+ e+ h)]

= (2™™M5(77 + 4i + 8¢ + 16h)) + 2"3(13 — 3i + 3¢ + 11h)
+2M3(13 + 9i + 7 + 7h) + (6 + 4i + 4¢ + 4h)

= (2"*™M385 + 239 + 2™39 + 6) + (2120 — 219 4 2™M27 + 4)i
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+(2™™M40 + 2"9 4+ 221 + 4)e + (2™T™80 + 233 + 221 + 4)h
Thus, the proof is obtained.

4 CONCLUSIONS

We presented Mersenne-Lucas hybrid numbers. We have given the Binet formula, the
generating function, the character and the norm for Mersenne-Lucas hybrid numbers. Also, we
have given relations among these numbers. Then we have obtained Cassini identity, Catalan
identity, Vajda identity and D’ocagne identity for Mersenne-Lucas hybrid numbers.
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Summary. We consider almost geodesic mappings mr; of spaces with affine connections. This
mappings are a special case of first type almost geodesic mappings. We have found the
objects which are invariants of the mappings ;. The fundamental equations of these
mappings are in Cauchy form. We study ; mappings of constant curvature spaces.

1 INTRODUCTION

In the theory of geodesic mappings and their generalizations many basic results were
formulated as a system of differential equations in Cauchy form, see [1-14]. For almost
geodesic mappings m; a similar result for special Ricci-Codazzi Riemannian spaces is
formulated in Sinyukov monograph [1]. This result was generalized for Ricci-Codazzi spaces
with affine connection and for Riemannian spaces in [15]. For m; mappings of general
symmetric spaces with affine connection the system of differential equations in the Cauchy
form were found in works [16].

This paper is devoted to detailed study of m; mappings which are characterized by the
general equations in the Cauchy form. This result is significant because the equations in this
form have established methods of solution.

The concept of almost geodesic mappings of type m; of spaces with affine torsion-free
connections was first introduced in [16]. These mappings are a special case of type m; almost
geodesic mappings which were introduced by N. S. Sinyukov in [1].

The paper is devoted to study the general properties of =7 mappings. In particular, we have
obtained the objects which are invariant under the mappings. Also 7 mappings of spaces of
constant curvature and affine spaces were studied.

Let us recall the basic conceptions of the almost geodesic mappings theory presented
in [1].

A curve defined in a space with an affine connection A,, is called almost geodesic if there
exists a two-dimensional plane element parallel along the curve (relative to the affine
connection) such that for any tangent vector of the curve its parallel translation along the
curve belongs to the plane element.

A diffeomorphism f between spaces with affine connection A and 4,, is called almost
geodesic mapping if any geodesic curve of A is mapped under f onto an almost geodesic

curvein 4 .

2010 Mathematics Subject Classification: 53B05.
Key words and Phrases: Almost geodesic mapping, space with affine connection, space of constant curvature.
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In order that a mapping of a space 4,, onto a space A,, be almost geodesic it is necessary
and sufficient that in a common coordinate system x = (x1,x?, ..., x™) which both spaces are

—h
referred to, the deformation tensor of the mapping P[}(x) =T(x) — I‘i’}(x) must satisfy the
conditions
Abpy A" 2PXY = a - PRgA“AP + b - 2",
h

—h - -
where A?jk =P+ Pi‘j‘-P(?k, Fi’}(x) (Fij(x)) are the components of the affine connection

of the space 4, (Zn), ""'" denotes covariant derivative with respect to the connection of the
space A,,, A" is an arbitrary vector, a and b are certain functions of variables x and A".

Three types of almost geodesic mappings were specified, namely m,, m,, m3;. We have
proved that for n > 5 other types of almost geodesic mappings except m;, ,, and 5 do not
exist [17].

Almost geodesic mappings of i, type are characterized by the following conditions for the
deformation tensor:

Algijk) = 53“1'16) + b(in}llC)'
where a;; is a certain symmetric tensor, b; a certain covector, 8" are the Kronecker delta,
(ijk) denotes an operation called symmetrization without division with respect to the indices
i,jandk.

Unlike mappings of the type m;, the study of mappings m, and m5 are devoted by a lot of
papers (See e.g. [1,2]). It stems from the fact that the main equations of these mappings are
much more sophisticated than equations of other ones. Hence the paper is devoted to a special
case of mappings m;, which does not degenerate into m,, 75 or geodesic mappings.

2 ALMOST GEODESIC MAPPINGS OF THE Tt; TYPE
Let a mapping of 4,, onto 4,, satisfy the conditions [16]:

Pl + PP = ay;8%, )

where a;; is a certain symmetric tensor.

These mappings are a special case of almost geodesic mappings of the m; type. From now
on, that mappings will be denoted by m;. Let us consider (1) as a system of differential
equations of Cauchy type with respect to the deformation tensor P[} and find their
integrability conditions. To this end, differentiate covariantly (1) with respect to x™ in A,,
then alternate it in k and m.

Contracting the integrability conditions of the equations (1) for & and m, we get

(n—Dayjp = Pi‘;Rak - Pﬁ(i ]%Bk —(n— 1)Pi‘}‘-aak, @)

where R{‘jk is the Riemann tensor of the space 4,, R;; = R{}, is the Ricci tensor.
Obviously, in the space A, the equations (1) and (2) form a closed system of PDEs of
Cauchy type with respect to the functions Pi’]’- (x) and a;;(x). The functions must also satisfy

the algebraic conditions
Pi};(x) = P]"Z(x); aij(x) = aji(x)- ®)
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Hence we have proved the theorem.
Theorem 1 In order that a space A, with an affine connection admits a canonical almost

geodesic mapping of type 7} onto another space 4,, with an affine connection, it is necessary
and sufficient that the mixed system of differential equations of Cauchy type in covariant
derivatives (1), (2), (3) has a solution with respect to the unknown functions Pl-’}(x) and

al-j(x).

Let us note that Theorem 1 holds for A, € C* (I/}(x) € C*), i.e. objects of affine

connection T are differentiable. In this case, if 4,, € C"(r = 1) then 4,, € C". It follows from
the fact, that the solution Ph(x) € C"and a;;(x) € C"1.
The integrability conditions of the system are
1
— PRl + PR S im = — [(PSRam — PhRSmp) S — (PG Rai — PaRip) 50

where [ij] denotes the alternation with respect to the mentioned indices.
3 INVARIANT OBJECTS UNDER =; MAPPINGS

It is known [1], that if Ph is a deformation tensor, then the Riemann tensors Ruk and Ruk
of the spaces 4,, and 4,, are related to each other by the equations

—h 4
Rij = Rl + P[k]] +Pl0[lkP’]l @

Using the formulas (1) and (4), we get

* W?jk =% Wfl]k (5)

where

Rl = Riji — = ROl Q)

h
* W ijk —

h wh
ijk = Ri '5k' *W

ijk —

Obviously, * Wuk is a tensor of type (1,3) in the space 4,, and * Wuk is a tensor of the

same type in the space 4,,. From the relations (5) it follows that the tensor is invariant under
almost geodesic mappings ;.
Contracting (5) for k and i, it is easy to see that it holds

Wi = Wl.j, (7

where

Wy = Ry Wi = Ry, 8)
Taking account of (7), the formulas (5) are expressible in the form
Wijee = Wi ®)

—h —
where Wuk and W, ;. are the Weyl tensors of projective curvature of the spaces A, and 4,

respectively.
Finally we obtained the theorem.
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Theorem 2 The Weyl tensor of projective curvature Wi’}k, and also the tensors * W?jk and
W;; defined by the formulas (6) and (8) as geometric objects of spaces with affine connections

are invariant under almost geodesic mappings of type ;.

4 MAPPINGS 11'; OF EQUIAFFINE AND PROJECTIVE EUCLIDEAN SPACES

From the Theorem 2 we obtain the next one.
Theorem 3 If a projective Euclidean space admits an almost geodesic mappings of type m;
onto A, then A,, itself is also a projective Euclidean space.

Theorem 4 If an equiaffine space admits an almost geodesic mappings of type 7} onto 4,
then A,, itself is also an equiaffine space.

Proof. Obviously, the proof of Theorem 3 and 4 follows from the facts that the Weyl tensor of
projective curvature vanishes in a projective Euclidean space, and for an equiaffine space the
condition W;; = 0 holds identically, respectively.

Hence because of Theorem 2 the above mentioned tensors vanish in the space A4,. This
means that A,, is a projective Euclidean and equiaffine space, respectively.

Thus from Theorem 3 and 4 projective Euclidean and equiaffine spaces form closed
classes with respect to mappings of type ;.

It is easy to see that the Riemann tensor is preserved under mappings m; if and only if the
tensor a;; vanishes identically. In this case the main equations of the mappings become

Pz’},k = _ngo’;k- (10)

In an affine space the equations (10) are completely integrable. Consequently, a solution of
the equations is determined by arbitrary initial values of Pi’]‘-(xo). If the initial values satisfy

the condition Pi’j‘-(xo) = 6(’§1/Jj) (x0), then the constructed solution determines the mapping of

an affine space 4,, onto another affine space 4,,, and the mapping is different from a geodesic
one.

Hence we obtain the theorem.
Theorem 5 There is a mapping n; of affine space onto itself such that all straight lines are
mapped onto plain curves, and not all the curves are straight lines.

Moreover, since in affine spaces the integrability conditions (2) of the equations (1) are
satisfied identically, the equations (1) are completely integrable.

Let us prove the theorem.
Theorem 6 Riemannian spaces V,, of non-zero constant curvature admit non-geodesic
mappings 7, which are also almost geodesic mappings of type m5. The quadratic complex of
geodesics is preserved under the mappings.

Proof. Let I}, be a Riemannian spaces with non-zero constant curvature R which admits
non-geodesic mappings r;. The integrability conditions are expressible in the form
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K(P¢agjy — Pltigju) + 81 Bijic — 8k Bij = 0, (1)
where Byji = a;jx + Pfj(agr + Kgax), gij is the metric tensor of the space 17,.
Let € be a vector such that e%efg,p = +1. Transvecting (11) with /e’ and then
symmetrizing it in i and k, we find
Pl = & gy + €"by + 58%); (12)
where &, Y, are some vectors, by, is some symmetric tensor. From (12) it follows that the
relation (11) becomes

€"(bkagjn = biagjye) + Slibryij + 8¢9 i) = 0, (13)

where b, j; is some tensor.
Transvecting (13) with €!, we get

6ih(gja6alpk - gjkfalpa) + Ehlfijk + 6jhgik + 51?21‘;’ =0, (14)

where Ilal-jk, Izal-k, Igij are some tensors.
Suppose that 1; = 0. Then g;,e*Y — gje“P, = 0 and consequently there exist vectors
a’ and b* such that a/b*(g . Yx — gjx€*P,) # 0. Transvecting (13) with a/b¥, we

obtain a relation which is contrary to the assumption that n > 3. Hence y; = 0. The formulas
(14) can be simplified and we can show by a similar method that b,;; = 0. Then (13) becomes

bzxﬁgaﬁ
n

brigjy — biigjr = 0. Transvecting the latter with g’t, we find that by; =
have from (12) by direct calculation

Iri- We

Pir]l-=Phgij, (15)

where P" is some vector. Hence the mapping is f-planar. Consequently, according to [1,2],
such mapping is almost geodesic mapping of type m5;. And in [17] the authors have proved
that the mappings m; N w5 preserves the quadratic complex of geodesics [18].

Substituting (15) in (1), we have
P} + P"P, = ady,

where a is some invariant, P, = P'g;y.
Vector fields satisfying these conditions are referred to as concircular vector fields. One
knows that concircular vector fields always exist in spaces of constant curvature.

5 EXAMPLES OF ALMOST GEODESIC MAPPINGS 11';

We shall give an example of an almost geodesic mapping m; of a flat space A, onto
another flat space A4,.

Let x!,x2, ..., x™ and X, %, ..., X" be affine coordinate systems in the spaces 4,, and 4,
respectively. A point mapping

X' = Ch(x* — €% +xf, (16)
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where C!', C", x! are some constant, det || C/* |I= 0, defines the almost geodesic mapping m}
of the space A4,, onto the space A4,,.
By direct calculation it is readily shown that the components of the deformation tensor Pl-’]‘-

in the coordinate system x1, x2, ..., x™ are given
i 1
| —

14 xi—Ct

i=1n,
all the other components being zero.

Obviously, the tensor satisfies the equation (10). Note that the mapping is different from
mappings of types m, and 5.

Straight lines which are defined in the space A, by the equation x" = a” + b"t (t is a
parameter along a line) are mapped into parabolas in the space A4,,. The parabolas are defined
by the equations X" = FM + DMt + ENt?,
where F" = ~Cl(a% — C%)?, D" = Cl(a% — C*)b%, E" =~ Cl(b%)2.

The exceptions are the straight lines through the point M(C?, C?, ...,C™). By (16) the lines
are mapped into straight lines too.

Finally we note that the formulas (16) generate a family of almost geodesic mappings m; of

a flat space if the parameters C/*, C* and x{ are understood as continuous values.

l

6 CONCLUSION

Out of the three types of almost geodesic mappings of spaces with affine connection,
distinguished by N.S. Sinyukov, the least studied are almost geodesic mappings of the first
type. The equations that characterize them are very complex. Therefore, the results obtained
for mappings 3, including for their particular cases, are very relevant and are of theoretical
value from the geometrical point of view. At the same time, they can be used in the theory of
relativity and theoretical mechanics.

Almost geodesic mappings are a natural generalization of geodesic mappings. The basic
equations of geodesic mappings of spaces with affine connection cannot be reduced to closed
systems of equations in covariant derivatives of Cauchy type, since the general solution
depends on n arbitrary functions.

We have singled out a special case of almost geodesic mappings of the first type, denoted
by 7, the basic equations of which are reduced to a closed system of equations in covariant
derivatives of the Cauchy type. This result is very important, since (since geodesic mappings
are a special case of almost geodesic mappings) the basic equations of the first type of spaces
with affine connection are not reducible to closed systems of equations in covariant
derivatives of Cauchy type.

For the mappings w7 geometric objects of tensor nature are found that are invariant under
such mappings. It turns out that the Weyl tensor is invariant not only with respect to geodesic
mappings, but also with respect to more general mappings.

In the article it is proved that projective-Euclidean and equiaffine spaces form closed
classes with respect to mappings ;.

From geometrical point of view, an interesting is a special case of mappings m;, which we
have distinguished, where the Riemann tensor is invariant. In this case, the basic equations of
such mappings in flat space are completely integrable. An example of mappings 7 of flat
space onto flat space is given.
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In wpresented paper, it is of interest to study the integrability conditions and their
differential extensions of the obtained equations in covariant derivatives of the Cauchy type
that characterize the mappings r; of spaces with affine connection.
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Summary. A sequence A of strictly positive integers is said to be primitive if none of its term
divides another. Z. Zhang proved a result, conjectured by Erdds and Zhang in 1993, on the
primitive sequences whose the number of the prime factors of its terms counted with
multiplicity is at most 4. In this paper, we extend this result to the primitive sequences whose
the number of the prime factors of its terms counted with multiplicity is at most 5.

1.INTRODUCTION

A sequence A of strictly positive integers is said to be primitive if none of its elements
divide another. From the sequence of prime numbers P = (p, )n=1 W€ can construct an
infinite collection of primitive sequences. According to the prime number theorem, the n-th
prime number p,, is asymptotically equal to nlog n; this ensures the convergence of the series

1
f(P)= ZPIOgP'

pEP

A computation for (P ) was obtained in [1] by Cohen as:
f(P) = 1.63661632335126086856965800392186367118159707613129 ... .

Throughout this paper, we let Q (a) denote the number of prime factors of a counted with
multiplicity. For a primitive sequence A the number max {Q (a): a € A} is called the
degree of A. It is noted deg(A). By convention deg ({1}) = deg (@) = 0. For any

primitive sequence A we pose f (A) = Y.qea — We agree that f(4) =0 if deg(4) = 0.

aloga
For any primitive sequence A and any integer m > 1, we put:

A, = {a € A, the prime factors of a are > p,,,},
Ay, ={a €Ay, pmla },

n a !
Am = {a:a € Am}

Then we have A;NA; = @ for i#j and A = Upsq Ap, i disjoint. In the case when A is
finit, we have deg(4;,) < deg(A). In [2], Erdés proved that the series f(A) converges for
any primitive sequence A and in [3], Erd6s asked if it is true that f(4) < f(P) for any
primitive sequence A. In [4], Erdés and Zhang showed that f(4) < 1.84 for any primitive
sequence A, and in [5], Clark improved this result f(4) < e (where y is the Euler constant)

2010 Mathematics Subject Classification: Primary 11B05, 11Y55, 11L.20.
Key words and Phrases: Primitive Sequence, Prime Number, Erdés Conjecture.
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in the special case when A is a primitive set of composite numbers. Several years later in [6],
Lichtman and Pomerance proved that f(4) <e' = 1.781. Moreover, in [2], Erdés
conjectured that f(4) < f(P) for any primitive sequence A, then in [7,8], Zhang proved this
conjecture for any primitive sequence A of degree <4 and for some special cases of primitive
sequences. In [9], the auteurs simplified the proof of Zhang over the primitive sequences of
degree < 4. In this note, we prove this result:

Theorem. For any primitive sequence A where deg(A) < 5, we have:

1 1
< > 1.
Z aloga — Z plogp forn

a€A, asn pPEP, ps=n

The proof of this result is based on the upper bound of f(A4;) where i>1. We introduce the
following constants, Ky=0, K;=0.1578, K,=0.4687, K5;=1.1971, K,=2,77258, 0=1.11012 and
B=0.0642. We define the sequences ((x;(m))ms1 as follows: y;(m)=1form=2,j €
{1,2,3,4} and y,(1) = 1, y3(1) = 1.096, x,(1) = 1.03, x;(1) = 1.012, x,(1) =1.

2. MAIN RESULTS
We need the following lemmas.

Lemma 2.1 Let n > 1 be an integer, put F(n) = logn +loglogn — 1 then we have

Pn = nF(n), forn = 2 ([10]) (D
logl 2.25

Pn=n <F(n) + °9 Oii;: >,f0r n =2 ([10]) (2)

pn < n(F(n) + B), for n = 7022 (3)

pp > n(log(nF(n)) — a), forn = 2. (4)

Proof. Inequality (3) stems from inequality p,, < n(logn+ loglog n —0.9385)([11]).
According to (2) we have:

Pn _
n

loglogn — 1 loglogn + 2.25
(loglog + E08 for n > 3.

> 1 —
log(nF(n)) = -1 — log (1 + Togn logn

Knowing that the function

x+— f(x) =—-1—- log (1 + (loglogx —1)/logx) + (loglogx + 2.25)/logx
is increasing on [41x10°+o0), then %”— log(nF(n)) = f(41x 10%) = —a. A computer
calculation shows that, for 2 < n < 41 x 10® we have :

pf —log (nF(n)) = —a.

This completes the proof of (4).
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Lemma2.2Form > 1andj € {1, 2, 3,4}, we have:

Z )(j(m) < )(j—l(m)
£ pi(K; +logp) ~ Kj_y +1ogpm
Proof. For j € {1, 2,3,4}, we put N = 7022, C = 0.00654,
U; = 0.02348, U, = 0.17929, U; = 0.54349, U, = 1.30221;
v, =0, Vv, =0, Vs=0 and V, =—0.05804.
It is clear that form > N and j € {1, 2, 3,4} we have:
C = —log(F(m)) + log(1 + %) +log(F(m+1) + )
C<U—Ki,, (5)
Vi=a—K;+2U; — 1
We put

_ x;(m)
b = ) o oy

By (1) and (4) we have, form > N and j € {1, 2, 3,4},

p;(K; +logp;) > i(log(iF (i) — a)(K; + log(iF (1)),
Since x - log(xF(x)) increases for x > 3, it follows that
dt

t(log(tF (1)) — a)(log(tF (1)) + K;)
use the change of variable x = log t, we obtain:

L dt
hj(m +1) < J]ogm (L(X) _ (x)(L(X) +K]) ’

)

hj(m+1)<fOo

where L(x) = log(e*F(e¥)).

Since, for x > log N,

i< (1)
then

oo (1 — L(xl)_l) L'(x)dx
'“m+”<L@AM@—®@®+&y
by setting y = L(x) and y,,, = L(logm) we get:

. (y — 2)dy
v = D = Oy +K;)
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Form > Nandj € {1, 2, 3,4} we put:

_ Xj-1(m)
gj(m) - Kj_1+logpm’
then according to (3) and (5) we have:
1

GmA D) 2 e+ DFm+ D + 1))

S 1 _ j‘o dy
log(mF(m)) +U; ; o +Up*

m

We have form > N and j € {1,2,3,4},
G- +U)*— - Dy—-a(y+K) <0.
So,form = N and j € {1,2,3,4}, wehave hy(m + 1) < g;(m + 1) i.e.
h;(m) < gj(m) form > N.

For 1< m <N and by definition of x;(i), we have for j€{1,2,3,4} a computer calculation
shows that:

N
Xj (l) _ Xj (l)
Z p; (K + logp)) Z pi(K; +logp;) +hi(N +1)

N

izm izm

z X (@) N 1
pi(K; +logp;)  log(NF(N)) + U;

izm
< gj(m).
This completes the proof.
Lemma 2.3. Let m > 1 be fixed and let B = B,, be primitive with deg (B) < 4. For
1<t <5-deg(B), we have:
1 Xe-1 (M)

< , 6
;b(t logpy, +logh) Ki_1 +logp, (6)
vl 1 7
bEBb(t logp,, +logh) logp, ™)

Proof. Form>1and1 <t <5 — deg(B) put

1
9:(B) = bz bEonyTiogsy Where (9:®) =0)

By induction on deg(B). If deg(B) =1 and 1 <t < 4 we have tlogp,, = tlog2 > K,
so according to Lemma 2.2, we get:

40



l. Laib.

1 1
®=) <)
9T Lib(clogpy, +10gh) ~ L pi(tlogp; +logpy)

izm

< Z Xe (D) < Xe—1 (M)
B pi(K, +1logp;) Ki—q +logpy

izm
We assume that inequality (6) is true for 1<deg(B)<s<5 and 1<t<5-
deg(B) and we show that it remains true for deg(B) = s — 1. We have B = U;s,, B;' is dis
joint, so we have:

g:(B) = Z 9e(Bi).
zm
Leti>m. If deg(B;") < 1 we have:
< Xe (D) .
pi(tlogp, +1logp;)  pi(K, +logp;)
If deg(B;") > 1 we have:

ge(Bi) < (8)

1
B.’ = Z
9g:(Bi") pib((t + 1) logp; + logh)

bEB;I!
1 n
= Egt'Fl(Bl’ )I

since deg(B;") <sandt+ 1 <5 —deg(B;'") sowe have:

" Xt (l)
B;") < —,
gt+1( i ) Kt + logpi

thus

Xe (D) . )
pi(K¢ + logp;)
So from (8), (9), and Lemma 2.2, we get:

g:(B;") <

Xe-1 (M)

B) < —m .
9B < ogpm

For t = 1 we get the inequality (7), which ends the proof.

Proof of theorem Let n be fixed and let A = {a:a € A, a < n} be subsequence of A where
deg A < 5. Put m(n) = m, the number of primes < n; then A = U;<;<m 4; is disjoint and

F(A) = Trciem f(AD. Let 1 < i < m. If degA;’ < 1 then f(4}) < ——— and if deg 4} > 1

pilogp;
then

1 1
4D =2 2, blogp, +1ogb)
bea!
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and deg A;' < deg A; — 1 < 4, so according to (7), we obtain:

1 1
<
z b(logp; +logb) logp;

bEA; I
therefore
f(A’.) < ;
“ 7 pilogp;
Thus
fy= Y fups Y
15i=m o P logp;

This completes the proof.

3. CONCLUSION

Using a new value of the constants y; (m) will prove the theorem for greater degrees. Why
not establish a recursive relationship on the degree of any sequence A, will prove this
conjecture.
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Summary. The integral inequalities concerning the inverse Hardy inequalities have been
studied by a large number of authors during this century, of these articles have appeared, the
work of Sulaiman in 2012, followed by Banyat Sroysang who gave an extension to these
inequalities in 2013. In 2020 B. Benaissa presented a generalization of inverse Hardy
inequalities. In this article, we establish a new generalization of these inequalities by
introducing a weight function and a second parameter. The results will be proved using the
Holder inequality and the Jensen integral inequality. Several the reverses weighted Hardy’s
type inequalities and the reverses Hardy’s type inequalities were derived from the main
results.

1 INTRODUCTION

In recent years, several researchers have obtained extensions and generalizations of
Hardy's inequality in the literature, for more details see [1], Hardy type inequalities for
fractional integral operators [2], Hardy type inequalities involving functions of two variables
[3]- [4], Hardy-type inequalities via the Steklov operator [5], a new version of inverse Hardy
inequalities on time scales that appeared in 2021 see [6]- [7] . Many researchers have obtained
results of refinements and generalizations of inverse Hardy inequalities, in 2020, B. Benaissa
presented the following generalizations [8, Theorem 2.2].

Let f,g be positive functions defined on [a; b] and F(x) = f:f(t)dt. If g is non-
decreasing, thenforp > 1,

b F(x)p bf(x)p b (x _ a)p
p-fa 96 W=7 a)pfa 96y _fa T JMex e
for 0<p<1,
PF(x)? (b—a)P (P 1 b
'pfa gx) dx 2 W[a fx)Pdx _ML (x — a)Pf(x)Pdx 2)

Taking g(x) = xP, we get Sulaiman result inequalities, [9, theorem 3.1] and if we putting
g(x) = x%; q > 0, we get Banyat Sroysang result inequalities, [10, theorem 2.1 and
theorem 2.2]. On the other hand, convex functions play an important role in inequality theory,
this class of functions has many applications in different mathematical branches (numerical

2010 Mathematics Subject Classification: 26D10, 26D15.
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calculation, probability theory,...), match results are obtained by the Jensen inequality and
many articles relating to different versions of this inequality have been published see for
example [11]. Motivated by above literature, in this work we give a generalization of Hardy’s
integral inequality by using a weight function u and a second parameter q , this results will be
proved by Holder inequality and Jensen integral inequality.

All along this paper, f, g are measurable non-negatives functions on interval (a; b) where
O<a <b<+ o and u is a weight function (measurable and positive) on(a; b). In the set of
monotone functions, non-increasing (non-decreasing) function means the function is
decreasing (increasing) or constant.

2 PRELIMINARIES

In this section we state the following Lemmas which are useful in the proofs of main
Theorems.
Lemma2.1. Let 0 < p < g < o and f, g, wbe non-negative measurable functions on (a, b)

and suppose that 0< f: fa(®)u(t)dt <oo , then

b b 7 /b 2
f POt < ( j u(t)dt> ( j f”(t)u(t)dt> . 3)

The inequality (3) holds for —co < g < p < 0 and inverted for 0 < g <p < .
Proof. Using Holder inequality for using the parameter g > 1, we have

b b g-p b P
ff”(t)ll(t)dt=<f pa (t)dt)U fp(t)ﬂ"(t)dt>-
a-p
q

p
b b g
< <f ,u(t)dt) (f fp(t),u(t)dt>q.

(See the version on time scales in [6]).
The version of the Jensen integral inequality is given below:

Lemma 2.2. Let f be an integrable function defined on (a; b) and let ¢ : (a; b) > R bea
convex function. If g o f € L, p), then

1 b 1 b
¢<mfaf(t)dt>sm<L qb(f(t))dt).

The above inequality is inverted if ¢ is a concave function. The inequality in the Lemma
2.2 can be rewritten in the following forms.
« If ¢ is a convex function, then

b 1 b
(J; ¢(f(t))dt> = (b—a)¢ <m.fa f(t)dt>- (4)

« If ¢ is a concave function, then
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( f ¢(f(t))dt><(b—a)¢>< f f(t)dt> ©)

3 MAIN RESULTS

Theorem 3.1. Let f, g be integrable positives functions on [a; b], p be a weight function on
(a; b) and

Fu(x) = f fOut.
0

If g is non-decreasing and p is non-increasing, then
(forl < p < q,

g4 L(Fu) (x)

gx) ,
b q
< wP@(b - a)’ q[(b— o [ L824 f(x—a)qu(x)dx] ©)
gp(x) @ gr(x)
(if) for 0<q < p <1,
P (FH) (x)
qua 900
uP (b)
T [(b—a)q f () dx — f (x—a)"f"(x)dxl @)

Proof. (i) For1 < p < q, Apply the Holder inequality for ; + ; =1, we get

(FM) (.X') _ b _1 X D
o 900 ‘fa 4 (x)<f0 f(t)u(t)dt> dx

1 1\P
b x B[ (¥ b
<| g P d d d
<fag (x){(fof Ou® t) (fou(t) t) } x
b x x p-1
- f g () ( j f”(t)u(t)dt>< f u(t)dt> dx.
a 0 0

Using the inequality (3) and since p is non-increasing function, we deduce that
P

P
(FM) (x) b 1 x P~y x q
a g0 SL g () <J; Mt)dt) <j; fq(t)u(t)dt> dx
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p

b X a
< f g-1<x>up(a><x—a>("‘“‘§( f f"(t)dt>qu
a 0

b P
= up(a)f (H(X))qu.

Where

H(x) = fxg_%(x)(x — @)@V fa(t)dt.
0

P
Let &(x) = xa be a concave function and gbe non-decreasing function, apply the
inequality (5), hence

b p b
f (H)Idx = f (H()dx

1 b
< (b - a)d) <EL H(X)dX)
p b rx ¢ %
=(h—-a) 4 <j j g P)(x—a)@ D fa(e) de dx)
a Y0
p b b q g
—(b-a)'Td ( [ re@ [ g rwe- e ax dt)
p b q b %
<(h-a)a <f fo(t)g‘E(t)f (x — )@V gy dt) .

Consequently

b(F,)" (x)
a 9@

p

1-B (1 (b _4 a
dx <pP(a)(b—a) ¢4 <3f fi(t)g p(t)[(b—a)"—(t—a)"]dt>

P b b %
:<#(a)> ! {(b_a)q A Ayl dt} |

q% gr () gr(t)

thus we get (6) .
(ii) For 0 < g < p < 1, using the reverse Holder inequality, we get

b(F )P(x) b » X . b1
J:z g(x) dxzfag (x)<f0 fp(tMt)dt)(fo u(t)dt) dx.

Apply the reverse of the inequality (3) and since p is non-increasing function, we deduce
that
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P P
e Lol o
L OR Zfag ) foﬂ(t)dt fofq(t)u(t)dt dx

b
> f g OuP(b) (x - (f fq(t)dt> dx

vQI"B

b P
= 4P (b) j (H()dx .

P
Let ¢(x) = xa be a convex function and gbe non-decreasing function, apply the
inequality (4), hence

p
b b rx a
f (”("”%M(b_“)l_%(f f 9P (x - @@V fUe) de dx |
a a Y0
14
q

b b
< (- a)l_g (f fq(t)g_%(b)J (x —a)@V dx dt)

p p
—N\"q /b b =
_b-a) 1 (f fq(t)f (x —a)@V gy dt)q,

g(b)
therefore
p
F P(b)(b -
(Z)(xgx) i <= )(g(b)a) ( J fAOIb - a)q_(t—a)"]dt>
P(b)(b—a)"d b . P
= K P {(b - a)qf fq(t)dt—f fa(t) (t — a)? dt} -
qqg(b) a a

So, the proof of Theorem 3.1. is complete.
In the same data on the functions f,g and u, with F,(x) = f;‘ f(t)u(t)dt and by reasoning
analogously to the proof of Theorem 3.1, we obtain the following remarks.

Remark 3.1. If gand p are non-decreasing functions, then
(hforl < p < q,

qgfa (F)')

g(x) ,
b q
<w @) -a)'” [(b— o [ L4 f(x—a)qu(x)dx] ®)
gp(x) “ gr(x)

(if) for 0<q < p <1,
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qgfa (F)'

g(x)
P

uP(a)
g(b)

Remark 3.2. If gis non-increasing and p is non-decreasing, then
(forl < p < gq,

[(b — @) f () dx — f (x— @) f10)dx| . (9)

(Fu) (x)
T j g(x)
uP (b)
g(b)
(ii) for 0<q < p <1,

l(b - a)" fq(X)dx - J (x - a)qfq(X)Xm ,(10)

qgf (Fu) (x)

g(x)

b
[ J PIAC)

q
7 dx] .(11)
gp(X) gv (%)

> 1P (@) (b - a)' q[(b— )Qj

Remark 3.3. If gand p are non-increasing functions, then
(hforl < p <q

(Fu) (x)

qja g(x)
uP (a)
9(b)

(if) for 0<q < p <1,

I(b - a)q fq(x)dx - f (x - a)qf"(x)dxl ,(12)

qgf (Fu) (x)

g(x) )
, a
> 1P (b) (b~ a)' ql(b— o [ L2 J(x—a)qu(x)dx] a3)
gp(x) a gr (x)
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4. APPLICATIONS
We now give some new consequences of the above results.

4.1. The reverses weighted Hardy’s type inequalities

If we set @ = p in Theorem3.1., we obtain the following corollary.
Corollary 4.1. Let f, g be integrable positives functions on [a; b], p be a weight function on
(a; b) and

U0 = | Fou.

If g is non-decreasing and p is non-increasing then

(i)for1l < p,
» (F.)" () PFP(x) b 1)
j de < uP(a) ((b - a)pja 700 dx—ja (x —a)P 700 dx),(14)

(ii) for 0<p <1,

b (F)’ ) ;ﬂ’(b)( b b

u
———dx>———| (b— a)Pj fP(x)dx — J (x — a)pr(x)dx> .(15)
a 9&) g(b) a a
According to remarks 3.1,3.2,3.3 above and with the same condition q = p, one can

deduce new results, in a similar way to the inequalities (14) and (15) via to the monotonicity
of the functions g and p.
4.2. The reverses Hardy’s type inequalities

If we set u =1 in Theorem3.1. and remarks 3.1, 3.2, 3.3, we result some new inequalities
with two parameters in the following corollaries.

Corollary 4.2. Let f,g be positive functions defined on [a; b] and F(x) = fax f(t)dt.

If g is non-decreasing, then
(hforl < p < q,

P
b b b q
qgj Fp((;c)) dx < (b — a)l_g (b—a)l J fZ(x) dx — J (x —a)l f;(x) dx| ,(16)
a 8 @ g (x) a g7 (%)

(if) for 0<q < p<1,

g P
D (PFP(x) (b—a)'"a b b ’
q4 J:l 200) dx = 7(b) [(b —a)l J:l fa(x)dx — f (x —a)If9(x)dx| .(17)

a
Inequalities (16) and (17) are new generalizations of inequalities (1) and (2).

Corollary 4.3. Let f,g be positive functions defined on [a; b] and F(x) = fax f(Hdt. If gis
non-increasing, then
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(forl < p < q,
p

b b q
[(b @) f a0 dx — f (x - a)if900dx| L (18)

gbeP(x) 3 b—a)
. 9@ T g0
(if) for 0<q < p<1,

P
p (bEP(x P bra(x b q(x I
qu ( )dx > (b—a)1 q (b—a)qf fq( )dx—J (x—a)qfq( )dx .(19)
a 9x) a gp(x) a gP (x)
The inequalities (18) and (19) are new results with two parameters in the case where g is
a non-increasing function. If we p = q put in the Corollary4.2. we obtain the following new
result.

Remark4.1 Let f, g be positive functions defined on [a; b] and F(x) = f; f(t)dt . If g is non-
increasing, thenforp > 1,

b b ’

for O<p<1,
PF(x)P PP (x) b fP(x)
pfa g(x)de(b—a)pL g(x)dx—j;(x—a)pg(x)dx. 21D

5 CONCLUSIONS

By applying Hdlder's inequality to two integrability parameters and Jensen's integral
inequality, new generalization integral inequalities relating to the inverse-weighted Hardy
inequalities have been established and proven. Some particular cases are studied according to
the monotony of the functions.
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Summary. Algorithms for supercomputer modeling of the radiation electromagnetic field in
heterogeneous materials of a complex finely-dispersed structure are constructed. A geometric
model of a heterogeneous medium is created using Stilinger-Lubachevsky algorithms for
multimodal structures. The model includes a system of detectors for statistical evaluation of
functionals on the space of solutions of the photon-electron cascade transport equations.
Algorithms for the three-dimensional approximation of the results of modeling the radiation
transport in a fine-dispersed medium to an electrodynamic difference grid are developed. The
approximation methods based on the technology of neural networks. The method of numerical
solution of the complete system of Maxwell's equations for calculating the electromagnetic
field in a fine-dispersed medium is worked out. The results of demonstration calculations of
the electromagnetic field are presented. The results of the calculations show that the spatial
distribution of the radiation electromagnetic field has a sharply inhomogeneous structure
caused by the presence of boundaries of materials with different radiation properties.

1. INTRODUCTION

The investigations of radiation-induced (electromagnetic radiation, laser radiation,
penetrating radiation) effects in media of complex geometrical structure are actual for a lot of
applications: interaction EMP with objects [1], plasma generation and relaxation [2], ionizing
radiation interaction with matter [3-5] and many others. Mathematical modeling is an
effective method to such investigation [6-8].

The technique of a detailed supercomputer simulation of the processes of radiation-induced
electrodynamic effects using ultra-high-performance computational techniques and modern
parallelization technologies (MPI, OpenMP, CUDA) is presented in this paper.

The problems of mathematical modeling of radiation-induced charge and current effects in
environments of complex geometric structure are considered in [9, 10]. Algorithms of
supercomputer modeling of the formation of charge and current fields in heterogeneous
polydisperse materials with direct resolution of their microstructure are described. The results
of demonstration calculations of the parameters of charge and current fields are presented.
The spatial distribution of radiation-induced charges has a sharply inhomogeneous structure
due to the presence of boundaries of materials with strongly different radiation properties.
Charge separation occurs near the boundary surfaces and can lead to the generation of a
strong electric field that can disrupt the functional properties of a heterogeneous material with
a finely dispersed structure.

Mathematical modeling of the radiation electromagnetic field includes the following tasks:

2010 Mathematics Subject Classification: 97M50, 97N50, 93A30.
Key words and Phrases: finely dispersed medium, radiation induced EMF, Monte Carlo simulation.
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- construction of a geometric model of a heterogeneous fine-dispersed medium, which

includes a detector system for calculating the required values (energy deposit, electric

current density) when modeling the interaction of radiation with matter;

- statistical modeling of radiation transport in a fine-dispersed medium with direct

resolution of its microstructure;

- 3D approximation of the results of calculations of energy deposit and currents from the

detector system used in solving the radiation transport problem to a spatial difference

electrodynamic grid designed for numerical solution of the electrodynamics problem;

- numerical solution of the initial boundary value problem for the complete system of

Maxwell equations.

The paper presents the results of modeling radiation-induced electromagnetic fields (EMF)
in a fragment of a closed-cell structure, which consists of a binder and finely dispersed
dielectric inclusions.

2. GEOMETRIC MODEL OF A POLYDISPERSE MEDIUM FRAGMENT

Let us consider a fragment of a fine-dispersed medium of a closed-cellular structure
consisting of a binder and eight inclusions (Fig. 1). The binder material is polybutadiene

(C4H6, density p=0.95g/cm®), the inclusion material is ammonium perchlorate
(NH4CIO4, p=1.95g/cm?). The size of the fragment is shown in Fig. 1.

3

X, cm y, cm

Figure 1: A fragment of a heterogeneous dispersed material
The geometric model of the medium includes a detector system for statistical evaluation of
the required physical quantities. The detector (recording) system consists of a given number

of spherical detectors of the same radius. The detectors should be isolated from each other
(they should not intersect) and should not cross the boundaries of inclusions.
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The Stillinger-Lubachevsky algorithm and its modifications are used to construct a
detector system of a polydisperse medium [11-13]. An example of the constructed detector
system for the fragment under consideration is shown in Fig. 2.

Figure 2: The detector system. Red color indicates detectors in the binder, blue — in inclusions

3. MODELING OF RADIATION TRANSPORT IN A FINE-DISPERSED MEDIUM

The processes of interaction of radiation with matter have a cascade character. The
algorithms of statistical modeling of such processes are considered in detail in the works [14,
15]. These papers describe effective statistical algorithms for mathematical modeling of
cascade radiation transport processes using hybrid computing technology. The algorithms are
built considering the peculiarities of performing calculations on heterogeneous
supercomputers using graphics accelerators as arithmetic calculators [14].

A modification of the processing scheme of the "tree" describing the cascade of particles
by generations is proposed and implemented. The modification is developed on the basis of
the use of stacks for temporary storage of information about the particles being born. The
algorithm for filling these stacks takes into account a priori information about the relative path
length of particles of various varieties.

The created method is optimized in terms of minimizing the amount of information
required for processing the cascade tree. The approach to the organization of calculations in
modeling the emergence and development of a photon-electron cascade is improved to
achieve maximum GPU performance and increase the efficiency of simultaneous CPU/GPU
loading. The algorithm for registering unlikely events is optimized in order to increase the
information value of photon trajectories.

Figure 3 shows an example of the result of calculating the energy deposit in the considered
dispersed fragment in the case when the object is irradiated by a photon flux with an energy of
20 keV. The direction of propagation of a flat flow is along the Z axis.
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Figure 3: Results of calculation of the energy deposit density (keV / cm®)

4. APPROXIMATION OF THE RESULTS OF MODELING THE RADIATION
TRANSPORT TO AN ELECTRODYNAMIC GRID

Modeling of the radiation electromagnetic field requires the joint use of different software
tools to assess the influence of various interdependent factors on the functional properties of
the materials under study.

The use of mathematical models and numerical methods for computer research of
processes of various physical nature (interaction of radiation with matter, secondary
electrodynamic effects) makes it necessary to use various geometric approximations to
describe the object. In this regard, there is a problem of integrating "according to data" the
results of a numerical study of various physical processes in various mathematical models.

The problem of adequate transfer of the results of statistical modeling of the radiation
energy deposit and radiative electric currents from the detector system used in modeling the
interaction of radiation with matter to a rectangular Cartesian electrodynamic difference grid
is solved using various approximation methods based on the technology of machine learning
[16], in particular, on the technology of neural networks [17].

A multilayer perceptron [17] was used to solve approximation problems in this paper.

The network topology (3-100-30-1) and the logistic function f(x):]/(1+e’x) of

neuronal activation [17] were used to approximate the energy deposit density.
Figure 4 presents as an example the result of approximating the energy deposit density on
an electrodynamic grid in the form of a surface in the plane z=0.0015 cm.
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Energy, z=0.0015cm

— 120

150 1100

180
100

50

X, cm 0 y, cm
Figure 4: The energy deposit density in the plane z=0.0015 cm (keV / cm®)

The network topology (3-60-25-8-1) for approximating the current components is used.
Different activation functions are used for approximating the current components.

Tangential function ( f (x) = tanh(x)) is applicated for the transverse current components Jy
and Jy because the transverse components J, and J, are odd relative to the center of the
fragment and logistic one ( f (x):]7/(1+ e’x)) [4, 17] is used for the longitudinal component

J;. The electrodynamics grid has size 100x100x100.

As an example, the results of approximation of the transverse components of the electron
flux density to the electrodynamic grid are presented in Fig. 5, 6. The results are depicted as
surfaces on a slice z=0.0015 cm.

Jx, z=0.0015cm

<107

X, cm 0 y, cm

Figure 5: Function J,(x,y), z=0.0015cm, 1/cm®
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Jy, z=0.0015cm 107

3
<107
2

X, cm 0 y, cm

Figure 6: Function J,(x,y), z=0.0015¢m, 1/cm®

A constant step of gradient descent with the BFGS optimization method (a quasi-
Newtonian optimization method with the Broyden—Fletcher—Goldfarb—Shanno scheme [18])
is chosen to solve the approximation problem.

5. ELECTRODYNAMIC MODEL

The EMF generation process is described by a complete system of nonstationary Maxwell

equations:

In (1):

rotH:51§+4—”(aE+j),
cot ¢
10H
OtE=—pu=—,
'uc ot

%D+div(aE+j):0,

j=¢(t)(5(2),0,0), E|t=0 - H|t=0 =/O|t=o =0.

p = p(t,r) —electric charge density,

j=i(t,r) —electric current density,

¢ = ¢(r) — dielectric constant of material,
w1 = u(r) —magnetic constant of material,

o =o(r) - conductivity of materials.
Let's consider equations

Q={XY,2:XE[Xpins X |+ Y €[ Yinins Yona | Z €[ Zoninr Zomax |}~ With

(1)
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condition [ﬂ([E H]-n)ds..0, is considered fulfill at the boundary 6Q of the region Q (n is
oQ

a unit vector in the direction of the external normal to the surface oQ).

The equality of the tangential components of the electric and magnetic fields at the
boundary is used as approximate boundary conditions.

EY=H* E’=-HYat x=x EY=-H" E’=H’ at x=x

E'=H* E'=-H" at y=y_, E'=—H* E*=H%at y=vy_, 2
EX=H’ E'=-H* at L=17 x> E*=-HY E’=H" at 2= 2y s
t>0,reQ.

The conditions (2) ensure the coincidence of the directions of the Poynting vector and the
external normal to the boundary, allowing the outflow of electromagnetic energy from the
area and prohibiting the inflow. The boundary conditions (2) are called "radiation conditions".

6. NUMERICAL ALGORITHM FOR SOLVING MAXWELL'S EQUATIONS

The algorithm for the numerical solution of the initial boundary value problem for system
(1) with the boundary conditions (2) is based on the difference scheme presented in [19, 20].
It has proven itself well in solving a large number of different electrodynamic problems [20].

Let's consider Maxwell's equations (1) in the Cartesian coordinate system r =(X,Y,Z) :

O,H —0,HY =¢E* +1*, (3)
O,H* -0, H =¢E’ +1", (4)
o,HY =0 H*=¢E"+17, (5)
0,EY—0,E* = uH*, (6)
0,E*—0,E* = uH?, ()
0,E*—0,E" = uH?, ®)

the symbols 0,, 0,, 0, mean partial derivatives with respect to the corresponding
coordinates, the dot above the function denotes its partial derivative with respect to the
variable £=ct, {&:£€[0,&, ]}, 1=(47/c)(0E+]).

The difference grid for the variable x is as follows:
X =%+4,; 1=0,.,N, -1 X,=X,. Xn, = Xinax 3
X = (X %)/ 20 1=0,, N, =1 X =Xy, Xy .y =Xy ;
0, =X —Xaor 1=00, Ny =412, 6y =Ay ,/2.

For variables (Y, z), the difference grid is introduced in the same way.
We choose a grid so that the discontinuities of the coefficients of the equations are located
on the surfaces x=x, y=Y;, and z=z, . The coefficient values are set at grid points with

fractional indexes. These points coincide with the centers of rectangular parallelepipeds
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formed by the intersection of the planes x=x,X,, Y=Y, Y., and z=z,z,. All the

coefficients of the system, current densities and components of the electromagnetic field are
continuous inside these parallelepipeds.

The component of the electric field normal to the rupture surface & suffers a rupture when
passing through this surface. The components of the electric field tangent to this surface are

continuous in this case. Therefore the grid components of the electric field E*, EY and E*
are defined in the middle of the corresponding edges of these rectangular parallelepipeds.

The components of the magnetic field are placed in the centers of the faces of the
parallelepipeds.

Finite-difference analogs of equations (3-8) are given in [20].

A nonuniform time grid is introduced to construct a difference approximation of Maxwell's

equations in time on the interval t e[t . ;t..]:

ta=t,+At; n=0,..,N, -1 t,=t,, t, =t

tn+l/2:(tn+tn+1)/2; r]:O,---,Nt —1,
5tn :tn+1/2 _tn—llz; n=2,.., Nt -1

max !

The components of the electric field (E*,E”,E*) are given at integer moments of time t,.
The components of the magnetic field (H*,HY,H?*) and the electric current density
(j*,j’,j) arein half-integer moments of time t__, , .

The time derivatives are approximated by explicit difference equations [20]:

X X X X
O.EX = Ei+1/2,j,k,n+l - Ei+1/2,j,k,n © OH” = Hi,j+1/2,k+1/2,n+3/2 - Hi,j+1/2,k+1/2,n+1/2 .
t - 1 t - )
At ot
n n+1l
y _EY y _HY
OEY = Ei,j+1/2,k,n+1 Ei,j+1/2,k,n - OHY = Hi+1/2,j,k+1/2,n+3/2 Hi+112,j,k+1/2,n+1/2 .
t - 1 t - 1
At St
z z z z
z i, j.k+1/2,n+1 — Sijk+1/2,n z i+1/2, j+1/2,k.n+3/2 — T liv2, j+r2,kon+12
BE? = E E AHT= H H
t - ’ t - .
At ot

n n+1

The constructed numerical algorithm is implemented in the form of a software module
focused on multiprocessor computing equipment [20] using MPI1 parallelization technology.
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7. RESULTS OF MODELING OF THE RADIATION ELECTROMAGNETIC FIELD

Some results of modeling the radiation electromagnetic field in a heterogeneous fine-
dispersed medium are presented in this section.

The object of irradiation is a fragment of a binder (polybutadiene) and dielectric inclusions
(ammonium perchlorate) shown in Fig. 1.

The power of the gamma radiation source is described by the function

ty
J=N,f(t), f(t):tg[l_tl} t, =2-10"c; If(r)drzl.
0 0 0

No is selected in such a way that the amplitude of the electric field is of the order of 1 CGSE.
The radiation conductivity of the materials was determined by the formulas [12]:

o =1.8-10"7D for the binder and o =1.8-10°D for inclusions, D is the radiation dose rate in
rad/s [21].

Two-dimensional distributions of the electric field amplitude in planes orthogonal to the
coordinate axes are presented in Fig. 7-10 (colormap is “jet”).

Values of fields are in CGSE.

%10 Ex (xy45)

C )<
P L

0 1 2 3 -
Xcm

Figure 7: E,, z=0.0045 cm
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%10 Ey (xy45)
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Figure 8: Ey, z=0.0045 cm

107 Ez (xy15)

-0.12

-0.14

-0.16
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Figure 9: Ez, z=0.0015 cm
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5 X107 Ez (yz15)
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0 -0.8
0 1 2 3 4 5 6
ycm x 107

Figure 10: Ez, x=0.0015 cm

Two-dimensional spatial distributions of the amplitudes of the transverse (relative to the

direction of the photon flux) components of the magnetic field in the plane z=0.0045 cm are
presented in Fig. 11, 12.

<1072 Hx (xy45) x10°8
6 —
2.5
2
5
1.5
al 11
105
£
G 3t 10
=
1-05
27 .
1.5
1
2
2.5
0
0 1 2 3 4 5 6

xcm %1072

Figure 11: Hx, z=0.0045 cm
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Hy (xy45)
25

1.5

10.5

1-0.5

-1.5

-2.5

2 3 4 5 6 «10°8
X cm %107

Figure 12: Hy, z=0.0045 cm

The above illustrations show that when the fragment under study is irradiated, electric
fields with a sharply inhomogeneous spatial structure are generated, and inhomogeneities
occur near the boundar. The generated magnetic field is negligible compared to the electric
one.

8. CONCLUSIONS

Algorithms for supercomputing the radiation electromagnetic field in heterogeneous fine-
dispersed materials with direct consideration of their microstructure have been developed.
The modeling includes a statistical evaluation of radiation energy deposit and electric
currents, an approximation of the results from the detector system to the difference
electrodynamic grid, and a numerical solution of the complete system of Maxwell's equations.

A geometric model of a heterogeneous fine-dispersed medium is constructed. The model
includes the detecting system for statistical estimation of functionals on the space of solutions
of the photon-electron cascade transport equations.

A mathematical three-dimensional simulation of the radiation EMF in a fragment of an
object of a dispersed structure was carried out. The results of modeling show that
electromagnetic fields with a sharply inhomogeneous spatial structure are formed and
inhomogeneities of the fields occur near the boundary surfaces of the binder and inclusions.

The generation of EMF at the boundary of two media is due to the predominance of
electron emission from the inclusion (a material with a large macroscopic cross-section of
photons) into the binder (a material with a greater penetrating ability of electrons) over the
emission in the opposite direction.
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AHHoTanusi. B Hacrosmiee Bpems s ONUCAHUSA JIBYXCKOPOCTHOIO TEUEHHS IUCIEPCHOMN
CMECH, KaK NpaBUJIO, MPUMEHSIOT JIBYX MXHAKOCTHYIO MOJENb C PaBHBIM JAaBiieHUEeM ¢a3
cpedbl, M pa3HbIMH CcKopocTsMU (a3. CoOTBeTCTBYIOIIAs CHUCTEMa ypaBHEHMH 0e3
CHEIHANIbHBIX, MOCTYJIUPYEMbIX, CTAOMJIM3HPYIOMIUX CJIaraéMbIX HErunepooinnyHa. ITo
MO3KET IIPUBOJUTH K CIOKHOCTSIM B IIOMCKE PELLIEHUS.

B mnocnennee Bpemsi mpeuiaraeTcsl LIMPE MCIONb30BaTh AHAJOTMYHBIE MOJENH, HO C
pa3MYHBIMH JaBieHUsMH (a3 cpeapl. Takue MOAENU TO3BOJSIOT YYHUTHIBATH HOBBIC
¢usnueckne >PQeKThl, CBSI3aHHBIE C PA3HBIMH JaBICHUSMH (a3, U 9acTo 00eCreyuBarOT
TUNEepOOTUYHOCTh COOTBETCTBYIOIICH CUCTEMBbI YpaBHEHHU. B naHHOI cTaThe aHANM3UPYETCS
BJIMSIHUE Pa3IMYHOCTU JaBJIeHUS (a3 cpellbl Ha CBOMCTBA CHUCTEMBI: MCCIEAYETCS Ba)KHOCTb
COOTBETCTBYIOIMX HOBBIX 3()(PeKTOB, rUnepOOTUIHOCT CUCTEMBI YPaBHEHUH, YCTOWYMBOCTD
€€ CTallMOHAPHBIX PEUIEHU U KOPPEKTHOCTh COOTBETCTBYIONIEH 3anaun Komm. PaccmoTpenst
TPHU CUCTEMBI. 3a OCHOBY IIEPBOM, IPOCTEMIIEN MOAEIBLHOM CUCTEMBI B35iTa XOPOIIO U3BECTHAS
HerunepOoIyeckas cucrema, Kkotopasi Obuia MojepHusupoBana. [lokazano, uro popmanbHO
3agada Komm u1st MOaupUIMPOBaHHON CUCTEMbI KOPPEKTHA, HO MPAKTUYECKasi BO3MOKHOCTh
UCIIOJIb30BAaHUsl PE3YJIbTaTOB Pacuy€ToB, MOJYUYEHHBIX M3 PEIICHMs] ITOH CHUCTEMBI, JTOJKHA
UCCIIEOBAThCSl B KaXJOM KOHKPETHOM ClIy4ae, M 3aBUCHT OT pacyeTHOro Iuara M
JUINTETIbHOCTU H3Yy4aeMoro mnporiecca. MeTonuku, OTpaOOTaHHbIE Ji1 PpEUIeHHs NEepBON
npocTeliied cucTeMbl, OBUTM HCMOJNB30BaHbl JUIs JAPYIMX CHUCTeM. B kauecTBe BTOpOI
CUCTEMBI PaCCMOTPEHA MOJIeNIb TeUeHUsl BYX(a3HOU cpelbl ¢ pa3HbBIMU JaBICHUSIMHU (a3 U
JBYMsl YpaBHEHUSIMH uUMIylbca. bynem mpennonarats ¢asel 6aporponHsiMu. [locTynupyem
ypaBHEHHUE, CBsA3bIBalollee JaBieHue B (aszax. J[lokazaHo, uyTro 3Ta cucTeMa Bcerja
runepobonnyeckas. VccrnenoBaHa YCTOWYMBOCTh €€ CTallMOHApHBIX pelleHUd. BbiBeneHs
COOTHOILIEHUS, TO3BOJISIOLIME OINpEAENsATh B KaKUX YCIOBHUSX H3-32 HEYCTOMYMBOCTH
MIOJIyUEHHBIE PEIIECHUs1 HeAocToBepHbIe. [IpoBeneHO cpaBHEHHE CBOWMCTB 3TOM CHCTEMBI C
CUCTEMOH JABYXCKOPOCTHOI'O T€UEHHUS JUCIEPCHOM CMECH C paBHBIM JaBiieHueM (a3 cpenpl. B
KAaueCTBE TPETbEM CUCTEMBI PACCMOTPEHA MOJENIb C JBYMS JaBJICHUSMH, OIMCBHIBAIOIIAS
MyJbCallii My3bIpbKOB. bynem mpennonarats (a3sl 0apoTponHbiMH. OnpeneneHsl yCiIoBHS,
KOTJja cucTeMa Herunepoosndeckas, a 3ajgada Komm HexkoppekTHa. VccrienoBaHo, sl Kakux
YCIIOBUN HEKOPPEKTHOCTh 3ajauu Koliu MpUBOIUT K HEJOCTOBEPHOCTH PELICHMS, a MpH
KaKHX yCIOBHI HEKOPPEKTHOCTH 3a7aun Koy He IpUBOAUT K HEAOCTOBEPHOCTH PELIECHHUS.

2010 Mathematics Subject Classification: 76T10, 76T15, 76T20.
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Summary. At present, to describe the two-velocity flow of a dispersed mixture, as a rule, a
two-fluid model is used with equal pressure of the phases of the medium and different
velocities of the phases. The corresponding system of equations without special, postulated,
stabilizing terms is non-hyperbolic. This can lead to difficulties in finding a solution.

Recently, it has been proposed to use similar models more widely, but with different pressures
of the phases of the medium. Such models allow one to take into account new physical effects
associated with different phase pressures and often provide hyperbolicity of the corresponding
system of equations. This article analyzes the influence of the difference in the pressure of the
phases of the medium on the properties of the system: the importance of the corresponding
new effects, the hyperbolicity of the system of equations, the stability of its stationary
solutions, and the correctness of the corresponding Cauchy problem are investigated. Three
systems are considered. The first, simplest model system is based on the well-known non-
hyperbolic system, which has been modernized. It is shown that the Cauchy problem for the
modified system is formally correct, but the practical possibility of using the calculation
results obtained from the solution of this system should be investigated in each specific case,
and depends on the calculated step and duration of the process under study. The techniques
worked out to solve the first simplest system were used for other systems. As the second
system, a model of the flow of a two-phase medium with different phase pressures and two
momentum equations is considered. We will assume the phases are barotropic. Let us
postulate an equation relating the pressure in the phases. It is proved that this system is always
hyperbolic. The stability of its stationary solutions is investigated. Relationships are derived
that make it possible to determine under what conditions, due to instability, the obtained
solutions are unreliable. The properties of this system are compared with the system of two-
speed flow of a dispersed mixture with equal pressure of the phases of the medium. As a third
system, a two-pressure model describing bubble pulsations is considered. We will assume the
phases are barotropic. Conditions are determined when the system is non-hyperbolic and the
Cauchy problem is incorrect. It is investigated for what conditions the ill-posedness of the
Cauchy problem leads to the unreliability of the solution, and under what conditions the ill-
posedness of the Cauchy problem does not lead to the unreliability of the solution.
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1 BBEJIEHUE

[[Iupoko nmpumeHsieMas s ONUCAHUS JUCIEPCHOM CMECH ABYX KUIKOCTHYIO MOJEIb C
paBHBIM JaBiieHHEeM (a3 cpelbl, U pPa3HbIMU CKOpOCTSMHU (a3 Obuia omyOiukoBaHa B [1] u
OBLJIO OTMEYEHO, UTO ATa CHUCTeMa YpaBHEHMI HerunepOoirnyHa. XOpoIIo U3BECTHBI CPEbI CO
CJIOKHOW CTPYKTYpOH (HE AMCIIEPCHBIE CPENbI) B KOTOPBIX YUYUTHIBAETCSI OTIMYUE JIABICHUM
¢da3 [2]. [lo HemaBHEro BpeMEHHU CUYHMTAIIOCh, YTO B JIMCIEPCHBIX CpelaX Pa3jINvHe JTaBJICHHUM
OBICTPO TPHUBOIUT K CXKATHUIO WM pPACIIMpEHUI0 (a3 W NaBlIeHUS, CTAHOBSATCS DPABHBIMHU,
MIO3TOMY JABJIEHUS MAaTEMaTHYECKUX MOJENAX MpeAnojarajvuch paBHbIMU [2]. 3amauda o
NyJIbCAallMU MYy3BIPHKOB B ITY3bIPBKOBOM CMeECH, OINHUChIBaeMas ypaBHeHHeM Panes-JlamOa,
BEPOSITHO, €IMHCTBEHHOE, XOPOILIO M3BECTHOE MCKJIYEHUE U3 ITOro mnpaswia [2].
HerunepOonuunocts He sBIseTCS (U3NYECKOHM, a SABIsETCS «Ie()EeKTOM» MaTeMaTH4eCKOH
MOJIeIH, TPUBOASIIEH B OMpEACNEHHBIX YCIOBHSIX K HEOTPAaHUYCHHOMY POCTY OOBEMHOM
KOHIIeHTpanuu (a3l BKIIOYCHUH. B peanbHON cpene 3HaYeHHWE OOBEMHOW KOHIICHTPAIUH
(a3bl BKIIFOUEHUHN HE MOXKET OOJIbIIIe 3HAYCHHsI, COOTBETCTBYIOLIETO IJIOTHOM yIaKOBKE, €CIU
HE Y4YUTHIBaTh Aedopmaruio Gopmbl BKItoueHUH. [Ipy mpuOimmkeHnn 3Ha4YeHUS OO0BEMHOM
KOHLIGHTPAllUM K 3HAYEHHIO, COOTBETCTBYIOIIEMY IUIOTHOM YIaKOBKE, BO3HHUKAIOT CHJIOBBIE
B3aMMOJICHCTBUSI HETOCPEICTBEHHO MEXAY BKIIIOUEHUSIMHU, YTO HE IO3BOJISIET BKIFOYECHUSIM
npuOIU3UTHCS APYT K ApYTy OJIMKe, UeM Ha JiBa pajuyca. B skcriepruMeHTax, Kak MpaBuiio, He
IPOUCXOIUT COJMMXKEHUs BKIFOYEHHMH JI0 COCTOSIHMSI IUIOTHOM YIIAKOBKH, CIIEJOBATEIbHO, B
MexX(pa3zHON cule ecThb ciaraemble, MPEMATCTBYIOIIME CONMKEHUIO BKIOUueHud. MIMeHHO
OTCYTCTBHUE TUX CJaraéMbplx B MaTeMaTH4yeckod wmojenu [1] u mpuBOAMT K
HErunepoOIMYHOCTH CUCTEMBl W HEKOoppekTHocTu 3anaun Kommu. B pabore [3] Obuta
HCCIIEIOBAHA HEKOPPEKTHOCTh COOTBETCTBYIOWIEH 3amaun Komu, W OpeiokKeHbl NyTH
yCTpaHEHHs 3TOTO HeIocTaTka, (popManbHO, JENAONIEro HEAOCTOBEPHBIMH IOTYYECHHBIE W3
pelIeHus 3TUX YpaBHEHUN pe3yabTaThl. B HacTosiiee Bpems CYIIECTBYIOT JIBa MYTH PEIICHUS
sTOM mipoOsemsl [4]. IlepBhlil — BBeZieHHE TOTOTHUTENbHBIX, CTAOMIH3UPYIOUINX CIaraéMbIX B
ypaBHEHHUS UMITYJIbCa, MOAPOOHAs peanu3alis TOro nojaxoaa ¢ 0030poM JUTEPATYphl AaHA B
[5] u ObuM YCTaHOBIEHBI OCHOBHBIE 3aKOHOMEPHOCTH. B 9Toil paboTe n0KazaHo, 4YTO
HEJI0OCTAaTOYHO O0ECMEeYUTh TUNEPOOTMIHOCTh CUCTEMbI, HEOOXOIUMO, YTOOBI CTallMOHAPHBIC
pemieHuss OBUTM yCTOMYMBBI; OMNPEICNICHbl YCIOBHS, KOTJa HEYCTOMYHUBOCTH PEIICHHS
MPUBOAUT K HEBO3MOXHOCTH TOJIYYUTh JOCTOBEPHOE PEIICHUE, MPUYEM HEYCTOWYHMBOCTH
pelieHuss He sBiseTcs (U3MUECKOi, a BO3HUKAET M3-3a «IedekTa» cucteMbl. HegocrtaTkom
ATOr0 IMOJAXO0Ja SBJSETCS HEBO3MOXXHOCTh MPSMOTO IOJYyYEHHUS CTaOMIM3UPYIOIIETO
cjlaraeMoro, Hapumep, U3 SKCIEPUMEHTA WU MyTEM OCPEIHEHUs] MUKpOypaBHeHUM. [[pyroii
MOJIXOJ] 3aKJIFoYaeTcsl B yuére oTiauuMs JaBieHui (a3. B mocnegHee BpeMs MMEHHO 3TOT
MOJIXOJT aKTUBHO pa3BHUBaeTcs [6]. 3ToMy MOAXOAY U MOCBAIIEHA TaHHAs padoTa.

s uccnenoBaHus BIMSIHMSI PAa3IMYHOCTU JaBieHUs (a3 cpeibl Ha CBOWCTBA CHCTEMBI
(runepOOIMYHOCTh CUCTEMBl ypaBHEHUH, YCTOWYMBOCTH €€ CTAIlMOHAPHBIX peIICHUH U
KOPPEKTHOCTh COOTBETCTBYIOIIEH 3a7aun Komm) Heo6XoaAuMO MpoaHaTu3upoBaTh UCXOIHYIO
cuctemy audQepeHInaIbHbIX YpPaBHEHHH, COCTOSIIYI0 W3 JIBYX YpPaBHEHHU COXPaHECHHUS
MaccChl, IByX YPaBHEHHUM COXPAHEHHS DHEPTHH, IBYX YPaBHEHHUH COXpaHEHHs dHEpruu ¢as u
3aMBIKAIOIIETO YPaBHEHHsI CBS3bIBAIONIEro jaaBieHust (a3. Vcmonb3ys pe3ynbTaThl
nosydeHHsie B [7], yaa€rcs mokasarh, YTO KOMIUIEKCHBIE COOCTBEHHBIC 3HAYEHUS, KOTOPHIE
OTIPEICNISAIOT HETUNEePOOTUYHOCTh YpPaBHEHHH, HE CBS3aHBI CO CXKHUMAeMOCThIO (a3, uTo
MO3BOJIIET MCCIEAO0BATh 3Ty MpoOJeMy B MPOCTEUIIEM CIydae IBYXCKOPOCTHOTO TEUEHUs
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O6apoTponHbIX (a3z. DTO CYIIECTBEHHO YHPOINAET 3agady. M3 CHUCTeMbl MCKIIOYAIOTCS JBa
ypaBHEHUS SHEPTUH ¢a3s.

2 TUIEPEOJIMYHOCTH U YCTOMUYUBOCTHh MOJEJBLHOM 3AJAUN

Mogenb OBYX KHIKOCTHOM THUAPOIMHAMHUKH JIOCTATOYHO CIIOXKHAS Ui TEOPETUYECKOTO
aHanuza. [loaTromy B KadecTBe MEpPBOro Iara pacCMOTPUM MPOCTEHIIYI0 TECTOBYIO 3a/auy,
JUIE KOTOPOW MMEETCS aHAJIUTHUYECKOE DPELICHHE, YTO MO3BOJSET HMCCIEN0BATh OCHOBHBIC
3akoHOMepHOCTH. OJHa U3 MPOCTEHIIMX HE TUNePOOTUUYECKHX CHCTEM YpaBHEHUH —
CTallMOHAPHOE YpaBHEHHUE TEIUIONMPOBOAHOCTH B INIOCKOCTH X,y (ypaBHeHHe Jlariaca)

02T N 02T 3
(0x)2 "~ (dy)?

rae T-remmeparypa.

C
A D
%
Puc. 1 O6nactb onpeneneHus TeMepaTypbl

w

Bynem ompenensrs temmeparypy B NpSMOYTOJIbHON 0ONacTH, MOKa3aHHOW Ha puc. 1.
3agaBasi NMpou3BOJIbHbIE 3HadeHHs Ha rpanune ABCD, OyayT OAHO3HA4YHO ONIpeeseHbI
3Hau€HUsl TeMIeparypbl BHYTpu oOnactu. dopmaibHO 3aMeHseM IEPEMEHHYI0 Yy Ha ft.
CraHmapTHBIM CIIOCOOOM TEepelieM OT MPUBEAECHHOTO BhIIIE YPAaBHEHUS C 3aMEHOH y Ha t K
CUCTEME JIBYX ypaBHeHI/Iﬁ IEPpBOro nmopdaaKa, BBOAA HepeMeHHI)IG:

oT oT
)’1:£ 1’13’225 (D
W 0
ot 0x
dy, 0dy,
—+—=— =0.
ot | ox

Jnst 9TOM CcUCTEMBI ypaBHEHUM MOXKHO NBITaThCs pemaTth 3agady Komm. Jlerko
[I0Ka3aTh, YTO XaPAKTEPUCTUKHU 3TOU CUCTEMBI PaBHBI

A1 = i
T.e. 3T0 He runepOomuyeckas cHCTeMa, KOPHU XapaKTEPUCTUYECKOTO YpaBHEHUS
KOMIUIEKCHO-CONIPSKEHHBIE, 3ajada Kommmu JUTST CHUCTEMBI HE KOpPpEKTHa.

Pazbepém HexoppekTHOCTH 3a7auu Komm B TepMUHAX aHaIN3a yCTOWYMBOCTH €€ PEeLIeHUH.
bynem uckarb penieHus B BUJeE:

(¥) = (V)0 + (Ay)eikx—00)
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Jlerko mokaszaTb, YTO YCJIOBHEM CYLIECTBOBAHMSI TAaKUX PEIICHUN OyHET BBIOJIHEHHE
CJIEYIOLIEro JUCIIEPCUOHHOIO COOTHOLLIECHHUS !

w?+k*=0. (2)
Y 3TOro ypaBHEHUS €CTh CIEAYIONIUE PELMICHHSL:

W12 = +ik

BusHo, 4TO Manble BO3MYIIEHHs SKCIIOHEHIIMATIBHO PacTyT, IPUYEM B Ipefiesie KOPOTKUX
BOJIH, CKOPOCTb UX POCTa CTPEMUTCS K OeckoHeuHocTH. T.e. to0ble Majble BO3MYIIECHUS 3a
n1r000e BpeMsi 0ECKOHEYHO BO3PACTAIOT. .., T.€. TAKUE PEIICHHUS «(PHU3MUECKI» OECCMBICICHHHBI,
4TO U AaeT «(HU3NYECKHIT» CMBICT HEKOPPEKTHOCTH 3a1aun Komu.

Yacto BcTpeyaeTcsi MHEHHE, YTO TaKUE€ 3aJadyd MOYKHO, B ONPEIEIEHHBIX YCIOBHSX,
YUCJICHHO pellaTh, TaK KaK MPU YUCICHHOM PEIICHHUH MaKCHMAaJbHO BO3MOXHOE BOJHOBOE
yucno k ompeznensercs pa3MepoM pacyeTHOM CETKH, a 3HAYUT, MPU HE CIUIIKOM MEJIKOH
pacyeTHOM CeTKe U HE CIIUIIKOM IMPOJIOJDKUTEIFHOM BPEMEHHM PEUICHUs 3aJa4yH, OIINOKa,
BbI3BaHHAs HETOYHOCTHIO 33JlaHUSl HAYalbHBIX YCIOBUH, Oyner He Benuka. CripaBeaTuBOCTb
TaKOr0 MHEHHUs HE OYEBU[HA, TaK KaK YCTOMYMBOCTh YMCIEHHOTO pacyéra mojpa3yMeBaeT
HEU3MEHHOCTb PE3YJIbTAaTOB MPU CTPEMJICHUU pa3Mepa PacueTHOUW CETKH K HYIII0, a B JAHHOU
3a/1a4ye 3TO HE TaK.

Teneps nmoanpasum cucremy (1), 106aBHB €lle OHO YpaBHEHHUE:

6y1 aYZ

ot ox Y (3)
ayZ Zayl 2 ay3
Bt Mg TAFMF =0,

0ys3

1
5 T 3= y1) =0
ot t, ( )=0,
I7Ie M—TI0JIOKUTEIbHAs! KOHCTaHTa

TpeTbe ypaBHEHHE, 03HAUAET, YTO A0OABOYHAs MEpPEMEHHas Y3 3a XapakTepHoe BpeMs t
CTpPEMHUTCS K NepeMeHHOH y;. [IoHsATHO, YTO B ciiydae t, cTpeMsIIeMcs K HYyII0, pelIeHUs
cucteM (1) u (3) nomxHbI coBnaaath. Tem He MeHee XapaKTEpPUCTUKU cUCTEMBI (3) paBHbI

/11 = O, /12,3 = im

Buano, yTo 3Ta cucrema runepoonnyHa, 1 € COOCTBEHHbIE 3HAUEHUS HE 3aBUCHT OT ty U
3Ha4YMT, GopMalbHO, 3a1a4a Komu 17151 Heé KoppeKTHa.
Ecin ’xe MBI NOCMOTpPUM YCTOWYMBOCTH €€ pelleHud, TO aHajorudHoe (2)
JUCIIEPCUOHHOE YpaBHEHUE UMEET BUJL:

w® + w?i— — wk?m? + k%~ = 0. (4)

1
to t

0

9T0 YpaBHCHHUC 3 nopsiika MOKHO HpI/I6JII/I3I/ITCJIBHO peuiaTth B MPCACIBHLIX ClIydasX. B

cirydac to CTPCMSLICTOCA K HYIIIO €ro pemicHuAd HUMCIOT BUA:
1
w1 = _lt_; (1)2‘3 = ilk (5)

0
BuaHo, 9TO MpM MalleHBKUX, PEIICHHUS HE YCTOWYUBEI, U TPOTIOPIIMOHATBHBI K - Takke, KakK

u pemieHus cucteMsr (1)
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B npenensHoMm citydae k crpemsimemcst K 06CKOHEYHOCTH, PEIICHUsT UMEIOT BUL:

11
(1)1 = 1_ (.02,3 = i_km (6)

tom?’
T.e. OOHO pemieHHWE pacTeT, HO C KOHEYHOW CKOpPOCThIO, a Jpyrue 2 pelieHus

COOTBETCTBYIOT HE PacTyLIUM BOJIHaM. T.e. CKOPOCTh pOCTa HEYCTOMYHMBOTO pemieHus (5),

KOTOpasi IpoMopIroHaibHa K, a mpu Oosbimx K, oHa mocrosiHHa (6) (He 3aBUCHT OT K).

[Tpubnuxennoe pemenue (5) cropaBeyIMBO IO TEX IOp, IOKAa IEPBOE CIAaraéMoe B

1
ypaBHEHUU (4) MHOTO MEHBIIE BTOPOIO CJIara€MOro B ATOM YpaBHEHHH, T.€. W K = A B
0

i
CITy4ae BBITOIHEHHSA YCTIOBHA (0 >> — CIPABEIMBO PEIICHUE (%).
0

Oco00 uccnenyem o0mmumii cydait (He mpuaenbhblii). s npocToTsl cuutaem m = 1.
Paccmotpum t, GpukcupoBano, a k Mensiercs. Beegem O6e3pazMepHyr0 BETHUUHY W= W * L.

VYpaBHenue (4) mnepenuiieM B Bujae B mpenmenbHOM ciiydae Kk cTpemsiieMcsi K
OCCKOHEYHOCTH, PEIICHHSI UMCIOT BH/I;

@ +oi—okt)? +ilkty)? = 0.

Pemenuie BbIMMCaHHOTO BbINIE ypaBHEHUs HaxoauM 1o ¢opmyne Kapnano [8]. Ha Puc.
2 MoKa3aHo, KaK MEHSETCSI MHUMAsl YaCTh ATOTO PEIICHUS.

1,2
Im{w)

0,8

0,6

0,4

0,2

0 T T T T 1
0 2 4 6 8 k, 10

Puc. 2 3aBUCHMMOCTE MHUMOM YaCTH YaCTOTHI OT BOJIHOBOT'O YHCJIA

W3 pucynka BugHO, uyTo Im (_oo) B Hayajie JIMHEHHO pacTeT, 4YTO COOTBETCTBYET
HEYCTOWYMBOCTH - pemieHue (5), a 3aTeM, KOrja HaYMHAIOT MpeobianaTth ciaraemsie K, c
Im (_oo), BBIXOAWT Ha IIOCTOSIHHOE 3HAYEHUE, COOTBETCTBYIOIEE pEIIeHHI0 (6), 4TO H
oOecrieunBaeT (opMalIbHYI0 KOPPEKTHOCTH 3a1a4un Koru.

OpHako, TpPU TIOMBITKE TMPAKTUYECKOTO pemreHus 3amadn Komm, Hampuwmep, mpu
to=0,01c, npu UCHOIB30BaHUH AaHATIMTUUYECKUX PEIIEHUIN CUCTEMBI (4) OTPEIIHOCTH 3a/IaHus
HayalbHBIX ycIoBMi npu kty > 8 3a JecaTh ceKyH yBenuuuBaroTcs npumepHo B 10°°0 pas,
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YTO JeJNaeT PEIICHUS 3TOH CHUCTEMBl «(DU3NYECKH» OECCMBICICHHBIMHU, XOTH, (OPMAIBHO,
cucreMa (3) u runepOonmyuHa 1 3aa4a Komm — KoppekTHa.

JlocToBEpHOCTH (M BO3MOXKHOCTH ITPAKTUYECKOI'O MCIIOIb30BaHUS) YUCICHHBIX PELICHUM
cucteMbl (3) 3aBUCUT OT KOHKPETHBIX YCJIOBUM M IIara pacy€THOW CeTKH (KOTOpBIH
OIpe/iesieT MaKCHMMalbHOE 3HaueHWe K) M MOXXET HE COBNAJaTh C INPHBEICHHOW BBIIIC
ouenkoil. Hampumep, ecnu ty=0,0lc, u HyxHo ¢ marom 0,1 M mnOpocuuraTe mpoLECC
JuaTeNbHOCTRI0 10 ¢., TO MakcuManbHoe 3HadeHue K mopsmka  10. CremoBatenbHO,
OPUMEHUMO NpUOMKeHue (4), U 3HA4YMUT, MOTPEIIHOCTh HAYAJIbHBIX JAHHBIX Ha KOHEI]
pacdera Bo3pacTér npumepHo B 10°° pas, T.e. pe3ysbTaThl TAKMX PACYETOB TAKHKE HE UMEIOT
HU KaKoro «()U3HYecKOro» CMbICA.

Ecnu, sxe, Hanpumep, ¢ marom1073M, Hyx)HO npocunrtath1072¢c, TO MakCHMallbHOE
sgauenne K mopsaka 103, u npumenumo npubmmxenue (5). ITorpelmHocTs HayalbHBIX
JAaHHBIX B KOHIIE TaKOIO pacyeTra BO3pacTéT NMPUMEPHO B 3 pas3a, B ITOM Ciydae, 4acTo
CUMTAETCs, YTO PE3YJIbTAThl TAKUX PACYETOB UMEIOT (GU3UUECKUI CMBICII.

Boisox: Taxum o6pasom, popmanbho 3anada Ko s moguduuupoBannoit cucrems (3)
KOPpEKTHa, HO TPaKTUYECKas BO3MOXKHOCTb HCIIOJIb30BAHUS PE3YJIbTAaTOB pPacuéTos,
HOJYYEHHBIX M3 pElIeHHs] 3TOM CHUCTEMbl JIOJDKHA MCCIENOBATHCA B KaKIOM KOHKPETHOM
CJlydae M 3aBUCUT OT PAaCUETHOTIO I1ara ¥ JUIMTEIbHOCTH U3y4aeMOoro IpoLecca.

3 XAPAKTEPUCTUKU CUCTEM YPABHEHUI MOJIEJIEH C
OJUHAKOBBIMH U PA3HBIMU JABJIEHUSIMHA ®A3

BrimuiieM u npoaHaan3upyeM MpUBEICHHYIO B [6] Mozenb TeueHus: AByX(a3Hoil cpenbl ¢
pa3HBIMH JaBJICHUsMU (a3 W BYMS YpaBHCHUSIMH HMITYJIbca. bymeMm mpexamnonarats (assl
0apOTPOITHBIMH: p? = p?(Pi ), MHIAEKC 1 BHHM3Y IIOKa3bIBaeT K Kakoil (a3e OTHOCHTCS
COOTBETCTBYIOIAS BeMUYHHA: i=1 — )KUAKOCTB, i=2—Ta3, rae pi® — UCTUHHAS IUIOTHOCTH 1-0H

- ’dP- ..
¢a3bl, P;- naBnenue i-oit ¢asbl, TOrIa C; = d—pé, /1€ Ci - CKOPOCTh 3BYKa i-0M (a3bl.
i

B sTOM ciiyyae TeIIoOBbIE IapamMeTpbl CpPeAbl: TEMIIEpaTypa, DHEPruss — HE BXOAAT B
YPAaBHEHUsI HEPA3pbIBHOCTH W HMIIYJIbCA, 4 BXOIAT TOJBKO B YPAaBHEHUs DSHEPIUU W,
CJI€I0BATEIIBLHO, JI aHAJIU3a CUCTEMbI MOKHO HE IIPUBJICKATh YPABHEHUS DHEPTUH.

Takas Mozenb BKIIFOYAET JBa ypaBHeHI/m Hepa3pLIBHOCTI/I:

(0(101) + (0(101191) (7)

6
(azpz ) + (0(202192) =0,

ABa YpaBHCHHUA I/IMHYJ'IBCEL

0
(0(101191) + [0(1(91191 +P)] = + Fm1—Fi2, (8)

int a

d
(0(202192) + [0(2(02192 +P)] = — 4 Fmz + Fyi2,

int a
U, IOCTYJIUPYEMOE B [6], CBSI3BIBAIOIIIEE JIaBlIeHUE B (ha3ax ypaBHEHHE
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doy doy
— 4 Vi —=— = u(P, — P 9
. at int ax I’l( 1 2) ( )
rhe U= ——2— o - 00beMHas KOHIIEHTpaLus -0 (asbl, ¥; . CKOpocTs i-0# (asbl, Jint
(pQeritplcz)

- CKOpOCTh Ha MexdaszHou rpanune [6], Py~ naBienne Ha mexdasnoit rpanune [6], Ajye-
IJI01a b MeX(a3HOW MOBEPXHOCTH B eAuHUIE 00bEMa cMmecH [6]. [l ynpoleHus BBIKJIaI0K
HIDKE OyIyT MCIOJIb30BAThCS CaMble MPOCTHIC 3aBUCHMOCTH JUISl MACCOBBIX CHII Fmi (4TO HE
BIIUSICT HA OCHOBHBIC BBIBO/IbI)

_ 1p9
le = -« plg'

— 02
Fmz = —p2a°g,
I7le g — yCKOpeHue cBOOOJHOro HajeHus, a OCb X HalpaBleHa BBEPX U caMmas MpocTas,
JMHENHAs 3aBUCUMOCTD JJ1s MexX(pa3Hoi cuiibl TpeHus Fiz:

Fio = f* (01— 0,),
OneHum Bpemsi BblpaBHUBaHUs jAaBiieHus cucreMel (7) - (9). Paccmorpum omHopoaHOe

5} o
COCTOSIHHE £=0 JUTsl BCeX mapaMmeTpoB cMecu. [lycTs B HayanbHbIM MOMEHT t=0 naBieHuUs

¢a3 P, u P, ornmmyarorcs. O003HauMM mapamMeTpsl CMECH B PaBHOBECHOM COCTOSIHHH, B
KOTOpO€ cMech nepedaer U B kKotopoMm P; = P, mHmekcom «0» BHU3Y. Bripazum wu3
ypasHenuii (7) p) yepes ai: ciydae t, CTPEMSIIErocs K HyIIO, €ro PelIeHHs UMEIOT B

0 0
@10P 20P
0o_ @%0Pi0o, o _ @20P20
p1= — i P2= ———— (10)
ay az
PaccmaTprBaeM Majioe HM3MEHEHHE IIapaMeTpoB O : O = @9 + @7 (a1 K aqp) , THE
HITPUXOM OOO3HAYEHbl OTJIMYMS OT paBHOBecHbIX 3HaueHuil. Iloacrasum (10) B (9), u,

HCIIOJB3Ys CBA3b NABJICHUA U IIJIOTHOCTH Y€PE3 C,, TOITYYUM

da;
—— = —B=xqal
dt 1
2.0 2.0
{C1 P10 + ¥ pzo}
45T 450

rae B = int-
{C1P$0 + Cngo} o

W3 mocnenHero ypaBHEHUS CIEAyeT, 4TO OOBbeMHas KOHIICHTpAIus, a, 3HA4YUT, U BCE
napaMeTphl BBIXOJAT Ha PaBHOBECHbIE 3HaueHUs 3a BpeMs 1/B, o6paTHO mpomnopiroHaibHOE
CKOPOCTH 3BYKa M MeK(a3HOH NOBEPXHOCTH.

Hanpumep, sl «TUIMYHOTO ITy3BIPLKOBOrO TEUEHHS» C MapamMeTpaMu  pYy =
1000 kr/m3 ;a5 = 0,8; p9y =1 kr/m3; ¢; = 1000Mm/c; ¢, =300 m/c ¥  jguameTpa
nysbipeka d = 3 MM ,B =5 x 10° %, a XapaKkTepHOE BpeMs BBIPDABHHUBAHUS JaBICHUU IIPH
MCIIOB30BaHNK ypaBHeHHs (9) paBHo 2 X 107%c. Jlns pacciOeHHOro TeYeHHs, B KOTOPOM
Mesk(asHas MOBEPXHOCTh Ajp; MHOTO MEHbIIE, ¢ TeMH ke mapamerpamu B = 1,25 x 103 %

XapaKTepHOE BpeMsl BHIpaBHMBaHUs aBieHuil pasno 0,8 X 107 3c.
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B ciayyae MonmenbHOH 3ajaun MaJeHbKOE BpeMs pellakCalliy MapaMeTpoB HPUBOAWIO K
OBICTPOMY DPa3BUTHIO HEYCTOWYMBOCTH. HIke HM3y4eHO pa3BUTHE HEYCTOHYMBOCTH JUIS
ypaBHEHUN Mozenu [6].

B paccmarpuBaemom ciydae GapoTpomHbix (a3 ypaBHeHUs Hepa3pbIBHOCTH (7) ymoOHO
3ammcarh B BUIE

da; 0 a; (0P dP;
+ — (a9 +—<—+19 >=0, 11
da, 0 a, JP, dP,
—+ 9,) +—(— 1)
at a (az 2) 0 2 ( at 2 a )
Brinmumem Matpuity Jist onpeaeieHus XapaKTepI/ICTI/IquKoro YpaBHEHUS
[ 9, -2 « 0 0 )
1 1 0 2 (191 )
pP1€1
_ a
9, 4+ 0 a; 0 5 (95— 2)
< 2C2
Py — Pine alpg(ﬁl - ) 0 aq 0
P, + Pint 0 azp3(9; — A) 0 a
ipe — A 0 0 0 0

\ J

[IpupaBHAB OIpeneaUTENb BbIIIE IPUBEACHHOW MAaTpUIbl, IMOJIYyYUM CIEIYIOIlee
XapaKTepUCTHUECKOE YpaBHEHUE

91—1)2 () l 2
a%ag(ﬁmt A) [1 %] [ @a2) ] =0 (12)
OTKyna onpenenstoTcs XapakTepUCTUKI
M=V Agz =012 ¢ g5 =91, (13)

XapakTepuCTUKaMU B TaKOM BUJ€ ObLIIM paHee Moay4yeHsl B [9].

BeiBoa: U3 (13) Bugno, uro wmojenb [6] ¢ pasHeIMH JaBieHusmu (a3, Bcerma
runepooInvecKas, HWMEET TMATh PA3IMYHBIX JEHCTBUTENBHBIX XapaKTEPUCTHK: OJHA
XapaKTEpUCTUKAa paBHAa CKOPOCTH MEPEHOCa B MOCTYJIMPYEMOM B MoJenu [6] ypaBHEHUH,
CBSI3BIBAIOIIMM JaBJeHUE B (pa3ax M UYETHIPE PaBHBI CKOPOCTSAM (ha3 IUIFOC MHUHYC CKOPOCTH
3ByKa B (aze.

CpaBHUM TIOJIYYCHHBIE XapPAKTEPUCTHUKU C XaPAKTEPUCTHKAMU B aHAJIOTMYHOW MOJCIHU C
oIMHaKoBbIM naBieHueM ¢a3 [1]. [IpuHHMMas BbIIICONMHCAHHBIE MPEANONOKEHHS, JIETKO
BBINIMCATh YpaBHEHHWs, aHAJOTUYHBIE YypaBHEHHSAM (8), HO TIPU YCJIOBHUU pPaBEHCTBA
naBnenust a3 (P, = P, = P). IIpoBens BBIYMCIIEHMS, aHAIOTHYHO OIMCAHHBIM B JTOM
pasjielnie BhIie, YAa€TCs BBHIMMCATh XapaKTePUCTHKHU, KOTOPhIE B mpeanonoxernn ¥;/c; < 1
MMEIOT BUJ]

a1p39; + apiY; +
ap; + ap;

Moz =

7]
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_ a1039; + azp?9; £ i(01— 9V azazplp?

ap; + azp?

BeiBoa: Cucrema ypaBHeHUN Mojaenu ¢ |1 naBieHHeM, B cCiiydae MexX(a3HOW CWIBI, HE
3aBHCSILIEH OT MPOU3BOJAHBIX, BCErga He rurnepodonnueckas, J[Be XxapakTepUCTHKU MOJENIU -
NeMCTBUTENbHBIE — JIMHEWHas KOMOMHauIMs CKopocTe a3 muioc MHHYC (QYHKIHS OT
CKOpocTeil 3Byka (a3 U JBe XapaKTEPUCTHKU KOMILUIEKCHbIE, IPUYEM OHU HE 3aBHUCAT OT
CKOpPOCTEH 3ByKa ¢a3. CKopocTeii 3Byka (as.

3,4

4 YCTOWYUBOCTD PEINEHUSA CUCTEMbI YPABHEHUI MOJIEJIEH C
PAZHBIMU JABJIEHUSAMMU PA3

Hccnenyem ycroituuBocth pemieHust cuctemsl (11,8,9). IlpupaBHsB ompenenutens
COOTBETCTBYIOILIEH MaTpUIIbl HYJII0, HOJYyYUM AMCIIEPCUOHHOE YpaBHEHHE IISITOM CTENEHU
OTHOCHUTENBHO @, KOTOPOE BBHUIY €ro I'POMO3JKOCTU HE IpuBoAuTcs. B o0mem ciydae 3to
JUCIIEPCUOHHOE YPAaBHEHUE aHAIMTUYECKH PELIUTh HEBO3MOKHO. OJIHAKO €ro MOKHO PEUIUTh
B MpEIeNbHBIX cilydasx. PaccMoTpum aBa mpenenbHbIX cinydast: 1) Gombmme k; 2) ckopoctu
¢da3 MHOro MeHmlie ckopoctell 3Byka. 1) B mpeaene npu k — 0o kopHH IUCIIEpPCHOHHOIO
yYpaBHEHMsI [TOJTy4yaroTcs U3 KopHel (13) xapakTepucTH4eCcKOro ypaBHEHUs NpH 3aMeHe A Ha %
Kak BunHo 13 (13), B HyseBOM NpUOIMIKEHUH, BCE PELICHUs JEHCTBUTENIBHBI U HE MTO3BOJISIOT
OLIEHUTh UX YCTOWYMBOCTb. C TOYHOCTBIO JO IMEPBOr0 MPHUOIMKEHHS IO % rae [9;]/c; <

1(i = 1,2;j = 1,2) nepBblif KOPEHb UMEET BH]L

w1 ip
- Uine + [ [@192 Oine — 92)* + azp? Oine — 91)?]
142
uf
- m[ﬁint — a9, — ay9]
1*%2

N3 »sToit (dopmynbl BHIHO, YTO OTO pEIIEHHE HE YycToWumBO. [l «TUMHMYHOTO
M 1
My3BIPEKOBOTO TeYeHHUs» TpU |Jipe — V1| ~ 0.5 Ce—K,Im(wl)~ O,lce—K. Torma 3a 10 cek.

MOTPEITHOCTh yBENWYMBaeTCs B 3 pasza, T.e. 3a Bpemsi Ooisblie | MUH. TOTPENTHOCTH
yBenmuuutcs Oonee wem B 1000 pa3, a, 3HAUMUT, pe3ynbTaraM TaKUX PacueToOB IOBEPSThH
HEJb3sl, T.K €CJIM UCXOJHBIC JaHHBIC, UMEIOT TOYHOCTh HE BbIme 1% , moatomy B 1000 pa3
yBeNmM4eHHas morpemHocTs coctaBiuser 1000%. DOta omenka mnonydeHa npu K — oo,
OcraBmiecss 4YeThlpe KOpPHS B TeX K€ MPEINONIOKEHUAX, YTO W TIEpBBI KOPEHb
COOTBETCTBYIOT YCTOHUMBBIM perieHusiM. CKOpOCTh 3aTyXaHusl BO3MYILIEHUH O4eHb OOJbIlas.

1
Hanpumep, [U1sl «THIIMYHOTO My3BIPHKOBOT0 TeueHus» Im(w4)~ - 2,5 E5 —.
CeK

OpHako, ecii He JeNIaTh MPEANOIoKeHHH o OoibmuX K, Kak yke roBOpHiIOCh, B OOIIEM
Clydae NUCIIEPCHOHHOE YpaBHEHHE S5 TOpsJKAa AHAIWTUYECKH PEIIMNTh HEBO3MOXKHO, €T0
MOXXHO pemaTh yuciaeHHo. Ha puc 3 ansd «TUNHUYHOTO My3bIPHbKOBOTO TEUEHHUS» C yUETOM
MPUCOEAMHEHHON Macchl, MoKa3aHa 3aBUCUMOCTh Im(w; ) OT BomHOBOTO yncina k.

Kak BumHO u3 rpaduka, CKOPOCTb Pa3BUTHS HEYCTOWYMBOCTU BBIXOJUT HA aCHMITOTY

1 1
npu k = 100 —, u npuBeIeHHBIE BBIIIE OLEHKHU yXe MPUMEPHO clipaBeyIuBbI pu kK =~ 25 —.
M M

v w .
I[J'IH OCTAJIbHBIX PCHICHUU BBIIIOJHACTCA YCIIOBHC E ~Cj . Pemenue W3 3 IMOYTH BO BCEM
AUana3oHe PpCKUMHBIX ITapaMETPOB yCTOfI‘IPIBO.
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MoXHO TOKa3aTh, 4TO PEIICHHS W, s Bcerjga ycroiumsbl. Hrak, B cimydae |9;|/c; <1
HaiJICHBI BCE 5 pEILICHUH.

[TonBonst UTOT — aHATOTMYHO TECTOBOH 3a/1a4€, HECMOTPS Ha THUIIEPOOIMYHOCTD CUCTEMBI

(11,8,9) Bo MHOIMX pexuMax UMEETCS HE YCTONYMBOE PELIEHHE Wq, IPUYEM, CKOPOCTh €T0

1
pocta (I «TUNWYHOTO  My3BIPppKOBOro  TeyeHws» Im(w;) < 0,1-) HAcCTOIBKO
C

OonpIIas (XOTB N HC TakKasd OrpoMHas, KaK B TECTOBOH 33,[[3‘16), YTO OHa MOXKET AC1aThb
YHUCJICHHBIC PACUCThl HECAOCTOBCPHBIMU.

0,12

In‘&(&;_l),l/c

0,08 /
0,06 /

0,04 /

0,02 /

k,1/m

Puc. 3 3aBucHMOCTE MHUMOM YaCTH YaCTOTHI OT BOJIHOBOTO YHCIIA.

5 CHUCTEMA YPABHEHMH C PASHBIMHU JABJIEHUSIMHU PA3,
OIINCBIBAIOIIAA ITYJIBCALIMH ITY3BIPBKOB

Henocratkom wmopenu [6], sBisieTcsi, MO MHEHHIO aBTOPOB, OTCYTCTBHE OOOCHOBAHHS
ypaBHeHus (9). C apyroit CTOpoHBI, HapUMep s My3bIPHKOBOTO PEXUMa TEUSHHSI, XOPOILLIO
u3BecTHO ypaBHeHue Pernes — Jlamba [2], omuckiBaroliee n3MEHEHHE JaBiieHUN (a3, KOTopoe
BIIOJIHE OOOCHOBAHHO MOYKHO HCIOJb30BaTh BMecTo (9) [7]. Uccnenyem rumepOOIMIHOCTD
MaTeMaTUYecKoll Mojenu 3ToM cuctembl. bynem mnpennonarath ¢aszbl 0apOTpONMHBIMU.
Hccnenyem ycroitunBocth pemienus cuctemsl (11,8) ¢ ypaBHenuem Penes — JlambGa u
ypaBHeHHEM OajlaHca Macchl My3bIpbKOB. llpupaBHSIB ompenenuTenb COOTBETCTBYIOIIEH
MaTpPHLBI HYJIO M10J1y4aeM XapaKTEpPUCTUUECKOE YPAaBHEHUE 7 CTEIICHH.

Tpu XapakTepUCTHKH 3TOTO YpaBHEHHS paBHbI CKOpPOCTH IMY3bIpbKOB. [IpoBeneHHBIE
MHOT'OYHCIICHHbIE YHCIICHHBIE OLEHKU MOKA3all, YTO MPU «HEPUIUUYECKUX)» YCIOBUIX, KOT/Aa
IPOCKab3bIBAHUE MHOTO OOJIbIIE CKOPOCTH 3BYKa: |J;,| > c; 4eThIpe OCTABIINXCS KOPHSI
OyayT AEWCTBUTEIbHBIMH, T.€. CUCTEMA YpaBHEHHH runepOoandeckas. A Mpu «HOPMaJIbHBIX»
YCIIOBUSIX, KOIJIa CKOPOCTb IPOCKAlIb3bIBAaHUS MEHbBIIE CKOPOCTH 3BYyKa, W3 OCTABIIHXCS
4eThIpEX KOpHEW JBa OyAyT [EHCTBUTENbHBIMHM, a OCTaBIIMECS 2 KOMIUIEKCHBIMH, T.€.
CUCTEMa ypaBHEHHI — He Tunepoonnyeckas, a 3HauuT 3a1a4a Komu 15 Heé — He KOppEeKTHa.
OpnnHako, KaKk OTMEYaJIOCh BBIIIE, MHOTHE aBTOPHI JOIMYCKAIOT HCIIOJIb30BAHUE PE3YJbTAaTOB
YHUCIIEHHBIX PEHIEHUN TaKMX CHCTEM, €CJIM CKOPOCTbh Pa3BUTHs HEYCTOWYMBOCTU PELICHUI B
CBSA3M C OIPaHMYEHMSIMM Ha BOJHOBOE YHWCIO, M3-3a2 pa3Mepa luara 4YUCICHHOW CETKH, He
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M
BeNUKa. [JNA «TUMHYHOTO MY3bIpbKOBOro TedeHus» aq = 0,8 uY;, = —0,1— npu mare
CceK

. . 1
pacuérroii cetku 1 cm Im(wg) = 5— T.e. ¢ TaKUM IIAroM MOKHO CYHUTATh TOJIBKO KOPOTKHE
CeK

mponeccChl, AJMUTCIbHOCTBIO - JO HCCKOJIBKUX CCKYHI.

6 3AKVIIOYEHUE

Cucrema ypaBHeHUH TeueHHs ABYX(a3HOH cpeasl ¢ pa3HbIMU JNABICHUSAMHU (a3 M JABYMs
YPaBHEHMSIMU MMITyJbCa B MPEANOJIOKEHUH OapoTponHOCTH (a3 M MOCTYJIUPYEMbIM
ypaBHEHHEM, CBS3BIBAIOIIMM JaBJICHHS B Pa3HbIX (pa3ax Bcerjpa runepoObonmueckas. Mmeer
IATh PA3JIMYHbIX, JEHCTBUTENBHBIX XapakTepucTHK. OfHa XapaKTepUCTUKA paBHA CKOPOCTH
nepeHoca B TOCTYJIMPYEMOM  YpaBHEHHH, CBS3bIBAIOIIMM JaBJieHHE B (a3zaXx MU dYeThIpe
XapaKTEepUCTUKH PAaBHBI CKOPOCTAM (pa3 IUIIOC MUHYC CKOpPOCTh 3BYKa B (paze. DT1a Mojelb,
HECMOTpSl Ha TUINEPOOIMYHOCTh CHCTEMbI, BO MHOIMX pPEXKHMax HMEET HE YCTOMYMBOE
peleHye, Ipu4yeM, CKOPOCTh pOCcTa BO3MYIIEHUS (JUISI «TUIIMYHOTO ITY3bIPbKOBOTO TEYECHUS»
HACTOJbKO 0OJbIIas (XOTh U HE Takas OrpOMHasi, Kak A MOAU(PUIMPOBAHHOIO YPABHEHMUSI
Jlannaca)), 4To pe3yabTaThl YUCICHHBIX PACUETOB MOTYT OBITh HEJOCTOBEPHBIMHU.

Cucrema ypaBHEHUH C Pa3sHbIMU JaBICHUSIMH (a3 U JBYMsl yYpaBHEHUSIMU HMITYJIbCa,
ONUCHIBAIOLIAsl ~ MYNbCAUU  IY3bIPBKOB IpH  «HEPU3UUECKUX»  YCIOBUAX, KOTJAa
IIPOCKAJIb3bIBAHUE MHOT'O OOJIbIIE CKOPOCTH 3BYKa B JKUJIKOCTH THIepOonuueckas. A mpu
«HOPMAJIBHBIX» YCJIOBUSAX, KOTJa CKOPOCTb MPOCKAJIb3bIBAHHUS MEHbIIE CKOPOCTH 3BYKa B
KHUJKOCTH, CUCTEMa YpaBHEHMH — He rumepOonuueckas, u 3agada Komwm nns Heé — He
KOppekTHa. Jlaxke eciii OrpaHM4YMTh BOJHOBOE YMCIO Pa3yMHBIM LIaroM IpPU YHCIEHHBIX
pacuerax, TO OoJbIIas CKOPOCTb POCTa HEYCTOHMYMBOCTU MOXKET J€JIaTh HCIOJIb30BAHUE
pe3yabTaTOB pacCu€TOB — HEBO3MOXKHBIM.
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