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Summary. A simple model of equation of state, which represents the relationship of pressure

with density and internal energy in the form of an analytic function, is used for sodium in bcc-

solid and liquid phases. Thermodynamic characteristics along the principal Hugoniot adiabat

are calculated for the metal and compared with available data from shock-wave experiments.

The calculation results are in a good agreement with the data over whole investigated region.

The equation of state can be used effectively at numerical modeling of shock-wave processes in

sodium at high pressures.

1 INTRODUCTION

An equation of state (EOS) of a medium is indispensable for numerical modeling of physical

processes under intense pulsed influences on materials [1–3]. For example, at high-velocity

impact of bodies [4–12], interaction of intense laser [13–24] and particle beams [25–30] with

matter, electrical explosion of conductors under action of high power current pulses [31–37]

etc. Accuracy of thermodynamic description of properties of the medium over wide range of

pressures and densities determine the adequacy of results of the modeling [38].

It is traditional to use semiempirical approach for construction of wide-range EOS models [1,

39–41]. At that, a functional form of a thermodynamic potential is chosen with taking into

account theoretical considerations, while numerical coefficients in the function are determined

using experimental data.

This work is devoted to description of thermodynamic properties of sodium at high pressures.

The metal is used as a coolant in power plants, especially in fast neutron reactors. In particular,

EOS for sodium is interesting for numerical modeling of different working regimes of such

reactors under conditions of intense mechanical and thermal influences.

In the work, a semiempirical EOS in a form of simple analytic function P = P(V,E) [42–44]

is presented for Na, which is in contrast with more complex EOSs for the metal [45–51]. Here,

P is the pressure, V = ρ−1 is the specific volume, ρ is the density, E is the specific internal

energy. The quality of proposed EOS is evaluated by a comparison of calculated kinematic and
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dynamic parameters along the principal Hugoniot adiabat with available data from shock-wave

experiments.

2 EOS MODEL

The EOS model is formulated in the general form as

P(V,E) = Pc(V )+
Γ(V,E)

V
[E −Ec(V )] , (1)

where Ec and Pc =−dEc/dV are the cold components of internal energy and pressure at T = 0;

Γ is a coefficient determining the contribution of thermal components of the EOS.

The cold energy is given by a polynomial [42–44, 52–54]

Ec(V ) =
B0cV0c

m−n

(

σ m
c

m
− σ n

c

n

)

+Esub. (2)

Here, σc = V0c/V ; V0c and B0c are the specific volume and bulk modulus at P = 0 and T = 0.

The quantity Esub has meaning of the sublimation energy and is determined by a condition

Ec(V0c) = 0, (3)

which gives

Esub =
B0cV0c

mn
. (4)

Parameters m and n are determined with the use of shock-wave data for solid samples.

The dependence of the coefficient Γ upon the volume and internal energy is defined analo-

gously to caloric models [42–44, 55–57] in the following form:

Γ(V,E) = γi +
γc(V )− γi

1+σ−2/3 [E −Ec(V )]/Ea

, (5)

where

γc(V ) = 2/3+(γ0c −2/3)
σ 2

n + ln2 σm

σ 2
n + ln2(σ/σm)

, (6)

σ =V0/V ; V0 is the specific volume under normal conditions; γc(V ) corresponds to the case of

low thermal energies, and γi characterizes the region of highly-heated matter. The value of Ea,

which defines the thermal energy of the transition of Γ from one limiting case to the other, is

determined from the results of shock-wave experiments at high pressures. From (1), (5) and (6),

a relation of the parameter γ0c with values of the Grüneisen coefficient γ = V (∂P/∂E)V , the
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internal energy and the specific volume under normal conditions (γ0, E0 and V0, respectively)

can be obtained:

γ0c = γi +(γ0 − γi)

[

1+
E0 −Ec(V0)

Ea

]2

. (7)

The interpolational function (6) ensures validity of the condition γ(V0,E0) = γ0, and gives the

asymptotic value γc = 2/3 in the limiting cases of low and high compression ratios σ . The

parameters σn and σm are determined from the requirement of optimum fit to experimental data

on shock compressibility of a substance in question.

3 EOS FOR SODIUM

Sodium under atmospheric pressure has a body-centered cubic (bcc) structure (T > 6 K) [58].

It melts at 371 K. Under static compression at room temperature, the bcc phase transforms at

pressure 65 GPa to the phase with a face-centered cubic (fcc) structure. At further increase of

pressure at room temperature, more crystalline phases of sodium are observed [59–61].

Shock compressibility of sodium is investigated with the use of traditional explosive systems

up to 0.1 TPa [62–64]. Shock compression leads to increase of temperature and melting of the

bcc phase [49].

In this work, the unified EOS for bcc-solid and liquid phases of sodium is constructed. The

EOS coefficients obtained within the framework of the model are as follows:V0 = 1.0331 cm3/g,

V0c = 0.99306 cm3/g, B0c = 6.817 GPa, m= 1, n= 0.96, σm = 1.2, σn = 1.5, γ0c = 0.9, γi = 0.45

and Ea = 45 kJ/g.

Calculated principal Hugoniot adiabat of sodium is presented in figures 1–3 in comparison

with data from experiments [62–64]. Calculation of the Hugoniot adiabat is performed by solv-

ing the equation of energy conservation in the shock-wave front [1]:

E = E0 +
1

2
(P0+P)(V0 −V ), (8)

where the left-hand side is closed by the EOS function E = E(P,V). Equation (8) and the EOS

determine the specific volume as a function of pressure along the Hugoniot adiabat for samples

of initial density ρ0 =V0
−1. Then the shock (Us) and particle (Up) velocities are calculated using

the equations of conservation of mass and momentum in the shock-wave front [1]:

Us =V0

√

(P−P0)/(V0−V ), Up =
√

(P−P0)(V0 −V ). (9)

Analysis of the comparison results in figures 1–3 shows that the obtained EOS provides for

a reliable description of thermodynamic properties of the metal over a whole investigated range

of shock and particle velocities, pressures and compression ratios.
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Figure 1: The principal Hugoniot adiabat of sodium: curve corresponds to the present calculations; markers—

experimental data (I1—[62], I2—[63], I3—[64]).
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Figure 2: The principal Hugoniot adiabat of sodium: notations are analogous to figure 1.
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Figure 3: The cold curve (Pc) and the principal Hugoniot adiabat (H) of sodium: curves correspond to the present

calculations; markers—experimental data (I1—[62], I2—[63], I3—[64]).

4 CONCLUSIONS

The EOS, which has the form of an analytic function, is proposed for sodium in bcc-solid and

liquid phases. This EOS agrees well with available data from dynamic experiments; it can be

used effectively at numerical modeling of shock-wave processes in the metal at high pressures.
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