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Summary. The paper considers the construction of a generalized numerical experiment for 
problems of computational fluid dynamics (CFD). Generalized numerical experiment allows 
to obtain a solution not for one specific mathematical modeling problem, but for a class of 
problems defined in the multidimensional space of defining parameters. The basis of this 
approach is the use of parallel computing for the organization of multitasking. We consider 
the construction of interfaces for the organization of calculations, processing and analysis of 
the results. Some examples are given illustrating the application of the approach for 
constructing such an experiment for various classes of CFD problems in computational gas 
dynamics. Also examples of such experiment application to problems of analyzing the 
accuracy of numerical methods and the effectiveness of parallelization tools are considered. 

  
1 INTRODUCTION 

 
Long before the advent of the computer age, the main source of information in the 

problems of gas dynamics was a physical experiment. It was the experiment that made it 
possible to obtain the necessary information about flows and their properties, to obtain a 
visual representation of the flow pattern, and to obtain the relationships between gas-dynamic 
quantities characteristic of this picture. The results of such experiments are extensively 
presented in papers [1, 2]. However, in practical applications it was always not enough simply 
to obtain in the experiment the flow field for some single case. The main goal of a physical 
experiment has always been not the modeling of the physical phenomenon itself, but the 
elucidation of the circumstances under which it occurs, i.e. obtaining the dependence of the 
appearance of the phenomenon on the defining parameters of the problem, such as Mach 
numbers, Reynolds, Prandtl numbers, etc., and geometric parameters of the problem. In fact, 
the establishment of such physical laws for shock waves, separated flows, characteristic 
configurations of streamlined bodies was the main task of fluid and gas mechanics. 
Accordingly, it was necessary to carry out a series of physical experiments where the 
determining parameters of the flow varied, such as the velocity, viscosity, properties of the 
medium, etc. Such large-scale experimental work made it possible to obtain key relationships 
for the dependence of the gasdynamic functions of interest or the conditions for the 
appearance of a physical effect on the key determining parameters. 

As a striking example of such a dependence, one can cite the famous formula of G.I. 
Petrov, representing the fundamental law on the ultimate pressure drop in the shock, which 
the turbulent boundary layer is able to withstand without detachment from the wall [3]: 

52



A. Bondarev 

 
P2 / P1 = 0.713Me + 0.213 

 
Here  P2 / P1  is the pressure drop, Me is the Mach number before the separation point, 

varying from 1.5 to 4. 
Another example is the famous Kozlov formula [4], which represents the dependence of 

surface friction on Mach numbers, Reynolds numbers and the temperature factor: 
 

𝑐 = 0,085𝑅𝑒
, ,

𝑇 , 𝑇 ,  
 

Here  𝑐 , Rew  is the coefficient of surface friction and the Reynolds number calculated 
with reference to the wall temperature, Te is the temperature at the outer boundary of the 
boundary layer, and  is the temperature factor. 

The advent of computer technology allowed solving the problems of mathematical 
modeling of currents, which sharply reduced the need for large-scale physical experiments. 
However, in the problems of mathematical modeling, the main tendency of carrying out series 
of calculations with the variation of the defining parameters of the problem also remained. 
The main goal was the same - to determine the conditions for the appearance of a physical 
phenomenon when the external conditions of the problem are varied. The determination of 
such conditions and their approximation with the aid of an analytical expression was the main 
goal of practical computational fluid dynamics. There are many examples of such studies. 
Here we give an author's example [5], which presents a series of numerical experiments on 
the flow of a backward ledge by a viscous gas flow. As a result of the experiments, a 
generalized formula is obtained that represents the characteristic time of the establishment of 
the flow as a function of the Mach and Reynolds numbers of the external flow: 
 

𝜏∗ = 10,7[1 − 0,14(𝑀 − 2)] 1 + 19,45
1

√𝑅𝑒
−

1

√10
 

  
Here 𝜏∗  is the characteristic settling time, M∞ , Re  are the Mach and Reynolds numbers. 

The generalized formula is given for the range 2 ≤ M∞ ≤ 3, 1000 ≤ 𝑅𝑒 ≤ 5000. 
Nevertheless, obtaining such dependencies required a huge number of computational 

experiments and was very laborious. 
The emergence of high-performance computing that allows for parallel computations has 

ensured the possibility of parallel calculation of the same problem with different input data in 
multitask mode. This makes it possible at the present time to construct and carry out a 
generalized computational experiment. 

 
 

2 FORMULATION OF THE PROBLEM 

A generalized computing experiment involves splitting each of the defining parameters of 
a problem within a certain range. Thus, a grid decomposition is formed for some 
multidimensional parallelepiped composed of the defining parameters of the considered 
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problem of gas dynamics. For each point of this grid, the problem is calculated in the space of 
the determining parameters. Formally, this can be written as follows. 

 Suppose that there is a reliable numerical method for solving two-dimensional and three-
dimensional nonstationary problems of computational gas dynamics. Then we can obtain a 
numerical solution 𝐹(𝑥, 𝑦, 𝑧, 𝑡, 𝐴 , … , 𝐴 ) for any point in the space of a computational 
domain, where  x, y, z  are the spatial coordinates, t  is the time, 𝐴 , … , 𝐴   are the defining 
parameters of the problem. As defining parameters of the problem, we will keep in mind the 
characteristic numbers describing the properties of the flow under consideration, such as the 
Mach numbers, Reynolds, Prandtl, Strouhal, etc., and the characteristic geometric parameters. 
Each of the characteristic parameters is limited in a certain range: 

 
𝐴 ≤ 𝐴  ≤ 𝐴  ,   𝑖 = 1, … , 𝑁 

 
We divide each of the parameters 𝐴  into k-1 parts, so we obtain for each parameter a 

partition consisting of k points. The volume of an N-dimensional space formed by a set of 
defining parameters 𝐴  is filled with a set of  𝑘  points. 

Denoting the point from the given set, as  (𝐴∗ , … , 𝐴∗ ), we arrive at the fact that for each 
point of the collection it is necessary to obtain a numerical solution of the gas-dynamic 
problem  𝐹(, 𝑥, 𝑦, 𝑧, 𝑡, 𝐴∗ , … , 𝐴∗ ). 

It is easy to see that this will require solving  𝑘   gasdynamic problems, which is 
impossible without the use of parallel calculations in a multitask mode. In practice, the 
number N usually does not exceed 5, which corresponds to the computing capabilities at the 
current time. 

It should also be noted that we formulated the classical problem of parametric study. 
Parametric numerical studies allow one to obtain a solution not for one particular 
mathematical modeling problem, but for a class of problems defined in a multidimensional 
space of defining parameters. Also, such a formal formulation allows numerical study of 
optimization analysis problems, when the inverse problem is solved at each point of the grid 
partition of the multidimensional space of the determining parameters. Both types of similar 
problems are considered in a series of papers [6 - 9]. 

 

3 PARALLEL SOLUTIONS 

 
The only way to effectively carry out a generalized numerical experiment is applying of 

parallel computations. The problem of the optimal and effective way of parallelization was 
thoroughly discussed in the papers [7,8 ]. There were considered parts of the whole algorithm 
for parameter optimization and analysis. For these parts the main criterion of applicability for 
parallelizing is independence of specific numerical method. From this point of view  the most 
perspective way for parallelizing is applying the approach of multitask parallelism using the 
principle “one task – one process”. Due to minimal quantity of internal exchanges between 
the processes we are able to create an effective practical tool for generalized numerical 
experiment. 

The general parallel computing scheme used for such experiment is shown in Figure 1. 
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Fig. 1. Parallel computing scheme for generalized numerica 

Figure 1: Parallel computing scheme for generalized numerical experiment. 

We assume that k processes are provided for parallel computation. The control process  P0 
creates the grid in the multidimensional space of determining parameters, then  P0 forms tasks 
and sends the tasks to others processes and to itself also. After task completion P0 collects the 
results and implements all procedures defined by user, such as data processing and 
transformation.   

Due to the absence of internal exchanges between the processes the procedure of 
parallelizing amounts to creation of control interface for tasks distribution and data collecting 
in one multidimensional array. 

There are two effective and easy ways to create such interface for parallel computations. 
The first way is to apply MPI (Message Passing Interface) [10].  This variant of parallelizing 
allows implementing a program tool for generalized numerical experiment. The computation 
can be carried out k times faster according to the number of provided processes. 

 The other way of parallelization is application of DVM technology [11, 12], elaborated in 
Keldysh Institute of Applied Mathematics RAS. DVM-system provides unified toolkit to 
develop parallel programs of scientific-technical calculations in C and Fortran. DVM parallel 
model is based on data parallel model. The DVM name reflects two names of the model - 
Distributed Virtual Memory and Distributed Virtual Machine. These two names show that 
DVM model is adopted both for shared memory systems and for distributed memory systems. 
DVM high level model allows not only to decrease cost of parallel program development but 
provides unified formalized base for supporting Run-Time System, debugging, performance 
analyzing and prediction. Unified parallel model is built in C and Fortran  languages on the 
base of the constructions, that are "transparent" for standard compilers, that allows to have 
single version of the program for sequential and parallel execution. C-DVM and Fortran 
DVM compilers translate DVM-program in C or Fortran  program correspondingly, including 
parallel execution Run-Time Support system calls. So only requirement to a parallel system is 
availability of C and Fortran compilers. This way of code parallelizing allows one to save a 
lot of human resources for coding and debugging. At the same time DVM parallelization 
provides less speed of computations in comparison with MPI. 

For both types of parallel technologies special control interfaces for parameter 
optimization and analysis were designed [8]. Both control interfaces were applied to jet 
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interaction problem for testing. Testing computations were carried out for 20 processors. 
According to test results the time of computations for DVM method is 205 seconds. The same 
test for MPI case requires 144 seconds. At the same time DVM application allowed to 
decrease human expenses for coding and debugging up to ten times as against MPI. So both 
types of parallel technologies are quite applicable for problems in question. The calculations 
were performed using a hybrid supercomputer K-100 [13] in Keldysh Institute of Applied 
Mathematics RAS. 

With the help of the constructed interfaces, a series of calculations were carried out, 
realizing the concept of a generalized numerical experiment for various classes of problems. 
The results of the calculations will be shown in the following sections. Both developed 
interfaces are very versatile. They can be applied to almost any software code for solving the 
CFD problem chosen as the base one. 

It should be noted that modern version of Aiwlib library  [14] has some similar properties 
which make this library applicable for construction of generalized numerical experiment. 
Aiwlib library is a library for  C++11 and  Python languages, which is aimed for the 
development of high-performance computing numerical simulation applications running 
under  GNU/Linus OS. It also provides means for batch calculations. 

 

4 PROCESSING AND ANALYSIS OF THE RESULTS 

 
As a result of implementing the construction of a generalized numerical experiment and 

performing parallel calculations, we obtain a large data set representing a set of numerical 
solutions  𝐹(𝑥, 𝑦, 𝑧, 𝑡, 𝐴 , … , 𝐴 )  for each point  (𝐴∗ , … , 𝐴∗ )  of the partition of the 
multidimensional volume of the defining parameters (𝐴 , … , 𝐴 ) of the problem under 
consideration. This volume in its original form is rather difficult to use, although its 
availability for further purposes is necessary. As a rule, when studying the conditions for the 
appearance of a physical effect (for example, the emergence of a space-time structure), the 
object of primary interest is not gas-dynamic fields, but certain markers or objective functions 
determined with the help of these fields. The creation of such markers and goal functions is an 
extensive topic that deserves a separate discussion and is beyond the scope of this article. 
Suppose that some function  P  that plays the role of a marker is defined and can be calculated 
for each solution  𝐹(𝑥, 𝑦, 𝑧, 𝑡, 𝐴 , … , 𝐴 )  obtained from the calculated fields of gas-dynamic 
quantities. Then the main task is to analyze the multidimensional array  𝑃(𝐴 , … , 𝐴 ). This 
problem is considerably covered by the fact that, as indicated above, in practice the number N 
usually does not exceed 5. Practical approaches to solving problems of this kind are described 
in [8, 9, 15]. As the basic method of solution, the following is indicated: decreasing the 
dimensionality of the investigated array to 3, visual representation of the new array, 
approximation of the dependence using geometric primitives of the first or second order. 

There are some ways to decrease the array dimensionality. These ways are well known 
from the group of methods for multidimensional data processing and analysis. Being frank we 
should note the fact that most of these methods were used for a long time before computers 
appearance. This field of science was known as “experimental data processing”. 

The first way is the analysis of variances for each characteristic parameter. Characteristic 
parameter is considered as coordinate direction. Data variances D1, D2, … DN  are computed 
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along the each direction. Then the variances should be arranged. The direction with minimal 
variance  Dmin = min{Di}  is rejected. This procedure sometimes is called as compactification.   

More radical kind of compactification can be implemented as follows. After variances 
computing and arranging one chooses three directions with maximal variances. If other 
variances are much less than this triplet one changes the data for directions corresponding to 
other variances by means. After such decreasing of dimensionality one can operate in 
standard 3D space. This approach has one disadvantage - it does not work if multidimensional 
data are close to hypersphere. Nevertheless for many practical cases with small 
dimensionality (4 or 5) the approach works well enough. 

Another way is the construction of different 3D data projections for various triplets of 
determining parameters. If the data on projections for some direction are close to constant 
then this direction can be rejected. 

Also, to reduce the dimension of a multidimensional array, methods of mapping into 
embedded manifolds of smaller dimension are very effective [16, 17]. Among them, the most 
common method is the principal component method (PCA). The essence of the method 
consists in the transition from the initial coordinate system to the new orthogonal basis in the 
multidimensional space under consideration, whose axes are oriented along the directions of 
maximum dispersion. The possible scheme of working with an array in this case is the 
approximation by primitives of the data array in the space of the first three main components 
and the subsequent transition to the initial space of the determining parameters. 

Among the modern methods of reducing the dimension that are common in solving the 
problems of computational gas dynamics, it is necessary to mention the POD-method (Proper 
Orthogonal Decomposition) [18]. It involves the creation of a functional orthogonal basis of a 
smaller dimension, to which the multidimensional dynamic volume under investigation is 
"pulled on". In this formulation, the eigenvectors of the covariance matrix serve as the vectors 
of the desired basis. Also, in recent years, dynamical mode decomposition (DMD) has 
become increasingly popular in the analysis of flows [19, 20]. The dynamic mode 
decomposition method (DMD) is an algorithm for searching for an evolution operator 
(inverse operator problem solutions) in a finite-dimensional space of solution of a problem 
(numerical or experimentally obtained) in a set of solutions (slices, "snapshots") at some 
successive instants. 

 

5 EXAMPLES OF THE GENERALIZED NUMERICAL EXPERIMENT 

 
This section contains the examples of the proposed above approach applied to some 

practical problems. It is applied in some variations due to different aims for each class of 
problems. 

The first example is the problem of unsteady interaction of the supersonic viscous flow 
with jet obstacle [7]. Figure 2 illustrates the example. The obstacle appears due to co-current 
underexpanded jet exhausting from the nozzle. The nozzle is placed to external supersonic 
viscous flow. Expanding jet propagates on the external surface of the nozzle creating obstacle 
in external flowfield. Typical flow structure is shown in Figure 2 (a) by streamlines. Time-
dependent control action (the velocity of pressure ratio growth in underexpanded jet) allows 
to change time-space structure of flowfield (Figure 2 (b)). New space-time structure presents 
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specific flow regime where jet propagates upwind on the external wall of the nozzle. We 
consider crucial velocity of jet pressure ratio growth as control parameter. The main target of 
research is estimating and defining the control parameter dependence on four characteristic 
parameters of the problem – Mach, Reynolds, Prandtl and Strouhal numbers. These 
parameters are varied in definite ranges creating four-dimensional space. We want to find for 
each point in this space the crucial velocity corresponding to a new time-space structure 
appearance. According to the scheme presented in the previous chapters parallel algorithm is 
implemented for computations. For the space of determining parameters two types of grids 
are chosen: 5 and 10 points for each determining parameter. It requires computing 625 and 
10000 problems. Both MPI and DVM technologies were applied to control parallel 
computations. 

 

 
Figure 2: Parameter optimization and analysis applied to jets interaction 

 
As a result of approach application five-dimensional data array is obtained, where 

variables are four characteristic parameters M∞, Re∞, Pr, Sh∞ and crucial velocity V*. For 
obtained data three principal components are defined and we construct data visual 
presentation in principal components (Figure 2 (с)). The presentation allows us to suppose 
that the points of data volume can be roughly approximated by parametric plane. After 
defining the coefficients for plane and inverse transformation to the original variables we 
obtain the sought-for dependence V*= F(M∞, Re∞, Pr, Sh∞) in analytical form. The 
dimensionality of four-dimensional array under consideration can be decreased up to three, 
because characteristic parameter  Re∞  has a very small influence on the solution. So the final 
form for V* cam be written as follows: 

 
V*= - 0.1 M∞ + 0.115 Pr + 0.24 Sh∞ 
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 Obtained results present a result of generalized numerical experiment for the class of 
problems, where the class is defined by multidimensional volume of characteristic parameters. 

 
The second example of application of general numerical experiment is devoted to 

optimization problem. The example presents a search the optimal shape of a power plant 
three-dimensional blade assembly [21]. This experiment is based on developed computational 
technology for the computation of power loads on the 3D blade assembly of a power plant in 
a wind flow. The calculation for various combinations of the key geometric parameters of the 
assembly using parallel computations makes it possible to find the optimal shape of the 
assembly with respect to its power characteristics. A virtual experimental facility for 
simulating the flow around the power plant based on the solution of the Navier–Stokes 
equations was created. Computations aimed at determining the optimal shape of the blade 
assembly taking into account constraints on its design were carried out, and the results were 
thoroughly analyzed using the proposed optimization procedure. The solution of the 
optimization problem is based on the parameterization of the design using three key 
parameters. On the discrete set of values of these parameters, the maximums of two objective 
functions—the magnitude of the total aerodynamic force and the magnitude of the rotation 
torque—determining the lift-to-drag ratio of the power plant are found. Figure 3 presents the 
shape of 3D blade assembly and pressure distribution on its surface. 

 
 

 
Figure 3: Pressure distribution on the surface of 3D blade assembly.   

The next example is addressed to the problem of the evaluation of the accuracy for 
different numerical methods. The problem of inviscid compressible flow around a cone at 
zero angle of attack is used as a base one. The results obtained with the help of various 
OpenFOAM solvers are compared with the known numerical solution of the problem with the 
variation of cone angle and flow velocity [22]. Cone angle β changes from 10° to 35° in steps 
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of 5°. Mach number varies from 2 to 7.
Fig. 4. Here angle β is a half of cone angle as shown in Fig. 
were selected from the OpenFOAM software package:
RhoPimpleFoam, RhoPimpleFoam
presented as errors in the form of an analog of the L2 norm
results in a form of a change in deviation from the exact solution for pressure depending on 
the cone angle and the velocity for the solver 
for all solvers. 
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Figure 5: Change in deviation fr
the velocity for the solver 

This methodical research can serve as a basis for selecting the OpenFoam
calculating the inviscid supersonic flow around the elongated bodies of rotation. The results 
of solvers comparison can also be useful for developers of OpenFoam software content. The 
results obtained made it possible to get a general idea of t
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Mach number varies from 2 to 7. The scheme of a flow around a cone
Here angle β is a half of cone angle as shown in Fig. 4. For comparison, 

were selected from the OpenFOAM software package: RhoCentralFoam
RhoPimpleFoam. The results of such kind of numericsl experiment were 

the form of an analog of the L2 norm for all solvers. Fig.5 illustrates the 
hange in deviation from the exact solution for pressure depending on 

the cone angle and the velocity for the solver rhoCentralFoam. Such changes were obtained 

 

Figure 4: Scheme of a flow around a cone. 

Change in deviation from the exact solution for pressure depending on the cone angle and 
the velocity for the solver rhoCentralFoam. 

methodical research can serve as a basis for selecting the OpenFoam
calculating the inviscid supersonic flow around the elongated bodies of rotation. The results 
of solvers comparison can also be useful for developers of OpenFoam software content. The 
results obtained made it possible to get a general idea of the calculation errors for all solvers.
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Another one example of generalized numerical experiment is devoted to the problem of 
tuning the properties of hybrid finite
description of developed program tool Burgers2. This program tool is intended for tuning and 
optimization of computational properties for hybrid finite
Burgers equation. One-dimensional model Burgers equation desc
disturbances for dissipative medium. The equation has exact solution, so it is widely used for 
tuning-up of computational tools. Described program tool is based on combining of 
optimization problem solution and visual data presentation
error surface and error function are implemented as program tool features. User is able to 
visualize error function distribution for any chosen moment of time. These visual 
presentations allow analyzing and control computa
schemes under consideration. Users have possibility of creating hybrid finite
schemes and analyzing computational properties for chosen grid template provided by 
program tool. Visual presentation of 
weight coefficients for hybrid finite
make the calculations simultaneously
the concept of generalized numerical experiment. Fig
error for one of the hybrid scheme variants. 
oscillations occur. 

 

 

The next example is aimed to evaluation of parallelization effectiveness. Here the problem 
of Burgers equation from previous example is used as a base one. 
used an implicit finite difference scheme, described in detail in
parametric problem, the viscosity coefficient
split in certain ranges, and for each pair of values the problem described above was solved. 
During the experiments on parallelization of this prog
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Another one example of generalized numerical experiment is devoted to the problem of 
tuning the properties of hybrid finite-difference schemes [23]. The paper 
description of developed program tool Burgers2. This program tool is intended for tuning and 
optimization of computational properties for hybrid finite-difference schemes applied to 

dimensional model Burgers equation describes propagation of 
disturbances for dissipative medium. The equation has exact solution, so it is widely used for 

up of computational tools. Described program tool is based on combining of 
optimization problem solution and visual data presentation. Visual presentations of maximal 
error surface and error function are implemented as program tool features. User is able to 
visualize error function distribution for any chosen moment of time. These visual 
presentations allow analyzing and control computational properties of hybrid finite
schemes under consideration. Users have possibility of creating hybrid finite
schemes and analyzing computational properties for chosen grid template provided by 
program tool. Visual presentation of optimization problem solution allows finding of suitable 
weight coefficients for hybrid finite-difference scheme under consideration. 
make the calculations simultaneously different sets of weight coefficients 

generalized numerical experiment. Figure 6 presents the surface of absolute 
error for one of the hybrid scheme variants. The negative data area indicates where the 

Figure 6: Surface of absolute error. 

The next example is aimed to evaluation of parallelization effectiveness. Here the problem 
of Burgers equation from previous example is used as a base one. To solve this problem, we 
used an implicit finite difference scheme, described in detail in [23]. Wh

viscosity coefficient and weight coefficient of the difference scheme 
split in certain ranges, and for each pair of values the problem described above was solved. 
During the experiments on parallelization of this program code with DVM, the following 

Another one example of generalized numerical experiment is devoted to the problem of 
The paper [23] contains the 

description of developed program tool Burgers2. This program tool is intended for tuning and 
difference schemes applied to 

ribes propagation of 
disturbances for dissipative medium. The equation has exact solution, so it is widely used for 

up of computational tools. Described program tool is based on combining of 
. Visual presentations of maximal 

error surface and error function are implemented as program tool features. User is able to 
visualize error function distribution for any chosen moment of time. These visual 

tional properties of hybrid finite-difference 
schemes under consideration. Users have possibility of creating hybrid finite-difference 
schemes and analyzing computational properties for chosen grid template provided by 

optimization problem solution allows finding of suitable 
difference scheme under consideration. The user can 

 in accordance with 
6 presents the surface of absolute 
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The next example is aimed to evaluation of parallelization effectiveness. Here the problem 
To solve this problem, we 

]. When solving the 
coefficient of the difference scheme 

split in certain ranges, and for each pair of values the problem described above was solved. 
ram code with DVM, the following 
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parameters varied: N is the number of MPI processes, PPN is the number of MPI processes 
per compute node. In the conducted experiments, the number of MPI processes N varied from 
1 to 32, and the number of MPI processes per one PPN computing node ranged from 1 to 8. 
The results are presented in Table 1 below. In the table, the following notation is used: N is 
the number of MPI processes, PPN is the number of MPI processes running on one node, T is 
the time in seconds, S is the acceleration T/Tserial, E is the efficiency of parallelization. 

 
 

N PPN T S E 

serial ------ 51,4 1 1 
1 1 51,4 1,001 1,001 
2 1 25,7 1,997 0,998 
2 2 25,7 1,998 0,999 
4 1 12,9 3,988 0,997 
4 2 12,9 3,987 0,997 
4 4 12,9 3,991 0,998 
8 1 7,61 6,753 0,844 
8 2 6,71 7,662 0,958 
8 4 6,73 7,641 0,955 
8 8 6,98 7,363 0,920 
16 2 4,09 12,580 0,786 
16 4 3,64 14,129 0,883 
16 8 3,76 13,652 0,853 
32 2 2,08 24,684 0,769 
32 4 2,09 24,613 0,769 
32 8 2,16 23,782 0,743 

Table 1 : Burgers equation, implicit scheme. 

The obtained results of calculations allow to estimate the effectiveness of the implemented 
solution for multi-tasking parallelization. 

The examples show applicability of presented approach for a wide range of practical 
applications, so the approach can be considered as quite universal one. 

 

6 CONCLUSIONS 

The concept of generalized computing experiment presented in the article has a wide range 
of possible applications. First of all, for the problems of computational fluid dynamics such an 
approach makes it possible to obtain a solution not only for one, separately taken, problem, 
but for a whole class of problems defined in a certain range of the complex of determining 
parameters. A generalized computing experiment involves splitting each of the defining 
parameters of a problem within a certain range. Thus, a grid decomposition is formed for 
some multidimensional parallelepiped composed of the defining parameters of the considered 
problem of gas dynamics. For each point of this grid, the problem is calculated in the space of 
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the determining parameters. Practical implementation of the approach becomes possible with 
the use of parallel calculations in multitask mode. The results of calculations are 
multidimensional volumes of data that can be processed using data analysis tools and visual 
analytics It should be noted that the application of the approach makes it possible to conduct 
exploratory calculations on coarse grids for a class of problems with subsequent refinement 
for sets of determining parameters of special interest. 

 
Acknowledgements: Author acknowledges the support by grants of RFBR № 16-01-00553А 
and 17-01-444А. 
 

REFERENCES 

[1] M. D. Van Dyke, Album of Fluid Motion (Parabolic, California, 1982; Mir, Moscow, 1986). 
[2] T. J. Mueller, “Flow Visualization by Direct Injection,” in Fluid Mechanics Measurements 

(Hemisphere, 1983), pp. 307–375. 
[3] E.N. Bondarev, V.T. Dubasov, Y.A. Ryzhov et al., Aerigidromeckanika. M.: Mashinostroenie, 

(1993). 
[4] L.V. Kozlov, “Experimental investigation of surface friction on a flat plate in a supersonic flow in 

the presence of heat transfer”. Izvestiya AN SSSR, OTN, Mekhanika i mashinostroenie, 2, (1963). 
[5] A.E. Bondarev, “Effect of supersonic stream parameters on the characteristic time of transient 

step flow”. Izvestiya AN SSSR, Mekhanika zhidkosti I gaza, 4, 137-140 (1989). 
[6] A.E. Bondarev, “Analysis of Space-Time Flow Structures by Optimization and Visualization 

Methods”, Transactions on Computational Science XIX, LNCS 7870, 158-168 (2013). 
[7]  A.E. Bondarev and V.A. Galaktionov, “Parametric Optimizing Analysis of Unsteady Structures 

and Visualization of Multidimensional Data”, International Journal of Modeling, Simulation and 
Scientific Computing, V.04, supp01, (2013) DOI 10.1142/S1793962313410043.  

[8]  A.E. Bondarev and V.A. Galaktionov, “Analysis of Space-Time Structures Appearance for Non-
Stationary CFD Problems”, Procedia Computer Science, 51, 1801–1810 (2015). 

[9]  A.E. Bondarev, “Design and analysis of multidimensional parametrical solutions for time-
dependent CFD problems”, Mathematica Montisnigri, XXXIII, 58-68 (2015). 

[10] P. Pacheco, Programming Parallel with MPI. San Francisco, CA: Morgan Kaufmann, 1997. 
[11] DVM-system. [Online]. Available: http://dvm-system.org/ 
[12] V.A. Bakhtin, B.N. Chetverushkin, V.A. Kryukov, E.V. Shil’nikov, “Extension of the DVM 

parallel programming model for clusters with heterogeneous nodes”, Doklady Mathematics, 84 
(3), 879-881 (2013). 

[13] Hybrid supercomputer K-100. [Online]. Available: 
http://www.kiam.ru/MVS/resourses/k100.html 

[14] A. V. Ivanov and S. A. Khilkov, “Aiwlib library as the instrument for creating numerical 
modeling applications”, Scientific Visualization, 10(1), 110 - 127 (2018). DOI: 
10.26583/sv.10.1.09 

[15] A. Bondarev, “Multidimensional Data Analysis in CFD Problems”, Scientific Visualization, 6(5), 
61-68 (2014). 

[16] A. Gorban, B. Kegl, D. Wunsch, A. Zinovyev (Eds.), Principal Manifolds for Data Visualisation 
and Dimension Reduction (LNCSE 58 ed.). Berlin – Heidelberg – New York: Springer, (2007). 

[17] A. Zinovyev, Vizualization of multidimensional data, Krasnoyarsk: Krasnoyarsk Univ., (2000). 
[18] G. Kerschen, J.-C. Golinval, A. F. Vakakis, L. A. Bergman, “The Method of Proper Orthogonal 

Decomposition for Dynamica Characterization and Order Reduction of Mechanical Systems: An 
Overview”, Nonlinear Dynamics 41, 147–169 (2005). 

63



A. Bondarev 

[19] P.J. Schmid, “Dynamic mode decomposition of numerical and experimental data”, Journal of 
Fluid Mechanics  656(1), 5-28 (2010). 

[20] A. K. Alekseev, D. A Bistrian, A. E. Bondarev, I. M. Navon,  “On Linear and Nonlinear Aspects 
of Dynamic Mode Decomposition”, International Journal for Numerical Methods in Fluids, 
82(6), 348–371 (2016). DOI: 10.1002/fld.4221. 

[21] Andreev S.V. et al., “A Computational Technology for Constructing the Optimal Shape of a 
Power Plant Blade Assembly Taking into Account Structural Constraints”, Programming and 
Computer Software, 43(6), 345-352 (2017).  DOI:  10.1134/S0361768817060020  

[22]  Alexander E. Bondarev and Artem E. Kuvshinnikov, “Analysis of the Accuracy of OpenFOAM 
Solvers for the Problem of Supersonic Flow Around a Cone”, Lecture Notes in Computer Science 
(LNCS), 10862, 221–230, (2018). DOI: 10.1007/978-3-319-93713-7_18   

[23] A. E. Bondarev et al., “Design of program tool BURGERS2 for hybrid finite-difference schemes 
optimization and visualization”, Scientific Visualization, 5(1), 26-37 (2013).  

 
 
Received May 15, 2018 
 

64




