ДВУХПАРАМЕТРИЧЕСКИЙ ЭНТРОПИЙНЫЙ ФУНКЦИОНАЛ ШАРМА-МИТТАЛА КАК ОСНОВА СЕМЕЙСТВА ОБОБЩЕННЫХ ТЕРМОДИНАМИК НЕЭКСТЕНСИВНЫХ СИСТЕМ

А.В. КОЛЕСНИЧЕНКО

Институт прикладной математики им. М.В. Келдыша РАН, Москва, Россия e-mail: kolesn@keldysh.ru, web page: http://keldysh.ru/kolesnichenko/person.htm

Ключевые слова: Принципы неэкстенсивной статистической механики, энтропия Шарма-Миттала, степенной закон распределения.

Аннотация. Исследованы свойства семейства обобщённых энтропий, заданного двухпараметрической мерой Шарма-Миттала, которое включает энтропию Тсаллиса, энтропию Реньи, энтропию Ландсберга-Ведрала, энтропию Гаусса и классическую энтропию Больцмана-Гиббса-Шеннона. Построена на базе статистики Шарма-Миттала модифицированная термодинамика неэкстенсивных систем, и показана её взаимосвязь с обобщёнными однопараметрическими термодинамиками, основанными на деформированных энтропиях семейства. Получено обобщение нулевого закона термодинамики для двух независимых неэкстенсивных систем при их тепловом контакте, вводящее в рассмотрение так называемую физическую температуру, отличающуюся от инверсии множителя Лагранжа β . Этот факт потребовал переопределения термодинамических соотношений, полученных в рамках статистики Шарма-Миттала, которое проведено в работе с учетом обобщённого первого закона термодинамики и преобразования Лежандра. Наконец, на основе двухпараметрической информации различия Шарма-Миттала сформулированы и доказаны теорема Гиббса и H-теорема Больцмана об изменении этих мер при эволюции во времени.

TWO-PARAMETER FUNCTIONAL OF ENTROPY SHARMA-MITTAL AS THE BASIS OF THE FAMILY OF GENERALIZED THERMODYNAMICES OF NON-EXTENSIVE SYSTEMS

A.V. KOLESNICHENKO

Keldysh Institute of Applied Mathematics, Russian Academy of Science e-mail: kolesn@keldysh.ru, web page: http://keldysh.ru/kolesnichenko/person.htm

Summary. The properties of the family of generalized entropies given by the Sharm–Mittal entropy, which includes the entropy of Tsallis, the Renyi entropy, the Landsberg–Vedral entropy, the Gauss entropy, and the classical Boltzmann–Gibbs–Shannon entropy are investigated. Based on the Sharm–Mittal statistics, the two-parameter thermodynamics of non-extensive systems is constructed and its interrelation with generalized one-parameter thermodynamices based on the named deformed entropies of the family is shown.

2010 Mathematics Subject Classification: 85A35, 91B50, 82C40.

Key words and Phrases: Principles of nonextensive statistical mechanics, Sharma-Mittal entropy, power law of distribution.

A generalization of the zero law of thermodynamics is obtained for two independent non-extensive systems at their thermal contact, introduce into consideration a so-called physical temperature different from the inversion of the Lagrange multiplier β . This fact has demanded overdetermination of the thermodynamic relations received in frameworks statistics of Sharma–Mittala which is spent in work taking into account the generalised first law of thermodynamics and transformation of Legendre. On the basis of the two-parametric information of Sharm–Mittal's difference, Gibbs's theorem and the H-theorem on the change of these measures in the course of time evolution are formulated and proved.

1 ВВЕДЕНИЕ

Статистическая энтропия Больцмана—Гиббса—Шеннона и основанная на ней классическая статистическая механика являются чрезвычайно полезным инструментарием при изучении широкого круга простых физических систем. Эти системы, для которых, безусловно, целесообразно использовать классическую статистику и разработанные на её основе теории, можно условно охарактеризовать малым диапазоном пространственно-временных корреляций, эвклидовостью геометрии фазового пространства, марковостью случайных процессов, локальностью силового взаимодействия между элементами системы, эргодичностью динамических процессов и т.п. Такие системы хорошо описываются энтропией Больцмана—Гиббса—Шеннона и, как правило, следуют экспоненциальному закону вероятностных распределений состояния.

Существует, однако, целый круг сложных систем¹⁾ (природных, искусственных и социальных), которые, в отличие от простых, характеризуются большой дальностью пространственно-временных корреляций, глобальностью силовых взаимодействий между элементами системы, иерархичностью (фрактальностью и мультифрактальностью) геометрии фазового пространства, немарковостью процессов (эредитарностью), неэргодичностью динамических процессов, наличием асимптотически степенных вероятностных распределений. Довольно широкий класс подобных систем (хотя далеко не всех) адекватно описывается неэкстенсивной (неаддитивной) статистической механикой, основанной, в частности, на параметрических энтропиях Тсаллиса^{1,2,3} и Реньи^{4,5}, которые сохраняют гносеологическую структуру (логическую схему построения) классической статистики (см., например,⁶⁻¹⁸). Важным преимуществом неэкстенсивных статистик по сравнению с классической статистикой Гиббса является асимптотический степенной закон распределения вероятностей (проявляющийся при максимизации соответствующих параметрических энтропий), который не зависит от экспоненциального поведения, обусловленного распределением Гиббса.

Неэкстенсивная статистика Тсаллиса успешно применяется ко многим сложным системам начиная от нелинейных диффузионных уравнений 19 , обобщенных кинетических уравнений 20,21 , систем Фоккера-Планка 22 , H-теоремы Больцмана $^{23-27}$, удельной те-

ⁱ) Сложные системы состоят из многих элементов, частей, компонентов, подсистем, которые взаимодействуют между собой сложным (нелинейным) образом. В силу характерного для многих сложных систем хаотического поведения, ограничивающего возможности детерминированного описания, моделирование подобных систем возможно лишь в статистических терминах, как то: плотность вероятности, математическое ожидание, дисперсия, ляпуновские показатели и т.п.

плоемкости гармонического осциллятора 28 , квантовой статистики 29 , до изучения космических систем с дальним силовым взаимодействием 30,31 , межзвездной турбулентности 32 , эволюции астрофизических дисков 33,34 , скорости солнечного звука 35 , релаксации спинового стекла 36 , городской транспортной системы 37 , биофизики, экономики, нейрофизики и т.д.

Энтропия Реньи эффективно используется не только в физике фракталов и в теории информации ^{7,38-51}, но и в различных областях статистической механики, связанных с динамическим поведением сложных хаотических систем. Последнее связано с тем, что между теорией фракталов, опирающейся на геометрию и теорию размерности, с одной стороны, и теорией хаоса существует глубокая связь. Использование статистики Реньи привело к значительному прогрессу в исследованиях ряда аномальных физических явлений, в частности, в теории черных дыр⁵¹, в ядерной физике⁵², при изучении фрактальных и мультифрактальных систем в космологии ^{31,40,41,53}, в квантовой статистике ⁵⁴⁻⁵⁶ и т.д. Одновременно, наличие степенного закона в неэкстенсивной статистике позволило сконструировать неаддитивные термодинамики, в частности, на основе энтропии Тсаллиса ^{7,11,57-60} и энтропии Реньи ^{53,61,62}.

Несколько позднее в статистическую механику был введён новый функционал энтропии — двухпараметрическая энтропия Шарма—Миттала 63 (SM), которая, в частности, обобщает энтропии Больцмана—Гиббса—Шеннона, Реньи и Тсаллиса, посредством манипулирования двумя параметрами деформации, тем самым рассматривая эти энтропии как некоторые предельные однопараметрические случаи $^{64,65-68}$. Свойства энтропии Шарма—Миттала были исследованы рядом авторов (см., например, $^{66,69-73}$). Многие неэкстенсивные однопараметрические энтропии, введённые в литературе в рамках обобщённой статистической механики, относятся к семейству SM и, таким образом, могут изучаться по единообразной схеме. Среди них, упомянутые выше энтропии Больцмана—Гиббса—Шеннона, Реньи и Тсаллиса, а также энтропия Ландсберга—Ведрала 74 , Гауссова энтропия 64 и некоторые другие.

Энтропия Шарма—Миттала, введённая первоначально в теории информации, также была использована для построения термостатистики⁶⁴. В работе⁶⁹ были даны точные решения нестационарных уравнений Фоккера—Планка, связанных с энтропиями Реньи и Шарма—Миттала. В работах^{66,75} для получения обобщённых термодинамических соотношений на базе энтропии SM учитывалась гипотеза мультипликативности вероятностного распределения совместной вероятности двух независимых систем.

Целью данной работы является построение на основе неэкстенсивной статистической механики обобщённых термодинамик, соответствующих однопараметрическим энтропиям, принадлежащим к семейству Шарма—Миттала. При этом осреднённые значения динамических параметров системы получены по нормированному эскортному распределению, которое обычно используется при статистическом рассмотрении хаотических сложных систем, состоящих из большого числа взаимодействующих частей. Однако в отличие от ряда известных работ (см., например, 66,72,76), в которых подобные исследования по термодмнамике проведены с привлечением двукратно деформированных экспоненты и логарифма (введённых первоначально в теории информации Шарма и Митталем в 1975 г.), особенность данной работы состоит в том, что построение обобщённых неэкстенсивных термодинамик проведено с помощью более простых и хорошо изученных однократно деформированных функций — деформированного логарифма и экспонента Тсаллиса.

2 ОДНОПАРАМЕТРИЧЕСКИЕ ТИПЫ ЭНТРОПИЙ СЕМЕЙСТВА ШАРМА—МИТТАЛА

Введённая Шарма и Митталом (1975) двухпараметрическая энтропийная мера случайной величины $p = \{p_i\}$ определяется формулой

$$S_{q,r}^{SM}(p) := k \frac{1 - (\sum_{j} p_{j}^{q})^{(r-1)/(q-1)}}{r - 1}, \tag{1}$$

где r,q>0, $r\neq 1\neq q$, $r\neq q$. В выражении (1) $p=\{p_j\}_{j=1,\dots,W}$ — дискретная функция распределения вероятностей состояния, а W обозначает количество доступных в системе микросостояний; k — постоянная Больцмана.

Энтропийная мера (1) включает как классическую, так и деформированные однопараметрические энтропии, хорошо известные в литературе, в частности:

• энтропию Больцмана-Гиббса-Шеннона

$$S_{q \to 1, r \to 1}^{SM} = S^{BGS}(p) := -k \sum_{j} p_{j} \ln p_{j};$$
 (2)

• энтропию Реньи^{4,5}

$$S_{q,r\to 1}^{SM} = S_q^R(p) := \frac{k}{(1-q)} \ln(\sum_j p_j^q), \quad q > 0, \ q \neq 1;$$
 (3)

• энтропию Тсаллиса^{1,2,3}

$$S_{q,q}^{SM} = S_q^{Ts}(p) := k \frac{1 - \sum_j p_j^{\ q}}{(q - 1)}; \tag{4}$$

энтропию Ландсберга–Ведрала⁷⁴

$$S_{q,2-q}^{SM} = S_q^{LV} := k \frac{1 - (\sum_j p_j^{\ q})^{-1}}{(1-q)};$$
 (5)

• энтропию Гаусса⁶⁴

$$S_{q \to 1, r}^{SM} = S_r^G := k \frac{1 - \left\{ \exp(r - 1) \sum_j p_j \ln p_j \right\}}{(r - 1)}, \quad q > 0, \quad q \neq 1.$$
 (6)

Экспонента Тсаллиса и деформированный логарифм. Далее мы будем широко использовать так называемые деформированные функции, в частности, деформированный логарифм $\ln_q(x)$ и деформированную экспоненциальную функцию (экспоненту Тсаллиса) $\exp_q(x)$, которые определяются следующим образом 11:

$$\ln_q(x) := \frac{x^{1-q} - 1}{1-q}, \quad x \in \mathbb{R}^+, \quad q \in \mathbb{R},$$
(7)

$$\exp_{q}(x) := \left[1 + (1-q)x\right]_{+}^{\frac{1}{1-q}} = \begin{cases} 0, & ecan \ q < 1 \ u \ x < -1/1 - q; \\ \left[1 + (1-q)x\right]_{+}^{1/1-q} ecan \ q < 1 \ u \ x \ge -1/1 - q; \\ \left[1 + (1-q)x\right]_{+}^{1/1-q} ecan \ q > 1 \ u \ x < -1/1 - q, \end{cases}$$
(8)

где $x \in \mathbb{R}$, $q \in \mathbb{R}$; выражение, стоящее в квадратных скобках, либо положительно, либо равно нулю, $[y]_+ \equiv \max(y,0)$. Из определения деформированной экспоненты Тсаллиса следует, что для q < 1, экспонента $\exp_q(x)$ исчезает для $x \le -1/(1-q)$, непрерывна и монотонно увеличивается от 0 до ∞ , когда x увеличивается от 0 до ∞ ; когда x увеличивается от x0 до x0, когда x2 увеличивается от x3 до x4 увеличивается от x4 увеличивается от x5 до x6 увеличивается от x6 до x7, когда x8 увеличивается от x8 до x9 до x9, когда x9 увеличивается от x9 до x9, когда x9 увеличивается от x9.

Легко проверить, что в пределе $q \to 1$ деформированные функции принимают стандартный вид:

$$\ln_1(x) = \lim_{q \to 1} \ln_q(x) = \ln(x) \quad (\forall x),$$

$$\exp_1(x) = \lim_{q \to 1+0} \exp_q(x) = \lim_{q \to 1-0} \exp_q(x) = \exp(x) \quad (\forall x),$$
 (9)

а так же, что

$$\exp_{a}[\ln_{a}(x)] = \ln_{a}[\exp_{a}(x)] = x, \quad \forall x; \forall a.$$
 (9*)

Можно также убедиться, что для деформированной экспоненты справедливы следующие соотношения:

$$\frac{1}{\exp_{q}(x)} = \exp_{2-q}(-x) , \quad [\exp_{q}(x)]^{a} = \exp_{1-(1-q)/a}(ax) , \quad \frac{d}{dx} e_{q}^{x} = (e_{q}^{x})^{q} \quad (\forall q) ,$$

$$\exp_{q}(x) \cdot \exp_{q}(y) = \exp_{q}[x + y + (1-q)xy] \quad (\forall x; \forall q) . \tag{10}$$

Соответственно для деформированного логарифма $\ln_q(x)$ имеем:

$$\ln_{q} \left(\frac{x}{y} \right) = \frac{1}{y^{1-q}} \left(\ln_{q} x - \ln_{q} y \right), \quad \ln_{q} \left(\frac{1}{x} \right) = -\frac{1}{x^{1-q}} \ln_{q} x, \quad (\forall (x, y); \forall q),$$
 (11)

$$-\ln_{2-q}(1/x) = \ln_q(x), \quad (x > 0; \forall q), \quad \frac{d}{dx} \ln_q x = \frac{1}{x^q} \quad (x > 0; \forall q), \tag{11*}$$

$$\ln_{q}(xy) = \ln_{q}(x) + \ln_{q}(y) + (1 - q)\ln_{q}(x)\ln_{q}(y) \quad (\forall (x, y); \forall q). \tag{12}$$

Приведенные соотношения будут использоваться далее.

Энтропийный функционал Шарма-Миттала, как родоначальник семейства однопараметрических энтропий. Продемонстрируем теперь, что определяющие формулы для энтропий (1)-(6) связаны равенствами, представляющими чередования обычных (\ln , exp) и деформированных (\ln_q , exp $_q$) логарифмов и экспонент, заданных формулами (7) и (8).

Используя обозначение

$$c_q := \sum_{i} p_i^{\ q} \equiv \langle 1 \rangle_q \tag{13}$$

для так называемой обобщённой статистической суммы, перепишем выражения (3) и (4) для энропий Реньи и Тсаллиса в виде

$$S_q^R = \frac{k}{1-q} \ln \left[\sum_j p_j^q \right] = \frac{k}{1-q} \ln c_q, \tag{14}$$

$$S_q^{Ts} = k \frac{\left[\left(\sum_j p_j^{\ q} \right)^{1/(1-q)} \right]^{(1-q)} - 1}{1-q} = k \ln_q \left[c_q^{\frac{1}{1-q}} \right]. \tag{15}$$

Сопоставление этих выражений даёт их связь

$$c_q^{\frac{1}{1-q}} = \exp(k^{-1}S_q^R) = \exp_q(k^{-1}S_q^{Ts}), \tag{16}$$

из которой следуют связующие эти энтропии равенства

$$S_{q}^{R}(p) = k \ln \left\{ \exp_{q} \left[k^{-1} S_{q}^{Ts}(p) \right] \right\}, \quad S_{q}^{Ts}(p) = k \ln_{q} \left\{ \exp\left[k^{-1} S_{q}^{R}(p) \right] \right\}.$$
 (17)

Формула (16) позволяет также получить равенства, связывающие энтропии Шарма—Миттала и Ландсберга—Ведрала с энтропиями Тсаллиса и Реньи:

$$S_{q,r}^{SM}(p) = k \frac{\left[\left(\sum_{j} p_{j}^{q} \right)^{1/(1-q)} \right]^{(1-r)} - 1}{1-r} = k \ln_{r} \left[c_{q}^{\frac{1}{1-q}} \right] =$$

$$= k \ln_{r} \exp_{q} \left[k^{-1} S_{q}^{Ts}(p) \right] = k \ln_{r} \left\{ \exp\left[k^{-1} S_{q}^{R}(p) \right] \right\}, \tag{18}$$

$$S_q^{LV}(p) = -k \frac{\left[\left(\sum_j p_j^q \right)^{1/(q-1)} \right]^{1-q} - 1}{1-q} =$$

$$= -k \ln_q \left[c_q^{\frac{1}{q-1}} \right] = -k \ln_q \left\{ \exp[-k^{-1} S_q^R(p)] \right\}. \tag{19}$$

Таким образом, q -деформированный логарифм и экспонента Тсаллиса позволяют записать все перечисленные меры в компактной форме (16)-(19). Кроме этого, лаконичные соотношения (17)-(19) для энтропий облегчают нахождение предельных значений функционалов (1)-(6), по сравнению с их записью в явном виде. В частности, при использовании формулы (18) и соотношений (9*), легко найти следующие пределы:

$$S_{q,r\to q}^{SM}(p) = k \ln_{r\to q} \exp_q[k^{-1} S_q^{Ts}(p)] = S_q^{Ts}(p), \tag{20}$$

$$S_{q,r\to 1}^{SM}(p) = k \ln_{r\to 1} \left\{ \exp[k^{-1} S_q^R(p)] \right\} = S_q^R(p).$$
 (21)

Поскольку при $q \to 1$ имеем $p_j^{q-1} = \exp\left\{(q-1)\ln p_j\right\} \to 1 + (q-1)\ln p_j$, то предельное значение энтропии Тсаллиса $\lim_{q \to 1} S_q^{Ts}(p)$ сводится к энтропии Больцмана–Гиббса–Шеннона S^{BGS} . Действительно, при $q \to 1$ имеем:

$$S_{q\to 1}^{T_S}(p) = \lim_{q\to 1} \frac{k}{q-1} \sum_{j} p_j (1 - p_j^{q-1}) = -k \sum_{j} p_j \ln p_j = S^{BGS}(p).$$
 (22)

Аналогично можно получить следующие предельные значения:

$$S_{q \to 1}^{R}(p) = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} p_{j}^{q-1}\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_{j} p_{j} (1 + (q - 1) \ln p_{j})\right]}{1 - q} = k \lim_{q \to 1} \frac{\ln\left[\sum_$$

$$= k \lim_{q \to 1} \frac{\ln[1 + (q - 1)\sum_{j} p_{j} \ln p_{j}]}{1 - q} \simeq -k \sum_{j} p_{j} \ln p_{j} = S^{BGS}(p),$$
 (23)

$$S_{q\to 1}^{LV}(p) = -k \lim_{q\to 1} \left\{ \ln_q \exp[-k^{-1} S_q^R(p)] \right\} = S^{BGS}(p).$$
 (24)

Наконец, используя соотношения (18) и (23), получим формулу для определения энтропии Гаусса

$$S_{q\to 1,r}^{SM}(p) = k \lim_{q\to 1} \ln_r \left\{ \exp[k^{-1}S_q^R(p)] \right\} = k \ln_r \exp(k^{-1}S^{BGS}) =$$

$$= k \frac{1 - \exp\left\{ (r-1)\sum_j p_j \ln p_j \right\}}{(r-1)} = S_r^G(p). \tag{25}$$

Псевдоаддитивность энтропии Шарма-Миттала для независимых систем. По-кажем, что подобно энтропии Тсаллиса, энтропия Шарма-Миттала подчиняется псевдоаддитивному закону для двух статистически независимых системы. Пусть общая система характеризуется нормированным распределением вероятностей микросостояний $p_{12} = \{p_{ij}\}_{i,j=1,\dots,W}$ и энтропией Шарма-Миттала

$$S_{q,r}^{SM}(p_{12}) = k \ln_r \left\{ \exp_q \left[k^{-1} S_q^{Ts}(p_{12}) \right] \right\}.$$
 (26)

Для двух независимых систем справедливо мультипликативное распределение $p_{12}=p_1p_2$, где $p_1=\{p_i\}_{i=1,\dots,W}$ и $p_2=\{p_j\}_{j=1,\dots,W}$ относятся соответственно, к первой и второй системе. Подставляя распределение $p_{12}=p_1p_2$ в (26) и учитывая формулы (10), (12) и (18), получим равенство

$$S_{q,r}^{SM}(p_{12}) = k \ln_{r} \left\{ \exp_{q} \frac{1}{k} \left[S_{q}^{Ts}(p_{1}) + S_{q}^{Ts}(p_{2}) + (1 - q) S_{q}^{Ts}(p_{1}) S_{q}^{Ts}(p_{2}) \right] \right\} =$$

$$= k \ln_{r} \left\{ \exp_{q} \left[\frac{1}{k} S_{q}^{Ts}(p_{1}) \right] \cdot \exp_{q} \left[\frac{1}{k} S_{q}^{Ts}(p_{2}) \right] \right\} = k \ln_{r} \left\{ \exp_{q} \left[\frac{1}{k} S_{q}^{Ts}(p_{1}) \right] \right\} +$$

$$+ k(1 - r) \ln_{r} \left\{ \exp_{q} \left[\frac{1}{k} S_{q}^{Ts}(p_{1}) \right] \right\} \left\{ \exp_{q} \left[\frac{1}{k} S_{q}^{Ts}(p_{2}) \right] \right\} + k \ln_{r} \left\{ \exp_{q} \left[\frac{1}{k} S_{q}^{Ts}(p_{2}) \right] \right\} =$$

$$= S_{q,r}^{SM}(p_{1}) + S_{q,r}^{SM}(p_{2}) + \frac{1}{k} (1 - r) S_{q,r}^{SM}(p_{1}) S_{q,r}^{SM}(p_{2}), \tag{27}$$

из которого следует свойство псевоаддитивности энтропии Шарма-Миттала для двух независимых систем. Параметр r в (27) определяет степень неаддитивности энтропий из семейства Шарма-Миттала. Из этого выражения видно, что только для энтропий Реньи (r=1) и Больцмана-Гиббса-Шеннона (r,q=1) выполняется закон аддитивности.

3 ЭКСТРЕМУМ ЭНТРОПИИ ШАРМА-МИТТАЛА И НЕГИББСОВОЕ РАВНОВЕСНОЕ РАСПРЕДЕЛЕНИЕ

Пусть рассматриваемая статистическая система с мерой Шарма-Миттала реализуется двумя множествами: множеством всех состояний системы, описываемых распреде-

лением вероятностей $p = \{p_1, ..., p_W\}$, и множеством динамических параметров $T(p) = \{T_1, ..., T_W\}$, характеризующих систему. Будем далее считать, что средневзвешенное каждой случайной величины T в состоянии с распределением p определяется по формулеⁱⁱ⁾

$$\langle T \rangle_q := \sum_{i} T_j f_j(q) = c_q^{-1} \sum_{i} T_j p_j^q ,$$
 (28)

где

$$f_i(q) := p_i^q / \sum_i p_i^q = p_i^q / c_q$$
 (29)

— эскортное (нормированное) распределение 77 , которое обычно используется при рассмотрении хаотических, фрактальных и мультифрактальных систем. Легко показать, что распределения p_i и f_i могут быть записаны в следующих эквивалентных формах

$$p_i = f_i^{1/q} \left[c_q(p) \right]^{1/q} = f_i^{1/q} / \sum_j f_j^{1/q},$$

$$f_i(q) = p_i^q \exp\{k^{-1}(q-1)S_q^R(p)\},\,$$

Для определения равновесного распределения системы найдём безусловный экстремум энтропии Шарма-Миттала

$$S_{q,r}^{SM}(p) = \frac{k}{r-1} \left(1 - c_q^{(r-1)/(q-1)} \right) = k \ln_r \left[c_q^{1/(q-1)} \right]$$
 (30)

при заданности среднего значения E_q энергии системы и сохранении нормировки распределения p :

$$E_q := \sum_i \varepsilon_i f_i = const, \sum_i p_i = 1.$$

Согласно вариационному принципу Джейнса⁷⁸, для нахождения вероятного распределения необходимо вычислить безусловный экстремум функционала

$$\Lambda(p) := k \ln_r \left[\sum_j p_j^q \right]^{1/(q-1)} - \beta \sum_j \varepsilon_j p_j^q / \sum_j p_j^q - k\alpha \sum_j p_j, \qquad (31)$$

 $^{^{\}rm ii)}$ В связи с определением средневзвешенного значения случайной величины T отметим следующее: в неэкстенсивной статистике возможны три способа осреднения по распределениям: $p_i, p_i^q, f_i \equiv p_j^q/\sum j p_j^q$ (см. Bibliography/ http://tsallis.cat. cbpf. br/biblio.htm). Эти способы осреднения, каждый из которых имеет свои преимущества и недостатки, определяют совершенно разные q-термодинамики, соответствующие тем или иным статистически аномальным системам. По этой причине выбор осреднения в физических приложениях носит принципиальный характер, поскольку он оказывается существенным при обработке экспериментальных данных 49,64,66,68 .

где параметры β и α являются неопределёнными множителями Лагранжа. Из условия равенства нулю первой вариации функционала $\delta\Lambda$, получим равенство

$$\frac{\delta\Lambda}{\delta p_j} = \frac{kq}{1-q} p_j^{q-1} c_q^{\frac{r-q}{q-1}} - q \frac{\beta}{c_q} p_j^{q-1} (\varepsilon_j - E_q) - k\alpha = 0,$$

из которого следует

$$\tilde{p}_{j}^{q-1} \left[1 - k^{-1} (1 - q) \frac{\beta}{\Gamma_{q,r}} (\varepsilon_{j} - \tilde{E}_{q}) \right] = \Gamma_{q,r}^{-1} \left(\frac{1 - q}{q} \alpha \right). \tag{32}$$

Здесь и далее используется величина $\Gamma_{q,r}$, определяемая соотношением

$$\Gamma_{q,r} := \tilde{c}_q^{\frac{r-1}{q-1}}.\tag{33}$$

Знак «тильды» у параметров системы означает их вычисление для равновесного распределения вероятностей \tilde{p}_j .Заметим, что для энтропии Тсаллиса $\Gamma_{q,r=q}=c_q$; для энтропии Реньи $\Gamma_{q,1}=1$; для энтропии Ландсберга—Ведрала $\Gamma_{q,r=2-q}=1/c_q$.

Поскольку множители Лагранжа β и α имеют произвольные значения то, полагая

$$\alpha \equiv \frac{q}{1-q} \left(\sum_{j} \tilde{p}_{j}^{q} \right)^{\frac{r-1}{q-1}} = \frac{q \Gamma_{q,r}}{1-q} , \qquad (34)$$

запишем (32) в виде следующего негиббсового равновесного распределения с параметром $\beta_{q,r}$

$$\tilde{p}_{j}(\beta_{q,r}) = Z_{SM}^{-1} \left[1 - k^{-1} (1 - q) \beta_{q,r} (\varepsilon_{j} - \tilde{E}_{q}) \right]_{+}^{\frac{1}{1 - q}} =$$

$$= Z_{SM}^{-1} \exp_{q} \left[-k^{-1} \beta_{q,r} (\varepsilon_{j} - \tilde{E}_{q}) \right], \tag{35}$$

где

$$Z_{SM} = \left[\sum_{j} \tilde{p}_{j}^{q}\right]^{1/(1-q)} = \tilde{c}_{q}^{1/(1-q)} =$$

$$= \sum_{j} \left[1 - k^{-1}(1-q)\beta_{q,r}(\epsilon_{j} - \tilde{E}_{q})\right]_{+}^{\frac{1}{1-q}} = \sum_{j} \exp_{q}\left[-k^{-1}\beta_{q,r}(\epsilon_{j} - \tilde{E}_{q})\right]$$
(36)

— статистический интеграл, определяемый из условия нормировки (31); параметр $\beta_{q,r} \equiv \beta / \Gamma_{q,r}$ является обратной физической температурой в статистике Шарма—Миттала (см. ниже).

При условии r=q из (35) следует выражение для равновесного распределения вероятностей состояния \tilde{p}_j в статистике Тсаллиса

$$\tilde{p}_{j}(\beta_{q}) = \frac{1}{Z_{Ts}} \left[1 - k^{-1} (1 - q) \beta_{q} (\epsilon_{j} - \tilde{E}_{q}) \right]_{+}^{\frac{1}{1 - q}} = \frac{1}{Z_{Ts}} \exp_{q} \left[-k^{-1} \beta_{q} (\epsilon_{j} - E_{q}) \right], \quad (37)$$

где

$$Z_{Ts}(\beta_q) = \sum_{j} \left[1 - k^{-1} (1 - q) \beta_q (\epsilon_j - \tilde{E}_q) \right]_{+}^{\frac{1}{1 - q}} = \sum_{j} \exp_q \left[-k^{-1} \beta_q (\epsilon_j - \tilde{E}_q) \right]$$
(38)

— статистический интеграл в статистике Тсаллиса; параметр $\beta_q \equiv \beta / \tilde{c}_q$ является обратной физической температурой системы, $T_{ph} \equiv 1/\beta_q$; β — множитель Лагранжа, который связан с ограничением на среднюю энергию в неэкстенсивной статистической механике. При $1-k^{-1}(1-q)\beta_q(\varepsilon_j-\tilde{E}_q)<0$ имеем $\tilde{p}_j=0$, а при q=1 из (37) и (38) следует классическое каноническое распределение Гиббса

$$\tilde{p}_{j}(\beta) = \exp\left\{-k^{-1}\beta(\varepsilon_{j} - \tilde{E}_{q})\right\} / \sum_{j} \exp\left\{-k^{-1}\beta(\varepsilon_{j} - \tilde{E}_{q})\right\}. \tag{39}$$

В случае, когда r=1 из (35) следует равновесное распределение в статистике Реньи

$$\tilde{p}_{j} = \frac{1}{Z_{p}} \left[1 - k^{-1} \beta (1 - q) (\varepsilon_{j} - \tilde{E}_{q}) \right]_{+}^{\frac{1}{1 - q}} = \frac{1}{Z_{p}} \exp_{q} \left[-k^{-1} \beta (\varepsilon_{j} - \tilde{E}_{q}) \right]. \tag{40}$$

Здесь

$$Z_{R}(\beta) = \tilde{c}_{q}^{1/(1-q)} = \sum_{j} \left[1 - k^{-1}\beta(1-q)(\epsilon_{j} - \tilde{E}_{q}) \right]_{+}^{\frac{1}{1-q}} > 0$$
 (41)

- статистический интеграл; $\beta = 1/T$ — обратная температура (изменяющаяся в пределах допустимых значений). Таким образом, распределение вероятностей состояния статистического ансамбля неэкстенсивных систем с мерой Реньи, которые находятся в тепловом равновесии с внешней средой (термостатом) и могут обмениваться с ней энергией при постоянном объёме и постоянном числе частиц, соответствует обобщённому каноническому ансамблю Гиббса (40).

4 ТЕРМОДИНАМИЧЕСКИЕ СООТНОШЕНИЯ ОБОБЩЁННОЙ РАВНО-ВЕСНОЙ ТЕРМОДИНАМИКИ

Приступим теперь к главной цели данной работы — конструированию равновесной термодинамики, основанной на неэкстенсивной статистике Шарма—Мит- тала. Важно иметь в виду, что макроскопический термодинамический уровень описания, использующий немногочисленные статистические средние характеристики системы (параметры состояния), позволяет сжимать огромное обилие статистической информации, подлежащей обработке для получения детального описания поведения сложной системы.

Поскольку соотношение (18) справедливо также и для равновесного распределения \tilde{p}_{j} , то для экстремального значения энтропии $S_{q,r}^{\scriptscriptstyle{\mathrm{SM}}}$ имеем

$$S_{q,r}^{SM} = k \frac{\tilde{c}_q^{(1-r)/(1-q)} - 1}{1-r} = k \frac{Z_{SM}^{1-r} - 1}{1-r} = k \ln_r Z_{SM}, \tag{42}$$

а для квазиравновесной деформированной свободной энергии Гельмгольца $F_{q,r}$ и обобщённого статистического интеграла $Z_{\scriptscriptstyle SM}$ справедливы следующие выражения

$$\tilde{F}_{q,r} := \tilde{E}_q - \frac{1}{\beta} \tilde{S}_{q,r}^{SM} = \tilde{E}_q - \frac{1}{\beta} k \ln_r Z_{SM}, \quad Z_{SM} = \left[\sum_j p_0^q \right]^{1/(1-q)}. \tag{43}$$

С учетом (36) и (42) равновесное нормированное распределение (35) может быть переписано в следующем виде:

$$\tilde{p}_{j}(\beta_{q,r}) = \left\{ \frac{1 - \omega(q)\beta_{q,r}(\varepsilon_{j} - \tilde{E}_{q})}{\tilde{c}_{q}} \right\}^{1/(1-q)} =$$

$$= \frac{\left\{1 - \omega(q)\beta_{q,r}(\varepsilon_{j} - \tilde{E}_{q})\right\}^{1/(1-q)}}{\left\{1 + \omega(r)\tilde{S}_{q,r}^{SM}\right\}^{1/(1-r)}} = \frac{\exp_{q}\left\{-k^{-1}\beta_{q,r}(\varepsilon_{j} - \tilde{E}_{q})\right\}}{\exp_{r}\left\{k^{-1}\tilde{S}_{q,r}^{SM}\right\}}.$$
 (44)

Здесь и далее используются обозначения: $\omega(r) \coloneqq k^{-1}(1-r)$, $\omega(q) \coloneqq k^{-1}(1-q)$.

Учитывая соотношения (33) и (36), перепишем статистический интеграл $Z_{\scriptscriptstyle SM}$ следующим образом:

$$Z_{\text{SM}}(\beta) = \sum_{j} \exp_{q} \left[-Z_{\text{SM}}^{(r-1)} k^{-1} \beta(\varepsilon_{j} - \tilde{E}_{q}) \right]. \tag{45}$$

Дифференцируя теперь (45) по параметру β , с учётом формулы (10) получим

$$\begin{split} &\frac{\partial}{\partial\beta}Z_{_{SM}} = -\sum_{j}\left\{\exp_{q}\left[-Z_{_{SM}}^{_{(r-1)}}k^{-1}\beta(\epsilon_{j}-\tilde{E}_{q})\right]\right\}^{q}\times\\ &\times\left\{Z_{_{SM}}^{_{(r-1)}}k^{-1}\left(\epsilon_{j}-\tilde{E}_{q}\right)+k^{-1}\beta(\epsilon_{j}-\tilde{E}_{q})\frac{\partial Z_{_{SM}}^{_{(r-1)}}}{\partial\beta}-Z_{_{SM}}^{_{(r-1)}}k^{-1}\beta\frac{\partial\tilde{E}_{q}}{\partial\beta}\right\}=\\ &=-Z_{_{SM}}^{_{(r-1)}}Z_{_{SM}}^{q}\sum_{j}\tilde{p}_{j}^{q}\left\{k^{-1}(\epsilon_{j}-E_{q})+k^{-1}\beta(\epsilon_{j}-\tilde{E}_{q})\frac{\partial\ln Z_{_{SM}}^{_{(r-1)}}}{\partial\beta}-k^{-1}\beta\frac{\partial\tilde{E}_{q}}{\partial\beta}\right\}=\end{split}$$

$$= Z_{SM}^q Z_{SM}^{(r-1)} \tilde{c}_q k^{-1} \beta \frac{\partial E_q}{\partial \beta} = Z_{SM}^r k^{-1} \beta \frac{\partial E_q}{\partial \beta}. \tag{46}$$

Отсюда, с использованием соотношения (11), получим следующее выражение для дифференцированного деформированного логарифма:

$$\frac{\partial \ln_r Z_{\text{SM}}}{\partial \beta} = Z_{\text{SM}}^{-r} \frac{\partial Z_{\text{SM}}}{\partial \beta} = k^{-1} \beta \frac{\partial \tilde{E}}{\partial \beta}.$$
 (47)

С другой стороны, с учетом (42) и (45), будем иметь

$$\tilde{S}_{q,r}^{SM} = \ln_r \left\{ \sum_j \exp_q \left[-Z_{SM}^{(r-1)} k^{-1} \beta(\varepsilon_j - \tilde{E}_q) \right] \right\}, \tag{48}$$

откуда следует

$$\frac{\partial \tilde{S}_{q,r}^{SM}}{\partial \tilde{E}_{q}} = k \frac{\partial \ln_{r} Z_{SM}}{\partial \tilde{E}_{q}} =$$

$$= \frac{k}{Z_{SM}^{r}} Z_{SM}^{(r-1)} k^{-1} \beta \sum_{j} \left(\exp_{q} \left[-Z_{SM}^{(r-1)} k^{-1} \beta (\epsilon_{j} - \tilde{E}_{q}) \right] \right)^{q} = \beta \tilde{c}_{q} Z_{SM}^{q-1} = \beta.$$
(49)

Таким образом, для равновесной термодинамики, построенной на базе энтропии Шар- ма-Миттала, справедливы следующие соотношения:

$$S_{q,r}^{SM} = k \ln_{r} Z_{SM}, \quad F_{q,r} = E_{q} - \frac{1}{\beta} S_{q,r}^{SM} = E_{q} - \frac{1}{\beta} k \ln_{r} Z_{SM},$$

$$\beta = \frac{\partial S_{q,r}^{SM}}{\partial E_{q}} = k \frac{\partial \ln_{r} Z_{SM}}{\partial E_{q}}, \quad E_{q} = \frac{\partial (\beta F_{q,r})}{\partial \beta}, \quad \beta \frac{\partial E_{q}}{\partial \beta} = k \frac{\partial \ln_{r} Z_{SM}}{\partial \beta}. \tag{50}$$

(знак «тильды» здесь опущен)

По поводу соотношений (50) важно отметить следующее: Величина $Z_{\scriptscriptstyle SM}$ определяется микроскопической энергией ε_j относительно средней энергии E_q системы (см. (36)). Однако, в случае использования новой величины $\ddot{Z}_{\scriptscriptstyle SM}$

$$\ln_r \vec{Z}_{SM} = \ln_r Z_{SM} - k^{-1} \beta E_q,$$
 (51)

(которая определяется микроскопической энергией ε_j относительно нулевой точки), соотношения равновесной термодинамики (50) принимают почти классическую форму

$$S_{q,r}^{\text{SM}} = \beta \left(E_q - F_{q,r} \right), \quad dS_{q,r}^{\text{SM}} = \beta dE_q,$$

$$F_{q,r} = -\frac{k}{\beta} \ln_q \ddot{Z}_{SM}, \quad E_q = \frac{\partial (\beta F_{q,r})}{\partial \beta}, \quad C_q = -\beta^2 \frac{\partial E_q}{\partial \beta}.$$
 (52)

5 ТЕРМОДИНАМИЧЕСКОЕ РАВНОВЕСИЕ ДВУХ НЕЗАВИСИМЫХ СИС-ТЕМ С ЭНТРОПИЯМИ ШАРМА-МИТТАЛА

Рассмотрим тепловое равновесие двух независимых q-систем с энтропиями $S_{q,r}^{\scriptscriptstyle SM}\left(p_1\right)$ и $S_{q,r}^{\scriptscriptstyle SM}\left(p_2\right)$, представляющих собой общую замкнутую систему с постоянными значениями энтропии $S_{\scriptscriptstyle SM}^{\scriptscriptstyle 12}\equiv S_{\scriptscriptstyle SM}\left(p_{12}\right)$ при $p_{12}=p_1p_2$ и суммарной энергии $E_q(p_{12})$. Согласно свойству неаддитивности (27) энтропий в статистике Шарма-Миттала, энтропию совокупной системы можно переписать в следующем виде:

$$S_{q,r}^{SM}(p_{12}) = S_{q,r}^{SM}(p_1) \Big[1 + \omega(r) S_{q,r}^{SM}(p_2) \Big] + S_{q,r}^{SM}(p_2) \Big[1 + \omega(r) S_{q,r}^{SM}(p_1) \Big] - \omega(r) S_{q,r}^{SM}(p_1) S_{q,r}^{SM}(p_2).$$

$$(53)$$

Для нахождения осреднённой энергии $E_q(p_{12})$ совокупной q -системы воспользуемся равновесным распределением (44)

$$p_{j} = \frac{\exp_{q} \left\{ -k^{-1} \beta_{q,r} \Delta \left[\varepsilon_{j}\right] \right\}}{\exp_{r} \left\{ k^{-1} S_{q,r}^{SM} \right\}}, \tag{54}$$

где $\Delta[\epsilon_j]:=(\epsilon_j-E_q)$ — флуктуация энергии частиц. При учёте условия мультипликативности $p_{12}=p_1p_2$ и формулы (10) будем иметь

$$\frac{\exp_{q}\left\{-k^{-1}\beta_{q,r}\Delta_{12}[\epsilon_{j}]\right\}}{\exp_{r}\left\{k^{-1}S_{q,r}^{SM}(p_{12})\right\}} = \frac{\exp_{q}\left\{-k^{-1}\beta_{q,r}\Delta_{1}[\epsilon_{j}]\right\}}{\exp_{r}\left\{k^{-1}S_{q,r}^{SM}(p_{1})\right\}} \cdot \frac{\exp_{q}\left\{-k^{-1}\beta_{q,r}\Delta_{2}[\epsilon_{j}]\right\}}{\exp_{r}\left\{k^{-1}S_{q,r}^{SM}(p_{2})\right\}} = \\
= \frac{\exp_{q}\left\{-k^{-1}\beta_{q,r}\left(\Delta_{1}[\epsilon_{j}] + \Delta_{2}[\epsilon_{j}] + \omega(q)\Delta_{1}[\epsilon_{j}] \cdot \Delta_{2}[\epsilon_{j}]\right)\right\}}{\exp_{r}\left\{k^{-1}\left(S_{q,r}^{SM}(p_{1}) + S_{q,r}^{SM}(p_{2}) + \omega(r)S_{q,r}^{SM}(p_{1}) \cdot S_{q,r}^{SM}(p_{2})\right)\right\}}.$$
(55)

Поскольку знаменатели в правой и левой частях соотношения (55) одинаковы, то можно заключить, что

$$\Delta_{12}[\varepsilon_j] = \Delta_1[\varepsilon_j] + \Delta_2[\varepsilon_j] + \omega(q)\Delta_1[\varepsilon_j] \cdot \Delta_2[\varepsilon_j]. \tag{56}$$

В этом соотношении необходимо использовать условие аддитивности осреднённых энергий

$$E_q^{12} = E_q^1 + E_q^2, (57)$$

поскольку без этого предположения осреднённые величины системы будут зависеть от микроскопических величин, что является неприемлемым ⁶¹. Тогда из (56) для микроскопических энергий получим следующее условие квазиаддитивности микроскопических энергий

$$\varepsilon_{i12} = \varepsilon_{i1} + \varepsilon_{i2} - \omega(q)\beta\Delta_1 \left[\varepsilon_i\right]\Delta_2 \left[\varepsilon_i\right]. \tag{58}$$

Отметим, что именно наличие этого равенства является, в частности, той причиной, благодаря которой статистику на мере Реньи относят к неэкстенсивной статистической механике

Варьирование соотношений (53) и (57) для совокупной замкнутой системы с постоянными значениями энтропии $S_{q,r}^{\rm SM}(p_{12})$ и энергии $E_q^{\rm 12}$ приводит к равенству

$$\delta S_{q,r}^{\text{SM}}(p_{12}) = 0 = \delta S_{q,r}^{\text{SM}}(p_1) \left[1 + \omega(r) S_{q,r}^{\text{SM}}(p_2) \right] + \delta S_{q,r}^{\text{SM}}(p_2) \left[1 + \omega(r) S_{q,r}^{\text{SM}}(p_1) \right]$$

для энтропии и равенству

$$\delta E_q^{12} = 0 = \delta E_q^1 + \delta E_q^2$$

для средней энергии. Объединяя их, в итоге получим уравнение

$$\frac{\delta S_{q,r}^{SM}(p_1) / \delta E_q^1}{1 + \omega(r) S_{q,r}^{SM}(p_1)} = \frac{\delta S_{q,r}^{SM}(p_2) / \delta E_q^2}{1 + \omega(r) S_{q,r}^{SM}(p_2)},$$
(59)

из которого, при учёте (33), (42) и (50), вытекает условие

$$\frac{\beta}{1 + \omega(r)S_{q,r}^{SM}(p_1)} = \frac{\beta}{1 + \omega(r)S_{q,r}^{SM}(p_2)} = \frac{\beta}{\Gamma_{q,r}} \equiv \beta_{q,r},$$
 (60)

означающее равенство физических температур $\beta_{q,r}$ двух независимых q -систем при их тепловом контакте. Отношение эквивалентности (60) является обобщением нулевого закона термодинамики на неэкстенсивные системы, описываемые статистикой Шарма–Миттала. Оно показывает, что в отличие от классического случая $(q,r \to 1)$ физическая температура T_{ph} не является обратной величиной множителя Лагранжа, β^{-1} , но

$$T_{ph} = 1 / \beta_{q,r} \equiv \Gamma_{q,r} / \beta = (1 + \omega(r)S_{q,r}^{SM})T = \Gamma_{q,r}T$$
. (61)

Важно иметь в виду, что такое переопределение эффективной температуры в статистике Шарма-Миттала противоречит основным принципам классической термодинамики, где абсолютная температура T является интенсивным параметром, а не функ-

ционалом $T_{ph}(p)$. В связи с этим сделаем следующее общее замечание. В большинстве неэкстенсивных систем важную роль играют длинномасштабные пространственновременные корреляции в фазовом или геометрическом пространстве. Это означает, в частности, что существенное значение имеет та часть внутренней энергии системы, которая связана с силовым взаимодействием отдалённых друг от друга её частей, а именно потенциальная энергия. В классической статистике внутренняя энергия определяется, как правило, суммой кинетических энергий всех молекул совокупной системы. В такой системе «тепловой баланс» достигается в основном за счёт локального теплообмена между близко расположенными её частями, т.е. «тепло» связано с передачей кинетической энергии молекулами.

Поскольку физическая температура T_{ph} отвечает за «глобальный тепловой баланс» между различными частями системы, то её энергетический баланс будет сильно отличаться от локального теплового баланса. Локальный баланс, как известно, можно охарактеризовать абсолютной обратной температурой $\beta=1/T$, измеряемой термометром. Однако любое измерение физической температуры T_{ph} нереально, что связано с наличием коэффициента $\Gamma_{q,r}$, зависящего, согласно (33), от выбора параметров деформации q и r системы.

Таким образом, обобщённый нулевой закон статистической термодинамики (60) показывает, что физическая температура в статистике Шарма-Миттала отличается от инверсии множителя Лагранжа β . Этот факт требует переопределения термодинамических соотношений (50) и (52), полученных в рамках статистики Шарма-Миттала. В работе 15,79, в качестве основных предпосылок, взятых за исходный пункт подобного переопределения при построении модифицированной термодинамики Тсаллиса, выбраны первый закон термодинамики и структура преобразования Лежандра. Далее мы используем этот подход для переопределения некоторых термодинамических соотношений при построении модифицированной термодинамики Шарма-Миттала.

6 ДЕФОРМИРОВАННЫЕ ТЕРМОДИНАМИЧЕСКИЕ СООТНОШЕНИЯ

Прежде всего введём, по аналогии с физической температурой T_{ph} , физическое давление p_{qh} путём рассмотрения механического равновесия двух независимых q систем, представляющих собой общую замкнутую систему с постоянными значениями энтропии $S_{q,r}^{\scriptscriptstyle SM}(p_{12})$ и объёма $V_{12} = V_1 + V_2 = const$. В этом случае энтропия совокупной системы должна максимизироваться с фиксацией общего объёма. В результате будем иметь

$$\frac{\delta S_{q,r}^{SM}(p_1)/\delta V_1}{1+\omega(r)S_{q,r}^{SM}(p_1)} = \frac{\delta S_{q,r}^{SM}(p_2)/\delta V_2}{1+\omega(r)S_{q,r}^{SM}(p_2)} = \frac{p_{ph}}{T_{ph}},$$
(62)

где $p_{\it ph}$ — так называемое физическое давление, которое определяется соотношением

$$p_{ph} := \frac{T_{ph}}{1 + \omega(r)S_{q,r}^{SM}} \frac{\delta S_{q,r}^{SM}}{\delta V} = \frac{T_{ph}}{\Gamma_{q,r}} \frac{\delta S_{q,r}^{SM}}{\delta V}.$$
 (63)

Очевидно, что введённые таким способом физические температура и давление должны привести к модификации определения термодинамической энтропии Клаузиуса.

Чтобы показать это, рассмотрим структуру преобразования Лежандра. Уравнение (50) $\beta = \partial S_{q,r}^{\scriptscriptstyle SM} \, / \, \partial E_q$ указывает на то, что параметры β и E_q образуют пару переменных Лежандра. Это приводит к следующему определению свободной энергии Гельмгольца (изохорно-изотермического потенциала) (см.(43) и (50)):

$$F_{q,r} = E_q - TS_{q,r}^{SM} = E_q - kT \ln_r Z_{SM} = E_q - kT \ln_r \left[c_q^{1/(1-q)} \right]. \tag{64}$$

Это выражение, однако, неудовлетворительно с точки зрения деформированной термодинамики. Свободная энергия должна зависеть от T_{ph} , а не от переменной $T=\beta^{-1}$.

По аналогии с подходом, развитым в работе 80 , переопределим макроскопическую свободную энергию (64) следующим образом:

$$F_{q,r}(T_{ph}) = E_q - kT_{ph} \ln \left[c_q^{1/(1-q)} \right],$$
 (65)

что отличается от соответствующего выражения в традиционной термодинамике. Используя соотношения (42), (33) и (61), можно убедиться, что переопределённая таким образом свободная энергия $F_{q,r}$ является функцией T_{ph} . Дифференцируя функцию $F_{q,r}$, в результате получим

$$dF_{q,r} = dE_q - \left[\frac{k}{1 - q} \ln c_q\right] dT_{ph} - \frac{T_{ph}}{\Gamma_{q,r}} dS_{q,r}^{SM}.$$
 (66)

Если теперь использовать первый закон термодинамики

$$d'Q_a = dE_a + p_{ph}dV, (67)$$

где Q_q — количество теплоты, подводимое к термодинамической q -системе (или отводимое от неё), то (66) можно переписать в виде

$$dF_{q,r} = d'Q_q - p_{ph}dV - \left[\frac{k}{1-q}\ln c_q\right]dT_{ph} - \frac{T_{ph}}{\Gamma_{q,r}}dS_{q,r}^{SM}.$$
 (68)

Отсюда следует, что определение термодинамической энтропии Клаузиуса модифицируется для неаддитивных систем следующим образом:

$$dS_{q,r}^{SM} = \Gamma_{q,r} d' Q_q / T_{ph}. \tag{69}$$

Введём теперь в рассмотрение следующие характеристические функции: обобщённую энтальпию $H_q = E_q + p_{ph} V$ и обобщённый термодинамический потенциал $G_{q,r} = F_{q,r} + p_{ph} V$. Заметим, что характеристические функции обладают следующим свойством: если известна характеристическая функция, выраженная через соответствующие (свои для каждой функции) переменные, то из неё можно вычислить любую термодинамическую величину.

В этом нетрудно убедиться. Из уравнений

$$dE_{q} = \frac{T_{ph}}{\Gamma_{q,r}} dS_{q,r}^{SM} - p_{ph} dV, \qquad dH_{q} = \frac{T_{ph}}{\Gamma_{q,r}} dS_{q,r}^{SM} + V dP_{ph}, \tag{70}$$

$$dF_{q} = -\left[\frac{k}{(1-q)}\ln c_{q}\right]dT_{ph} - p_{ph}dV, \quad dG_{q,r} = -\left[\frac{k}{(1-q)}\ln c_{q}\right]dT_{ph} + Vdp_{ph} \quad (71)$$

следуют обобщённые термодинамические соотношения

$$\left(\frac{\partial E_q}{\partial V}\right)_{S_{q,r}^{SM}} = \left(\frac{\partial F_{q,r}}{\partial V}\right)_{T_{ph}} = -p_{ph}, \quad \left(\frac{\partial E_q}{\partial S_{q,r}^{SM}}\right)_{V} = \left(\frac{\partial H_q}{\partial S_{q,r}^{SM}}\right)_{P_{ph}} = \frac{T_{ph}}{\Gamma_{q,r}}, \tag{72}$$

$$\left(\frac{\partial H_q}{\partial p_{ph}}\right)_{S_{q,r}^{SM}} = \left(\frac{\partial G_{q,r}}{\partial p_{ph}}\right)_{T_{ph}} = V, \quad \left(\frac{\partial F_{q,r}}{\partial T_{ph}}\right)_{V} = \left(\frac{\partial G_{q,r}}{\partial T_{ph}}\right)_{P_{ph}} = -\frac{k}{(1-q)} \ln c_q. \tag{73}$$

Уравнение для теплоёмкостей. Как известно, в классической термодинамике теплоёмкость вещества в наиболее общем виде определяется следующим образом: $C_z = T \left(\partial S / \partial T \right)_z$. Здесь C_z — теплоёмкость в таком процессе, в котором сохраняется постоянным параметр z, где z — любые обобщённые координаты. Наиболее распространёнными являются изобарная и изохорная теплоёмкости:

$$C_{p} = \frac{T_{ph}}{\Gamma_{q,r}} \left(\frac{\partial S_{q,r}^{sM}}{\partial T_{ph}} \right)_{p_{ph}}, \quad C_{V} = \frac{T_{ph}}{\Gamma_{q,r}} \left(\frac{\partial S_{q,r}^{sM}}{\partial T_{ph}} \right)_{V}.$$
 (74)

Так как в соответствии с формулой $(\partial y/\partial x)_z = (\partial y/\partial u)_z (\partial u/\partial x)_z$ (справедливой для случая двух переменных, когда y = y(x,z) и u = u(x,z)) имеем

$$\left(\frac{\partial S_{q,r}^{\text{SM}}}{\partial T_{ph}}\right)_{p_{vh}} = \left(\frac{\partial S_{q,r}^{\text{SM}}}{\partial H_q}\right)_{p_{vh}} \left(\frac{\partial H_q}{\partial T_{ph}}\right)_{p_{vh}} \mathbf{u} \quad \left(\frac{\partial S_{q,r}^{\text{SM}}}{\partial T_{ph}}\right)_{V} = \left(\frac{\partial S_{q,r}^{\text{SM}}}{\partial E_q}\right)_{V} \left(\frac{\partial E_q}{\partial T_{ph}}\right)_{V}, \tag{75}$$

а из (72) и (73) следует, что
$$\left(\frac{\partial S_{q,r}^{^{SM}}}{\partial H_q}\right)_{p_{ph}} = \frac{\Gamma_{q,r}}{T_{ph}}, \quad \left(\frac{\partial S_{q,r}^{^{SM}}}{\partial E_q}\right)_{V} = \frac{\Gamma_{q,r}}{T_{ph}},$$
 то соотношения (74)

могут быть записаны в виде

$$C_{p} = \left(\partial H_{q} / \partial T_{ph}\right)_{p_{ph}}, \quad C_{V} = \left(\partial E_{q} / \partial T_{ph}\right)_{V}. \tag{76}$$

Уравнение, устанавливающее связь между теплоёмкостями C_p и C_V , можно получить следующим образом. В соответствии с соотношением 81

$$\left(\frac{\partial z}{\partial m}\right)_{n} = \left(\frac{\partial z}{\partial x}\right)_{y} \left(\frac{\partial x}{\partial m}\right)_{n} + \left(\frac{\partial z}{\partial y}\right)_{x} \left(\frac{\partial y}{\partial m}\right)_{n}, \tag{77}$$

являющимся следствием выражения для полного дифференциала функции z = z(x,y), можно записать (полагая m = x)

$$\left(\frac{\partial S_{q,r}^{SM}}{\partial T_{ph}}\right)_{P_{vh}} = \left(\frac{\partial S_{q,r}^{SM}}{\partial T_{ph}}\right)_{V} + \left(\frac{\partial S_{q,r}^{SM}}{\partial V}\right)_{T_{ph}} \left(\frac{\partial V}{\partial T_{ph}}\right)_{P_{vh}}.$$
(78)

Отсюда, используя уравнение Максвелла $(\partial S_{q,r}^{\text{\tiny SM}}/\partial V)_{T_{ph}} = (\partial p_{ph}/T_{ph})_V$, получим

$$C_{p} - C_{V} = \frac{T_{ph}}{\Gamma_{q,r}^{2}} \left(\frac{\partial p_{ph}}{\partial T_{ph}} \right)_{V} \left(\frac{\partial V}{\partial T_{ph}} \right)_{P_{vh}}.$$
 (79)

Это выражение может быть представлено в другом виде, если использовать связку грёх производных $\left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x = -1$ (следствие соотношения (77) при

m = x, n = z), из которой следует

$$\left(\partial p_{ph}/\partial T_{ph}\right)_{V} = -\left(\partial V/\partial T_{ph}\right)_{p_{ph}} \left(\partial p_{ph}/\partial V\right)_{T_{ph}}.$$
 (80)

С учётом (80) связь между теплоёмкостями приобретает классический вид:

$$C_{p} - C_{V} = -\frac{T_{ph}}{\Gamma_{q,r}^{2}} \left(\frac{\partial V}{\partial T_{ph}}\right)_{P_{ph}}^{2} / \left(\frac{\partial V}{\partial p_{ph}}\right)_{T_{ph}}.$$
(81)

Таким образом, стандартная форма термодинамических соотношений (72), (73) и (81) в термодинамике Шарма–Миттала позволяет заключить, что они остаются инвариантными относительно неаддитивной модификации их классических аналогов. Подчеркнём важный факт, что температуры $T=1/\beta$ и $T_{ph}=1/\beta_{q,r}$ не зависят от выбора нуля энергий, и поэтому они допускают физическую интерпретацию. Заметим, что в дополнение к структуре Лежандра различные другие важные теоремы и свойства остаются q-инвариантными 11 .

7 ДВУХПАРАМЕТРИЧЕСКАЯ ИНФОРМАЦИЯ РАЗЛИЧИЯ ШАРМА-МИТТАЛА. ОБОБЩЁННАЯ *H*-ТЕОРЕМА БОЛЬЦМАНА

Наряду с энтропией $S_{q,r}^{\mbox{\tiny SM}}$, информация различия Шарма-Миттала 49

$$K_{q,r}^{SM}(p:u) = -\frac{k}{1-r} \left[\left(\sum_{j} p_{j}^{q} u_{j}^{1-q} \right)^{\frac{1-r}{1-q}} - 1 \right] = -k \ln_{r} \left(\sum_{j} p_{j}^{q} u_{j}^{1-q} \right)^{\frac{1}{1-q}}$$
(82)

также относится к наиболее существенным статистическим характеристикам неэкстенсивной динамической q-системы. Являясь функционалом, она характеризует переход системы от состояния p в состояние u, когда статистические наблюдения ведутся относительно состояния p.

Заметим, что при $r \to 1$ величина $K_{q,r}^{{\scriptscriptstyle SM}}$ переходит в различающую информацию Реньи 49

$$K_{q,r=1}^{SM}(p:u) = K_q^R(p:u) := \frac{k}{q-1} \ln \sum_j p_j^q u_j^{1-q},$$

а при q=r величина $K_{q,r}^{\scriptscriptstyle{\mathrm{SM}}}$ переходит в различающую информацию Ратье–Каннаппана 49

$$K_{q,q}^{\text{SM}}(p:u) = K_q^{\text{RK}}(p:u) := \frac{k}{1-q} \left[1 - \sum_j p_j^q u_j^{1-q} \right] = -k \ln_q \left(\sum_j p_j^q u_j^{1-q} \right)^{\frac{1}{1-q}}.$$

Выпуклость информации различия Шарма-Миттала. Различающая инфор-мация $K_{q,r}^{SM}(p:u)$ является вещественным, выпуклым и положительным (или отрицательным) функционалом с минимумом (максимумом) в зависимости от сочетания знаков параметров деформации r и q. Покажем это. Для некоторого действительного числа n>0 имеем

$$\frac{n^{q-1}-1}{q-1} \ge 1 - \frac{1}{n}, \quad ecnu \ q > 0,
= 1 - 1/n, \quad ecnu \ q = 0,
\le 1 - 1/n, \quad ecnu \ q < 0.$$
(83)

Поэтому, например, для q < 0 справедливо неравенство

$$(p_j/u_j)^{q-1} \ge q + (1-q)(u_j/p_j),$$

при использовании которого получаем

$$K_{q,r}^{SM} = \frac{k}{r-1} \left[\sum_{j} p_{j} \left(\frac{p_{j}}{u_{j}} \right)^{q-1} \right]^{\frac{r-1}{q-1}} - 1 \right\} \leq \frac{k}{r-1} \left[\sum_{j} p_{j} \left(q + (1-q) \frac{u_{j}}{p_{j}} \right) \right]^{\frac{r-1}{q-1}} - 1 \right\} = 0, \quad (84)$$

если r < 1. Легко проверить, что имеют место следующие неравенства

$$K_{q,r}^{SM}(p:u) \le 0$$
, если $q < 0$, $r < 1$, или $q > 0$, $r > 1$; $K_{q,r}^{SM}(p:u) \ge 0$, если $q < 0$, $r > 1$, или $q > 0$, $r < 1$. (85)

В частном случае, когда $r \to 1$, из неравенств (85) вытекают следующие неравенства для различающей информации Реньи⁴⁹ $K_a^{\scriptscriptstyle R}(p:u)$:

$$K_q^R(p:u) \le 0$$
, $(q < 0)$; $K_q^R(p:u) \ge 0$, $(q > 0)$. (86)

Важно отметить, что поскольку при u = p имеет место равенство $K_{q,r}^{SM}(p:p) = 0$, то различающая информация Шарма-Миттала является функцией Ляпунова^{ііі)}.

Для различающей информации Ратье-Каннаппана $K_q^{{\scriptscriptstyle RK}}(p\!:\!u)$ из (85) следует

$$K_q^{RK}(p:u) \ge 0$$
, $(q > 0)$; $K_q^{RK}(p:u) = 0$, $(q = 0)$; $K_q^{RK}(p:u) \le 0$, $(q < 0)$, (87)

т.е. выражение (87) удовлетворяет такому же основному свойству, что и энтропия Кульбака—Лейблера классической статистики, а потому может использоваться для тех же целей. Однако в данном случае имеется свобода выбора параметра q, что позволяет исследовать неэкстенсивные системы.

ііі) Напомним, что функцией Ляпунова называется знакоопределённая функция, которая обращается в нуль в точке равновесия системы. Состояние равновесия является аттрактором, когда производная по времени от функции Ляпунова имеет знак, противоположный знаку самой функции.

Обобщённая *H***-теорема в статистике Шарма—Миттала**. Рассмотрим теперь замкнутую систему, для которой распределение p_j является произвольным, а распределение $u_i = \tilde{p}_i$ – равновесным (см. (44))

$$u_{j} = \tilde{p}_{j} = \left\{ \frac{1 - \omega(q)\beta_{q,r}(\varepsilon_{j} - \tilde{E}_{q})}{\tilde{c}_{q}} \right\}^{1/(1-q)}.$$
(88)

При использовании соотношений (8), (11), (30), (33) и (36) легко показать, что спонтанный переход между этими состояниями описывается следующей различающей информацией Шарма—Миттала

$$K_{q,r}^{SM}(p;\tilde{p}) = \frac{k}{1-r} \left[1 - \left(\sum_{j} p_{j}^{q} \tilde{p}_{j}^{1-q} \right)^{\frac{1-r}{1-q}} \right] =$$

$$= -\frac{k}{1-r} \left[\left(\frac{c_{q}}{\tilde{c}_{q}} \right)^{\frac{1-r}{1-q}} \left(1 - \omega(q) \tilde{\beta}_{q,r}(E_{q} - \tilde{E}_{q}) \right)^{\frac{1-r}{1-q}} - 1 \right] =$$

$$= -k \ln_{r} \left\{ \frac{c_{q}^{1/(1-q)} \exp_{q} \left[-k^{-1} \tilde{\beta}_{q,r}(E_{q} - \tilde{E}_{q}) \right]}{\tilde{c}_{q}^{1/(1-q)}} \right\} =$$

$$= -k \frac{1}{\tilde{c}_{q}} \ln_{r} \left\{ c_{q}^{1/(1-q)} \exp_{q} \left[-k^{-1} \tilde{\beta}_{q,r}(E_{q} - \tilde{E}_{q}) \right] \right\} + \frac{k}{\tilde{c}_{q}} \ln_{r} \tilde{c}_{q}^{1/(1-q)} =$$

$$= Z_{SM}^{q-1} \left\{ - \left(S_{q,r}^{SM} - \tilde{S}_{q,r}^{SM} \right) - kc_{q} \ln_{r} \exp_{q} \left[-k^{-1} \tilde{\beta}_{q,r}(E_{q} - \tilde{E}_{q}) \right] \right\}$$
(89)

с равенством $K_{q,r}^{SM}(p;\tilde{p})=0$ при распределении $p_j=\tilde{p}_j$.

Если $q,r \to 1$, то из (89) вытекает следующее известное выражение для информации различия Кульбака–Лейблера $K^{\text{KL}}(p,u)\coloneqq k\sum_{j}p_{j}\ln(p_{j}/u_{j})$ классической статистической механики для случая спонтанного перехода системы от произвольного состояния с распределением p к состоянию с каноническим распределением Гиббса⁴⁸ $\tilde{p}_{j}=Z^{-1}\exp(-k^{-1}\beta\varepsilon_{j})$

$$K^{\text{KL}}(p; \tilde{p}) = -\left(S^{\text{BGS}} - \tilde{S}^{\text{BGS}}\right) + \beta(E_q - \tilde{E}_q) \ge 0 \tag{90}$$

характеризующее степень отклонения хаотической системы от полного равновесия.

При выполнении условия Гиббса⁸² E_q = \tilde{E}_q и с учётом свойства (85) знакоопределённости информации различия $K_{q,r}^{SM}(p:\tilde{p})$ из (89) следуют два неравенства:

$$K_{q,r}^{\scriptscriptstyle{SM}}(p;\tilde{p})Z_{\scriptscriptstyle{SM}}^{1-q} = -\left(S_{q,r}^{\scriptscriptstyle{SM}} - \tilde{S}_{q,r}^{\scriptscriptstyle{SM}}\right) > 0$$
, если $q > 0$, $r < 1$, или $q < 0$, $r > 1$; (91)

$$K_{q,r}^{\scriptscriptstyle{\mathrm{SM}}}(p;\tilde{p})Z_{\scriptscriptstyle{\mathrm{SM}}}^{\scriptscriptstyle{\mathrm{1-}q}} = -\left(S_{q,r}^{\scriptscriptstyle{\mathrm{SM}}} - \tilde{S}_{q,r}^{\scriptscriptstyle{\mathrm{SM}}}\right) < 0$$
, если $q < 0$, $r < 1$, или $q > 0$, $r > 1$, (92)

которые обобщают теорему Гиббса на неэкстенсивную статистику Шарма-Миттала. Согласно этой теореме, для замкнутой системы энтропия Реньи $S_{q,r}^{\scriptscriptstyle SM}=\tilde{S}_{q,r}^{\scriptscriptstyle SM}-\tilde{c}_qK_q^{\scriptscriptstyle SM}(p:\tilde{p})$ возрастает (убывает) до экстремального её значения $\tilde{S}_{q,r}^{\scriptscriptstyle SM}$ при q>0 (q<0) одновременно с уменьшением (увеличением) положительной (отрицательной) информации $K_q^{\scriptscriptstyle SM}(p:\tilde{p})$. Таким образом, различающая информация представлена здесь в виде отрицательного вклада в текущую энтропию Шарма-Миттала и потому может быть названа негэнтропией 83 .

Поскольку информация различия Шарма—Миттала является знакоопределенной функцией Ляпунова, то для того, чтобы состояние равновесия $\tilde{S}_{q,r}^{\scriptscriptstyle SM}$ было устойчивым, необходимо выполнение следующих неравенств

$$\frac{d}{dt}K_{q,r}^{_{SM}}(p;\tilde{p})Z_{_{SM}}^{_{1-q}}=-\frac{d\left(S_{q,r}^{_{SM}}-\tilde{S}_{q,r}^{_{SM}}\right)}{dt}<0\,,\ \text{если }q>0,\ r<1\,,$$
 или $q<0,\,r>1\,;$ (93)

$$\frac{d}{dt}K_{q,r}^{_{SM}}(p;\tilde{p})Z_{_{SM}}^{_{1-q}}=-\frac{d\left(S_{q,r}^{_{SM}}-\tilde{S}_{q,r}^{_{SM}}\right)}{dt}>0\;,\;\;\text{если}\;\;q<0,\;r<1\;,\;$$
или $q>0,\;r>1\;. \tag{94}$

Из этих соотношений следует неравенство для энтропии Шарма-Миттала:

$$dS_{q,r}^{\text{\tiny SM}} / dt > 0$$
 при $q < 0, r > 1$, или $q > 0, r < 1$, (95)

$$dS_{a,r}^{\text{\tiny SM}} / dt < 0$$
 при $q < 0$, $r < 1$, или $q > 0$, $r > 1$, (96)

которые выражают H-теорему для стохастической q-системы, описываемой энтропией Шарма—Миттала: при временной эволюции к равновесному состоянию энтропия замкнутой системы может как возрастать до экстремального её значения $\tilde{S}_{q,r}^{\rm SM}$, так и убывать в зависимости от выбора численных значений параметров неэкстенсивности q и r.

8 ЗАКЛЮЧЕНИЕ

Исследования в области статистической механики и термодинамики неэкстенсивных систем приобрели в настоящее время значительный общетеоретический интерес в связи с проявлениями неэкстенсивных свойств в аномальных физических явлениях и важностью приложений. В настоящей работе даётся логическая схема построения деформированных термодинамик неэкстенсивных систем, основанная на многопараметрической энтропии Шарма-Миттала. В отличие от ряда известных работ (см., например, 72,76,84), в которых подобные исследования по термостатике проведены с привлечением двукратно деформированных экспоненты и логарифма (введённых первоначально в теории информации Шарма и Митталем в 1975 г.), особенность данной работы состоит в том, что проведено построение обобщённых неэкстенсивных термодинамик с помощью более простых и хорошо изученных однократно деформированных функций — логарифма и экспоненты Тсаллиса.

В работе функционал Шарма-Миттала рассматривается как форматор семейства классической и деформированных однопараметрических энтропий, состоящего из энтропий Реньи, Тсаллиса, Ландсберга-Ведрала, Гаусса и Гиббса. Все эти энтропии связаны равенствами, представляющими чередования обычных (ln, exp) и деформированных (ln_q , exp_q), логарифмов и экспонент. Показано, что энтропия Шарма-Миттала подчиняется псевдоаддитивному закону для двух статистически независимых систем. Найдено универсальное распределение степенного закона на основе максимизации двухпараметрической энтропии Шарма-Миттала при заданных ограничениях на осреднённые значения параметров системы, полученные по нормированному эскортному распределению вероятностей.

Построена на базе статистики Шарма-Миттала двухпараметрическая термодинамика неэкстенсивных систем и показана её взаимосвязь с обобщёнными однопараметрическими термодинамиками, основанными на указанных выше деформированных энтропиях. Получено обобщение нулевого закона термодинамики для двух независимых неэкстенсивных систем при их тепловом контакте, вводящее в рассмотрение так называемую физическую температуру $T_{ph}(p)$ отличающуюся от инверсии множителя Лагранжа β . Этот факт потребовал переопределения некоторых термодинамических соотношений, получаемых в рамках статистики Шарма-Миттала. В качестве основных предпосылок, взятых за исходный пункт нахождения деформированных термодинамических соотношений в работе были выбраны первый закон термодинамики и структура преобразования Лежандра. Наконец, на основе двухпараметрической информации различия Шарма-Миттала формулируются и доказываются теоремы Гиббса и H-теорема об изменении этих мер при эволюции во времени.

Отметим, что полученные таким образом модифицированные термодинамические соотношения соответствуют различным выражениям однопараметрических энтропий из семейства SM, имеют общий вид и могут быть использованы при рассмотрении разнообразных термодинамических процессов (необратимости, устойчивости, самоорганизации, фрактальности и т.п.) в замкнутых и открытых хаотических неэкстенсивных системах.

Работа выполнена при поддержке Программы Президиума РАН № 28 и гранта РФФИ № 18-01-00064.

REFERENCES

- [1] J. Havrda, F. Charvat, "Quantification method of classification processes. Concept of structural α entropy", *Kybernetika*, **3**, 30-35 (1967).
- [2] Z. Daroczy, "Generalized information functions", Inf. Control., 16 (1), 36-51 (1970).
- [3] C. Tsallis, "Possible generalization of Boltzmann–Gibbs statistics" *J. Stat. Phys.* **52** (1-2), 479-487 (1988).
- [4] Renyi, "On measures of entropy and information", In: Proceedings of the Fourth Berkeley Symposium on Mathematics, *Statistics and Probability*. University California Press. Berkeley. **1**, 547-561 (1961).
- [5] Renyi, *Probability Theory*. Amsterdam: North-Holland Publ. Co., 573 (1970).
- [6] E. M. F. Curado, C. Tsallis, "Generalized statistical mechanics: connection with thermo-dynamics", *J. Phys. A*: *Mathematical and General*, **2**4 (2), L69-72 (1991).
- [7] Beck, F. Schlögl, *Thermodynamics of chaotic systems: an introduction.* Cambridge: Cambridge University Press. 286 (1993).
- [8] E. Borges, I. Roditi, "A family of nonextensive entropies", Phys. Lett. A, 246. 399-402 (1998).
- [9] Tsallis, R. Mendes, A. Plastino, "The role of constraints within generalized nonextensive statistics", *Physica A*, **261**, 543-554 (1998).
- [10] J. Naudts, "Continuity of a class of entropies and relative entropies" Rev. Math. Phys. 16, 809-822 (2004); Errata. Rev. Math. Phys. 21, 947-948 (2004).
- [11] Tsallis, Introduction to Nonextensive Statistical Mechanics. Approaching a Complex World, New York: Springer, 382 (2009).
- [12] Plastino, A.R. Plastino, "On the universality of thermodynamics' Legendre transform structure", *Phys. Lett. A* . **226** (5), 257-263 (1997).
- [13] U. Tirnakli, D.F. Torres, "Exact and approximate results of non-extensive quantum statistics", *Eur. J. Phys. B.* **1**4 (4), 691-698 (2000).
- [14] E.K. Lenzi, R.S. Mendes, "Collisionless Boltzmann equation for systems obeying Tsal-lis distribution", *Eur. J. Phys. B.* **21** (3), 401-406 (2001).
- [15] S. Abe, "Heat and entropy in nonextensive thermodynamics: transmutation from Tsallis theory to Rényi-entropy-based theory", *Physica A: Statistical Mechanics and its Applications*. **300** (3), 417-423 (2001).
- [16] T.Wada, A.M. Scarfone, "A non self-referential expression of Tsallis' probability distribution function", *Eur. J. Phys. B.* **47** (4), 557-561 (2005).
- [17] M. Scarfone, T. Wada, "Equivalence among different formalisms in the Tsallis entropy framework", *Physica A: Statistical Mechanics and its Applications*. **384** (2), 305-317 (2007).
- [18] Hanel R., Thurner S., Tsallis C. "Limit distributions of scale-invariant probabilistic models of correlated random variables with the q-Gaussian as an explicit example", *Eur. J. Phys. B.* **72** (2), 263-268 (2009).
- [19] A.R. Plastino, M. Casas, A. Plastino, "A nonextensive maximum entropy approach to a family of nonlinear reaction-diffusion equations", *Phys. A.: Statistical Mechanics and its Applications*. **280** (3), 289-303 (2000).
- [20] B. M. Boghosian, "Navier-Stocks Equations for Generalized Thermostatistics", *Bras. J. Phys.* **29** (1), 91-107 (1999).
- [21] A.□V. Kolesnichenko, B.□N. Chetverushkin, "Kinetic derivation of a quasihydrodinamic system of equations on the base of nonextensive statistics", *Russian Journal of Numerical Analysis and Mathematical Modelling.* **28**, 547-576 (2013).
- [22] T.D. Frank, A. Daffertshofer, "Multivariate nonlinear Fokker-Planck equations and generalized thermostatistics", *Phys. A.: Statistical Mechanics and its Applications*. **292**. (1), 392-410 (2001).

- [23] A.M. Mariz, "On the irreversible nature of the Tsallis and Renyi entropies", *Phys. Lett.A.* **165** (5-6), 409-411 (1992).
- [24] J.D. Ramshaw, "H-theorems for the Tsallis and Renyi entropies", Phys. Lett. A. 175. (3-4), 169-170 (1993).
- [25] J.D. Ramshaw, "Irreversibility and generalized entropies", *Phys. Lett.* A. **175** (3-4), 171-172 (1993).
- [26] M.Shiino, "H-theorem with generalized relative entropies and the Tsallis statistics", J. Phys. Soc. Jpn. 67 (11), 3658-3660 (1998).
- [27] T.D. Frank, A. Daffertshofer, "H-theorem for nonlinear Fokker-Planck equations related to generalized thermostatistics", *Physica A: Statistical Mechanics and its Applications*, **295** (3), 455-474 (2001).
- [28] N. Ito, C.Tsallis, "Specific heat of the harmonic oscillator within generalized equilibri-um statistics", *Nuovo Cimento D.* **11** (6), 907-911(1989).
- [29] Büyükkılıç, D. Demirhan, A. Güleç, "A statistical mechanical approach to general-ized statistics of quantum and classical gases", *Phys. Lett. A.* **197** (3), 209-220 (1995).
- [30] P.H. Chavanis, L. Delfini, "Dynamical stability of systems with long-range interactions: application of the Nyquist method to the HMF model", *Eur. Phys. J. B.* **69** (3), 389-429 (2009).
- [31] A.V. Kolesnichenko, "Kriteriy termicheskoy ustoychivosti i zakon raspredeleniy chastits dlya samogravitiruyushchikh astrofisicheskikh sistem v ramkakh statistiki Tsallisa", *Mathematica Montisnigri*, **37**, 45-75 (2016).
- [32] Esquivel, A. Lazarian, "Tsallis Statistics as a Tool for Studying Interstellar Turbulence", *Astrophys. J.* **710** (1), 125-132 (2010).
- [33] A.V. Kolesnichenko, "Modifikatsiya v ramkakh statistiki Tsallisa kriteriev gravitatsi-onnoy neustoychivosti astrofisicheskikh diskov s fraktalnoy strukturoy fazovogo prostranstva", *Mathematica Montisnigri*, **32**, 93-118 (2015).
- [34] A.V. Kolesnichenko, M.Ya. Marov, "Modification of the jeans instability criterion for fractal-structure astrophysical objects in the framework of nonextensive statistics", *Solar System Research*. **48** (5), 354-365 (2014).
- [35] J. Du, "Test of nonextensive statistical mechanics by solar sound speeds", *Europhys Lett.* **75** (6), 861-867 (2006).
- [36] R.M. Pickup, R. Cywinski, C. Pappas, B. Farago, P.Fouquet, "Generalized Spin-Glass Relaxation", *Phys. Rev. Lett.* **102** (9), id. 097202 (2009).
- [37] A. \(\subseteq\) V. Kolesnichenko, "On construction of the entropy transport model based on the formalism of nonextensive statistics", *Mathematical Models and Computer Simulations*. **6** (6), 587-597 (2014).
- [38] B.B. Mandelbrot,"Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier", *J. Fluid. Mech.* **62**, 331-358 (1974).
- [39] B.B. Mandelbrot, Les Objects Fractals. Forms, Hazard et Dimension, Paris: Flammari-on. 195 (1975).
- [40] B.B. Mandelbrot, Fractals: Form, Change and Dimension. San Francisco: Freeman. 365 (1977).
- [41] B.B. Mandelbrot, *The Fractals Geometry of Nature*. New York: Freeman, 460 (1982).
- [42] P. Grassberger, "On the Hausdorff dimension of fractal attractors", J. Statist. Phys. 26 (1), 173-179 (1981).
- [43] P. Grassberger, "Generalizations of the Hausdorff dimension of fractal measures", *Physics Letters A.* **107** (3), 101-105 (1985).
- [44] P. Grassberger, I. Procaccia, "Dimensions and entropies of strange attractors from a fluctuating dynamics approach", *Physica D: Nonlinear Phenomena*. **13** (1-2), 34-54 (1984).
- [45] T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B.I. Shraiman, "Fractal measures and their singularities: The characterization of strange sets", *Phys. Rev. A.* **33**, 1141-1151 (1986).

- [46] H.G.E. Hentschel, I. Procaccia, "The infinite number of generalized dimensions of fractals and strange attractors", *Physica D: Nonlinear Phenomena*. **8** (3), 435-444 (1983).
- [47] B.B. Mandelbrot, *Fraktalnay geometriy prirody*. Moskva: Institut kompyuternykh issledovaniy. 656 (2002).
- [48] R.G. Zaripov, Samoorganizatsiy i neobratimosty v neekstensivnykh sistemakh, Kazan: Fen. 251 (2002).
- [49] R.G. Zaripov, *Printsipy neekstensivnoy statisticheskoy mekhaniki i geometrii mer besporyadka i poryadka*. Kazan: Izdatelstvo Kazanskogo Gosudarstvennogo tekhnicheskogo universiteta. 404 (2010).
- [50] P. Jizba, T. Arimitsu, "Observability of Renyi's entropy", *Physical Review E.* **69** (2), id. 026128 (2004).
- [51] Bialas, W. Czyz, "Renyi entropies of a black hole from Hawking radiation", *EPL* (*Europhysics Letters*). **83** (6), 60009 (2008).
- [52] Á. Nagy, E. Romera, "Maximum Rényi entropy principle and the generalized Thomas—Fermi model", *Physics Letters A.* **373** (8-9), 844-846 (2009).
- [53] A.V. Kolesnichenko, "K razrabotre statisticheskoy termodinamiki i tekhniki fraktalnogo analiza dlya neekstensivnykh system na osnove entropii i razlichayushchey informatsii Renyi", *Keldysh Institute Preprints*, **60**, 44 (2018).
- [54] I. Aptekarev, J. S. Dehesa, P. Sanchez-Moreno, D. N. Tulyakov, "Asymptotics of L_p-norms of Hermite polynomials and Renyi entropy of Rydberg oscillator states", *Contemp. Math.* 578, 19-29 (2012).
- [55] I. Aptekarev, J. S. Dehesa, P. Sanchez-Moreno, D. N. Tulyakov, "Rényi entropy of the infinite well potential in momentum space and Dirichlet-like trigonometric functionals", *J. Math. Chem.* **50**, 1079-1090 (2012).
- [56] I. Aptekarev, D. N. Tulyakov, I. V. Toranzo, J. S. Dehesa, "Renyi entropies of the highly-excited states of multidimensional harmonic oscillators by use of strong Laguerre asymptotics", *Eur. Phys. J. B.* **89**, 85-97 (2016).
- [57] Tsallis, "Nonextensive Statistics: Theoretical, Experimental and Computational Evidences and Connections", *Brazilian Journal of Physics.* **29** (1), 1-35 (1999).
- [58] Tsallis, "Classical and Quantum Complexity and Nonextensive Thermodynamics", *Chaos, Solitons and Fractals.***13**, 371-391 (2002).
- [59] A.V. Kolesnichenko,"K postroeniyu neadditivnoy termodinamiki slozhnykh sistem na osnove statistiki Kurado-Tsallisa", *Keldysh Institute Preprints*, **25**, 40 (2018).
- [60] A.V. Kolesnichenko,"K konstruirovaniyu termodinamiki neadditivnykh sred na osnove statistiki Tsallisa–Mendesa–Plastino", *Keldysh Institute Preprints*, **23**, 28 (2018).
- [61] R. Zaripov, "Evolution of the Entropy and Renyi Difference Information during Self- Organization of Open Additive Systems", *Russian Physics Journal.* **48** (3), 267-274 (2005).
- [62] A.S. Parvan, T. S. Biro,"Thermodynamical limit in non-extensive Renyi statistics", *Physics Letters A.* **340** (5-6), 375-387 (2005).
- [63] B.D. Sharma, D.P. Mittal, "New non-additive measures of relative information:, *J. Comb. Inform. & Syst. Sci.* **2**, 122-133 (1975).
- [64] T.D. Frank, A.R. Plastino, "Generalized thermostatics based on the Sharma–Mittal entropy and escort mean value", *Eur. Phys. J. B.* **30**, 543-549 (2002).
- [65] A.M. Scarfone, T.Wada, "Thermodynamic equilibrium and its stability for microcanonical systems described by the Sharma-Taneja-Mittal entropy", *Physical Review E.* **72** (2), id. 026123 (2005).
- [66] M. Scarfone, "Thermal and mechanical equilibrium among weakly interacting systems in generalized thermostatistics framework", *Physics Letters A.* **355** (4-5), 404-412 (2006).
- [67] Aktürk, G.B. Bagci, R. Sever, "Is Sharma–Mittal entropy really a step beyond Tsallis and Renyi entropies?", *Eprint arXiv: cond-mat/*0703277 (2007).

- [68] O. Aktürk, E. Aktürk, M. Tomak, "Can Sobolev Inequality Be Written for Sharma–Mittal Entropy?", *Intern. J. Theor. I Phys.* **47** (12), 3310-3320 (2008).
- [69] T.D. Frank, A. Daffertshofer, "Exact time-dependent solutions of the Renyi Fokker—Planck equation and the Fokker-Planck equations related to the entropies proposed by Sharma and Mittal", *Physica A: Statistical Mechanics and its Applications*. **285** (3), 351-366 (2000).
- [70] M. Masi, "A step beyond Tsallis and Renyi entropies", Phys. Lett. A. 338, 3-5 (2005).
- [71] K. Lenzi, A. M. Scarfone, "Extensive-like and intensive-like thermodynamical variables in generalized thermostatistics", *Physica A: Statistical Mechanics and its Applications*. **391** (8), 2543-2555 (2012).
- [72] Kaniadakis, M. Lissia, A. M. Scarfone, "Two-parameter deformations of logarithm, exponential, and entropy: A consistent framework for generalized statistical mechanics", *Physical Review E*, **71** (4), id. 046128 (2005).
- [73] Nielsen, R.Nock, "A closed-form expression for the Sharma-Mittal entropy of exponential families", *J. Phys. A: Mathematical and Theoretical.* **45** (3), id. 032003 (2012).
- [74] P.T. Landberg, V. Vedral, "Distributions and channel capacities in generalized statistical mechanics", *Phys. Lett. A*". **247**, 211-217 (1998).
- [75] K.S. Fa, E.K. Lenzi, "Thermostatistical aspects of generalized entropies", Chaos, Solitons and Fractals", **20** (2), 227-233 (2004).
- [76] M. Czachor, J. Naudts, "Thermostatistics based on Kolmogorov-Nagumo averages: unifying framework for extensive and nonextensive generalizations", *Phys. Lett. A.* **298** (5-6), 369-374 (2002).
- [77] S. Abe, "Remark on the escort distribution representation of nonextensive statistical mechanics", *Physics Letters A*, **275** (4), 250-253 (2000).
- [78] E.T. Jaynes, "Information theory and statistical mechanics", In com.: «Statistical Physics». Brandeis Lectures. **3**, 160 (1963).
- [79] S. Abe, Y. Eds. Okamoto, *Nonextensive Statistical Mechanics and Its Applications, Series Lecture Notes in Physics*. Springer: Verlag, Berlin, New York. 540 (2001).
- [80] S. Abe, "Heat and generalized Clausius entropy of nonextensive systems", *Eprint arXiv:cond-mat/0012115*. **3**, 1-14 (2000).
- [81] V.V. Sychev, *Differenzialnye uravneniya termodinamiki*, Moskva: Vysshaya. shkola. 224 (1991).
- [82] Yu.L. Klimontovich. *Turbulent motion and Structure of Chaos*, Kluwer academic Publishers. Dordrecht. 320 (1991).
- [83] Shredinger, Chto takoe zhizn s tochki zreniya? Moskva: Inostrannaya Literatura, 147 (1947).
- [84] A.M. Scarfone, "Legendre structure of the thermostatistics theory based on the Sharma Taneja Mittal entropy", *Physica A: Statistical Mechanics and its Applications*, **365** (1), 63-70 (2006).

Received May 25, 2018