
MATHEMATICA MONTISNIGRI 
Vol XLII (2018) 

2010 Mathematics Subject Classification: 58J45, 35L67, 76M25.  
Key words and Phrases: Exact solutions, Hyperbolic Equations, Discontinuous Galerkin Method. 

CONSTRUCTION OF EXACT SOLUTIONS OF SOME EQUATIONS OF 
HYPERBOLIC TYPE CONTAINING DISCONTINUITY MOVING ON A 

NON UNIFORM BACKGROUND 

YU.A. KRIKSIN, P.A. KUCHUGOV, M.E. LADONKINA, O.A. NEKLIUDOVA, 
V.F. TISHKIN AND V.P. VARIN 

Keldysh Institute of Applied Mathematics of RAS 
Miusskaya Sq. 4, Moscow, Russia, 125047 

e-mail: office@keldysh.ru, web page: http://keldysh.ru/ 

Summary. Exact solutions for the quasilinear transport equation and a system of shallow 
water equations that contain discontinuities propagating along an inhomogeneous background 
are constructed in this paper. These solutions can be used as test problems for verification of 
newly created software packages and numerical methods. The influence of the limiter on the 
order of approximation using the Galerkin discontinuous method was studied. To calculate 
the order of approximation, the exact solutions constructed in this paper were used. 

1 INTRODUCTION 

Equations and systems of equations such as conservation laws [1-4] arise in many practical 
applications, and therefore their numerical solution is of considerable interest [5-7]. For this 
purpose, more advanced numerical methods and algorithms are developed. The Galerkin 
method with discontinuous basis functions [8,9] is quite often used recently. This method has 
proved itself to solve a wide class of applied problems of mathematical physics with a 
complex geometry of the investigated object and a multiscale structure of the studied 
processes. This method has a number of advantages inherent in both finite-element and finite-
difference approximations. As you know, there are two approaches to improve the accuracy of 
the solution. The first approach is to grind the grid in areas of existing solution features (hp-
adaptation), the second - to increase the order of accuracy of the scheme. The application of 
the Galerkin discontinuous method makes it possible to use both approaches 
simultaneously [10,11] 

 An important component of the computational algorithm development process is the 
verification stage, with particular interest in the behavior of numerical solutions in regions 
containing strong and weak discontinuities. For this, it is necessary to have examples of exact 
solutions. The construction of which is described in numerous works. 

The problems described by the system of shallow water equations are of great practical 
importance, such as the destruction of the hydroelectric dam, the emergence of large sea 
waves such as tsunami in shallow water, currents in the atmosphere, and others. Analytic 
solutions for these problems are constructed [12-22], however, either piecewise constant 
initial data [12-17] or solutions that exclude discontinuities [18,19] are considered. At the 
same time, the most important goal is to investigate the accuracy of computational techniques 
on model problems in which discontinuities propagate along a non-uniform background. The 
behavior of a numerical solution obtained using difference schemes of high order of accuracy 
in the flow behind the discontinuity region was studied [23], in which it was shown that the 
order of approximation in this region drops to the first. In order to eliminate this defect, a 
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combined scheme is proposed in [24], which allows maintaining a high order of accuracy of 
the scheme. However, there is a very limited amount of test problems that have an exact 
solution with a discontinuity propagating along an inhomogeneous background. In this paper, 
the authors construct exact discontinuous solutions for the quasilinear transport equation and 
the system of shallow water equations, using the characteristic approach. A method for 
determining the time instant after which the characteristics intersect occurs is described in 
detail. This makes it possible to guarantee the correctness of the exact solution constructed 
before the specified time. In the second part of the paper, we describe the application of the 
discontinuous Galerkin method [9] and study the order of approximation of the exact 
solutions obtained in the first part of this article by numerical solutions. 

2 QUASILINEAR TRANSPORT EQUATION 

The simplest example of a quasilinear transport equation is the Hopf equation [25], by 
means of which the motion of a gas of noninteracting particles can be described. In the one-
dimensional case, it has the following form: 

0
u u

u
t x

 
 

   
(1) 

The general solution of equation (1) is the functional dependence   , 0G x ut u  . In 

particular, we can consider a family of solutions of the  

 ,
x A

u x t
t B





 (2) 

Equation (1) admits the existence of discontinuous solutions. We construct this solution using 
two different solutions of the form (2): 

   
   

, ,

, ,

L f

R f

u x A t B x x
u

u x C t D x x

     
   

 (3) 

where  fx t  is the position of the front of the shock wave, the expression for which must be 

found in order to obtain the final exact solution. According to [26-28], we obtain: 

1

2
f f fdx x A x C

dt t B t D

  
    

 (4) 

or after integration 

      
1f

A C t AD CB
x t C t B t D

B D

  
   


 (5) 

where 1C  is the integration constant, which can be determined by specifying the initial 

condition   00fx x . 

We give an example of a constructed exact solution (5) containing a discontinuity 
propagating along an inhomogeneous background, concretizing the values of the constants. 
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Let’s set 1A  , 2B  , 0C  , 1D   and 0 1 2x  . In this case 1 2 4C  . The 

corresponding profiles of  u  at different times are given in Fig. 1. 

 

Figure 1. The exact solution of the Hopf equation at 0.0t   (black line), 0.5  (red line) and 
0.8  (green line). 

3 SHALLOW WATER EQUATIONS 

Let us turn to the system of shallow water equations, for which it is possible to carry out a 
similar procedure of constructing an exact discontinuous solution. This system of equations 
can be obtained from the system of equations of hydrodynamics in the approximation, when 
the length of gravitational waves is large in comparison with the depth of the liquid [1]: 

2
2

0,

0,
2

h hu

t x

hu gh
hu

t x

     
           

 (6) 

where h  is the depth, u   is the flow velocity in the horizontal direction, the gravitational 
constant g  let’s set equal to 1. The system of equations (6) can be rewritten in the following 
form: 

 

 

0,

0,

R R
u h

t x

R R
u h

t x

 

 

 
    


      

 (7) 

where 2R u h    are Riemann invariants for the system (6). 
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Consider the domain x    . As a background solution in the region 0x x  we set a 

solution in the form of a simple centered wave, for which the invariant R  remains constant. 
Let’s set 

rR    (8) 

In this case h  and u  are defined by: 

1
2 ,

3r r r
x A

u h h
t B

        
 (9) 

where  0,ru u x x t  ,  0,rh h x x t  . We assume that in the region 0x x  the other 

invariant R remains constant. Let’s set 

lR    (10) 

The corresponding solution of the system (6) can also be given in the form of a simple 
centered wave: 

1
2 ,

3l l l
x C

u h h
t D

        
 (11) 

We require the fulfillment of the Hugoniot conditions on the discontinuity: 

 

         

* * * * * *

2 2* *
2 2* * * * * * * *

,

2 2

l l r r l r

l r
l l r r l l r r

h u h u W h h

h h
h u h u W h u h u

   


     

 (12) 

where W  is the velocity of the discontinuity, *
,l rh  and *

,l ru  are the values of the corresponding 

functions to the right and left of the discontinuity. Eliminating W  from equations (12), you 
can get 

   
* * 2 2* * * * * *

2
l r

l r l r l r
h h

h h h h u u


    (13) 

taking into account (8) and (10) 

   * * 22* * * * * *2 2
2

l r
l r l r l r

h h
h h h h h h


      (14) 

From (14) it is possible to determine the quantities *
lh  and  *

lu  on the discontinuity.   

To agree the solutions (9) and (11) to the left and right of the discontinuity, the constants in 
(11) must be determined with the following condition taken into account: 
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*0 3 l
C x

h
D


    (15) 

obtained at the initial moment 0t  . 
On the basis of the following simple considerations, we can now draw some conclusions 

about the roots of equation (13). Thus, in the case of a discontinuity moving to the right, 
equation (13) with allowance for (10) can be rewritten in the form: 

*
1

*

1
2 (1 ) ( 1)

2
r

r

u
y y y

h

  
      (16) 

relatively dimensionless variable * */l ry h h . The left-hand side of (16) is a monotonically 

decreasing function with respect to the variable 0y  , which takes all values on the real line 
( ,  ),which follows from the negativity of the variable. This means that for any values of 
the right-hand side, equation (16) has a unique solution. We note that only solutions that 
satisfy the inequality 1y   are physicly correct, which is ensured if and only if 

* *2r ru h   . The investigation of the roots of the polynomial (14) is generally given in 

Appendix A. 
The exact solution at any time t  in the region bounded from the left by the characteristic 

 * *
0 l lx u h t   (see Fig. 2), will be determined by the functions (11), and the shock front 

bounded by the right  fx t  - functions (9).  

 
Figure 2. Trajectory of motion of the shock wave front (red line) and family of characteristics: a green 

line is a characteristic with a slope u h , which emerges from the point of the initial position of the 
discontinuity, continuous thin lines - a field of characteristics emerging from the shock wave trajectory, 

on which the value * *2l lR u h   , dashed thin lines - a field of characteristics on which the value of 

the invariant 2l lR u h   , and by which this value is transferred to the front of the shock wave. 
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In the region between the indicated characteristic and the discontinuity, in which the value 

R  will remain constant, the solution will still be a simple wave, which, however, will no 
longer be centered. In this interval, the exact solution is determined using the method of 
characteristics. Let us describe this procedure in more detail. 

Values before the rupture front *
rh  and *

ru  at each instant of time are determined by the 

formulas (9). Solving equation (14) we find the values *
lh  and *

lu  as functions of fx  and t , 

where fx  is a position of the rupture front. From (12) we determine the velocity of the 

discontinuity  ,fW x t . Trajectory of the discontinuity motion  fx t   is defined as a solution 

of equation 

    0, , 0f
f f

dx
W x t x x

dt
   (17) 

From each point of this trajectory   ,fx t t  release the characteristic on which the value is 

stored * *2l lR u h   . In this case, these characteristics will have a constant slope, i.e. will 

be straight lines. Finally, we determine the point of intersection *x  straight line t T  and 
characteristics. Function values u  and h  to a given point are carried by characteristics in 
accordance with the values of the Riemann invariants. 

We perform the above procedure for specific values of the constants. Let’s set 0  , 

3 2  , 0 0x  , 1 2A  , 1B  , 1D  , and C  is determined in accordance with (15). 

Equation (14) can be rewritten in the form 

  0P    (18) 

where P  is polynomial with constant coefficients, h  . The graph of the dependence is 
given in Fig. 3. 

 

Figure 3. The function  P  . 
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By building a series of Sturm for  P   and applying the Sturm theorem [29], we can 

determine that equation (17) has two roots on the positive semiaxis, one of which corresponds 

to a shock compression wave ( * *
l rh h ), another - a shock wave of rarefaction ( * *

l rh h ). From 

the physical considerations, we choose the first one. For this case, the system of 
characteristics is shown in Fig. 2, and the evolution of the exact solution is shown in Fig. 4. 

  
a) b) 

Figure 4. The exact solution of the system of shallow water equations at times 0.5  (solid line) and 
1.0  (dashed line). 

It should be noted that the method of characteristics is applicable only when the 
characteristics do not intersect in the considered region. The condition for the intersection of 
two infinitely close characteristics at time T emerging from points ( ( ), )fx t t  and 

( ( ), )fx t t t t     with different angular coefficients 1a  and 2a  respectively, is given by 

1 2( ) ( ) ( ) ( )с f с fa t t x t a t t t x t t         (19) 

allowing to find the moment of their intersection 

1
2 1 2( ) [ ( ) ( )]с f ft t a a a t x t t x t         (20) 

The expression for the angular coefficient of an arbitrary characteristic with allowance for the 

constancy of the invariant R    is defined by 

* * *3l l la u h h      (21) 

In turn, the quantity *
lh  is given by means of equation (16) as an implicit continuously 

differentiable function depending on the arguments *
ru and *

rh , which in accordance with (9) 

are continuously differentiable functions of two variables x and t. Therefore, according to 
(19), the expression for the angular characteristic coefficient can be regarded as a 
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continuously differentiable function ( , )a a x t . In view of the latter circumstance 

1 ( ( ), )fa a x t t  and 2 ( ( ), )fa a x t t t t     . Passing to the limit as 0t   on the right-

hand side of (20) and taking (16) into account, we obtain the instant of intersection of 
infinitely close characteristics emerging from the point ( ( ), )fx t t  

1

( ( ), ) [ ( ( ), ) ( ( ), )]с f f f
a a

t t W x t t a x t t W x t t
t x

        
 (22) 

Introducing the notation 

* *

1 1 1
( )

2 l r

X
h h

  , 
* *

2
* 2

4
( )
l r

r

h h
Y X

h


  , 

* *
2 *

* *
4 4 l r

l

l l

h h
Z X h X

h h


   , (23) 

expressions for the partial derivatives of the function ( , )a a x t can be found 

* *
13

4
2

r ra h u
Z Y X

x x x
    

       
, 

* *
13
( 4 )

2
r ra h u

Z Y X
t t t

  
  

  
. 

(24) 

 

 

Relations (22) - (24) for given values of the constants A , B , C  and D , which were defined 
above, allow us to numerically determine the minimum value of the right-hand side of (22) 

22.3* ct  on the set of all characteristics issuing from points ( ( ), )fx t t , that specifies the 

applicability boundary of the method of characteristics in the studied problem. 

4 DISCONTINIOUS GALERKIN METHOD 

We use the exact solutions obtained in the previous sections of the Hopf equation and the 
system of shallow water equations to determine the order of approximation when using the 
Galerkin discontinuous method for their numerical solution. In this section we briefly 
describe the essence of the approach using the example of a generalized hyperbolic system of 
quasilinear equations of the type of conservation laws: 

( )
0

t x

 
 

 
U F U

 (25) 

where ( , )x tU  is vector of variables, and ( )F U  are defined streaming vector functions 
containing m  components. For system (25) we set the Cauchy problem with initial data 

0( ,0) ( ),  x xU U  (26) 

Suppose that the Cauchy problem (25) - (26) has a unique generalized solution ( , )x tU , 

limited with 0t  . Let’s set ( ) ( , )n
nx x tU U   a numerical solution of this problem 

corresponding to the instant of time nt . 

To apply the Galerkin discontinuous method on a uniform grid, we define the following 
system of basis functions 
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 
 

 
1

,
1

( ), , ,

0, , ,

k i i
i k

i i

x x x x
x

x x x





   
  

(27) 

where    1( ) ( ) / ,   / 2
kc c

k i i i ix x x x x x       . Then on each time layer in each space cell 

 1,i i iI x x   an approximate solution of the system of equations (25) will be sought in the 

form of a polynomial of degree p 

0

( ) ( , ) ( )
p

n n
i i n ik k

k

x x t x


  U U U
 

(28) 

with time-dependent coefficients ( )n
ik ik ntU U . 

Multiplying (25) by the basis function and performing integration over x on the interval iI , 

we obtain the following expression 

  1, ( ) ( ) 0i

i
i i

x
l l l x

I I

x t dx dx
t

      
 U F U F U  (29) 

on the basis of which Galerkin's discontinuous method is constructed. Replacing in the first 

two terms of equation (29) the function ( , )x tU  on function ( )n
i xU , and in the third term - 

differential flows F( ( , )),jx tU  where , 1,j i i   on numerical flows 

    1 , ,n n n
j j j j jx x 

F Φ U U  in which 0,j jx x   we get 

     1 1 0
i i

n n n n
i l i l i l i i l i

I I

dx dx x x
t

 
 

        
  U F U F F  (30) 

In this paper we use the Rusanov-Lax-Friedrichs numerical flows [30,31], in which the 
function  ,Φ x y  is determined by the formula 

         1
, , ,

2
A   Φ x y f x f y x y y x       , max ,m m

m
A   x y x y

, 
(31) 

where m  are eigenvalues of the Jacobi matrix 
( )

F U

U
 of set (25). 

From (30), taking (28) into account, we obtain a system of ordinary differential equations 

     1
1 1,      

i

n
n n nki

i i i i l i l i i l i
I

d
dx x x

dt
  

       
U

A R R F U F F  (32) 

to calculate the coefficients n
kiU , where 1

i
A is an inverse matrix for matrix  i

i klaA , 
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whose coefficients are determined by the formula ( ) ( )
i

i
kl k l

I

a x x dx   . The system (32) is 

solved by the explicit Runge-Kutta method of the third order, in which the time step   is 
chosen from the stability condition of Courant 

1/2
, ,

| ( ) |max
n

m j
m j n

z




 

 U
 

(33) 

where  0,1z is safety factor. 

The following calculations use polynomials (28) of the first order, i.e. 1.p   
To ensure the monotony of the numerical solution obtained by this method, it is necessary 

to introduce flow limiters, especially if the solution contains strong discontinuities. In this 
paper we apply the Cockburn limiter [9], which is widely used in applied multidimensional 
calculations conducted on grids of arbitrary structure. In the case when the solution (28) is 
sought in the form of linear x functions  

0 1( )
c

n n n i
i i i

x x
x


 


U U U

 
(34) 

the action of this limiter leads to the fact that the vector coefficient 1
n
iU  in the formula (34) is 

replaced by the quantity  

   1 1 1,0 0 0 1,0, ,n n n n n n
i i i i i iV M U U U U U 

        
(35) 

where 0
n
jU  – the corresponding components of the vectors 0

n
jU , [1,2] – heuristic 

parameter, chosen as a result of test calculations, M  is a min mod operator, the action of 
which is determined by formula  

   1 2 3 1 2 3, , min , , ,M u u u s u u u
 

(36) 

where ( )is sign u  provided that all numbers iu  have the same sign and 0s   otherwise. 

5 THE ORDER OF APPROXIMATION OF DISCONTINUOUS GALERKIN 
METHOD ON EXACT SOLUTIONS 

We consider a sequence of difference solutions of the Cauchy problem (25) - (26) obtained 
using the numerical scheme based on the discontinuous Galerkin method on uniform grids 
with spatial steps   and 2 . It is possible to calculate the approximation order achieved 
having the exact solution obtained in Sections 2 and 3: 

1 2

2

log i

i

ex I
i

ex I

u u
r

u u





 
 
 
 

, (37) 
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where  
1 2

2
2

2

c
i

i
c
i

x

I
x

x dx 




 
 
 
 
 ,  2,2  c

i
c
ii xxI  is coarse grid, c

ix  is cell center iI . 

Integral, included in the definition of the norm 
iI

 , is calculated analytically, as the exact 

solution of the Hopf equation is a fractional linear function (3), and the numerical solution 
obtained by the discontinuous Galerkin method is a linear polynomial (28). For the system of 
shallow water equations, it is impossible to write out an exact solution in the form of an 
analytic function in the region between the characteristics emerging from the discontinuity 
point at the initial time instant. Therefore, we shall consider local norm convergence: 

   
   2 3

3

log
c c
i ex i

i c c
i ex i

u x u x
r

u x u x





 
 
  

, (38) 

where    x x  . 

Fig. 5-8 represent numerical solutions of the Hopf equation and the system of shallow 
water equations with and without the use of the limiting procedure in the discontinuous 
Galerkin method on grids of various dimension. In Fig. 5 and 7, the numerical solution 
practically coincides with the exact solution, with the exception of a narrow region, near the 
discontinuities. In more detail these areas are presented in Fig. 6 and 8. As the grid pitch 
decreases, the numerical solution converges to the exact one, which is clearly seen in Fig. 6 
and 8. It can also be noted that without using the limiting procedure in a numerical solution 
near the discontinuity, strong enough oscillations are observed, suppression of which occurs 
when limiters are used to ensure the monotonicity of the solution. 

a) b) 

Figure 5. Profiles of exact and numerical solutions of the Hopf equation at time moment 5.0t . The 
exact solution on the graph corresponds to number 1. Numerical solutions were obtained using the 
discontinuous Galerkin method (a) without applying the restriction procedure on meshes containing 
400 (2) and 800 (3) cells, (b) - the same with the application of the limiting procedure. 
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a) b) 
Figure 6. Profiles of exact and numerical solutions of the Hopf equation at an instant 5.0t  in the 
vicinity of the discontinuity. The exact solution on the graph corresponds to number 1. Numerical 
solutions were obtained using the Galerkin discontinuous method (a) without applying the restriction 
procedure on meshes containing 400 (2) and 800 (3) cells, (b) - the same with the application of the 
limiting procedure. 
 

 
 

Figure 7. Profiles of exact and numerical solutions of the system of shallow water equations at a time 
moment 3.0t  . The exact solution on the graph corresponds to number 1. Numerical solutions were 
obtained using the discontinuous Galerkin method with the use of the limiting procedure on grids 
containing 3000 (2) and 9000 (3) cells.  
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a) b) 

Figure 8. The profiles of the exact and numerical solutions of the system of shallow water equations at 
the instant of time 3.0t   in the vicinity of the discontinuity. The exact solution on the graph 
corresponds to number 1. Numerical solutions were obtained using the discontinuous Galerkin method 
(a) without applying the limiting procedure on grids containing 3000 (2) and 9000 (3) cells, (b) - the 
same with the use of the limiting procedure.  

In Fig. 9 and 10 are the graphs of the discrepancy between the numerical solution of the 
Hopf equation and the approximation order calculated according to (37), respectively. In spite 
of the fact that, in the case of applying the limiting operator, the error in the numerical 
solution in the region beyond the gap increases by 3 orders of magnitude (see Fig. 9), the 
approximation order value remains equal to two, as in the case without the limiter [32,33].  

a) b) 

Figure 9. The discrepancy between the numerical solution of the Hopf equation obtained using the 
discontinuous Galerkin method (a) without the use of the limiting procedure and (b) with it on meshes 
containing 400 (solid line) and 800 (dashed line) cells. 
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a) b) 

Figure 10. The order of approximation of the exact solution of the Hopf equation using the Galerkin 
discontinuous method (a) without applying the limiting procedure and (b) with limiting. 

The reason for this result is that in the nonlinear transport equation there is only one invariant 
that is transported by characteristics and is not affected by the shock wave. In contrast to the 
Hopf equation, the system of shallow water equations (6) contains two invariants and is more 
suitable for investigating the accuracy of the numerical method. In Fig. 11 shows the order of 
local convergence of the numerical solution to the exact one, calculated according to (38). 

a) b) 

Figure 11. The order of local convergence of numerical solutions obtained by using the discontinuous 
Galerkin method (a) without applying the limiting procedure and b) using a limiter on meshes 
containing 3000 cells and 9000 cells to an exact solution. 
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Figure 12. Deviations of the numerical solution from the exact one in the vicinity of the point x ≈ 2.3 
in the calculation without the use of a limiter; solid line corresponds to A·(hΔ – hex), dashed line – 
A·(hΔ/3 – hex), where A = 1010, hΔ – the solution obtained on the grid of 3000 cells, hΔ/3 - the solution 
obtained on the grid of 9000 cells, hex - the exact solution. 

In calculations without using a limiter in the entire region, a second order of accuracy of 
the solution was obtained (see Fig. 11a). The jumps of orders at the point 1.3x   correspond 
to the gluing of a solution of the type (9) and the solution between the characteristics 
emerging from the discontinuity point at the initial instant of time, and at the point 3.0x  - to 
the position of the front of the shock wave. At the point 2.3x  , the intersection of numerical 
and exact solutions occurs. This can be clearly seen in Fig. 12, which shows the deviation of 
the numerical solution on different grids from the exact one. At the point 2.3x   these 
functions change sign and, accordingly, in its vicinity the order of accuracy is not defined. 
The behavior of the order in the vicinity of the point 0.44x   is shown on Fig. 11b when 
using the limiting operator can be explained in the similar way. However, the general 
behavior of the order is somewhat different. It can be seen from the calculations that the 
solution in the region of smoothness ahead of the front of the shock wave and in the solution 
region of type (9) has a second order of accuracy irrespective of the use of the limiting 
operator. In the solution region behind the front of the shock wave, but located between the 
characteristics emerging from the point of discontinuity at the initial instant of time, the 
accuracy of the solution drops to the first. An interesting fact is that in the region [0,1] a 
second order of accuracy is observed. In this region, both invariants are carried over the 
characteristics from the initial data, while in the region of reduced orders of accuracy the 
invariant is transferred from the front of the shock wave. Thus, it can be argued that the use of 
the limiting operator negatively affects the accuracy of the solution obtained only in the 
region of the impact of the shock wave [1.5, 3]. 

6 CONCLUSIONS 

In this paper, exact discontinuous solutions are constructed for the quasilinear transport 
equation, and also for the system of shallow water equations using the method of 
characteristics. The results of calculations obtained by programs implementing the 
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discontinuous Galerkin method showed good agreement of the numerical solutions with the 
constructed exact solutions, confirming the possibility of using them as test tasks for 
verification of program complexes and numerical methods. Using the Hopf equation as an 
example, it was shown in the paper that the use of hyperbolic equations containing only one 
Riemann invariant is not sufficient to study the order of approximation of numerical methods. 
To this end, it is necessary to use more complex systems, for example, a system of shallow 
water equations. In this example, it was shown that the introduction of the limiter reduces the 
order of accuracy of the discontinuous Galerkin method in the regions of influence of strong 
discontinuities. 

Acknowledgements: This work was supported by the Russian Science Foundation under the 
project No. 17-71-30014 

APPENDIX A 

Let us introduce a new notation, namely, yhl * , xhr * , p   In this case (14) 

is rewritten in the form: 

    222 2 2 2 2 21
2 2 ,

2
P x y p x y x y x y       (A1) 

where y  is the chosen dependent variable, x  and p  are independent parameters. 
As is known, the classical Sturm sequence [29] is defined only for polynomials with real 

coefficients. Degenerations and rearrangements of the solution set are possible in the case of 
the dependence of the coefficients on the parameters. However, for this problem it is possible 
to construct the Sturm sequence in general form. After an elaborate work we can get 

 1 7,..., ,S s s  where 

   6 2 2 3 4 3 2 2 2 2
1 2 8 9 16 8 9 ,s x x p px x x px x y y y y          

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   2 2 3 4 2 3 2 2
2 2 8 9 12 24 18 3 ,s x p px x px x x y y y y         

  4 2 2 2
3 3 4 16 18 24 12 9 ,s x p px x x p y y y          

    24 2
4 12 2 18 2s x p x x x p        

        2 24 2 2 2 9 24 36 144 ,x p p x p x x p px y y y           

  4 2 3 3 2 2 3 4
5 6 29 180 8 9 490 312s x p px x p xp x p px x           
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2 2 3 4295 80 8x p p x p     
 
 
 
(A2)   4 2 3 3 2 5 4 53456 573 2024 8 96 1728 ,p px x p x p p xp x y y        

 10 9 8 2 3 7 6 4
6 34992 347760 371556 2068672 3534048s x px x p p x x p       

5 5 4 6 3 7 2 8 93060540 1563205 501504 100464 11520p x x p x p x p xp       

 10 7 6 5 2 3 4 3 4576 54 648 7196 14616 28532 17850p y x px x p p x x p        

2 5 6 7 45817 1008 72 ,x p p x p x    

7 1.s   

Substituting the specific values of x  and p  in (A2), one can determine the number of 
nondegenerate roots on a given interval of variation y , as the difference between the number 
of sign changes in the Sturm sequences corresponding to the edges of the interval. Degenerate 
cases require particular consideration. 

For the case considered in the text of the paper, namely, 23 , 0 ( 23p ), (A1) 
has the following graph of the dependence on the parameter x  – see Fig. 13. 

 

Figure 13. The dependency (A1) in the case of 23p . 

From Fig. 13 is obvious that there is at least one degenerate case. Calculations show that this 
happens when value 4px  . Asymptotic analysis shows that there are no other degenerate 
cases. 
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