SOME CHARACTERIZATIONS OF RIGHT WEAKLY PRIME Γ -HYPERIDEALS OF ORDERED Γ -SEMIHYPERGROUPS

SABER OMIDI * AND BIJAN DAVVAZ †

* Department of Mathematics Yazd University Yazd, Iran e-mail: omidi.saber@yahoo.com

† Department of Mathematics Yazd University Yazd, Iran

Email: davvaz@yazd.ac.ir - Web page: https://pws.yazd.ac.ir/davvaz/

Summary. In this paper, we deal with ordered Γ -semihypergroups. In particular, we study right weakly prime Γ -hyperideals and maximal Γ -hyperideals in ordered Γ -semihypergroups. Moreover, we give some results on ordered Γ -semihypergroups.

1 INTRODUCTION AND PREREQUISITES

Hyperstructure theory was first introduced in Marty's classical paper [1]. Semihypergroup is the generalization of semigroup theory with the wide range of usages in theory of hyperstructures [2,3]. In [4], Heidari and Davvaz studied a semihypergroup (S, \bullet) besides a binary relation \leq , where \leq is a partial orderrelation such that satisfies the monotone condition. This structure is called an ordered semihypergroup. As a reference for more definitions and results on ordered semihypergroups we refer to [3,5,6]. Omidi and Davvaz [7] investigated on the relation N in ordered semihypergroups. We refer to [5] for a survey of some results on the pseudo orders of ordered semihypergroups. Omidi et al. [8] discussed quasi- Γ -hyperideals and hyperfilters in ordered Γ -semihypergroups. Tang et al. [9] studied fuzzy quasi- Γ -hyperideals in ordered Γ -semihypergroups. In 2016, Omidi and Davvaz [10,11,12] studied some properties of hyperideals and k-hyperideals in ordered semihyperrigs and hyperrings. The study of weakly prime ideals of ordered Γ -semigroups was started by the pioneering work of Kwon and Lee [13]. In 2013, Changphas [14] defined right prime ideals and maximal right ideals in ordered semigroups. Weakly prime ideals in involution po- Γ -semigroups discussed by Abbasi and Basar [15].

Let S be a non-empty set. A mapping $\bullet: S \times S \rightarrow P^*(S)$, where $P^*(S)$ denotes the family of all non-empty subsets of S, is called a hyperoperation on S. By a hypergroupoid we mean a non-empty set S endowed with a hyperoperation \bullet . In the above definition, if A and B are two non-empty subsets of S and $x \in S$, then we denote $A \bullet B$ the union of $a \bullet b$, where $a \in A$ and $b \in B$. Moreover, for every $x \in S$,

$$A \bullet x = A \bullet \{x\}$$
 and $x \bullet B = \{x\} \bullet B$.

A hypergroupoid (S, \bullet) is called a semihypergroup if for all x, y, z of S, we have

2010 Mathematics Subject Classification: 16Y99, 20N20.

Key words and Phrases: Ordered Semihypergroup, Right Weakly Prime Hyperideal, Maximal Hyperideal.

$$x \bullet (y \bullet z) = (x \bullet y) \bullet z,$$

which means that the union of $x \cdot u$, where $u \in y \cdot z$ is equal to the union of $v \cdot z$, where $v \in x \cdot y$.

A non-empty subset A of a semihypergroup (S, \bullet) is called a subsemihypergroup of S if $A \bullet A$ is a subset of A. Let (S, \bullet) be a semihypergroup. Then, S is called a hypergroup if it satisfies the reproduction axiom, for all $x \in S$, $x \bullet S = S = S \bullet x$. A non-empty subset K of S is a subhypergroup of S if $a \bullet K = K = K \bullet a$, for every $a \in K$.

Let S and Γ be two non-empty sets. Then, S is called a Γ -semihypergroup [16] if every $\gamma \in \Gamma$ is a hyperoperation on S, i.e., $x\gamma y$ is a subset of S for every $x, y \in S$ and for every $\alpha, \beta \in \Gamma$ and $x, y, z \in S$, we have

$$x\alpha(y\beta z)=(x\alpha y)\beta z.$$

A Γ -semihypergroup S is called commutative if for all $x,y \in S$ and $\gamma \in \Gamma$, we have $x\gamma y = y\gamma x$. For some properties of Γ -semihypergroups, readers can see [16]. The following concepts are adapted from [8,9].

An ordered semihypergroup (S, \bullet, \leq) is a semihypergroup (S, \bullet) together with a partial order \leq that is compatible with the hyperoperation \bullet , meaning that for any $x, y, z \in S$,

$$x \le y$$
 implies that $z \cdot x \le z \cdot y$ and $x \cdot z \le y \cdot z$.

Here, $z \cdot x \le z \cdot y$ means for any $a \in z \cdot x$ there exists $b \in z \cdot y$ such that $a \le b$. The case $x \cdot z \le y \cdot z$ is defined similarly.

Definition 1.1 An algebraic hyperstructure (S, Γ, \leq) is called an ordered Γ -semihypergroup if (S, Γ) is a Γ -semihypergroup and (S, \leq) is a partially ordered set such that for any $x, y, z \in S$ and $y \in \Gamma$, we have

$$x \le y$$
 implies that $zyx \le zyy$ and $xyz \le yyz$.

Here, $z\gamma x \le z\gamma y$ means for any $a\epsilon z\gamma x$ there exists $b\epsilon z\gamma y$ such that $a \le b$. The case $x\gamma z \le y\gamma z$ is defined similarly.

See to [8,9] for the examples of the ordered Γ -semihypergroups. For a non-empty subset A of an ordered Γ -semihypergroup S, we denote

$$(A) = \{x \in S \mid x \le a \text{ for some } a \in A\}.$$

Definition 1.2 A non-empty subset I of an ordered Γ -semihypergroup (S, Γ, \leq) is called a left (resp. right) Γ -hyperideal of S if

- (1) $S\Gamma I \subseteq I$ (resp. $I\Gamma S \subseteq I$);
- (2) when $x \in I$ and $y \in S$ such that $y \le x$, imply that $y \in I$.

Note that the condition (2) in Definition 1.1 is equivalent to $(I] \subseteq I$. A non-empty subset I of S is called a Γ -hyperideal of S if it is a right and left Γ -hyperideal of S. A Γ -hyperideal T of S is said to be proper if $T \neq S$.

Theorem 1.3 [9] Let (S, Γ, \leq) be an ordered Γ -semihypergroup. Then,

- (1) $A \subseteq (A)$ for any $A \subseteq S$.
- (2) If $A \subseteq B \subseteq S$, then $(A] \subseteq (B]$.
- (3) $(A]\Gamma(B) \subseteq (A\Gamma B]$ and $((A]\Gamma B] = (A\Gamma B]$ for any $A, B \subseteq S$.

Now, we present two examples of ordered Γ -semihypergroups. We refer the readers to see more examples of ordered Γ -semihypergroups in [9,17].

Example 1.4 Let S = [0, 1] and $\Gamma = N$. For every $x, y \in S$ and $\gamma \in \Gamma$, we define $\gamma: S \times \Gamma \times S \to P^*(S)$ by $x \gamma y = [0, \frac{xy}{\gamma}]$. Then, γ is a hyperoperation. For every $x, y, z \in S$ and $\alpha, \beta \in \Gamma$, we have

$$(x\alpha y)\beta z = [0, \frac{xyz}{\alpha\beta}] = x\alpha(y\beta z).$$

This means that S is a Γ -semihypergroup [16]. Consider S as a poset with the natural ordering.

Thus, (S, Γ, \leq) is an ordered Γ -semihypergroup.

Example 1.5 Let $S = \{a, b, c, d\}$ and $\Gamma = \{\gamma, \beta\}$ be the sets of binary hyperoperations defined as follows:

γ	а	b	С	d
а	а	$\{a,b\}$	<i>{c,d}</i>	d
b	{ <i>a</i> , <i>b</i> }	b	<i>{c,d}</i>	d
С	<i>{c,d}</i>	<i>{c,d}</i>	С	d
d	d	d	d	d

β	а	b	С	d
а	а	{ <i>a</i> , <i>b</i> }	<i>{c,d}</i>	d
b	{ <i>a</i> , <i>b</i> }	{ <i>a</i> , <i>b</i> }	<i>{c,d}</i>	d
С	<i>{c,d}</i>	<i>{c,d}</i>	С	d
d	d	d	d	d

Clearly, *S* is a Γ -semihypergroup. We have (S,Γ,\leq) is an ordered Γ -semihypergroup where the order relation \leq is defined by:

$$\leq := \{(a,a), (a,b), (b,b), (c,b), (c,c), (c,d), (d,b), (d,d)\}.$$

2 MAIN RESULTS

For the sake of simplicity, throughout this paper, we denote $I^2=I\Gamma I$. Let A be a non-empty subset of an ordered Γ -semihypergroup (S,Γ,\leq) . We denote by I(A) the Γ -hyperideal of $\mathbb S$ generated by A. One can easily prove that

$$I(A) = (A \cup S\Gamma A \cup A\Gamma S \cup S\Gamma A\Gamma S).$$

A non-empty subset I of an ordered Γ -semihypergroup (S, Γ, \leq) is called prime if for every $A, B \subseteq S$ such that $A\Gamma B \subseteq I$, we have $A \subseteq I$ or $B \subseteq I$.

Definition 2.1 A non-empty subset I of an ordered Γ -semihypergroup (S,Γ,\leq) is called weakly prime if for all Γ -hyperideals A,B of S such that $A\Gamma B \subseteq I$, we have $A \subseteq I$ or $B \subseteq I$. Also, I is called a weally prime Γ -hyperideal if I is a Γ -hyperideal which is weakly prime. A Γ -hyperideal I of S is said to be maximal if for any proper Γ -hyperideal K of S, $I \subseteq K$ implies that I = K.

Remark 2.2 It is easy to see that every prime Γ -hyperideal is weakly prime.

Theorem 2.3 Let (S, Γ, \leq) be a commutative ordered Γ -semihypergroup. If P is a weakly prime Γ -hyperideal of S, then P is prime.

Proof. Assume that A,B are non-empty subsets of S such that $A\Gamma B \subseteq P$. We have

```
I(A)\Gamma I(B) = (A \cup S\Gamma A \cup A\Gamma S \cup S\Gamma A\Gamma S)\Gamma(B \cup S\Gamma B \cup B\Gamma S \cup S\Gamma B\Gamma S)
\subseteq (A\Gamma S \cup S\Gamma A\Gamma B)
\subseteq I(A\Gamma B)
\subseteq I(P) \subseteq (P] = P.
```

Since P is a weakly prime Γ -hyperideal of S, we get $I(A) \subseteq P$ or $I(B) \subseteq P$. So, we have $A \subseteq P$ or $B \subseteq P$. Therefore, P is prime.

Lemma 2.4 Let (S, Γ, \leq) be an ordered Γ -semihypergroup. If A and B are Γ -hyperideals of S, then $A \cup B$ and $A \cap B$ are Γ -hyperideals of S.

Proof. The proof is straightforward.

Theorem 2.5 Let P be a Γ -hyperideal of an ordered Γ -semihypergroup (S, Γ, \leq) . Then P is weakly prime if and only if for all Γ -hyperideals A and B of S such that $(A\Gamma B] \cap (B\Gamma A] \subseteq P$, we have $A \subseteq P$ or $B \subseteq P$.

Proof. Suppose that P is a weakly prime Γ -hyperideal of S. Let A and B be Γ -hyperideals of S such that $(A\Gamma B] \cap (B\Gamma A] \subseteq P$. First, we show that $(A\Gamma B]$ is a Γ -hyperideal of S. Let $y \in S$ and $x \in (A\Gamma B]$. Then there exist $x \in (A\Gamma B]$, $a \in A$, $b \in B$ and $a \in \Gamma$ such that $x \leq c \leq aab$. Since S is an ordered Γ -semihypergroup, we get

$$x\beta y \le c\beta y \le (a\alpha b)\beta y = a\alpha(b\beta y) \subset A\Gamma(B\Gamma S) \subset A\Gamma B$$
,

where $\beta \epsilon \Gamma$. Hence, $x\beta y \subseteq (A\Gamma B]$. Similarly, we have $y\beta x \subseteq (A\Gamma B]$. If $y \le x$, then $y \le x \le z\epsilon A\Gamma B$, and so $y\epsilon (A\Gamma B]$. Therefore $(A\Gamma B]$ is a Γ -hyperideal of S. Similarly, we can prove that $(B\Gamma A]$ is a Γ -hyperideal of S. Thus,

$$(A\Gamma B)\Gamma(B\Gamma A) \subseteq (A\Gamma B)\Gamma S \subseteq (A\Gamma B)$$
 and $(A\Gamma B)\Gamma(B\Gamma A) \subseteq S\Gamma(B\Gamma A) \subseteq (B\Gamma A)$.

So, we have

$$(A\Gamma B)\Gamma(B\Gamma A) \subseteq (A\Gamma B) \cap (B\Gamma A) \subseteq P$$
.

Since P is a weakly prime Γ -hyperideal of S, we get $(A\Gamma B] \subseteq P$ or $(B\Gamma A] \subseteq P$. By Theorem 1.3(1), we have $A\Gamma B \subseteq P$ or $B\Gamma A \subseteq P$. This implies that $A \subseteq P$ or $B \subseteq P$.

Conversely, assume that A and B are Γ -hyperideals of S such that $A\Gamma B \subseteq P$. By Theorem 1.3(2), we have $(A\Gamma B] \cap (B\Gamma A] \subseteq (A\Gamma B] \subseteq (P] \subseteq P$. By hypothesis, we have $A \subseteq P$ or $B \subseteq P$. Therefore, P is a weakly prime Γ -hyperideal of S.

In the following, we define right weakly prime Γ -hyperideals in ordered Γ -semihypergroups and investigate some of their related results.

Definition 2.6 A right Γ -hyperideal I of an ordered Γ -semihypergroup (S, Γ, \leq) is said to be a right weakly prime Γ -hyperideal of S if $(A\Gamma B] \cap (B\Gamma A] \subseteq I$ implies $A \subseteq I$ or $B \subseteq I$ for all right Γ -hyperideals A, B of S.

Theorem 2.7 Let (S, Γ, \leq) be anordered Γ -semihypergroup. If M is a maximal right Γ -hyperideal of S such that $I \cap I^2 \neq \emptyset$, where $I = S \setminus M$, then M is a right weakly prime Γ -hyperideal of S.

Proof. Suppose that M is a maximal right Γ -hyperideal of S such that $I \cap I^2 \neq \emptyset$, where $I = S \setminus M$. If M is not a right weakly prime Γ -hyperideal of S, then there exist right Γ -hyperideals A,B of S such that $(A\Gamma B] \cap (B\Gamma A] \subseteq M$, $A \subset M$ and $B \subset M$. Since $A \subset M$, it follows that $M \subseteq A \cup M$. By Lemma 2.4, $A \cup M$ is a right Γ -hyperideal of S. So, we get $A \cup M = S$. Similarly, we have $B \cup M = S$. Hence,

$$I=S\backslash M=(A\bigcup M)\backslash M=A\backslash M\subset A$$
 and $I=S\backslash M=(B\bigcup M)\backslash M=B\backslash M\subset B$,

which imply that

$$I^2 \subseteq A\Gamma B \cap B\Gamma A \subseteq (A\Gamma B) \cap (B\Gamma A) \subseteq M.$$

Since $I \cap I^2 \neq \phi$, it follows that $I \cap M \neq \phi$, which is a contradiction. Therefore, M is a right weakly prime Γ -hyperideal of S.

An element a of an ordered Γ -semihypergroup (S, Γ, \leq) is called an idempotent of S if $a \in a \vee a$ for every $\gamma \in \Gamma$. In view of Theorem 2.7, we have the following corollaries.

Corollary 2.8 Let (S,Γ,\leq) be an ordered Γ -semihypergroup. If M is a maximal right Γ -hyperideal of S such that $S \mid M$ contains an idempotent of S, then M is a right weakly prime Γ -hyperideal of S.

Proof. Suppose that M is a maximal right Γ -hyperideal of S such that $I=S \setminus M$ contains an idempotent a of S. Set $I=S \setminus M$. Since $a \in a \neq a \subseteq I \cap I = I^2$, it follows that $I \cap I^2 \neq \emptyset$. By Theorem 2.7, M is a right weakly prime Γ -hyperideal of S.

Corollary 2.9 Let (S, Γ, \leq) be an ordered Γ -semihypergroup. If $S = (a\gamma S)$ for some $a \in S$ and $\gamma \in \Gamma$, then every maximal right Γ -hyperideal of S is a right weakly prime Γ -hyperideal of S.

Proof. Suppose that $S=(a\gamma S]$ for some $a\epsilon S$ and $\gamma\epsilon\Gamma$. Let M be a maximal right Γ -hyperideal of S and $I=S\setminus M$. If a is not in I, then $a\epsilon M$. It follows that

$$S=(a\gamma S)\subset (M\Gamma S)\subset (M)=M$$

which is a contradiction. This leads to $a \in I$. So, we have $a \forall a \subseteq I \cap I = I^2$. Now, let $a \forall a \cap I = \phi$. Then $a \forall a \subseteq M$. This implies that

$$S=(a\gamma S)=(a\gamma(a\gamma S))\subseteq((a)\gamma(a\gamma S))=(a\gamma a\gamma S)\subseteq(M\Gamma S)\subseteq(M)=M.$$

This is a contradiction. Hence, $a\gamma a \cap I \neq \phi$. Thus there exists $x \in a\gamma a \subseteq I^2$ such that $x \in I$. Therefore, $I \cap I^2 \neq \phi$. Now, by Theorem 2.7, M is a right weakly prime Γ -hyperideal of S.

REFERENCES

- [1] F. Marty, Sur une generalization de la notion de groupe, *Eight Congress Math. Scandinaves*, Stockholm, 45-49 (1934).
- [2] P. Corsini, *Prolegomena of Hypergroup Theory*, Second edition, Aviani Editore, Italy, (1993).
- [3] B. Davvaz, Semihypergroup Theory, Elsevier, (2016).
- [4] D. Heidari and B. Davvaz, "On ordered hyperstructures", U.P.B. Sci. Bull. Series A., 73(2), 85-96 (2011).
- [5] B. Davvaz, P. Corsini and T. Changphas, "Relationship between ordered semihypergroups and ordered semigroups by using pseudoorder", *European J. Combinatorics*, **44**, 208-217 (2015).
- [6] Z. Gu and X. Tang, "Ordered regular equivalence relations on ordered semihypergroups", *J. Algebra*, **450**, 384-397 (2016).
- [7] S. Omidi and B. Davvaz, "A short note on the relation N in ordered semihypergroups", GUJ. Sci., **29(3)**, 659-662 (2016).
- [8] S. Omidi, B. Davvaz and C. Abdioglu, "Some properties of quasi-*Γ*-hyperideals and hyperfilters in ordered *Γ*-semihypergroups", *Southeast Asian Bull. Math.*, **42**, 223-242 (2018).
- [9] J. Tang, B. Davvaz and X. Y. Xie, "A study on (fuzzy) quasi-Γ-hyperideals in ordered Γ-semihypergroups", *Journal of Intelligent & Fuzzy Systems* **32**, 3821-3838 (2017).

- [10] B. Davvaz and S. Omidi, "Basic notions and properties of ordered semihyperrings", *Categ. General Alg. Structures Appl.* **4(1)**, 43-62 (2016).
- [11] S. Omidi and B. Davvaz, "Contribution to study special kinds of hyperideals in ordered Semihyperrings", *J. Taibah Univ. Sci.* **11**, 1083-1094 (2017).
- [12] S. Omidi and B. Davvaz, "Ordered Krasner hyperrings", *Iranian Journal of Mathematical Sciences and Informatics*, **12(2)**, 35-49 (2017).
- [13] Y. I. Kwon and S. K. Lee, "On weakly prime ideals of ordered Γ -semigroups", *Comm. Korean Math. Soc.*, **13(2)**, 251-256 (1998).
- [14] T. Changphas, "Right prime ideals and maximal right ideals in ordered semigroups", Far East Journal of Mathematical Sciences, 73(1), 65-72 (2013).
- [15] M.Y. Abbasi and A. Basar, "Weakly prime ideals in involution po-Γ-semigroups", *Kyungpook Math. J.*, **54**, 629-638 (2014).
- [16] S. M. Anvariyeh, S. Mirvakili and B. Davvaz, "On Γ -hyperideals in Γ -semihypergroups", *Carpathian J. Math.*, **26(1)**, 11-23 (2010).
- [17] J. Tang, B. Davvaz, X. Xie and N. Yaqoob, "On fuzzy interior Γ -hyperideals in ordered Γ semihypergroups", *Journal of Intelligent & Fuzzy Systems* **32**, 2447-2460 (2017).

Received April 15, 2018