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SOME CHARACTERIZATIONS OF RIGHT WEAKLY PRIME
I'-HYPERIDEALS OF ORDERED I'-SEMIHYPERGROUPS

SABER OMIDI* AND BIJAN DAVVAZ’?
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e-mail: omidi.saber@yahoo.com

t Department of Mathematics
Yazd University
Yazd, Iran
Email: davvaz@yazd.ac.ir - Web page: https://pws.yazd.ac.ir/davvaz/

Summary. In this paper, we deal with ordered /-semihypergroups. In particular, we study
right weakly prime /-hyperideals and maximal /-hyperideals in ordered /-semihypergroups.
Moreover, we give some results on ordered /-semihypergroups.

1 INTRODUCTION AND PREREQUISITES

Hyperstructure theory was first introduced in Marty’s classical paper [1]. Semihypergroup
is the generalization of semigroup theory with the wide range of usages in theory of
hyperstructures [2,3]. In [4], Heidari and Davvaz studied a semihypergroup (S,) besides a
binary relation <, where < is a partial orderrelation such that satisfies the monotone condition.
This structure is called an ordered semihypergroup. As a reference for more definitions and
results on ordered semihypergroups we refer to [3,5,6]. Omidi and Davvaz [7] investigated on
the relation N in ordered semihypergroups. We refer to [5] for a survey of some results on the
pseudo orders of ordered semihypergroups. Omidi et al. [8] discussed quasi-/ -hyperideals and
hyperfilters in ordered /-semihypergroups. Tang et al. [9] studied fuzzy quasi-/-hyperideals
in ordered [-semihypergroups. In 2016, Omidi and Davvaz [10,11,12] studied some
properties of hyperideals and k-hyperideals in ordered semihyperrigs and hyperrings. The
study of weakly prime ideals of ordered /-semigroups was started by the pioneering work of
Kwon and Lee [13]. In 2013, Changphas [14] defined right prime ideals and maximal right
ideals in ordered semigroups. Weakly prime ideals in involution po-/-semigroups discussed
by Abbasi and Basar [15].

Let S be a non-empty set. A mapping *:S x S—P(S), where P"(S) denotes the family of all
non-empty subsets of S, is called a hyperoperation on S. By a hypergroupoid we mean a non-
empty set S endowed with a hyperoperation . In the above definition, if 4 and B are two non-
empty subsets of S and xeS, then we denote A<B the union of a*b, where aeA and beB.
Moreover, for every xeS,

Aox= A*{x} and x*B= {x}B.

A hypergroupoid (S, ) is called a semihypergroup if for all x,y,z of S, we have

2010 Mathematics Subject Classification: 16Y99, 20N20.
Key words and Phrases: Ordered Semihypergroup, Right Weakly Prime Hyperideal, Maximal Hyperideal.
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xeo(yz)=(x2y)°z,

which means that the union of x*u, where uey+z is equal to the union of vez, where vexey.

A non-empty subset 4 of a semihypergroup (S,¢) is called a subsemihypergroup of S if 44
is a subset of 4. Let (S,¢) be a semihypergroup. Then, S is called a hypergroup if it satisfies
the reproduction axiom, for all xeS, xS=S=Sex. A non-empty subset K of § is a
subhypergroup of S if a*.K=K=K*a, for every aeK.

Let S and 7" be two non-empty sets. Then, S is called a /-semihypergroup [16] if every yel’
is a hyperoperation on S, i.e., xyy is a subset of S for every x,yeS and for every a,fel” and
x,y,z€eS, we have

xa(ypz)=(xay)pz.

A I'-semihypergroup S is called commutative if for all x,yeS and yel, we have xyy=yyx. For
some properties of /-semihypergroups, readers can see [16]. The following concepts are
adapted from [8,9].

An ordered semihypergroup (S,+,<) is a semihypergroup (S,+) together with a partial order
<that is compatible with the hyperoperation ¢, meaning that for any x,y,zeS,

x <y implies that zex <zey and xez < yez.

Here, zex <zey means for any aezex there exists be z+y such that a <b. The case x*z <yez is
defined similarly.

Definition 1.1 An algebraic hyperstructure (S,7,<) is called an ordered /-semihypergroup if
(S,I') is a I'-semihypergroup and (S,<) is a partially ordered set such that for any x,y,zeS and
vel’, we have

x <y implies that zyx <zyy and xyz < yyz.

Here, zyx <zyy means for any aezyx there exists be zyy such that a < b. The case xyz < yyz
is defined similarly.

See to [8,9] for the examples of the ordered /-semihypergroups. For a non-empty subset 4
of an ordered /-semihypergroup S, we denote

(A] ={x€S| x < a for some aeA}.

Definition 1.2 A non-empty subset / of an ordered /-semihypergroup (S,7,<) is called a left
(resp. right) 7 -hyperideal of S if

(1) STIc I (resp. IISc);

(2) when xel and yeS such that y <x, imply that yel.
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Note that the condition (2) in Definition 1.1 is equivalent to (I[/ <. A non-empty subset /
of S is called a /-hyperideal of S if it is a right and left /-hyperideal of S. A I-hyperideal T of
S is said to be proper if 7% S.

Theorem 1.3 [9] Let (S,/,<) be an ordered /-semihypergroup. Then,
(1) A< (A] for any A S.
(2)IfAcBcS, then (4] < (B].
(3) (A]I(B] < (AI'B] and ((A]I'B]]=(AI'B] for any A,BCS.

Now, we present two examples of ordered I'-semihypergroups. We refer the readers to see
more examples of ordered I'-semihypergroups in [9,17].

Example 1.4 Let S=/0,1] and I'=N. For every x,yeS and yel, we define y:S x 1 'x S—»P*(S) by
xyy = [0, ﬂ]. Then, y is a hyperoperation. For every x,y,zeS and a,fel’, we have
Y

(vay)Bz=[0, == ] =xa(ypz).
o

This means that S is a /-semihypergroup [16]. Consider S as a poset with the natural
ordering.
Thus, (S,7,<) is an ordered I -semihypergroup.

Example 1.5 Let S ={a,b,c,d}! and I'={y,5} be the sets of binary hyperoperations defined as
follows:

y a b c d
a a {a,b} {c,d)} d
b | {ab} b {c,d} d
c | {cd} lc,d)} c d
d d d d d
S a b c d
a a {a,b} {c,d)} d
b | {ab} {a,b} {c,d} d
c | {cd) lc,d} c d
d d d d d

Clearly, S'is a I'-semihypergroup. We have (S,/,<) is an ordered /-semihypergroup
where the order relation < is defined by:

<:={(aa), (a,b), (b,b), (c,b), (c,c), (c,d), (db), (dd)}.
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2 MAIN RESULTS

For the sake of simplicity, throughout this paper, we denote I°=ITI. Let A be a non-empty
subset of an ordered /™-semihypergroup (S,/,<). We denote by I(4) the [-hyperideal of S
generated by 4. One can easily prove that

1(4)=(AU STAU AT'SU STAT'S].

A non-empty subset / of an ordered /-semihypergroup (S,/,<) is called prime if for every
A,Bc S such that AT'Bc I, we have Ac/or Bc 1.

Definition 2.1 A non-empty subset / of an ordered /-semihypergroup (S,/,<) is called weakly
prime if for all /-hyperideals A4,B of S such that AT'Bc [, we have Acl or BcI. Also, [ is
called a weally prime [-hyperideal if / is a I-hyperideal which is weakly prime. A -
hyperideal I of S is said to be maximal if for any proper I/ -hyperideal K of S, /< K implies that
I=K.

Remark 2.2 It is easy to see that every prime / -hyperideal is weakly prime.

Theorem 2.3 Let (S,/,<) be a commutative ordered /-semihypergroup. If P is a weakly prime
I-hyperideal of §, then P is prime.

Proof. Assume that 4,B are non-empty subsets of S such that AT'Bc P. We have

I(A)TI(B)=(AU STAU ATSU STATS]I(B\U STBU BI'SU STBI'S]
C (AT'SU STATB]
cI(A'B)
cI(P)c (P]=P.

Since P is a weakly prime /-hyperideal of S, we get I(4) <P or I(B) —P. So, we have
Ac P or BC P. Therefore, P is prime.

Lemma 2.4 Let (S,/,<) be an ordered /-semihypergroup. If 4 and B are /-hyperideals of S,
then AU B and A () B are I-hyperideals of S.

Proof. The proof is straightforward.

Theorem 2.5 Let P be a /-hyperideal of an ordered /-semihypergroup (S,7,<). Then P is
weakly prime if and only if for all /-hyperideals 4 and B of S such that (4I'B] () (B['A] P,
we have AcPor Bc P.

Proof. Suppose that P is a weakly prime /-hyperideal of S. Let 4 and B be I -hyperideals of S
such that (AI'B] () (BI'A] c P. First, we show that (4I'B] is a I-hyperideal of S. Let yeS and
xe(AI'B]. Then there exist xe(AI'B], aeA, beB and ael such that x < ¢ < aab. Since S is an
ordered /-semihypergroup, we get
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xpy < cPy < (aob)py=aa(bpy) c AI(BI'S) c AI'B,

where fel’. Hence, xfy < (AI'B]. Similarly, we have yfxc (AI'B]. If y <x, then y <x <zeAIl'B,
and so ye(AI'B]. Therefore (AI'B] is a [ -hyperideal of S. Similarly, we can prove that (BI'4] is
a [ -hyperideal of S. Thus,

(ATBJT(BT'A] < (ATB]TSC (ATB] and (ATBJI(B[A] = ST(BI'A] < (BT'AJ.

So, we have
(AI'B]I'(BI'A] < (AI'B](\ (B['A] < P.

Since P is a weakly prime /-hyperideal of S, we get (4I'B] P or (BI'A] — P. By Theorem
1.3(1), we have AT'B< P or BI'A < P. This implies that Ac P or BC P.

Conversely, assume that 4 and B are [ -hyperideals of S such that A7'B< P. By Theorem
1.3(2), we have (AI'B](\(BI'A] < (AI'B] < (P] < P. By hypothesis, we have Ac P or BCP.
Therefore, P is a weakly prime 7/ -hyperideal of S.

In the following, we define right weakly prime 7-hyperideals in ordered I7-
semihypergroups and investigate some of their related results.

Definition 2.6 A right /-hyperideal / of an ordered /-semihypergroup (S,7,<) is said to be a
right weakly prime I -hyperideal of S if (AI'B] () (BI'A] <1 implies A I or B[ for all right
I-hyperideals 4,B of S.

Theorem 2.7 Let (S,/,<) be anordered [-semihypergroup. If M is a maximal right /-
hyperideal of S such that /() I’ # ¢ , where /=S\M, then M is a right weakly prime /~hyperideal
of S.

Proof. Suppose that M is a maximal right I-hyperideal of S such that /() # ¢ , where [=S\M.
If M is not a right weakly prime /-hyperideal of S, then there exist right /-hyperideals 4,8 of
S such that (AI'B](\ (BI'A] =M, Az M and Bz M. Since Az M, it follows that Mc AU M. By
Lemma 2.4, AUM is a right I-hyperideal of S. So, we get AU M=S. Similarly, we have
BUM=S. Hence,

I=S\M=( AU M)\M=A\M c 4 and I= S\M=( BU M)\M=B\Mc B,
which imply that
FcATBN\BI'Ac (AI'B](\ (B['A] M.

Since INF# ¢, it follows that /() M# ¢ , which is a contradiction. Therefore, M is a right
weakly prime /-hyperideal of S.
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An element a of an ordered /-semihypergroup (S,/,<) is called an idempotent of S if acaya
for every yel. In view of Theorem 2.7, we have the following corollaries.

Corollary 2.8 Let (5,7, be an ordered [-semihypergroup. If M is a maximal right /-
hyperideal of S such that S\M contains an idempotent of S, then M is a right weakly prime /-
hyperideal of S.

Proof. Suppose that M is a maximal right I'-hyperideal of S such that /=S\M contains an
idempotent a of S. Set I=S\M. Since aecayaIT'I=F, it follows that /(1 # ¢ . By Theorem

2.7, M is a right weakly prime /-hyperideal of S.

Corollary 2.9 Let (S,7,<) be an ordered [-semihypergroup. If S=(ayS] for some aeS and yel’,
then every maximal right /-hyperideal of S is a right weakly prime /-hyperideal of S.

Proof. Suppose that S=(ayS] for some aeS and yel”. Let M be a maximal right /-hyperideal of
S and /=S\M. If a is not in /, then acM. It follows that

S=(ayS] < (MI'S]  (M] =M,

which is a contradiction. This leads to ael. So, we have aya  IT'I=F. Now, let aya\I=¢.
Then aya < M. This implies that

S=(ayS] =(ay(ayS]] < ((a]y(ayS]]=(ayayS] < (MI'S] < (M]=M.

This is a contradiction. Hence, aya(\I#¢.Thus there exists xeapacF’ such that xel.
Therefore, I\ I # ¢ . Now, by Theorem 2.7, M is a right weakly prime /-hyperideal of S.
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Summary. Exact solutions for the quasilinear transport equation and a system of shallow
water equations that contain discontinuities propagating along an inhomogeneous background
are constructed in this paper. These solutions can be used as test problems for verification of
newly created software packages and numerical methods. The influence of the limiter on the
order of approximation using the Galerkin discontinuous method was studied. To calculate
the order of approximation, the exact solutions constructed in this paper were used.

1 INTRODUCTION

Equations and systems of equations such as conservation laws [1-4] arise in many practical
applications, and therefore their numerical solution is of considerable interest [5-7]. For this
purpose, more advanced numerical methods and algorithms are developed. The Galerkin
method with discontinuous basis functions [8,9] is quite often used recently. This method has
proved itself to solve a wide class of applied problems of mathematical physics with a
complex geometry of the investigated object and a multiscale structure of the studied
processes. This method has a number of advantages inherent in both finite-element and finite-
difference approximations. As you know, there are two approaches to improve the accuracy of
the solution. The first approach is to grind the grid in areas of existing solution features (hp-
adaptation), the second - to increase the order of accuracy of the scheme. The application of
the Galerkin discontinuous method makes it possible to use both approaches
simultaneously [10,11]

An important component of the computational algorithm development process is the
verification stage, with particular interest in the behavior of numerical solutions in regions
containing strong and weak discontinuities. For this, it is necessary to have examples of exact
solutions. The construction of which is described in numerous works.

The problems described by the system of shallow water equations are of great practical
importance, such as the destruction of the hydroelectric dam, the emergence of large sea
waves such as tsunami in shallow water, currents in the atmosphere, and others. Analytic
solutions for these problems are constructed [12-22], however, either piecewise constant
initial data [12-17] or solutions that exclude discontinuities [18,19] are considered. At the
same time, the most important goal is to investigate the accuracy of computational techniques
on model problems in which discontinuities propagate along a non-uniform background. The
behavior of a numerical solution obtained using difference schemes of high order of accuracy
in the flow behind the discontinuity region was studied [23], in which it was shown that the
order of approximation in this region drops to the first. In order to eliminate this defect, a

2010 Mathematics Subject Classification: 58J45, 35L67, 76M25.
Key words and Phrases: Exact solutions, Hyperbolic Equations, Discontinuous Galerkin Method.
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combined scheme is proposed in [24], which allows maintaining a high order of accuracy of
the scheme. However, there is a very limited amount of test problems that have an exact
solution with a discontinuity propagating along an inhomogeneous background. In this paper,
the authors construct exact discontinuous solutions for the quasilinear transport equation and
the system of shallow water equations, using the characteristic approach. A method for
determining the time instant after which the characteristics intersect occurs is described in
detail. This makes it possible to guarantee the correctness of the exact solution constructed
before the specified time. In the second part of the paper, we describe the application of the
discontinuous Galerkin method [9] and study the order of approximation of the exact
solutions obtained in the first part of this article by numerical solutions.

2 QUASILINEAR TRANSPORT EQUATION

The simplest example of a quasilinear transport equation is the Hopf equation [25], by
means of which the motion of a gas of noninteracting particles can be described. In the one-
dimensional case, it has the following form:

ou +u ou =0 (1)
ot ox
The general solution of equation (1) is the functional dependence G(x - ut,u) =0. In
particular, we can consider a family of solutions of the
x+ A4
ulx,t)= 2
(w)="— )

Equation (1) admits the existence of discontinuous solutions. We construct this solution using
two different solutions of the form (2):

_{uL =(x+A)/(t+B),x£xf,
up :(x+C)/(t+D),x>xf,

3)

where x (t) is the position of the front of the shock wave, the expression for which must be
found in order to obtain the final exact solution. According to [26-28], we obtain:

dx s +4 +C
X f :l(xf +xf ] o
dt 2 t+B t+D
or after integration
X (1)=6 (B) (s D)+ A€+ AD=CB 5

B-D
where C| is the integration constant, which can be determined by specifying the initial
condition x (0) = x,.

We give an example of a constructed exact solution (5) containing a discontinuity
propagating along an inhomogeneous background, concretizing the values of the constants.
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Let’s set 4=1, B=2, C=0, D=1 and x,=1/2. In this case C, =\/§/4. The
corresponding profiles of u at different times are given in Fig. 1.

o.9§
o.si
o.7§
o.sé
o.sé

0 0.2 0.4 X 0.6 0.8 1

Figure 1. The exact solution of the Hopf equation at # = 0.0 (black line), 0.5 (red line) and
0.8 (green line).

3 SHALLOW WATER EQUATIONS

Let us turn to the system of shallow water equations, for which it is possible to carry out a
similar procedure of constructing an exact discontinuous solution. This system of equations
can be obtained from the system of equations of hydrodynamics in the approximation, when
the length of gravitational waves is large in comparison with the depth of the liquid [1]:

oh Ohu
—+—=0,
ot Ox
2 (6)
ah—u-l-i hu2+& =0,
ot Ox 2

where £ is the depth, u is the flow velocity in the horizontal direction, the gravitational
constant g let’s set equal to 1. The system of equations (6) can be rewritten in the following
form:

+ +
%-F(M-F\/Z)aaizo,
§ (7)

OR™ OR™
7+(u—\/z)gz 0,

where R =u+2h are Riemann invariants for the system (6).
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Consider the domain —oo < x <. As a background solution in the region x > x, we set a

solution in the form of a simple centered wave, for which the invariant R~ remains constant.
Let’s set

R =P ®)

In this case 4 and u are defined by:

ur=B+2JE,JE:§(B+“Aj 9)

t+B

where u, =u(x2x,1), h.=h(x2xy,t). We assume that in the region x<x, the other
invariant R" remains constant. Let’s set
R =a (10)

The corresponding solution of the system (6) can also be given in the form of a simple
centered wave:

_t+D

ul:oc—Z\/h_,\/E:%(a “Cj (11)

We require the fulfillment of the Hugoniot conditions on the discontinuity:
hjuy =y, =w (= k),

. . (12)

£\2 2
hl*(ul*)z +%—h:(u:)2 —@zW(h,*ul*—h:u:)

where W is the velocity of the discontinuity, h,* - and uzr are the values of the corresponding

functions to the right and left of the discontinuity. Eliminating W from equations (12), you
can get

Wb (o = o ) (13)

taking into account (8) and (10)
]’ll*-i-h: * %\2 % * * 2
) (h, —h,) =h,hr(oc—[5—2«/h, —2,/hr) (14)

From (14) it is possible to determine the quantities hl* and u;k on the discontinuity.

To agree the solutions (9) and (11) to the left and right of the discontinuity, the constants in
(11) must be determined with the following condition taken into account:
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%:a—&/ﬁ (15)

obtained at the initial moment ¢ =0.

On the basis of the following simple considerations, we can now draw some conclusions
about the roots of equation (13). Thus, in the case of a discontinuity moving to the right,
equation (13) with allowance for (10) can be rewritten in the form:

1 -1 u*—a
2y + (=)= +) == (16)
2 Vi,

relatively dimensionless variable y = hl* / h:. The left-hand side of (16) is a monotonically

decreasing function with respect to the variable y >0, which takes all values on the real line

(—o0,+0 ),which follows from the negativity of the variable. This means that for any values of
the right-hand side, equation (16) has a unique solution. We note that only solutions that
satisfy the inequality y>1 are physicly correct, which is ensured if and only if

u: +2\/E <o. The investigation of the roots of the polynomial (14) is generally given in

Appendix A.
The exact solution at any time ¢ in the region bounded from the left by the characteristic

Xo + (u;k —\/E )t (see Fig. 2), will be determined by the functions (11), and the shock front

bounded by the right x ,(¢) - functions (9).
3.

Figure 2. Trajectory of motion of the shock wave front (red line) and family of characteristics: a green

line is a characteristic with a slope u — \/Z , which emerges from the point of the initial position of the
discontinuity, continuous thin lines - a field of characteristics emerging from the shock wave trajectory,

on which the value R = u; -2 h; , dashed thin lines - a field of characteristics on which the value of

the invariant R = u; +24/h; , and by which this value is transferred to the front of the shock wave.
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In the region between the indicated characteristic and the discontinuity, in which the value

R™ will remain constant, the solution will still be a simple wave, which, however, will no
longer be centered. In this interval, the exact solution is determined using the method of
characteristics. Let us describe this procedure in more detail.

Values before the rupture front h: and u: at each instant of time are determined by the
formulas (9). Solving equation (14) we find the values hl* and u7 as functions of x, and ¢,
where x, is a position of the rupture front. From (12) we determine the velocity of the
discontinuity W (x Iz t) . Trajectory of the discontinuity motion x (t) is defined as a solution
of equation

dx
S _ _
dt —W(Xf,t), XI(O)—XO (17)

From each point of this trajectory x, (t), ¢t release the characteristic on which the value is

stored R~ = u7 —24/ h; . In this case, these characteristics will have a constant slope, i.e. will

be straight lines. Finally, we determine the point of intersection X straight line =7 and
characteristics. Function values u# and % to a given point are carried by characteristics in
accordance with the values of the Riemann invariants.

We perform the above procedure for specific values of the constants. Let’s set =0,

a=3/2, xy=0, A=1/2, B=1, D=1, and C is determined in accordance with (15).
Equation (14) can be rewritten in the form

P(g)=0 (18)

where P is polynomial with constant coefficients, &= Jh . The graph of the dependence is
given in Fig. 3.

-2.E-41

P(c)

-4.E-41

-6_E-41

Figure 3. The function P(&)
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By building a series of Sturm for P(&) and applying the Sturm theorem [29], we can
determine that equation (17) has two roots on the positive semiaxis, one of which corresponds
to a shock compression wave (hl* > h: ), another - a shock wave of rarefaction (hl* < h: ). From

the physical considerations, we choose the first one. For this case, the system of
characteristics is shown in Fig. 2, and the evolution of the exact solution is shown in Fig. 4.

1.41
1.21 X
i ,"
e
1 e
//
0.8 - e
1 (7 1 e
] i rd
0.6 ” (v
] |//
0.4{ ,7 ]
}/ v
-1 "0 1 2 3 1 0 1 2 3
X X
a) b)

Figure 4. The exact solution of the system of shallow water equations at times 0.5 (solid line) and
1.0 (dashed line).

It should be noted that the method of characteristics is applicable only when the
characteristics do not intersect in the considered region. The condition for the intersection of

two infinitely close characteristics at time T emerging from points (x,(¢),f) and

(x 7 (¢+ A1)t + Ar) with different angular coefficients @) and a, respectively, is given by
ay(t, =)+ x () =ay(t, —t —At)+x (£ +At) (19)
allowing to find the moment of their intersection
te=t+(ay—a) '[ayAt—x (t+ A1)+ x, (1)] (20)

The expression for the angular coefficient of an arbitrary characteristic with allowance for the

constancy of the invariant R* = o is defined by

a=u —Jh} =a—3n (21)

In turn, the quantity h,* is given by means of equation (16) as an implicit continuously

differentiable function depending on the arguments u: and h: , which in accordance with (9)

are continuously differentiable functions of two variables x and t. Therefore, according to
(19), the expression for the angular characteristic coefficient can be regarded as a

18



Yu.A. Kriksin, P.A. Kuchugov, M.E. Ladonkina, O.A. Neklyudova, V.F. Tishkin and V.P. Varin

continuously differentiable function @ =a(x,f). In view of the latter circumstance
a; =a(xy(1),t) and a, =a(x,(¢t+At),t+Ar). Passing to the limit as Az — 0 on the right-
hand side of (20) and taking (16) into account, we obtain the instant of intersection of
infinitely close characteristics emerging from the point (x 1(¢),?)

0 oa)"
l, :t+(a—j+W(x 5 (t),r)éj [a(xy (0,0 =W (x (1), )] (22)

Introducing the notation

hy h 2
= —(— —) Y=4X*+L T 7=4Xx \/7+4X—— 23
2 h %% i
expressions for the partial derivatives of the function a = a(x,?) can be found
. . (24)
Ga_ 3,y ony x| Oa_ 3, (Yah _ax ey
Ox 2 ox ox | ot 2 ot ot

Relations (22) - (24) for given values of the constants 4, B, C and D, which were defined
above, allow us to numerically determine the minimum value of the right-hand side of (22)

t. ~3.22 on the set of all characteristics issuing from points (x £(2),1), that specifies the
applicability boundary of the method of characteristics in the studied problem.

4 DISCONTINIOUS GALERKIN METHOD

We use the exact solutions obtained in the previous sections of the Hopf equation and the
system of shallow water equations to determine the order of approximation when using the
Galerkin discontinuous method for their numerical solution. In this section we briefly
describe the essence of the approach using the example of a generalized hyperbolic system of
quasilinear equations of the type of conservation laws:

ou N JOF(U)
ot Ox

where U(x,?) is vector of variables, and F(U) are defined streaming vector functions
containing m components. For system (25) we set the Cauchy problem with initial data

U(X,O) = UO(x)7 (26)

=0 (25)

Suppose that the Cauchy problem (25) - (26) has a unique generalized solution U(x,?),

limited with 7>0. Let’s set U"(x)=U(x,7,) a numerical solution of this problem
corresponding to the instant of time 7, .

To apply the Galerkin discontinuous method on a uniform grid, we define the following
system of basis functions
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o1 ()= {4)/( (x), xe[x,x.,], @7

0, x&[x,x.],

k
where ¢, (x) = ((x —-x7)/ A) , x{ =(x; +x;,1)/2. Then on each time layer in each space cell

l; = [xl-,xl- +1] an approximate solution of the system of equations (25) will be sought in the
form of a polynomial of degree p

P
Ui () =U;(x,1,) = X Uiy (x) (28)
k=0

with time-dependent coefficients U}, = U (¢,) .
Multiplying (25) by the basis function and performing integration over x on the interval /;,
we obtain the following expression

[ %U(x,t)d)ldx— [F(U)¢jdx+F(U) ¢, 2&1 =0 (29)
I.

i 11'

on the basis of which Galerkin's discontinuous method is constructed. Replacing in the first
two terms of equation (29) the function U(x,#) on function U} (x), and in the third term -

differential ~ flows F(U(x;,1)), where j=i,i+]1, on  numerical  flows

F} =(I)( ’}_l(xj_-),U? (x;’)), in which x;‘T = x; £0,we get

%}[ U;'¢;dx —}[ F(Uzn ) ¢pdx + Fii 14 (xi_+1 ) ~F'¢; (xz+ ) =0 (30)

1 1

In this paper we use the Rusanov-Lax-Friedrichs numerical flows [30,31], in which the
function (I>(x, y) is determined by the formula

3

®(x.¥) = (F(x) +1(3) = A(6¥)(y ~x)), A(x.y) = max [, (x)

ba(Y)) @)

2

where 2, are eigenvalues of the Jacobi matrix % of set (25).
From (30), taking (28) into account, we obtain a system of ordinary differential equations

dUTt”kf:A;lR,., R, = {F(U?)¢}dx—Fﬁl¢z(X;1)+Fin¢l (=) (32)

to calculate the coefficients UY;, where A;'is an inverse matrix for matrix A, =(a,il),
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whose coefficients are determined by the formula a}'{, = jd)k (x)¢;(x)dx . The system (32) is
Ii

solved by the explicit Runge-Kutta method of the third order, in which the time step t is
chosen from the stability condition of Courant

_ zA

max | A, (U%1112) |
m,j,n

(33)

where z € (0, 1) is safety factor.

The following calculations use polynomials (28) of the first order, i.e. p =1.

To ensure the monotony of the numerical solution obtained by this method, it is necessary
to introduce flow limiters, especially if the solution contains strong discontinuities. In this
paper we apply the Cockburn limiter [9], which is widely used in applied multidimensional
calculations conducted on grids of arbitrary structure. In the case when the solution (28) is
sought in the form of linear x functions

c
n X—X;

Ul = U+ U 649

the action of this limiter leads to the fact that the vector coefficient U}} in the formula (34) is
replaced by the quantity

i = M| Upa(Ulio =Uh ) (Ul =Ullig) | (35)

where U;?O — the corresponding components of the vectors U?O, a €[1,2]— heuristic

parameter, chosen as a result of test calculations, M is a minmod operator, the action of
which is determined by formula

b b

M [y, uy,u3] = s min (|

). (36)

where s = sign(u;) provided that all numbers u; have the same sign and s =0 otherwise.

Up|>|U3

5 THE ORDER OF APPROXIMATION OF DISCONTINUOUS GALERKIN
METHOD ON EXACT SOLUTIONS

We consider a sequence of difference solutions of the Cauchy problem (25) - (26) obtained
using the numerical scheme based on the discontinuous Galerkin method on uniform grids
with spatial steps A and A/2. It is possible to calculate the approximation order achieved
having the exact solution obtained in Sections 2 and 3:

ex

”uA U,

, (37)

ex

r, =log, H

MA/Z —Uu I
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. 1/2
X{+A/2 /

where [¢|, = I @ (x)dx | , I, = [xf —A/2,x{ +A/2] is coarse grid, x{ is cell center 7,.

x{—A/2

Integral, included in the definition of the norm ||¢)|

, o 18 calculated analytically, as the exact

solution of the Hopf equation is a fractional linear function (3), and the numerical solution
obtained by the discontinuous Galerkin method is a linear polynomial (28). For the system of
shallow water equations, it is impossible to write out an exact solution in the form of an
analytic function in the region between the characteristics emerging from the discontinuity
point at the initial time instant. Therefore, we shall consider local norm convergence:

— Jos ()= (%)
T s ()~ ()

) (38)

where H(p(x)H=‘¢(x)‘

Fig. 5-8 represent numerical solutions of the Hopf equation and the system of shallow
water equations with and without the use of the limiting procedure in the discontinuous
Galerkin method on grids of various dimension. In Fig. 5 and 7, the numerical solution
practically coincides with the exact solution, with the exception of a narrow region, near the
discontinuities. In more detail these areas are presented in Fig. 6 and 8. As the grid pitch
decreases, the numerical solution converges to the exact one, which is clearly seen in Fig. 6
and 8. It can also be noted that without using the limiting procedure in a numerical solution
near the discontinuity, strong enough oscillations are observed, suppression of which occurs
when limiters are used to ensure the monotonicity of the solution.

[ ]
0.7] 0.7]
0.6 0.6
0.5 1 0.5
— 2 e 3 ] - 1 2 e 3
0.2 04 06 08 0 0.2 04 06 08 1
X X
a) b)

Figure 5. Profiles of exact and numerical solutions of the Hopf equation at time moment ¢ = 0.5. The
exact solution on the graph corresponds to number 1. Numerical solutions were obtained using the
discontinuous Galerkin method (a) without applying the restriction procedure on meshes containing
400 (2) and 800 (3) cells, (b) - the same with the application of the limiting procedure.
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0.7 N~ °
j \

0.5:
|1 == 2 e 3
068 ' 089 ' 0.7 ”‘0.68”""x‘0.69‘”"”‘0:7

a) b)
Figure 6. Profiles of exact and numerical solutions of the Hopf equation at an instant £ = 0.5 in the
vicinity of the discontinuity. The exact solution on the graph corresponds to number 1. Numerical
solutions were obtained using the Galerkin discontinuous method (a) without applying the restriction

procedure on meshes containing 400 (2) and 800 (3) cells, (b) - the same with the application of the
limiting procedure.

0.8 0.3
? u |
0.7 e
5 0.2
0.6 =

h 0.15
0.5 [
E 0.1
1/ = 2 & 3
%5 .z 3
X

Figure 7. Profiles of exact and numerical solutions of the system of shallow water equations at a time
moment ¢ =3.0. The exact solution on the graph corresponds to number 1. Numerical solutions were

obtained using the discontinuous Galerkin method with the use of the limiting procedure on grids
containing 3000 (2) and 9000 (3) cells.

23



Yu.A. Kriksin, P.A. Kuchugov, M.E. Ladonkina, O.A. Neklyudova, V.F. Tishkin and V.P. Varin

0.8; 0.3 0.8; 0.3
. [0.25 . 0.25
u i u [
0.6 0.2 0.6 0.2
5] ® | S ] I
. [0.15 . 0.15
0.4 h 0.1 0-4:‘::1_‘1:0_1
1 = 1 2 o3 [0.05 S — 2 e3 0.05
28 29 3 34 28 298 3 34
X X
a) b)

Figure 8. The profiles of the exact and numerical solutions of the system of shallow water equations at
the instant of time 7=23.0 in the vicinity of the discontinuity. The exact solution on the graph
corresponds to number 1. Numerical solutions were obtained using the discontinuous Galerkin method
(a) without applying the limiting procedure on grids containing 3000 (2) and 9000 (3) cells, (b) - the
same with the use of the limiting procedure.

In Fig. 9 and 10 are the graphs of the discrepancy between the numerical solution of the
Hopf equation and the approximation order calculated according to (37), respectively. In spite
of the fact that, in the case of applying the limiting operator, the error in the numerical
solution in the region beyond the gap increases by 3 orders of magnitude (see Fig. 9), the
approximation order value remains equal to two, as in the case without the limiter [32,33].

Figure 9. The discrepancy between the numerical solution of the Hopf equation obtained using the
discontinuous Galerkin method (a) without the use of the limiting procedure and (b) with it on meshes
containing 400 (solid line) and 800 (dashed line) cells.
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Figure 10. The order of approximation of the exact solution of the Hopf equation using the Galerkin
discontinuous method (a) without applying the limiting procedure and (b) with limiting.

The reason for this result is that in the nonlinear transport equation there is only one invariant
that is transported by characteristics and is not affected by the shock wave. In contrast to the
Hopf equation, the system of shallow water equations (6) contains two invariants and is more
suitable for investigating the accuracy of the numerical method. In Fig. 11 shows the order of
local convergence of the numerical solution to the exact one, calculated according to (38).

10: 10+
5 o5
0 0:
0 1 2 3 0 1 7772 3
X X
a) b)

Figure 11. The order of local convergence of numerical solutions obtained by using the discontinuous
Galerkin method (a) without applying the limiting procedure and b) using a limiter on meshes
containing 3000 cells and 9000 cells to an exact solution.
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27.2"""'213""""224""”‘2:5

Figure 12. Deviations of the numerical solution from the exact one in the vicinity of the point x = 2.3
in the calculation without the use of a limiter; solid line corresponds to A-(h,— h.,), dashed line —
A-(hys — hey), where 4 = 10", h, — the solution obtained on the grid of 3000 cells, 4,3 - the solution
obtained on the grid of 9000 cells, 4., - the exact solution.

In calculations without using a limiter in the entire region, a second order of accuracy of
the solution was obtained (see Fig. 11a). The jumps of orders at the point x ~1.3 correspond
to the gluing of a solution of the type (9) and the solution between the characteristics
emerging from the discontinuity point at the initial instant of time, and at the point x = 3.0 - to
the position of the front of the shock wave. At the point x = 2.3, the intersection of numerical
and exact solutions occurs. This can be clearly seen in Fig. 12, which shows the deviation of
the numerical solution on different grids from the exact one. At the point x~2.3 these
functions change sign and, accordingly, in its vicinity the order of accuracy is not defined.
The behavior of the order in the vicinity of the point x = —0.441is shown on Fig. 11b when
using the limiting operator can be explained in the similar way. However, the general
behavior of the order is somewhat different. It can be seen from the calculations that the
solution in the region of smoothness ahead of the front of the shock wave and in the solution
region of type (9) has a second order of accuracy irrespective of the use of the limiting
operator. In the solution region behind the front of the shock wave, but located between the
characteristics emerging from the point of discontinuity at the initial instant of time, the
accuracy of the solution drops to the first. An interesting fact is that in the region [0,1] a
second order of accuracy is observed. In this region, both invariants are carried over the
characteristics from the initial data, while in the region of reduced orders of accuracy the
invariant is transferred from the front of the shock wave. Thus, it can be argued that the use of
the limiting operator negatively affects the accuracy of the solution obtained only in the
region of the impact of the shock wave [1.5, 3].

6 CONCLUSIONS

In this paper, exact discontinuous solutions are constructed for the quasilinear transport
equation, and also for the system of shallow water equations using the method of
characteristics. The results of calculations obtained by programs implementing the

26



Yu.A. Kriksin, P.A. Kuchugov, M.E. Ladonkina, O.A. Neklyudova, V.F. Tishkin and V.P. Varin

discontinuous Galerkin method showed good agreement of the numerical solutions with the
constructed exact solutions, confirming the possibility of using them as test tasks for
verification of program complexes and numerical methods. Using the Hopf equation as an
example, it was shown in the paper that the use of hyperbolic equations containing only one
Riemann invariant is not sufficient to study the order of approximation of numerical methods.
To this end, it is necessary to use more complex systems, for example, a system of shallow
water equations. In this example, it was shown that the introduction of the limiter reduces the
order of accuracy of the discontinuous Galerkin method in the regions of influence of strong
discontinuities.

Acknowledgements: This work was supported by the Russian Science Foundation under the
project No. 17-71-30014

APPENDIX A

Let us introduce a new notation, namely, /4, =y, /A, =x, a — = p In this case (14)
is rewritten in the form:

P:xzyz(p—2x—2y)2—%(x2+y2)(x2—y2)2, (A1)

where y is the chosen dependent variable, x and p are independent parameters.

As is known, the classical Sturm sequence [29] is defined only for polynomials with real
coefficients. Degenerations and rearrangements of the solution set are possible in the case of
the dependence of the coefficients on the parameters. However, for this problem it is possible
to construct the Sturm sequence in general form. After an elaborate work we can get

S=[sq,....57], where

1= =30+ (2022 =8 0x (167 —8px + (027 = 37 v ),
= (2707 ~8px? 4 0x 4 (12" + 247+ (1852 =352 y) v v
s=30% +(~4p% +16px 187 +(-24x+12p - 9y) y) 7.
s4:—12(2x—p)x4+(—18x2(2x—p)2+
+(—4(2x—p)(2p+x)(—2p+9x)+(—24x2+36p2—144pX)y)y)y,

S5 = —6x4p(—29px2 +180x° + p3 — 8xp2 ) + (—9xzp(—490px3 +312x%
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+295x2 p? —80p3x+8p4)—
_ p(—3456 pxt =573x% p? +2024x3 p? —8p° +96xp* +1728x° ) ¥) ¥, (A2)

56 = (34992x10 +347760 px° +371556x° p> —2068672 p°x” +3534048x° p* —

—3060540 p°x° +1563205x* p® —501504x° p7 +100464x> p® —11520xp° +

+576p10)y + 54(648x7 +7196 px® +14616x° p? —28532px* +17850x> p* —
~5817x2p° +1008p6x—72p7)x4,

S7:1.

Substituting the specific values of x and p in (A2), one can determine the number of
nondegenerate roots on a given interval of variation y, as the difference between the number
of sign changes in the Sturm sequences corresponding to the edges of the interval. Degenerate

cases require particular consideration.
For the case considered in the text of the paper, namely, a =3/2, f=0(p=3/2), (Al)

has the following graph of the dependence on the parameter x — see Fig. 13.
> 2 /

Figure 13. The dependency (A1) in the case of p =3/2.

From Fig. 13 is obvious that there is at least one degenerate case. Calculations show that this
happens when value x = p/4. Asymptotic analysis shows that there are no other degenerate

cascs.
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Summary. Using the example of a numerical solution of a model problem with a nonlinear
Burgers equation, the quality of the approximation of the original equation by two and three-
layer difference schemes written on grids with fixed and moving nodes is studied. Modeling
with the subsequent analysis of its results has shown that in the Cartesian coordinate system
the quality of the numerical solution essentially depends on the quality of the finite-difference
approximation used for the initial equation. The application of the two-layer Crank-Nicholson
scheme and the three-layer difference scheme of the Cabaret type with the second order of
approximation formulated in the Cartesian coordinate system showed that the three-layer
difference schemes have a distinct advantage and give a solution of higher quality, except for
regions with large gradients. The application of an arbitrary non-stationary coordinate system
made it possible to implement a dynamic adaptation of the grid in which the distribution of
nodes is dependent and controlled by the sought solution, which makes it possible to
automatically adjust the calculated grid in such a way that the approximation error turns out to
be minimal practically regardless of the quality of the original difference scheme. The
numerical solution of the nonlinear Burgers equation with the help of two and three-layer
difference schemes on a dynamically adapting grid showed virtually complete coincidence of
the calculations with each other, a good agreement with the exact solution with complete
absence of oscillations in the solution. The calculation grid contained the number of nodes (n
=25) by two orders of magnitude smaller than the grid with fixed nodes.

1 INTRODUCTION

The numerical solution of the equations of continuum mechanics, which describe
convection-diffusion processes with the predominance of the convective transport
mechanism, is one of the fundamental problems of computational mathematics. The main
difficulties of the computational process are due to the error that arises when differential
equations are approximated by difference schemes. The approximation error is manifested in
the form of dissipative and dispersive properties of finite-difference schemes. Depending on
the relationship between these properties in the solution, not only quantitative, but also
qualitative distortions can occur.

2010 Mathematics Subject Classification: 33F05, 68Q17, 01-08, 34K28
Key words and Phrases: difference schemes, dispersion, approximation, numerical solution, dynamic
adaptation.
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Such computational features are the most completely investigated and generalized in the
systems of linear and nonlinear equations of hyperbolic type. These include the equations of
gas dynamics [1], elasticity theory [2], shallow water [3,4], etc. For many years of research a
large number of finite-difference schemes have been developed [5-9] for the solution of these
equations, having their own advantages and disadvantages. It is known that classical finite-
difference schemes with the first order of approximation for the equations of convective
transport in Euler variables have too much dissipation, which leads to a strong smoothing of
the solution in the regions of local extrema. The schemes of higher (2nd and higher) order
according to the theorem of S.K. Godunov [10] are not monotonic due to a high
approximation dispersion, which often causes the appearance of parasitic oscillations in the
regions of large solution gradients. As a result, classical difference schemes can not always
provide the necessary accuracy of numerical solutions.

The dissipative and dispersion properties of classical difference schemes are improved in
various ways. A decrease in the scheme dissipation can be achieved by increasing the order of
approximation [8], and for the monotonization of the solution, the methods of artificial
viscosity [7] and nonlinear correction [11] are usually used. Recently, the methods for
constructing nonlinear difference schemes (so-called high resolution algorithms) that improve
the dissipative and dispersive properties of classical linear difference schemes with the help of
nonlinear correction of fluxes have become most widely used. When constructing improved
nonlinear schemes of high accuracy order, the dissipative difference schemes of Godunov
[10] or Lax-Wendroff [12] are used as the initial ones.

In one of the first papers [13], the construction of a high-resolution scheme (the Flux
Corrected Transport (FCT) method) was achieved by reducing the dissipation in the original
low-dispersion scheme (the first-order Godunov scheme [10]), introducing antidiffusion
fluxes while preserving the boundedness of the solution [14]. Another example of
constructing high-resolution schemes is higher order approximation schemes based on the
principle of non-increase of the total variation of the solution (TVD - Total Variation
Diminishing) [11,15,16]. In this approach, to fight with numerical oscillations, an increase in
the order of approximation is used, which is achieved by adding delimiters to the difference
scheme in such a way that the scheme possesses a high order on smooth solutions and retains
monotonicity in the regions of strong discontinuity. Methods for constructing difference
schemes with low dispersion also include the ENO (essentially non-oscillatory) and WENO
(weighted essentially non-oscillatory) methods [17-20]. These methods, like the TVD
methods, are used to achieve a more subtle balance between dispersion and dissipation errors.
Increasing the order of approximation in these schemes is achieved by increasing the
computational template. Most highly accurate methods based on explicit wide-template
difference schemes [21, 22] of an increased (up to the 12th [23]) approximation are found in
shallow water problems [24] and aeroacoustics [25, 26]. However, the use of wide-scale
schemes faces a number of difficulties associated with setting the boundary conditions,
modifying the templates near the boundaries, and the sensitivity of the schemes used to the
degree of homogeneity of the calculated grids.

The use of wide-template schemes is not the only way to obtain good dissipative and
dispersion properties. Another direction for improving the properties of difference schemes
was formulated in [27], [28]. On the example of the solution of the one-dimensional
convection transfer equation, explicit linear 3-layer difference schemes with improved
dispersive and dissipative properties were shown in these papers and are known as the
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Upwind Leapfrog [27] and Cabaret (Compact Accurately Boundary-Adjusting High-
REsolution Technique) schemes [28]. The Cabaret scheme is designed taking into account the
results of the Upwind Leapfrog scheme. It was based on a new formulation of the compact
Upwind Leapfrog scheme of the second order, which is achieved by introducing independent
conservative and flux variables. The scheme proposed in the first papers [28], [29] was further
developed in [30], [31]. The necessary monotonization of the solutions in the regions of large
gradients was achieved with the help of a simple algorithm of nonlinear correction of fluxes
based on the maximum principle [30].

A distinctive feature of the Cabaret scheme, in comparison with the most high-resolution
schemes, is that it is completely discrete in space and time (X, t), has a second order in x and t
(O (AX* + AtY)) and, all improved properties are obtained on the least possible compact
difference template. Later, the Cabaret scheme was generalized to the cases described by
quasilinear hyperbolic equations [32], [33] and the equations of gas dynamics in the one-
dimensional and two-dimensional approximation [34].

The brief overview shows that the problem of finding new ways to improve the dissipative
and dispersive properties of the difference schemes used to solve the problems of fluid and
gas mechanics remains open and is still relevant.

The purpose of this publication is to demonstrate a different approach to improving the
dissipative-dispersion properties of difference schemes with a second order of approximation.
The achievement of this goal is carried out using the method of dynamic adaptation [35], [36],
in which the controlled distribution of nodes of the grid at each time is achieved by the sought
solution. A complete matching of the motion of the grid nodes with the evolution of the
solution leads to a decrease in the dissipation and to the complete zeroing of the dispersion of
the difference scheme. Demonstration of the possibilities of the approach is carried out using
the example of a numerical solution of the Burgers equation. The effectiveness of this
approach is determined by comparing the results of the solution of the Burgers equation with
the use of two-layer difference schemes of Crank-Nicolson and three-layered Cabaret type.

2 STATEMENT OF THE PROBLEM

A number of mathematical models that form the basis of the problems of fluid and gas
mechanics are reduced to the convection-diffusion problems. These models describe two
basic mechanisms of energy and substance transfer: diffusion and convection. Depending on
the external conditions, each of the mechanisms may have a dominant influence. To estimate
the predominance of a particular process, one usually uses dimensionless parameters, the so-
called Peclet number (Pe) or Reynolds number (Re). At Pe << 1 (Re << 1) the diffusion
process dominates in the system, and for Pe >> 1 (Re >> 1) the convective transfer
predominates. In the case of strong dominance of the convective transport mechanism, a class
of singularly perturbed nonlinear mathematical models with a small parameter = Pe” or u =
Re! with the highest derivative is obtained. Nonstationary singularly perturbed models on the
basis of the Burgers-Buckley-Leverett equations allow the emergence of regions of strong
change in the solution propagating in the form of various fronts and transition layers.

From a computational point of view, singularly perturbed problems are referred to as
difficult problems to be solved. In particular, the difference schemes used to approximate the
convection-diffusion equations, as a rule, have a strong dispersion, for the suppression of
which special measures are applied. In computing practice, a wide application as a test

33



V. 1. Mazhukin, A.V. Shapranov and E.N. Bykovskaya.

problem for the problems of the boundary layer, parabolized and complete Navier-Stokes
equations has the Burgers equation with the corresponding boundary conditions. The
complete non-linear Burgers equation contains a quadratic nonlinearity in the convective
summand and a linear viscosity on the right-hand side. The solution of the Burgers equation,
with a coefficient of viscosity tending to zero, can contain both strong (shock waves) and
weak discontinuities, which allows one to analyze all the singularities of the solution for
arbitrary initial data.

Taking into account the initial and boundary conditions, the Burgers problem is formulated

as follows:
8_”+i(£]:ﬂ@ (1)
ot ox\ 2 ox
>0, x,<x<x,
t=0: u(x,0)=uy(x), xy<x<xp )
X=X, go(x,t,u(x),g—zjzo, X=Xxg: gR[x,t,u(x),Z—zj:O (3)

where the coefficient u(x) has the meaning of viscosity, u,(x), go[x,t,u(x),Z—uj,
X

gxr (x, t,u(x), Z—uj are given functions.
X

3 ONE-PARAMETER FAMILIES OF TWO- AND THREE-LAYER DIFFERENCE
SCHEMES OF THE SECOND, O(At> +h?)

Consider the calculation space (2 ,, in which a Cartesian coordinate system is set with
variables (x,7). In the space ., consider a computational grid 7", in which for convenience
we use nodes with integer and half-integer indices:

k+= Ax

At k 2. _ _ m
a)Ax—(xm,t )[x 1ot J.xm+1—xm+4\xm,x =X, + ,
m+3 m+— 2

1 k
k+— At
£ =k A 2:tk+7, m=0,N;k=0,J

The one-parameter family of two-layer schemes for the Burgers equation, written out on a
computational grid with fixed nodes, has the form:
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+

At 2 2

k+1 k k+1 2 k+1 2 k+1 k+1 k+1 k+1
Un—1/2 = Um-1/2 _ ol - 1| (upyyo B (Up 3/ n H | Uni1/2 " Um—1/2  Um—1/2 " Un-3/2
2Ax Ax Ax Ax

k 2 k 2 k k k k
+(1-0)| - L | (uygsn)” _ (t3/2) p M B2 THmety2 Uit/ " Hime3/2 (4)
2Ax 2 2 Ax Ax Ax

where o is the weight factor, determining the degree of implicitness of the difference scheme,
0<o<I. For ¢ = 0.5 we have a symmetric Crank-Nicolson scheme with the second order of
approximation O(4£°+4x°).

Using the approach to constructing an implicit three-layer difference scheme for the linear
transport equation, presented in [34], we write out a family of three-layer implicit schemes of
Cabaret type, consisting of 3 parts, for the Burgers equation (1).

. 4 k k+1/2
Part one — time transition u,,_,,, > u,_ |,

R AT | o M ) M I N L ) R A
AT/2 "Ax| 2 2 YAx| 2 2

k12 k4l/2 k2 k412
=(1-0,) H A Upro “Upn | | Yoo " U302 "
= 2
Ax Ax Ax

k k k k
n H | Uiy Uiy U120 Uz
2 E Ax - Ax

Part two — extrapolation

k+1/2 k k+1/2 .
Uy 1/7 = Uy, Jor w,"j5>0;
k+1 _ k+1/2 k+1/2 k k+1/2 _ .
Uy =AUy jo F Uy — Uy, Jor w5 =0, (5)
k+1/2 k k+1/2 i
Uy 1/2 — Uy Jor w, "5 <0,

: fe: k+1/2 k+1
Part three — time transition u, |5 > u, ", ,

'] il o 1l b))

2 2 Ax| 2 2

K+l k+1 k+1 k1 Y|
_ H | U U || Yoo " U3
=0, — +
Ax Ax Ax

k12 k42 k412 k412
H | Uiy Uiy U120 Uz
+(1-0,)— -
Ax Ax Ax

k+1 k+1/2
u .,—U,_ _
m—1/2 m—1/2 +(

AtT/2

1
I—O'I)E
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For 61 = 6, = 0.5 we obtain a scheme with the second order of approximation O(4#°+4x°).

4 ALGORITHM OF NUMERICAL SOLUTION

The system of difference equations (4) was solved by the Newton iterative method with the
use of a three-diagonal sweep method at each iteration [37] to solve a system of linear
algebraic equations. The step of integration A7* was selected automatically based on the
specified accuracy and the maximum number of iterations

Algorithm for the numerical solution of an implicit three-layer scheme (5) with 6, =c; =
0.5 consists of three stages.

At the first stage, a system of nonlinear algebraic equations is solved (6), from where the

conservative variables are found u ,’,‘fﬁ during the first half-timestep.

k+1 k+1/2 k+1 \ k+1 Y ( k)2 ( k )2
umfl/Z_umfl/Z +l 1 (um ) _(um—l) +1 1 um um—l _

Ar/2 2 Ax 2 2 2Ax| 2 2
_ lﬂ ufn:—ll/Z _ur]::ll/z _ ufntll/Z _u:;tlli/Z 6
- + (6)
2 Ax| Ax Ax |
Ry (b2 b2 (ubn —ubt2 ]
2 Ax i Ax Ax |

At the second stage, extrapolation of the flux variables occurs within the space-time cells.

k+1/2 k k+1/2 .

2u, 5~ U, for w,’5>0;

k+1 _ k+1/2 k+1/2 k k+1/2 _ .
u, =AU, tu,,—u,, for w,),=0; (7)

k+1/2 k k+1/2 .

U, Uy for u,’; <0;

At the third stage, the system of the difference equations is solved, from which the

. . k+1 :
conservative variables umt]/2 are found at the new time layer [29], [30]:

K+l k+1/2 kel k1 (A" ( k )2
Z/[/7171/2_Mm71/2 +l 1 (um ) _(um—l)2 +1 1 (um) Z’lm—l —

At/2 2Ax| 2 2 2Ax| 2 2

k+1 k+1 k+1 k+1 k+1/2 k+1/2 k+1/2 k+1/2
_ l M Upsro Ui || Y2 " Ui3i2 +l M Upsro " U2 || Y2 " U302
2 Ax Ax Ax 2 Ax Ax Ax

Just as in the case of a two-layer scheme, the iterative Newton method was used to solve
the difference schemes (6), (8) using sweeping at each iteration. The integration step A" was
selected automatically based on the specified accuracy and the maximum number of
iterations. To achieve monotonicity of the solution in the presence of large gradients, after
each iteration, the solution was monotonized on the basis of the maximum principle:
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min(ub_ b ), for u*™2 > 0,5 <min(uk_,ut );

max(ut k) for W52 S 0,05 > max(ut b );

s+1 f k+1/2
or

ook k s+1 koo k.
u, ", Uy, j/5 >0, min(u,_;u, )<u,” <max(u,_;u, ),

s+1 — (9)

min(ty, puy, ), for w5 <0,uy <min(uy, g, );

s+1 >

ko k k+1/2 kook .
max(u,, ;. u, ), for wu,"S5<0,u" >max(u,. ;u, ),

k+1/2

s+l Sor wu,"/5 <0, min(u

m

k

k s+1 koK
u ot ) Su ™ <max(u, g,y )

where s - is the iteration number.

5 MODELING AND ANALYSIS OF THE QUALITY OF TWO- AND THREE-
LAYER DIFFERENCE SCHEMES ON THE GRIDS WITH FIXED NODES

The developed difference schemes (4), (6-9) were used to perform a series of calculations
with subsequent comparison and an analysis of the quality of the scheme properties. As a test
problem, we considered a nonlinear equation (1) with an initial condition in the form of an
asymmetric sinusoid

uy(x)=u(x,0)=sin(2mx)+0.5sin(7x) (10)
and boundary conditions:

Uy ) =ufg,t) =0 (1)

The calculations were carried out on a grid with the same number of nodes — N = 2500.
The value of u parameter was chosen from the range u € {10’3 +107° }

Modeling showed that two half-waves of the sinusoid moving towards each other form a
steep front, the thickness of which is determined by the value of the parameter x. The use of
the two-layer Crank-Nicolson scheme (5) showed that the first parasitic oscillations on the
upper part of the front appear at u=10" (Fig. la). The solution u(x) obtained from the three-
layer scheme with the flux correction (6) — (9) does not have any oscillations (Fig. 1b).

Further growth of the gradient of the solution, caused by a decrease in the parameter
u=10"-10° leads to an increase in parasitic oscillations in solutions obtained from a two-
layer scheme (5), (Fig.2 — 4), which testifies to the deterioration of the dispersion properties
of the scheme from which the three-layer scheme (6) - (9) is free, using the procedure for
monotonization of the solution, over the whole range of the values of the parameter u (Fig.5).

Thus, the three-layer difference schemes of the Cabaret type, written out on the
computational grids with fixed nodes, have a distinct advantage in the dispersion properties
over the two-layer Crank-Nicolson schemes.
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Fig. 1. Two-layer (a) and three-layer (b) schemes, =107

However, as noted in paper [34], the monotonization of the solution after each iteration in
the region of large gradients leads to a deviation of the result from the exact solution of the
original system of non-linear difference equations and can hinder the convergence of the
iterative process.

u(x)

0,0 0,2 0.4 0,6 0,8 1,0
X

Fig. 2. Two-layer scheme, u=10". Spatial profiles of the solution u(x) at the moments ¢, 3= 0.25, 0.63, 1.0
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Fig. 3. Two-layer scheme, u=10" . Spatial profiles of the solution u(x) at the moments ¢, ;= 0.25, 0.63, 1.0

0,0 0,2 0,4 0,6 0,8 1,0

X

Fig. 4. Two-layer scheme, x=10". Spatial profiles of the solution u(x) at the moments ¢, ;= 0.25, 0.63, 1.0
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Fig. 5. Three-layer scheme, u=10"",. Spatial profiles of the solution u(x) at the moemnts ¢, ;= 0.25, 0.63, 1.0
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In this model problem (1), (10), (11), this defect is most clearly manifested in the slowing
down of the motion of the solution front in comparison with the front of the exact solution [1]
(Fig. 6a, b). The deceleration depends on the value of the parameter u. The greatest lag is
observed at x = 10~ and noticeably decreases at = 10, p=10.

a) % b)

|

0; 0,5 é
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= ot g

= = 8
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o 0,0 g
I V
00 02 04 06 08 10 00 02 04 06 08 10

X

Fig. 6. Exact solution (blue line with symbols) and the solution obtained using the three-layer scheme
(red line with symbols) for (a) -u=10, (b) - u=10".

The deviation from the exact solution in the region of large gradients is caused by the use
of nonlinear correction of the fluxes, which is confirmed by comparing the results of
calculations performed with monotonization of the solution and without it (Fig. 7 a, b). The
front of the solution without the monotonization process is noticeably ahead of the front with
monotonization. This indicates that the monotonization procedure used, despite the
algorithmic simplicity, is not sufficiently flexible. Thus, the approach to improving the quality
of the solution using difference schemes proposed in [28] - [34] is not free from certain
shortcomings.
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Fig. 7. The solution obtained using the three-layer scheme with monotonization (red line with symbols)
and without monotonization (blue line with symbols) for (a) - £=107, (b) - =10,

40



V. 1. Mazhukin, A.V. Shapranov and E.N. Bykovskaya.

In the present paper, as an alternative, the reduction in the approximation error is proposed
to be carried out using the method of dynamic adaptation of computational grids [35], [36],
[38], [39]. The dynamic adaptation method was widely used to solve one-dimensional
gasdynamic problems [40] - [45], one-dimensional and two-dimensional equations of
parabolic type [46] - [49], one- and two-dimensional Stefan problems with moving phase
boundaries [50] - [56] and a number of problems of laser action on matter [57] - [61].

6 MODELING AND ANALYSIS OF THE QUALITY OF THE TWO- AND THREE-
LAYER DIFFERENCE SCHEMES ON THE GRIDS WITH MOVING NODES

The dynamic adaptation method is based on the procedure for transition from physical
space Q , with a Cartesian coordinate system and variables (x,7) to some calculation space

Q, . with an arbitrary non-stationary coordinate system and variables (g,7). The arbitrariness

of a non-stationary coordinate system means that the speed of this coordinate system is
unknown beforehand and must be determined in the course of the solution. The transition to
an arbitrary nonstationary coordinate system makes it possible to formulate the problem of
constructing and adapting computational grids at a differential level, because of this, in the
resulting mathematical model, part of the differential equations describes physical processes,
and the other describes the behavior of grid nodes [35], [40]. This allows adapting grids to
various features of the solution, such as: large gradients [35], [36], [39] moving boundaries
[48] - [52] and discontinuous solutions [40], [43] - [ 45].

The transition to an arbitrary non-stationary coordinate system is carried out by means of
automatic transformation of coordinates with the help of the sought solution. The partial
derivatives of the independent variables in the transition from one system to another are
related by the following expressions:

Lo I g 7 (12)

where w =0x/0q 1is the Jacobian of inverse transformation, the function O characterizes

the speed of motion of an unsteady coordinate system, is unknown in advance and is to be
determined.

Using the relations (12) we represent the differential model (1) in the variables (q, r):

2
u Qou 10 (”_]=ﬁiia_” 13)

or woq woql| 2 w O0q v Oq

ox

o 14
Py Q (14)

where (14) is the equation of inverse transformation with transformation function Q. The
equation (14) is used to construct the grid that adapts to the solution. Its difference analog
describes the dynamics of grid nodes, while the function Q realizes controlled movement of

grid nodes, coordinated with the dynamics of the sought solution. The coordination is
achieved by introducing a dependence of the function (0 on the sought solution. Optimal

transformation function (), which ensures the complete coherence of the adaptation
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mechanism with the desired solution, is determined from the quasi-stationary principle [36],
[39], [48].

The meaning of the principle of quasi-stationarity lies in the requirement of transition to a
non-stationary coordinate system in which the time derivatives of the solution are close to or
equal to zero: du/dt= 0. When this condition is satisfied, the equation (13) takes the form

2
QO0u 10 |u|_p010u (15)
woq woq\ 2 ) wyoqy dq

and serves to determine the function Q:

(o (m)_ufu)ou, Y
¢ [u é’q(w] v/(ﬁcf}(ﬁqwe) J 1o

where re << I1s the regularizer that prevents the first derivative from going to zero. The third
term in (16) does not play any important role and can be ignored.

6.1 Differential approximation of difference schemes

By analyzing the differential approximation of the three-layer difference scheme, we show
that the function found is optimal in the sense of the quality of the solution with a minimal
number of grid nodes.

We introduce in the computational space ﬁq,r a computational grid a)j'; :

! k
A k+= At
=tf 4+ Ak g ]:qm+7q, t 2:1k+7

m+=
2

k k+1
At _ (qu’T )’. 9m+1 = 49m +Aqr T "
Wy =

m=0,1,.N-1, k=0,1,...,J

and consider the first part of the three-layer difference scheme for equation (15)

1 ((ui‘;’)z_(ufnt’z Ok _ okl k”] I ((u,’;)z_(u,’;_uz

+ U, |[+—

k+1 k+1 k+1 k+1

__H { 2 Unvi/2 " Um—1/2 J _( 2 Um—1/2 " Um-3/2 J +

k+1 k+1 k+1 k+1
249 |\ W12 ¥ V12 Aq Y12 TWm-3/2 Aq

k k k k
i H { 2 Us1/2 " Um-1/2 ]_[ 2 Um—1/2 " Up-3/2 ) " (17)
k k k k
29 \\ W12 ¥ Vo172 Aq Ym-1/2 YW m-3/2 Aq

k+1/2 k+1/2 k+1/2 k+1/2
n M ( 2 Unpi1/2 " Um—1/2 J_( 2 Up—1/2 ~Um-3/2 ]
k+1/2 k+1/2 k+1/2 k+1/2
Ag |\ w0+ Vel Aq Y12 TW¥m-3/2 Aq

When using the finite difference method, not the initial partial differential equation is
solved numerically, but some modified equation, called differential approximation of the

k. k k k
+ u, — u =
2 2 Qm m Qm—] m—1 J
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difference scheme [62,63]. The right-hand side of this approximation is the approximation
error and is equal to the difference between the original partial differential equation and its
finite-difference analogue. An analysis of the right-hand sides of differential approximations
makes it possible to establish the predominant contribution to the error in approximating the
higher derivatives and associated properties of difference schemes such as dissipation and
dispersion. It is known that if the principal term in the expression for the approximation error
contains derivatives of even order, then the predominant properties of the difference schemes
will be dissipative, and if the derivatives of odd order — then will be dispersive.

Let us write down the differential approximation for the difference scheme (17). To obtain
differential approximations, we use the standard procedure for expanding the grid functions in
a neighborhood of the point (m,m,,) in a Taylor series. Omitting simple but cumbersome
transformations, we write the differential approximation in the final form.

2 2 ou 4 3
Qau, (u_]_ii(ﬁ@_u}i( o’u +ﬁ s @3(1]] (8)
8q waq woqg\yoqg) w\ oq° aq oq” \ ¥
The coefficients of the derivatives on the right-hand side of Eq. (18) a, B, vy, 6 are
expressed as follows

2 2 g’ 2 2

a=_4‘i(45” 0 (LH 5ot ( 0 (JJ_MQ] L, A o e o

32| oq aq 1 oq 48 v 96 0Oq
In the differential approximation (18), the most important role is played by the terms on the
right-hand side of the second and third derivative equations, characterizing the dissipation and
dispersion of the difference scheme, respectively. The coefficients a and p, standing
respectively before the second and third derivatives, depend on the adaptation parameters.
This means that the dissipation and dispersion of the difference schemes depend on the
method of adaptation and can be changed in the necessary direction. The coefficient f
explicitly depends on the fucntion Q, which allows, using the appropriate choice of Q to
convert the coefficient f to zero. Thus, one can almost completely get rid of the internal
dispersion of the difference scheme. The coefficient § vanishes if the function Q is set equal

to:
o (u
=—|u-——| & 19
¢ (u 5q(eﬂn (1

A similar analysis for a two-layer scheme was carried out in Refs. [35-36].

6.2 Modeling results

We consider the possibilities of reducing the error in the approximation of two and three-
layer difference schemes by considering the numerical solution of the Burgers problem (1),

(11), (12) using the dynamic adaptation method. For this, in the computational space Qq’r

with variables (q,r) we represent the Burgers equation (14) in a divergence form, and write
the equation of the inverse transformation (15) in a modified, more convenient form
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0 : 2
(vu)__0(Qu) o (u) o pou (20)
or 0q oq\ 2 ) Oqw dq
dy_ 20 Gy <q<qp, >0 (21)
or oq
The equations (20), (21) are supplemented by the initial
u(q,0)=sin(2rq)+0.5sin(7q) w(q.0)=1
and boundary conditions:
u(qy,t) =u(qp.7)=0 0(99.7)=0(qr.7)=0
) ) o (u
The function Q was set in the form (19) =—lu——| =
aq\y

6.3  Algorithm of numerical solution on a dynamic grid

Using a computational grid with integer and half-integer nodes, we write out a family of two-

layer conservative difference schemes for the system of equations (20), (21). The functions
k

m >

xk ., ub, OF are written in the integer nodes and the grid fucntionsy* ,,,, are written in the

half-integer nodes (qm T ) . The family of the two-layer difference schemes has the form:

i 2 2 Tk
i(um-%—] _ Up_g J _ H Uy — Uy, + H Uy —Up_g +
(I-o) 2\ 2 2 Y12 A4 Y172 A4 N
. + (uQ)m-H _(uQ)m—I (22)
k+1 kAt L 2 i
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Aq P 5 k+1
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L 2 i
k+1 k A'l'k k k+1
Wime1/2 =Vme1/2 __Aq (1-0)[0pns1 =On] +0[0ps1 —On] (23)

1 1
ot ]
X\ W12 Vm-1/2

In the calculations, the Crank-Nicolson scheme (¢ = 0.5) was used with the second order of
approximation O(4z” +4¢?). Since the dynamic adaptation mechanism is formulated at the
differential level, the main differences between the computational algorithm in the variables

44



V. 1. Mazhukin, A.V. Shapranov and E.N. Bykovskaya.

(q,z')are associated with the appearance of an additional equation (21). A system of two-

layer difference schemes (22), (23) was solved by separate sweeps with internal and external
iterations.
The algorithm for the numerical solution of an implicit three-layer scheme, as in variables

(x,t), consists of three stages. First, a system of nonlinear algebraic equations is solved in the

. . . . +1/2
first half-step in time, from which the conservative variables u,],:] /> are found.

k+1/2 k+1/2 k k k+1 )2 k+1 2
YVino1/24m=1/2 =¥ m-t/oMmr2 1 1 (( Uy )" (Umoy)” Ok _ gkt k+1J .

77
At/ 2 24q| 2 2 mo S me el
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Ag\ 2 2
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At the secodn stage — extrapolation of stream variables within space-time cells is
performed
k+1/2 k k+1/2 k+1/2 .
QU2 ~ Uy for (“m—1/2 - Qm—I/Z) >0;
kel _ ) k+1/2 | k+1/2 k k+1/2  Ak+1/2\ _ .
Uy, =AU 12+ Uy 12 — Uy, fOr (“m—l/z - Qm—]/Z) =0, (25)
k+1/2 _ k k+1/2 _ Ak+1/2 i
Uy 172 ~Upps for (“m—z/z —On1/2 ) <0;

At the third stage, the system of difference equations is solved at the second half-step so
the conservative variables u'" ,» are found at the new time layer
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The difference schemes of the first (24) and third (26) stages were solved together with the
scheme (21). The principal point of the computational algorithm is the elimination from the
solution of the procedure of non-linear flux correction (monotonization), since it turns out to
be excessive.

6.4 Analysis of the computaion results

The numerical solution of problem (20) - (21) in the perameter range u e (1 073 =1 0_6)

was carried out by means of two and three-layer difference schemes (22), (23) and (24) - (26).
All calculations were carried out on adaptive grids with the same number of nodes. To achive
the same precision as with the grids with fixed nodes, the number of nodes for the adaptive
grid N = 25 turned out to be by 2 orders lower. Fig. 8,9 show the spatial profiles of the grid

functions u(x)and w(x) at 4 moments of time for u =1 0~*. The results of calculations
using the two-layer (22), (23) and three-layer (24)-(26) schemes showed a good match
between each other and the exact solution. The profiles of the function u(x) are completely
free from the parasitic oscillations. In this case, the three-layer scheme (24) - (26) does not
contain a flux correction procedure. As in the case of using the two-layer scheme, the
improvement of the quality of the solution in the three-layer scheme is achieved due to the

controlled distribution of the grid nodes, the motion of which is completely coordinated with
the sought solution.
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Fig. 8. Spatial profile of the function u(x) at different moments.
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Fig. 9. Spatial profiles of the function w(x) at different moments.

The dynamics of distribution of the grid nodes in the physical space Q,  with variables
(x.t) is characterized by the function y (x), Fig. 9. The function i (x) representing the ratio
w(x) ~ Ax / Aq characterizes the dimensionless spatial step of the grid in the space Q_,
since Ag does not change with time. The function y/(x) shows how much the spatial grid
step Ax(¢) changes at each moment of time.

The spatial profiles of u(x)and y (x) indicate a smooth concentration of the grid nodes in

the region of the front of the function, which corresponds to a decrease in the grid spacing by
3 orders of magnitude, Fig. 9, with a simultaneous increase in the grid spacing by 2-9 times in
the region of a slow change in the solution.

Thus, due to full conformity with the sought solution, dynamic adaptation turned out to be
a more subtle and flexible mechanism for reducing the error of approximation of difference
schemes in comparison with the method of nonlinear correction of fluxes.

7 CONCLUSION

» The families of two-layer and three-layer difference schemes of the second order for the
complete burgers equation in fixed cartesian and arbitrary non-stationary coordinate
systems were constructed.

* Modeling with the subsequent analysis of its results has shown that in the cartesian
coordinate system the quality of the numerical solution essentially depends on the quality
of the finite-difference approximation used for the initial equation.

» The main drawback of three-layer difference schemes is the presence in the region of
large gradients of a difficultly removable deviation of the numerical solution from the
exact one, which is caused by the process of forced monotonization of the solution. This
circumstance stimulates the search for other ways of reducing the error of approximation.
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* The use of non-stationary coordinate systems makes it possible to change the
approximation error in the course of the solution by controlling the motion of the grid
nodes, in contrast to stationary coordinate systems in which the approximation error is
determined by the original structure of the difference scheme. The application of an
arbitrary non-stationary coordinate system made it possible to create a universal dynamic
adaptation method for a wide class of problems in mathematical physics in which the
distribution of nodes is dependent and controlled by the sought solution. This makes it
possible to automatically adjust the calculated grid in such a way that the approximation
error is minimal practically regardless of the quality of the original difference scheme.
The numerical solution of the nonlinear burgers equation with the help of two and three-
layer difference schemes on a dynamically adapting grid showed virtually complete
coincidence of the calculations among themselves, good agreement with the exact
solution with complete absence of oscillations in the solution. The computational grid
contained the number of nodes (N = 25) by two orders of magnitude smaller than the grid
with fixed nodes.

» Dynamic adaptation of grids is an independent, flexible and the most accurate way of
reducing the approximation error, in particular in the problems of convection-diffusion
with the dominant convection mechanism.

Acknowledgements: The work was funded by Russian Science Foundation, grant No. 18-11-
00318 and the Competitiveness Enhancement Program of the MEPhI.

REFERENCES

[1] B.L. Rozhdestvenskij, N.N. Yanenko, Sistemy" kvazilinejny x uravnenij i ix prilozheniya k
gazovoj dinamike, M.: Nauka (1978)

[2] C. Truesdell, 4 First Course in Rational Continuum Mechanics, The Johns Hopkins University,
Baltimore, Maryland, 1972

[3] L. D. Landau, E.M. Lifshicz, Gidrodinamika. Izdanie 4, M.: Nauka (1988).

[4] A.S. Petrosyan, Dopolnitel'ny'e glavy teorii melkoj vody", Seriya «Mexanika, upravlenie i
informatika», Moskva, Nauchno - obrazovatel'ny’j Centr Institutf kosmicheskix issledovanij
Rossijskoj Akademii nauk (IKI RAN) (2014)

[5] C.K. Godunov, B.C. Ryaben'kij, Raznostny ‘e sxemy', M.: Nauka, 1980.

[6] P.J. Roache, Computational Fluid Dynamics, Hermosa, Albuquerque, 1982

[7] A.A. Samarskij, Yu.P.Popov, Raznostny'e metody” resheniya zadach gazovoj dinamiki, Moskva,
Izd-vo: URSS (2004)

[8] A. A.Samarskii, The theory of difference schemes, New York — Basel. Marcel Dekker (2001)

[9] D. Anderson, J. C. Tannehill, R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer,
CRC Press; 3 Edition (2012)

[10] S.K. Godunov, “Raznostnaya sxema dlya chislennogo vy chisleniya razry'vny'x reshenij
uravnenij gidrodinamiki”, Matem. Sbornik, 47, 271-306 (1959).

[11] A. Harten, “High Resolution Schemes for Hyperbolic Conservation Laws”, J. Comput. Phys, 49
(3), 357-393 (1983)

[12] P.D. Lax, V. Wendroff, “Systems of conservation laws”, Comm. Pure. Appl. Math., 13, 217-237
(1960).

[13] J.P.Boris , D.L.Book, K. Hain, “Flux-corrected transport: Generalization of the method”, J.
Comput. Physics, 31, 335-350 (1975)

[14] B. Van Leer, “Towards the ultimate conservative difference scheme V. A second-order sequel to
Godunov’s method”, J. Comput. Phys., 32, 101-136 (1979).

48



V. 1. Mazhukin, A.V. Shapranov and E.N. Bykovskaya.

[15] A. Harten, “On a class of high resolution total-variation-stable finite-difference schemes”, SIAM
Journal on Numerical Ana lysis, 21(1), 1-23 (1984)

[16] K. V. Vyaznikov, V. F.Tishkin, A. P. Favorskij, “Postroenie monotonny'x raznostny x sxem
povy'shennogo poryadka approksimacii dlya sistem uravnenij giperbolicheskogo tipa”,
Matematicheskoe modelirovanie, 1(5), 95-120 (1989)

[17] A. Harten, S. Osher, Uniformly high-order accurate non-oscillatory schemes, 1. Springer Berlin
Heidelberg, 187-217(1997)

[18] C. W.Shu, S. Osher, “Efficient Implementation of Essentially Non-Oscillatory Shock Capturing
Schemes”, Journal of Computational Physics, 77(2), 439-471(1988)

[19] S. Osher, C. Shu, “Efficient implementation of essentially non-oscillatory shock-capturing
schemes, 117, J. Comput. Phys, 83(1), 32-78(1989)

[20] X.D. Liu, S. Osher, T. Chan, “Weighted essentially non-oscillatory schemes”, J. Comp. Phys,
115, 200-212 (1994).

[21] S.K. Lele, “Compact finite-difference scheme with spectral-like resolution”, J. Comput. Phys,
103, 16-42 (1992)

[22] CK.W. Tam, J. C, Webb, “Dispersion-relation-preserving finite difference schemes for
computational acoustics”, J. Comput Phys, 107, 262-281 (1993)

[23] C. Bogey, C. Bailly, “A family of low dispersive and low dissipative explicit schemes for flow
and noise computations”, J. Comput. Phys, 194, 194-214 (2004)

[24] Yu.A. Kriksin, P.A. Kuchugov, M.E. Ladonkina, O.A. Nekliudova, V.F. Tishkin and V.P. Varin,
“Construction of exact solutions of some equations of hyperbolic type containing discontinuity
moving on a non uniform background”, Mathematica Montisnigri, 42 (2018)

[25] T. Colonius, S.K. Lele, “Computational aeroacoustics: progress on nonlinear problems of sound
generation”, Progress in Aerospace Sei, 40, 345-416 (2004)

[26] V. M. Goloviznin, S. A. Karabasov, T. K. Kozubskaya, N. V. Maksimov, “Sxema “Kabare” dlya
chislennogo resheniya zadach ae'roakustiki: obobshhenie na linearizirovanny'e uravneniya
E'jlera v odnomernom sluchae”, Zh. vy '‘ch. mat. matem. fiz., 49 (12), 2265-2280 (2009)

[27] A. Iserles, “Generalized Leapfrog Methods”, IMA J. Numer. Analys., 6, 381-392 (1986)

[28] V.M. Goloviznin, A.A. Samarskij, “Raznostnaya approksimaciya konvektivhogo perenosa s
prostranstvenny ' m rasshhepleniem vremennoj proizvodnoj”, Matem. modelirovanie, 10(1), 86
(1998)

[29] V.M Goloviznin, A.A. Samarskij, “Nekotory'e svojstva raznostnoj sxemy' Kabare”, Mat. mod,
10 (1), 101-116 (1998)

[30] V.M Goloviznin, S.A. Karabasov, “Nelinejnaya korrekciya sxemy' Kabare”, Matem.
modelirovanie, 10 (12), 107-123 (1998)

[31] V.M. Goloviznin, S.A. Karabasov, .M. Kobrinskij, “Balansno-xarakteristicheskie sxemy' s
razdelenny 'mi konservativny mi i potokovy mi peremenny mi”, Matem. modelirovanie, 15 (9),
2948 (2003)

[32] A. Chintagunta, S.E. Naghibi, S.A. Karabasov, “Flux-corrected dispersion-improved CABARET
schemes for linear and nonlinear wave propagation problems”, Computers and Fluids, 169, 111-
128 (2018)

[33] S.A. Karabasov, V.M., Goloviznin, “Compact accurately boundary adjusting high-REsolution
technique for fluid dynamics”, J. Comput. Phys, 228, 7426-7451 (2009)

[34] V.M. Goloviznin, D.Yu. Gorbachev, A.M. Kolokol'nikov, P.A. Majorov, P.A. Majorov, B.A.
Tlepsuk, “Neyavny'e obratimy'e po vremeni sxemy  “kabare” dlya kvazilinejny'x uravnenij
melkoj vody”, Vy ch. met. programmirovanie, 17(4), 402—414 (2016)

[35] V. 1. Mazhukin, A. A. Samarskij, A. V. Shapranov, “Metod dinamicheskoj adaptacii v probleme
Burgers”, Dokl. Akad. Nauka, 333 (2), 165-169 (1993)

[36] A.V. Mazhukin and V.. Mazhukin, “Dynamic Adaptation for Parabolic Equations”,
Computational Mathematics and Mathematical Physics, 47 (11), 1833-1855 (2007)

49



V. 1. Mazhukin, A.V. Shapranov and E.N. Bykovskaya.

[37] A. A. Samarskij, Vvedenie v chislennye metody, 1zdatel stvo Nauka, (1982)

[38] N.A. Dar'in, V.I. Mazhukin, “Ob odnom podxode k postroeniyu adaptivny x raznostny x setok”,
Akademiia Nauk SSSR, Doklady, 298 (1), 64-68 (1988)

[39] V.I.Mazhukin, O.Kastel'yanos, A.A.Samarskiy, A.V.Shapranov,” Metod dinamicheskoy
adaptacii dlya nestacionarnyh zadach s bol shimi gradientami”, Matematicheskoe modelirovanie,
5(4), 32-56 (1993)

[40] N.A.Dar'in, V.I.Mazhukin, A.A.Samarskiy, “Konechno-raznostnyy metod resheniya odnomernyh
uravneniy gazovoy dinamiki na adaptivnyh setkah”, Doklady AN SSSR, 302(5), 1078-1081 (1988)

[41]1P. V. Breslavskiy, V. 1. Mazhukin, “Algoritm chislennogo resheniya gidrodinamicheskogo
varianta zadachi Stefana pri pomoshhi dinamicheski adaptiruyushhihsya setok”, Matematicheskoe
modelirovanie, 3(10), 104—115 (1991)

[42] P.V.Breslavskiy, V.I.Mazhukin, “Metod dinamicheskoy adaptacii v zadachah gazovoy dinamiki”,
Matematicheskoe modelirovanie , 7(12), 48-78 (1995)

[43] P. V. Breslavskii, V. I. Mazhukin, “Dynamically Adapted Grids for Interacting Discontinuous
Solutions”, Computational Mathematics and Mathematical Physics, 47(4), 687—706 (2007)

[44] P.V. Breslavskiy, V.I. Mazhukin, “Metod dinamicheskoy adaptacii v zadachah gazovoy dinamiki
s nelineynoy teploprovodnost'yu”, Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki,
48(11), 2067-2080 (2008)

P. V. Breslavskii and V. I. Mazhukin, “Dynamic Adaptation Method in Gasdynamic Simulations
with Nonlinear Heat Conduction”, Computational Mathematics and Mathematical Physics,
48(11), 2102-2115 (2008)

[45]1 V.I. Mazhukin, P.V. Breslsavskii, A.V.Shapranov, “Dinamicheskaya adaptaciya v
differencial'nyh uravneniyah v chastnyh proizvodnyh giperbolicheskogo tipa”, Enciklopediya
nizkotemperaturnoy plazmy, Matematicheskoe modelirovanie v nizkotemperaturnoy plazme,
Chast 1, Moskva, Yanus-K, Seriya B, Vol. YII, pp. 217 - 247, (2008)

[46] N.A.Dar'in, V.I.Mazhukin, “Matematicheskoe modelirovanie nestacionarnyh dvumernyh kraevyh
zadach na setkah s dinamicheskoy adaptaciey”, Matematicheskoe modelirovanie, 1(3), 29-43
(1989)

[47] V..Mazhukin, L.Yu.Takoeva, “Principy postroeniya dinamicheski adaptiruyushhihsya k
resheniyu setok”, Matematicheskoe modelirovanie, 2(3), 101-118 (1990)

[48] V.I.Mazhukin, M.M.Demin, A.V.Shapranov, [Smurov, “The method of construction
dynamically adapting grids for problems of unstable laminar combustion”, Numerical Heat
Transfer, Part B: Fundamentals, 44(4), 387 — 415 (2003)

[49] V.I. Mazhukin, A.V. Mazhukin, A.V.Shapranov, “Dinamicheskaya adaptaciya v differencial nyh
uravneniyah v chastnyh proizvodnyh parabolicheskogo tipa”, Enciklopediya nizkotemperaturnoy
plazmy, Matematicheskoe modelirovanie v nizkotemperaturnoy plazme, Chast 1, Moskva, Yanus-
K, Seriya B, Vol. YII, 190 — 216 (2008)

[50] V.I.Mazhukin, A.A.Samarskiy, M.M.Chuyko, “Metod dinamicheskoy adaptacii dlya chislennogo
resheniya nestacionarnyh mnogomernyh zadach Stefana”, Doklady RAN, 368(3), 307 — 310
(1999)

[51] V.I.Mazhukin, M.M. Chuiko, “Solution of two-dimensional multi-interface Stefan problem by the
method of dynamic adaptation”, Mathematical Modeling and Analysis, 6(1), 129 — 137 (2001)

[52] V.I.Mazhukin, O.N.Koroleva, M.M.Chuiko, “Modeling of formation of deep 2D channels in
metal targets via laser irradiation”, SPIE “Laser Processing of Advanced Materials and Laser
Microtechnologies”, 5121, 87 — 97 (2002)

[53] V..Mazhukin, M.M.Chuiko, “Solution of multi-interface Stefan problem by the method of
dynamic adaptation”, Computation Methods in Applied Mathematics, 2(3), 283-294 (2002)

[54] V.I.Mazhukin, M.M.Chuiko A.M.Lapanik, “Dynamic adaptation method for numerical solution
of axisymmetric Stefan problems”, Mathematical Modeling and Analysis, 8(4)303 -314 (2003)

50



V. 1. Mazhukin, A.V. Shapranov and E.N. Bykovskaya.

[55] V.I.Mazhukin, M.M. Chuiko, A.M.Lapanik, “Dynamic adaptation method for modeling of
melting and evaporation processes with convection”, Mathematical Modeling and Analysis, 10,
473 — 478 (2005)

[56] V.I. Mazhukin, A.V. Shapranov, A.V. Mazhukin, O.N. Koroleva, “Mathematical formulation of a
kinetic version of Stefan problem for heterogeneous melting/ crystallization of metals”,
Mathematica Montisnigri, 36, 58-77 (2016)

[57] V.I.Mazhukin, I. Smurov, C. Dupuy, D. Jeandel, “Simulation of Laser Induced Melting and
Evaporation Processes in Superconducting”, J. Numerical Heat Transfer Part A, 26, 587-600
(1994)

[58] V.I.Mazhukin, A.A. Samarskii, “Mathematical Modeling in the Technology of Laser Treatments
of Materials”, Review. Surveys on Mathematics for Industry, 4(2), 85-149 (1994)

[59] O.N.Korolyova, V.I.Mazhukin, “Matematicheskoe modelirovanie lazernogo plavleniya i
ispareniya mnogosloynyh materialov”’, Zhurnal vychislitel'noy matematiki i matematicheskoy
fiziki, 46(5), 910 — 925 (2006)

O.N.Koroleva, V.I.Mazhukin, “Mathematical Simulation of Laser Induced Melting and
Evaporation of Multilayer Materials”, Computational Mathematics and Mathematical Physics,
46(5), 848 — 862 (2006)

[60] V.I. Mazhukin, M.M. Demin, A.V. Shapranov, “High-speed laser ablation of metal with pico-
and subpicosecond pulses”, Applied Surface Science, 302, 6-10 (2014)

[61] V.I. Mazhukin, A.V. Mazhukin, M.M. Demin, A.V. Shapranov, “Nanosecond laser ablation of
target Al in a gaseous medium: explosive boiling”, Applied Physics A, 124 (3), 237(1-10) (2018)

[62] R.E. Warming, B.J. Hyett, “The Modified Equation Approach to the Stability and Accuracy

Analysis of Finite difference Nethods”, J. Comput. Phys., 14, 159 -179, (1974)

[63] Yu.l. Shokin, Pervoe differenzial noe priblizhenie, - 1zdatel stvo Nauka, (1979)

The results were presented at the 17-th International seminar "Mathematical models & modeling in
laser-plasma processes & advanced science technologies" (May 26 — June 2, 2018, Budva,
Montenegro).

Received April 10, 2018.

51



MATHEMATICA MONTISNIGRI
Vol XLII (2018)

ON THE CONSTRUCTION OF THE GENERALIZED NUMERICAL
EXPERIMENT IN FLUID DYNAMICS

A.E. BONDAREV'

! Keldysh Institute of Applied Mathematics Russian Academy of Sciences
Miusskaya sq. 4, 125047 Moscow, Russia
e-mail: bond@keldysh.ru

Summary. The paper considers the construction of a generalized numerical experiment for
problems of computational fluid dynamics (CFD). Generalized numerical experiment allows
to obtain a solution not for one specific mathematical modeling problem, but for a class of
problems defined in the multidimensional space of defining parameters. The basis of this
approach is the use of parallel computing for the organization of multitasking. We consider
the construction of interfaces for the organization of calculations, processing and analysis of
the results. Some examples are given illustrating the application of the approach for
constructing such an experiment for various classes of CFD problems in computational gas
dynamics. Also examples of such experiment application to problems of analyzing the
accuracy of numerical methods and the effectiveness of parallelization tools are considered.

1 INTRODUCTION

Long before the advent of the computer age, the main source of information in the
problems of gas dynamics was a physical experiment. It was the experiment that made it
possible to obtain the necessary information about flows and their properties, to obtain a
visual representation of the flow pattern, and to obtain the relationships between gas-dynamic
quantities characteristic of this picture. The results of such experiments are extensively
presented in papers [1, 2]. However, in practical applications it was always not enough simply
to obtain in the experiment the flow field for some single case. The main goal of a physical
experiment has always been not the modeling of the physical phenomenon itself, but the
elucidation of the circumstances under which it occurs, i.e. obtaining the dependence of the
appearance of the phenomenon on the defining parameters of the problem, such as Mach
numbers, Reynolds, Prandtl numbers, etc., and geometric parameters of the problem. In fact,
the establishment of such physical laws for shock waves, separated flows, characteristic
configurations of streamlined bodies was the main task of fluid and gas mechanics.
Accordingly, it was necessary to carry out a series of physical experiments where the
determining parameters of the flow varied, such as the velocity, viscosity, properties of the
medium, etc. Such large-scale experimental work made it possible to obtain key relationships
for the dependence of the gasdynamic functions of interest or the conditions for the
appearance of a physical effect on the key determining parameters.

As a striking example of such a dependence, one can cite the famous formula of G.I.
Petrov, representing the fundamental law on the ultimate pressure drop in the shock, which
the turbulent boundary layer is able to withstand without detachment from the wall [3]:
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P, /Py =0.713M, + 0.213

Here P, / P, is the pressure drop, M. is the Mach number before the separation point,
varying from 1.5 to 4.

Another example is the famous Kozlov formula [4], which represents the dependence of
surface friction on Mach numbers, Reynolds numbers and the temperature factor:

—0,29+0,01lgRe,, 70,3970,
¢rw = 0,085Re,, gRew T 03902

Here cfy,, Re, is the coefficient of surface friction and the Reynolds number calculated
with reference to the wall temperature, 7, is the temperature at the outer boundary of the
boundary layer, and is the temperature factor.

The advent of computer technology allowed solving the problems of mathematical
modeling of currents, which sharply reduced the need for large-scale physical experiments.
However, in the problems of mathematical modeling, the main tendency of carrying out series
of calculations with the variation of the defining parameters of the problem also remained.
The main goal was the same - to determine the conditions for the appearance of a physical
phenomenon when the external conditions of the problem are varied. The determination of
such conditions and their approximation with the aid of an analytical expression was the main
goal of practical computational fluid dynamics. There are many examples of such studies.
Here we give an author's example [5], which presents a series of numerical experiments on
the flow of a backward ledge by a viscous gas flow. As a result of the experiments, a
generalized formula is obtained that represents the characteristic time of the establishment of
the flow as a function of the Mach and Reynolds numbers of the external flow:

o = 10,7[1 - 0,14(My, — 2)] [1 + 19,45 (\/%_e - \/%)]

Here t* is the characteristic settling time, M., , Re are the Mach and Reynolds numbers.
The generalized formula is given for the range 2 < M,, < 3, 1000 < Re < 5000.

Nevertheless, obtaining such dependencies required a huge number of computational
experiments and was very laborious.

The emergence of high-performance computing that allows for parallel computations has
ensured the possibility of parallel calculation of the same problem with different input data in
multitask mode. This makes it possible at the present time to construct and carry out a
generalized computational experiment.

2 FORMULATION OF THE PROBLEM

A generalized computing experiment involves splitting each of the defining parameters of
a problem within a certain range. Thus, a grid decomposition is formed for some
multidimensional parallelepiped composed of the defining parameters of the considered
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problem of gas dynamics. For each point of this grid, the problem is calculated in the space of
the determining parameters. Formally, this can be written as follows.

Suppose that there is a reliable numerical method for solving two-dimensional and three-
dimensional nonstationary problems of computational gas dynamics. Then we can obtain a
numerical solution F(x,y,zt, A4, ...,Ay) for any point in the space of a computational
domain, where x, y, z are the spatial coordinates, ¢ is the time, A4, ..., Ay are the defining
parameters of the problem. As defining parameters of the problem, we will keep in mind the
characteristic numbers describing the properties of the flow under consideration, such as the
Mach numbers, Reynolds, Prandtl, Strouhal, etc., and the characteristic geometric parameters.
Each of the characteristic parameters is limited in a certain range:

AT < A < AMY D j=1,..,N

We divide each of the parameters A; into k-1 parts, so we obtain for each parameter a
partition consisting of & points. The volume of an N-dimensional space formed by a set of
defining parameters 4; is filled with a set of k" points.

Denoting the point from the given set, as (A7, ..., Ay), we arrive at the fact that for each
point of the collection it is necessary to obtain a numerical solution of the gas-dynamic
problem F(,x,y,zt,A7, .., Ay).

It is easy to see that this will require solving k" gasdynamic problems, which is
impossible without the use of parallel calculations in a multitask mode. In practice, the
number N usually does not exceed 5, which corresponds to the computing capabilities at the
current time.

It should also be noted that we formulated the classical problem of parametric study.
Parametric numerical studies allow one to obtain a solution not for one particular
mathematical modeling problem, but for a class of problems defined in a multidimensional
space of defining parameters. Also, such a formal formulation allows numerical study of
optimization analysis problems, when the inverse problem is solved at each point of the grid
partition of the multidimensional space of the determining parameters. Both types of similar
problems are considered in a series of papers [6 - 9].

3 PARALLEL SOLUTIONS

The only way to effectively carry out a generalized numerical experiment is applying of
parallel computations. The problem of the optimal and effective way of parallelization was
thoroughly discussed in the papers [7,8 ]. There were considered parts of the whole algorithm
for parameter optimization and analysis. For these parts the main criterion of applicability for
parallelizing is independence of specific numerical method. From this point of view the most
perspective way for parallelizing is applying the approach of multitask parallelism using the
principle “one task — one process”. Due to minimal quantity of internal exchanges between
the processes we are able to create an effective practical tool for generalized numerical
experiment.

The general parallel computing scheme used for such experiment is shown in Figure 1.
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/l Distribution of tasks
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P2 Pk—l

N | /

Figure 1: Parallel computing scheme for generalized numerical experiment.

| Result array forming |

We assume that k processes are provided for parallel computation. The control process Py
creates the grid in the multidimensional space of determining parameters, then P, forms tasks
and sends the tasks to others processes and to itself also. After task completion Py collects the
results and implements all procedures defined by user, such as data processing and
transformation.

Due to the absence of internal exchanges between the processes the procedure of
parallelizing amounts to creation of control interface for tasks distribution and data collecting
in one multidimensional array.

There are two effective and easy ways to create such interface for parallel computations.
The first way is to apply MPI (Message Passing Interface) [10]. This variant of parallelizing
allows implementing a program tool for generalized numerical experiment. The computation
can be carried out & times faster according to the number of provided processes.

The other way of parallelization is application of DVM technology [11, 12], elaborated in
Keldysh Institute of Applied Mathematics RAS. DVM-system provides unified toolkit to
develop parallel programs of scientific-technical calculations in C and Fortran. DVM parallel
model is based on data parallel model. The DVM name reflects two names of the model -
Distributed Virtual Memory and Distributed Virtual Machine. These two names show that
DVM model is adopted both for shared memory systems and for distributed memory systems.
DVM high level model allows not only to decrease cost of parallel program development but
provides unified formalized base for supporting Run-Time System, debugging, performance
analyzing and prediction. Unified parallel model is built in C and Fortran languages on the
base of the constructions, that are "transparent" for standard compilers, that allows to have
single version of the program for sequential and parallel execution. C-DVM and Fortran
DVM compilers translate DVM-program in C or Fortran program correspondingly, including
parallel execution Run-Time Support system calls. So only requirement to a parallel system is
availability of C and Fortran compilers. This way of code parallelizing allows one to save a
lot of human resources for coding and debugging. At the same time DVM parallelization
provides less speed of computations in comparison with MPI.

For both types of parallel technologies special control interfaces for parameter
optimization and analysis were designed [8]. Both control interfaces were applied to jet
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interaction problem for testing. Testing computations were carried out for 20 processors.
According to test results the time of computations for DVM method is 205 seconds. The same
test for MPI case requires 144 seconds. At the same time DVM application allowed to
decrease human expenses for coding and debugging up to ten times as against MPI. So both
types of parallel technologies are quite applicable for problems in question. The calculations
were performed using a hybrid supercomputer K-100 [13] in Keldysh Institute of Applied
Mathematics RAS.

With the help of the constructed interfaces, a series of calculations were carried out,
realizing the concept of a generalized numerical experiment for various classes of problems.
The results of the calculations will be shown in the following sections. Both developed
interfaces are very versatile. They can be applied to almost any software code for solving the
CFD problem chosen as the base one.

It should be noted that modern version of Aiwlib library [14] has some similar properties
which make this library applicable for construction of generalized numerical experiment.
Aiwlib library is a library for C++11 and Python languages, which is aimed for the
development of high-performance computing numerical simulation applications running
under GNU/Linus OS. It also provides means for batch calculations.

4 PROCESSING AND ANALYSIS OF THE RESULTS

As a result of implementing the construction of a generalized numerical experiment and
performing parallel calculations, we obtain a large data set representing a set of numerical
solutions F(x,y,z,t, A4, ..., Ay) for each point (A47,..,Ay) of the partition of the
multidimensional volume of the defining parameters (A44,...,Ay) of the problem under
consideration. This volume in its original form is rather difficult to use, although its
availability for further purposes is necessary. As a rule, when studying the conditions for the
appearance of a physical effect (for example, the emergence of a space-time structure), the
object of primary interest is not gas-dynamic fields, but certain markers or objective functions
determined with the help of these fields. The creation of such markers and goal functions is an
extensive topic that deserves a separate discussion and is beyond the scope of this article.
Suppose that some function P that plays the role of a marker is defined and can be calculated
for each solution F(x,y,z,t, A4, ...,Ay) obtained from the calculated fields of gas-dynamic
quantities. Then the main task is to analyze the multidimensional array P(44,...,Ay). This
problem is considerably covered by the fact that, as indicated above, in practice the number N
usually does not exceed 5. Practical approaches to solving problems of this kind are described
in [8, 9, 15]. As the basic method of solution, the following is indicated: decreasing the
dimensionality of the investigated array to 3, visual representation of the new array,
approximation of the dependence using geometric primitives of the first or second order.

There are some ways to decrease the array dimensionality. These ways are well known
from the group of methods for multidimensional data processing and analysis. Being frank we
should note the fact that most of these methods were used for a long time before computers
appearance. This field of science was known as “experimental data processing”.

The first way is the analysis of variances for each characteristic parameter. Characteristic
parameter is considered as coordinate direction. Data variances D, D,, ... Dy are computed
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along the each direction. Then the variances should be arranged. The direction with minimal
variance D, = min{D;} 1is rejected. This procedure sometimes is called as compactification.

More radical kind of compactification can be implemented as follows. After variances
computing and arranging one chooses three directions with maximal variances. If other
variances are much less than this triplet one changes the data for directions corresponding to
other variances by means. After such decreasing of dimensionality one can operate in
standard 3D space. This approach has one disadvantage - it does not work if multidimensional
data are close to hypersphere. Nevertheless for many practical cases with small
dimensionality (4 or 5) the approach works well enough.

Another way is the construction of different 3D data projections for various triplets of
determining parameters. If the data on projections for some direction are close to constant
then this direction can be rejected.

Also, to reduce the dimension of a multidimensional array, methods of mapping into
embedded manifolds of smaller dimension are very effective [16, 17]. Among them, the most
common method is the principal component method (PCA). The essence of the method
consists in the transition from the initial coordinate system to the new orthogonal basis in the
multidimensional space under consideration, whose axes are oriented along the directions of
maximum dispersion. The possible scheme of working with an array in this case is the
approximation by primitives of the data array in the space of the first three main components
and the subsequent transition to the initial space of the determining parameters.

Among the modern methods of reducing the dimension that are common in solving the
problems of computational gas dynamics, it is necessary to mention the POD-method (Proper
Orthogonal Decomposition) [18]. It involves the creation of a functional orthogonal basis of a
smaller dimension, to which the multidimensional dynamic volume under investigation is
"pulled on". In this formulation, the eigenvectors of the covariance matrix serve as the vectors
of the desired basis. Also, in recent years, dynamical mode decomposition (DMD) has
become increasingly popular in the analysis of flows [19, 20]. The dynamic mode
decomposition method (DMD) is an algorithm for searching for an evolution operator
(inverse operator problem solutions) in a finite-dimensional space of solution of a problem
(numerical or experimentally obtained) in a set of solutions (slices, "snapshots") at some
successive instants.

5 EXAMPLES OF THE GENERALIZED NUMERICAL EXPERIMENT

This section contains the examples of the proposed above approach applied to some
practical problems. It is applied in some variations due to different aims for each class of
problems.

The first example is the problem of unsteady interaction of the supersonic viscous flow
with jet obstacle [7]. Figure 2 illustrates the example. The obstacle appears due to co-current
underexpanded jet exhausting from the nozzle. The nozzle is placed to external supersonic
viscous flow. Expanding jet propagates on the external surface of the nozzle creating obstacle
in external flowfield. Typical flow structure is shown in Figure 2 (a) by streamlines. Time-
dependent control action (the velocity of pressure ratio growth in underexpanded jet) allows
to change time-space structure of flowfield (Figure 2 (b)). New space-time structure presents
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specific flow regime where jet propagates upwind on the external wall of the nozzle. We
consider crucial velocity of jet pressure ratio growth as control parameter. The main target of
research is estimating and defining the control parameter dependence on four characteristic
parameters of the problem — Mach, Reynolds, Prandtl and Strouhal numbers. These
parameters are varied in definite ranges creating four-dimensional space. We want to find for
each point in this space the crucial velocity corresponding to a new time-space structure
appearance. According to the scheme presented in the previous chapters parallel algorithm is
implemented for computations. For the space of determining parameters two types of grids
are chosen: 5 and 10 points for each determining parameter. It requires computing 625 and
10000 problems. Both MPI and DVM technologies were applied to control parallel
computations.

Figure 2: Parameter optimization and analysis applied to jets interaction

As a result of approach application five-dimensional data array is obtained, where
variables are four characteristic parameters M., Re., Pr, Sh. and crucial velocity V*. For
obtained data three principal components are defined and we construct data visual
presentation in principal components (Figure 2 (c)). The presentation allows us to suppose
that the points of data volume can be roughly approximated by parametric plane. After
defining the coefficients for plane and inverse transformation to the original variables we
obtain the sought-for dependence V*= F(M., Re,, Pr, Shy) in analytical form. The
dimensionality of four-dimensional array under consideration can be decreased up to three,
because characteristic parameter Re, has a very small influence on the solution. So the final
form for V* cam be written as follows:

V#=-0.1 M, +0.115 Pr+ 0.24 Sh,,
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Obtained results present a result of generalized numerical experiment for the class of
problems, where the class is defined by multidimensional volume of characteristic parameters.

The second example of application of general numerical experiment is devoted to
optimization problem. The example presents a search the optimal shape of a power plant
three-dimensional blade assembly [21]. This experiment is based on developed computational
technology for the computation of power loads on the 3D blade assembly of a power plant in
a wind flow. The calculation for various combinations of the key geometric parameters of the
assembly using parallel computations makes it possible to find the optimal shape of the
assembly with respect to its power characteristics. A virtual experimental facility for
simulating the flow around the power plant based on the solution of the Navier—Stokes
equations was created. Computations aimed at determining the optimal shape of the blade
assembly taking into account constraints on its design were carried out, and the results were
thoroughly analyzed using the proposed optimization procedure. The solution of the
optimization problem is based on the parameterization of the design using three key
parameters. On the discrete set of values of these parameters, the maximums of two objective
functions—the magnitude of the total aerodynamic force and the magnitude of the rotation
torque—determining the lift-to-drag ratio of the power plant are found. Figure 3 presents the
shape of 3D blade assembly and pressure distribution on its surface.

Figure 3: Pressure distribution on the surface of 3D blade assembly.

The next example is addressed to the problem of the evaluation of the accuracy for
different numerical methods. The problem of inviscid compressible flow around a cone at
zero angle of attack is used as a base one. The results obtained with the help of various
OpenFOAM solvers are compared with the known numerical solution of the problem with the
variation of cone angle and flow velocity [22]. Cone angle f changes from 10° to 35° in steps
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of 5°. Mach number varies from 2 to 7. The scheme of a flow around a cone is presented in
Fig. 4. Here angle f is a half of cone angle as shown in Fig. 4. For comparison, four solvers
were selected from the OpenFOAM software package: RhoCentralFoam, SonicFoam,
RhoPimpleFoam, RhoPimpleFoam. The results of such kind of numericsl experiment were
presented as errors in the form of an analog of the L2 norm for all solvers. Fig.5 illustrates the
results in a form of a change in deviation from the exact solution for pressure depending on
the cone angle and the velocity for the solver rhoCentralFoam. Such changes were obtained
for all solvers.

Figure 4: Scheme of a flow around a cone.
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Figure 5: Change in deviation from the exact solution for pressure depending on the cone angle and
the velocity for the solver rhoCentralFoam.

This methodical research can serve as a basis for selecting the OpenFoam solver for
calculating the inviscid supersonic flow around the elongated bodies of rotation. The results
of solvers comparison can also be useful for developers of OpenFoam software content. The
results obtained made it possible to get a general idea of the calculation errors for all solvers.
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Another one example of generalized numerical experiment is devoted to the problem of
tuning the properties of hybrid finite-difference schemes [23]. The paper [23] contains the
description of developed program tool Burgers2. This program tool is intended for tuning and
optimization of computational properties for hybrid finite-difference schemes applied to
Burgers equation. One-dimensional model Burgers equation describes propagation of
disturbances for dissipative medium. The equation has exact solution, so it is widely used for
tuning-up of computational tools. Described program tool is based on combining of
optimization problem solution and visual data presentation. Visual presentations of maximal
error surface and error function are implemented as program tool features. User is able to
visualize error function distribution for any chosen moment of time. These visual
presentations allow analyzing and control computational properties of hybrid finite-difference
schemes under consideration. Users have possibility of creating hybrid finite-difference
schemes and analyzing computational properties for chosen grid template provided by
program tool. Visual presentation of optimization problem solution allows finding of suitable
weight coefficients for hybrid finite-difference scheme under consideration. The user can
make the calculations simultaneously different sets of weight coefficients in accordance with
the concept of generalized numerical experiment. Figure 6 presents the surface of absolute
error for one of the hybrid scheme variants. The negative data area indicates where the
oscillations occur.
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Figure 6: Surface of absolute error.

The next example is aimed to evaluation of parallelization effectiveness. Here the problem
of Burgers equation from previous example is used as a base one. To solve this problem, we
used an implicit finite difference scheme, described in detail in [23]. When solving the
parametric problem, the viscosity coefficient and weight coefficient of the difference scheme
split in certain ranges, and for each pair of values the problem described above was solved.
During the experiments on parallelization of this program code with DVM, the following
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parameters varied: N is the number of MPI processes, PPN is the number of MPI processes
per compute node. In the conducted experiments, the number of MPI processes N varied from
1 to 32, and the number of MPI processes per one PPN computing node ranged from 1 to 8.
The results are presented in Table 1 below. In the table, the following notation is used: N is
the number of MPI processes, PPN is the number of MPI processes running on one node, T is
the time in seconds, S is the acceleration T/Tserial, E is the efficiency of parallelization.

N PPN T S E
serial | ------ 51,4 1 1

1 1 51,4 1,001 1,001
2 1 25,7 1,997 0,998
2 2 25,7 1,998 0,999
4 1 12,9 3,988 0,997
4 2 12,9 3,987 0,997
4 4 12,9 3,991 0,998
8 1 7,61 6,753 0,844
8 2 6,71 7,662 0,958
8 4 6,73 7,641 0,955
8 8 6,98 7,363 0,920
16 2 4,09 12,580 0,786
16 4 3,64 14,129 0,883
16 8 3,76 13,652 0,853
32 2 2,08 24,684 0,769
32 4 2,09 24,613 0,769
32 8 2,16 23,782 0,743

Table 1 : Burgers equation, implicit scheme.

The obtained results of calculations allow to estimate the effectiveness of the implemented
solution for multi-tasking parallelization.

The examples show applicability of presented approach for a wide range of practical
applications, so the approach can be considered as quite universal one.

6 CONCLUSIONS

The concept of generalized computing experiment presented in the article has a wide range
of possible applications. First of all, for the problems of computational fluid dynamics such an
approach makes it possible to obtain a solution not only for one, separately taken, problem,
but for a whole class of problems defined in a certain range of the complex of determining
parameters. A generalized computing experiment involves splitting each of the defining
parameters of a problem within a certain range. Thus, a grid decomposition is formed for
some multidimensional parallelepiped composed of the defining parameters of the considered
problem of gas dynamics. For each point of this grid, the problem is calculated in the space of
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the determining parameters. Practical implementation of the approach becomes possible with
the use of parallel calculations in multitask mode. The results of calculations are
multidimensional volumes of data that can be processed using data analysis tools and visual
analytics It should be noted that the application of the approach makes it possible to conduct
exploratory calculations on coarse grids for a class of problems with subsequent refinement
for sets of determining parameters of special interest.

Acknowledgements: Author acknowledges the support by grants of RFBR Ne 16-01-00553A
and 17-01-444A.
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Summary. Structural and physical-mechanical properties of CoCrFeMnNi high-entropy al-
loys of different stoichiometric composition are investigated on the base of computer modeling.
An approach based on the combined use of molecular dynamics and Monte Carlo methods was
applied. This made it possible to obtain the thermodynamically equilibrium configurations of
CoCrFeMnNi alloys at given fractions of chemical elements, temperature and pressure. Based
on the obtained data set, the influence of the stoichiometric composition of CoCrFeMnNi high-
entropy alloy on its structural characteristics (lattice parameter, radial distribution functions),
phase stability (energy of different phases, configuration entropy) and physical-mechanical
properties (Young’s modulus and elastic limit) was investigated.

1 INTRODUCTION

The study of the structure, physical properties and behavior of high-entropy alloys (HEAs)
under thermal and mechanical loading is one of the most actual topics of modern materials
science [1]. This is due to the unique complex of HEA properties, which is largely determined
by their multicomponent composition. Typically, these alloys consist of five or more elements.
According to the thermodynamic considerations, in spite of the complex chemical composition,
HEA can be a single-phase solid solution if the alloy elements are in equal ratios. This is also
important for the formation of excellent properties of alloy. At the same time, many studies
show that HEAs with non-equiatomic composition also remain stable and often have better
properties [2]. Therefore, the search for new stoichiometric compositions of HEAs is an actual
material science task [3]. The great success in high-throughput combinatorial materials research
is achieved for wide variety of applications [4]. For example, making only one sample with
compositional gradient allowed to study how the properties of a material change with a chemical
composition. However, such approaches allow one to study a limited range of properties, and
they are not yet well developed for HEAs. It should be noted that, along with laborious and
costly experimental studies, computer modeling is an effective tool that allows one to quickly
process large amounts of information and determine the optimal chemical composition of the
material that meets the required properties. For example, on the basis of the computer algorithm

2010 Mathematics Subject Classification: 65C05, 74N15, 82D35, 93A30.
Key words and phrases: computational modeling, molecular dynamics, Monte Carlo method, crystalline
structure, mechanical properties, high-entropy alloys.
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developed in [5] automated tuning of chemical composition of Al,CrCoFeNi multicomponent
alloys allowed increasing their ultimate tensile strength in molecular dynamics calculations. In
the framework of Monte Carlo method and ab-initio modeling, the stability of different phases
in the HfNbTaZr HEA was determined [6]. A theoretical approach on the base of phase diagram
calculation allowed finding more than 150 single-phase compositions of HEAs with potentially
high mechanical properties [7].

To date, CoCrFeMnNi is one of the most promising systems among HEAs, which is char-
acterized by high physical and mechanical properties and has a great potential for their im-
provement [8,9]. However, the atomic level insights into its high properties and the influence of
stoichiometric composition on them are still not clear. In this connection, for better understand-
ing of CoCrFeMnNi HEA properties, the application of theoretical and computational methods
is required. It should be noted, that molecular dynamics method has significant advantages in
the study of the atomic structure of metallic materials [10,11]. It explicitly takes into account the
discrete structure of a material and allows to track the evolution of atomic system under various
kinds of external loading even in substantially non-equilibrium conditions [12—16]. Therefore,
the objective of our work is to investigate the effect of stoichiometric composition on atomic
structure, phase stability, physical and mechanical properties of CoCrFeMnNi high-entropy al-
loys by means of computer modeling.

2 COMPUTATIONAL MODEL

In order to investigate the properties of CoCrFeMnNi HEA we first prepared the samples
with different stoichiometric compositions. They were the single crystals with fcc and bece lat-
tice having cubic shape and dimensions of 10 x 10 x 10 lattice parameters. Axes of the samples
were the [100], [010] and [001] directions in which periodic boundary conditions were applied.
Initially atoms of different chemical elements were placed randomly into lattice sites according
to specified fractions C; which were 0.1, 0.2, or 0.3. Additional requirement, coming from the
definition of HEA [17], was that combination of these fractions would give value of configura-
tion entropy ASconf = —R Zle CiInC; higher than 1.5R, where R is gas constant. As a result, 43
stoichiometric compositions with different fractions of elements were chosen.

Computer calculations were carried out in LAMMPS software [18]. Dynamics was described
for N atoms by the system of 2N ordinary differential equations of motion:

dI‘,‘

Wi OU(e.my) (= LN £, (1)

m-—=—————">--=
ldt 8rl— ’

where i, r;, v;, m; are the number, radius vector, velocity vector, and mass of atom #, correspond-

66



A. V. Korchuganov

ingly. Function U (r;,...,ry) is the interatomic interaction potential. The numerical solution of
the equations of motion was carried out using the velocity Verlet scheme with an integration
step of 10716 5. The interatomic potential was constructed in the works [19,20] in the approxi-
mation of the second nearest neighbor modified embedded atom method [21]. According to this
method the total energy of system is:

E

N N
; E(E)+%2Sij¢ij<rij) . rj=ri—rjl, i#j, 2)
= j=
where F; is the embedding function for the atom i, p; is corresponding background electron
density, ¢;;(r;;) is the i—j pair interaction potential and S;; is the screening function.

To obtain the thermodynamically equilibrium configurations of modelled alloys hybrid molec-
ular dynamics and Monte Carlo calculations were performed. According to this scheme, two
random atoms of different chemical elements swap with the probability

1, if AE <0,

p= —AE 3)
if AE
exp ( kT ), 1 >0,

where kg is Boltzmann constant, 7' is temperature, AE is the change of sample total energy
after swap. After every Monte Carlo swap the system was relaxed for 250 integration steps in
molecular dynamics calculations with NPT ensemble (constant number of particles N, pressure
P and temperature 7). In our calculations 7 = 300 K and P = 0. If AE < 0.1% of system total
energy, that structural configuration of the sample was assumed to be equilibrium. Its further
relaxation was done for 10° steps in NVE ensemble (constant number of particles N, volume V
and total energy E). The obtained samples were used to calculate the structural characteristics
and physical-mechanical properties of the alloys.

Radial distribution function (RDF) is calculated by binning all distances between atoms of
type I and J in a histogram. Count of atoms with type J in spherical bin with radius from r to
r+dr is divided to its volume and then normalized to average density of atoms of type J:

gu(r,r+dr) = %% 4

To calculate mechanical properties of alloys, samples were subjected to uniform tension
along the [100] direction with rate 108 s~!, while in other two directions samples were allowed
to change dimensions to keep zero stress component along them. Periodic boundary conditions
were applied in all directions. Young’s modulus of alloy was calculated as the slope of the linear
region of tensile stress vs. strain curve.
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Determination of local type of crystal lattice was performed in the OVITO software [22]
which used an algorithm called Common Neighbor Analysis (CNA) [23]. It analyzes topology
of bonds between nearest neighbors of a given atom and can identify to which structure it
corresponds: fcc, bee or hep lattice.

3 RESULTS AND DISCUSSION

Calculations of the system total energy have shown that the bcc lattice is less energetically
favorable and structurally stable than fcc. After complete relaxation of the samples with an
initially ideal bec lattice, the CNA algorithm in some cases determined that more than half of
the atoms have a local environment that does not correspond to any of the crystal lattices. The
structure of the alloys with 30% of iron (the maximum atom fraction in chosen compositions)
was least disordered, apparently because bulk Fe has bcc lattice. Moreover, undistorted regions
with bec lattice in samples with lower Fe fraction contain more Fe than distorted ones, which
points to the fact that iron may be considered as a local bcc stabilizer in a modeled system. For
all 43 compositions, samples with an fcc lattice retained a stable crystal structure without sig-
nificant distortion, which agrees with experimental studies of the phase stability and structure of
CoCrFeMnNi alloys with near-equiatomic composition [24]. In addition, our calculations show
that alloy retains the fcc structure as being more energetically favorable even with a signifi-
cant deviation in the fraction of any element from the equiatomic value, which agrees with the
experimental results on the stability of non-equiatomic CoCrFeMnNi alloys [25]. The depen-
dence of the system total energy per atom on the lattice parameter of fcc alloys with different
compositions is shown in figure 1. It is seen that the alloys with low energy have lower lattice
parameters. The computer modeling has shown that for all the compositions considered there is
no correlation of the configuration entropy with the calculated properties of the alloys. Based
on the analysis of phase stability, we will next consider the properties of alloys with fcc lattice.

As calculations have shown, not all types of atoms are mixed absolutely randomly in the
alloy studied. But at the same time, no microscopic segregation has been observed. To illustrate
the features of alloy atomic structure let us consider radial distribution functions (RDFs) for two
characteristic stoichiometric compositions: all contain 20% Ni, in figure 2(a) the alloy contains
both 10% of Co and Cr, in figure 2(b) the alloy contains both 30% of Co and Cr. For the first
composition the first Cr peak is higher and larger in area compared to peaks for other elements.
For the second composition, the first Cr peak has the same height with others but it is broader.
The second and third Fe peaks are larger in area than others by 50 and 20% correspondingly, but
remaining peaks have the same area as others. In both cases, RDFs for Cr are shifted to the right,
which means larger interatomic distance for this pair. RDFs for pairs of different elements are
shown in figure 3. Their common feature is the higher first peaks for Co—Fe and Ni-Mn pairs,
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Figure 1. Total energy of fcc alloys per atom as a function of their lattice parameter.
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Figure 2. Radial distribution functions for single elements in alloys with different compositions: CooCrigFe3p—
Mn3oNizg (a), Coz0CrioFe;oMn oNiyg (b).

which means strong short-range interaction between these elements. First peaks for Cr—Mn and
Ni-Fe are also high for the first and second composition, respectively. But this strong interaction
is restricted by the first coordination sphere: the second and further peaks are almost the same
as peaks for other pairs of elements, which means no segregation—there are no clusters which
consist entirely of these atoms and exceed an elementary fcc cell in size. Moreover, if we plot
the distribution of the number of atoms along the length of the sample, it will be a straight line.

We have investigated the effect of the stoichiometric composition on the lattice parameter of
43 alloys. For alloys whose lattice parameter lies in a certain range of values, we have calculated
the average fraction of each element in them. The results of the calculations are shown in fig-
ure 4(a, b). It is clearly seen, that increasing of Cr, Fe and Mn or decreasing Ni and Co fraction
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Figure 3. Radial distribution functions for pairs of different elements in alloys with different compositions: Cojp—
CrioFe30Mn30Niyg (a), CozpCrapFeioMnioNiyg (D).

lead to increase of lattice parameter. It is interesting that these simple dependences exist even in
spite of the fact that in each range of lattice parameters there are alloys with completely differ-
ent stoichiometric composition. For example, the equiatomic alloy Co0CrzoFey0MnooNipg and
such alloys as CooCryoFe3oMn gNiszg and CozpCrygFe;oMn3gNijq all correspond to the inter-
val 3.609-3.611 A. In our opinion, this is due to the stronger long-range interaction of Cr—Cr,
Co—-Fe and Ni—Mn pairs in comparison with other interactions which is expressed in the high
first peaks of corresponding RDFs, as shown in figures 2 and 3. Now if back to figure 1, it will
be seen that the lowest total energy is typical for alloys with small lattice parameter, i.e. with a
high fraction of Fe, Mn and Cr and low fraction of Co and Ni.

Calculations show that, fraction of Ni, Co, Fe, and Cr have the opposite effect on Young’s
modulus compared to lattice parameter. Increasing of Ni and Co fraction or decreasing of Fe
and Cr fraction lead to increase of Young’s modulus, figure 4(c, d). Mn has little effect on the
modulus value. It should be noted that the elements Co and Fe, which have a different effect
on the modulus, are characterized by the strongest interaction between each other. As a conse-
quence, for example, two alloys with 40% total fraction of Co and Fe and the same fractions
of other elements, Co3oCryoFej9oMngNiszg and Co;gCraoFe3;oMnjgNizg, have close moduli 83.5
and 84.2 GPa, correspondingly. This allows one to change the fractions of individual elements,
keeping the constant value of the module and changing other properties of the alloy at the same
time. Calculations show that the elastic limit of alloys is almost linearly dependent on Young’s
modulus, and therefore general conclusions on the effect of the stoichiometric composition on
the modulus can also be applied to the elastic limit.
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Figure 4. Average fractions of Co and Ni (a), Cr, Fe and Mn (b) as a function of lattice parameter; the same for
Co and Ni (c), Cr and Fe (d) as a function of Young’s modulus of alloys. Error bars show standard deviation.

4 CONCLUSIONS

Influence of stoichiometric composition on structure, phase stability, physical and mechan-
ical properties of CoCrFeMnNi high-entropy alloy was studied by computer modeling based
on combination of molecular-dynamics and Monte-Carlo methods. It was shown that fcc alloys
more stable than bec for all 43 considered stoichiometric compositions with fractions of each
element varying in range 10-30%. RDFs are characterized by high first peaks for Cr—Cr, Co—
Fe and Ni—-Mn pairs, which mean a high degree of interaction between these elements in the
CoCrFeMnNi alloy. It was shown that these structural features cause strong influence of stoi-
chiometric composition on physical and mechanical properties of alloys. Namely, increasing of
Cr, Fe and Mn fraction or decreasing Ni and Co fraction lead to increase of lattice parameter
and increase of alloy cohesive energy. Opposite to lattice parameter, increasing of Ni and Co
fraction or decreasing of Fe and Cr fraction lead to increase of Young’s modulus and elastic
limit. But in this case fraction of Mn has little effect on the modulus and the limit.
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NBYXIHAPAMETPUYECKU DSHTPONIUMHBIN ®YHKIIMOHAI
IIAPMA-MUTTAJIA KAK OCHOBA CEMENCTBA OBOBIIEHHBIX
TEPMOJINHAMUK HEDKCTEHCHUBHBIX CUCTEM
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KiroueBnie cioBa: IIpvHIMIBI HE3KCTEHCUBHOW CTATHCTHMYECKOM MEXAHWKH, SHTPOIMS
[ITapma—MuTTana, CTENEHHONW 3aKOH paCIpEIeIICHUS.

AnHotanusi. VMccrnenoBaHbl cBoicTBa cemeiicTBa OOOOIIEHHBIX JHTPOINUN, 3aTaHHOTO
nByxnapamerpuueckord Mepout Illapma—Mutrana, koropoe BKIO4aeT 3HTponuio Tcamuca,
suTponuto Penbu, suTponuio Jlanacoepra—Benpana, sutponuto ['aycca M KIIacCUYECKYIO 9H-
tponnto bomsrmana—[u66ca—1llennona. Iloctpoena Ha 6a3e cratuctuku lllapma—MuTtrana
MoIU(UIIMPOBAHHAS TEPMOJMHAMHKA HEIKCTEHCHUBHBIX CUCTEM, U TMOKa3aHa €€ B3alMMOCBA3h
¢ 000OIMEHHBIMU OJJHOTIAPAMETPUIECCKUMHU TEPMOIMHAMUKAMHY, OCHOBAaHHBIMU Ha J1e(hopMu-
POBaHHBIX PHTpoNMIX cemeiicTBa. [lomydeHo o0oO0IIeHre HYIEBOTO 3aKOHA TEPMOJUHAMUKI
JUISL IBYX HE3aBUCHUMBIX HEIKCTEHCHUBHBIX CHUCTEM IPU MX TEIUIOBOM KOHTAKTE, BBOJAIIEE B
paccMOTpeHHE TaK Ha3bIBaeMYI0 (DU3HUECKYIO TeMIepaTypy, OTIUYAONIYIOCS OT MHBEPCUU
MHOkuTenst Jlarpamka f. OToT ¢akT moTpedoBall MepeonpeaeiieHUus] TEPMOIMHAMHUYSCKUX
COOTHOIIIEHUH, MOMyYEeHHBIX B paMKax ctatuctuku [llapma—Murrana, KoTopoe IpoBeAeHO B
pabote ¢ yueToM 0000IIEHHOTO NEPBOIr0 3aKOHA TEPMOJIMHAMUKHU U NpeoOpa3oBanus Jlexan-
npa. Hakoner, Ha ocHOBe AByxmapaMmeTpuueckoi nHpopmaruu paznuuus [llapma—MutTana
chopmynMpoBaHbl U J0Ka3aHbl Teopema ['mb6ca u H-teopema bonbimana 00 u3MEHEHUH
9TUX MEp MPH IBOJIOIUU BO BpEMEHHU.

TWO-PARAMETER FUNCTIONAL OF ENTROPY SHARMA-MITTAL
AS THE BASIS OF THE FAMILY OF GENERALIZED
THERMODYNAMICES OF NON-EXTENSIVE SYSTEMS

A.V. KOLESNICHENKO

Keldysh Institute of Applied Mathematics, Russian Academy of Science
e-mail: kolesn@keldysh.ru, web page: http:.keldysh.ru/kolesnichenko/person.htm

Summary. The properties of the family of generalized entropies given by the
Sharm—Mittal entropy, which includes the entropy of Tsallis, the Renyi entropy , the
Landsberg—Vedral entropy, the Gauss entropy, and the classical Boltzmann—Gibbs— Shannon
entropy are investigated. Based on the Sharm—Mittal statistics, the two-parameter thermody-
namics of non-extensive systems is constructed and its interrelation with generalized one-
parameter thermodynamices based on the named deformed entropies of the family is shown.
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of distribution.
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A generalization of the zero law of thermodynamics is obtained for two independent non-
extensive systems at their thermal contact, introduce into consideration a so-called physical
temperature different from the inversion of the Lagrange multiplier 3. This fact has demand-

ed overdetermination of the thermodynamic relations received in frameworks statistics of
Sharma—Mittala which is spent in work taking into account the generalised first law of ther-
modynamics and transformation of Legendre. On the basis of the two-parametric information
of Sharm—Mittal's difference, Gibbs's theorem and the H-theorem on the change of these
measures in the course of time evolution are formulated and proved.

1 BBEJIEHHUE

Cratuctuueckas sHTponus bonasumana—I'n66ca—1lleHHOHa U OCHOBaHHAsl Ha HEl KJlaccH-
yecKasi CTaTUCTHYECKas MEXaHHKa SIBJISIOTCS YpE3BbIYANHO IOJIE3HBIM HHCTPYMEHTapueM
IpY U3YYEHUHU LIMPOKOTO KpyTa MPOCTHIX (PU3NYECKUX CUCTEM. DTU CUCTEMBI, AJISI KOTOPBIX,
0€e3yCIIOBHO, I11e7IeCO00Pa3HO UCIOIB30BATh KIIACCHYECKYIO CTATHCTUKY U pa3paboTaHHBIC Ha
€€ OCHOBE TEOpUH, MO’KHO YCJIIOBHO OXapaKTE€pPU30BaTh MaJbIM JIHANla30HOM IIPOCTPAHCTBEH-
HO-BPEMEHHBIX KOPPEISIHiA, BKIUI0BOCTHIO T€OMETpUH (Ha30BOro MpOCTPaHCTBA, MAPKOBO-
CTBIO CIy4YalHBIX IPOLECCOB, JOKAJIBHOCTHIO CUIIOBOTO B3aMMOJECHCTBUS MEXKY DJIEMEHTaMHU
CUCTEMBI, IPTrOJIMYHOCTHIO0 TMHAMUYECKHUX MPOLIECCOB U T.I. Takue cUCTEMbI XOPOLIO OMUCHI-
BaroTcs ’HTponueil bonpimana—I'n06ca—IllenHoHa M, Kak MpPaBUIIO, CIEAYIOT SKCIIOHEHIH-
aJIbHOMY 3aKOHY BEPOSITHOCTHBIX PACIPEICICHUM COCTOSHUS.

CyIIecTByeT, OAHAKO, LEIbIH KPYT CIOKHBIX CHCTeM (PHPOIHBIX, HCKYCCTBEHHBIX H CO-
[IUAJTBHBIX ), KOTOPBIE, B OTIMYUE OT MPOCTHIX, XapaKTePU3yIOTCs OOJBIION AaTbHOCTHIO TIPO-
CTPAaHCTBEHHO-BPEMEHHBIX KOPPEALUi, rI100aJbHOCThIO CUIIOBBIX B3aMMOJAEHCTBUM MEXIY
DIIEMEHTAMHU CHUCTEMBI, HEPAPXUIHOCTHIO ((PPaKTATBHOCTBIO M MYJIbTH(PPAKTAIEHOCTHIO) T€0-
MeTpuM (ha30BOr0 NMPOCTPAHCTBA, HEMAPKOBOCTHIO MPOIECCOB (3PEAUTAPHOCTBIO), HEIPTo-
JUYHOCTBIO TUHAMUYECKHX MPOLIECCOB, HAINYUEM aCUMITOTUYECKU CTEIEHHBIX BEPOSTHOCT-
HBIX pacnpezaeneHuid. JIOBOJbHO MIMPOKUHA KJlacc MOJOOHBIX CHCTEM (XOTS JalleKO HE BCEX)
aJICKBaTHO ONMCHIBAETCSI HEAKCTEHCHUBHOMN (HEaJIUTUBHOMN) CTAaTUCTUYECKON MEXaHUKOM, Oc-
HOBAHHOM, B YACTHOCTH, Ha TapaMeTpuueckux sutpormsx Tcammca' ™ u Pensu™, koTopsIe
COXPAHSIIOT THOCEOJIOTHYECKYI0 CTPYKTYpPY (JIOTMYECKYIO CXEMY IOCTPOEHUS) KIacCHYECKON
CTaTUCTHKH (CM., HaNpuUMep, ). BaXKHbIM MPEUMYIIECTBOM HEIKCTEHCUBHBIX CTaTHUCTUK IO
CpPaBHEHHUIO C KJIACCUYECKOW CTaTUCTUKOW ['mbOca sBNsieTCS aCMMOTOTHYECKHI CTENEHHOM
3aKOH PAacIpeesIeHUs] BEPOSTHOCTEH (IPOSIBIIAIONIMICS TP MaKCUMU3ALUU COOTBETCTBYIO-
[IMX [apaMETPUUYECKUX SHTPOIUI), KOTOPBIM HE 3aBUCUT OT SKCIIOHEHIMAIILHOTO NOBEICHNUS,
o0ycIloBiIeHHOTO pactipeaeneHuem ['udoca.

HeskcreHncuBHas cratvctuka Tcaminca yCHEIIHO HPUMEHSETCd KO MHOTMM CIIO>KHBIM
CHCTEMaM HA4MHAS OT HENMHEHHBIX IH(QY3HOHHBIX YPABHEHHIT' , 000OIICHHBIX KHHETHYC-

20,21 22 232 o
CKUX ypaBHEHUH 021" crcrem ®oxkepa—Ilmanka™, H-teopembl bonprimMana 2 YAEIbHOU Te-

") CJI0KHBIE CHCTEMBI COCTOAT M3 MHOTHX 3JIEMEHTOB, YacTel, KOMIIOHEHTOB, TIOJICHCTEM, KOTOPHIE
B3aMMOJICUCTBYIOT MEXAY COOOM CIOXKHBIM (HETHHEWHBIM) 00pa3oM. B cuiry XxapakTepHOro st MHO-
THX CIOXHBIX CHCTEM XaOTHYECKOI'O IMOBEIEHUS, OTPAHWYMBAIOIIETO BO3MOXKHOCTH JIE€TEPMUHHUPO-
BaHHOI'O OIMCAHUS, MOAEIUPOBAHHUE MOJOOHBIX CHCTEM BO3MOXKHO JIMIIB B CTATUCTHYECKUX TEPMH-
HaX, KaK TO: IUVIOTHOCTb BEPOSITHOCTU, MAaTEMAaTHIECKOE OXKUAAHUE, TUCTIEPCHs], JIIYHOBCKHE IIOKa3a-
TEJH U T.1I.
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IUIOEMKOCTH TapMOHUYECKOTO ocunnnﬂTopazg, KBAHTOBOI CTATHCTUKH , O M3Y4YEHHs KOC-
MHYECKHX CHCTEM C IaTbHHM CHJIOBBIM B3aHMOJICHCTBHEM -, MEXK3BE3IHON TypOYICHTHO-
CTH2, IBOIIOLHN acTpou3nuecKux JmcKoB Y, CKOPOCTH COJTHEYHOTO 3BYKa™ ", PelaKCaIlii
CIIHHOBOTO CTeKya’’, TOPOJICKON TPaHCTIOPTHOM CHCTEMSI, O0no(u3nuKN, SKOHOMUKH, HEHPO-
(GU3UKHU U T.1.

DOHTponust Penbn 3G (HEeKTUBHO HUCTIOIB3YyETCs HE TOJNBKO B (pr3uKe (HpaKkTaioB M B TEOPUH
HH(bopMauHH7’38'51, HO U B Pa3IUYHBIX OOJACTSAX CTATUCTHUYECKON MEXAaHUKHU, CBSI3aHHBIX C
JUHAMHAYECKUM MMOBEJICHUEM CIIOXKHBIX XaOTHYEeCKUX cucteM. Ilocnennee cBs3aHoO ¢ TeM, 4TO
MEXIy Teopueil (paKTagoB, ONUPAIOMICHCS HA TEOMETPUIO U TEOPUIO Pa3MEPHOCTH, C OJTHOU
CTOPOHBI, U TEOPHEH Xaoca CyIIECTBYET IIyOoKas CBs3b. Vcmonp30BaHue CTaTUCTUKNA PeHbn
MPUBENIO K 3HAUUTEIHHOMY MPOTPECCY B UCCIENOBAHUSX Psiia aHOMAIBHBIX (PU3NYECKUX SIB-
JICHH}, B YACTHOCTH, B TCOPHH UEPHBIX ABIP |, B SCPHOI (GHU3MKe ’, IPH H3ydeHHH (pax-
TaJTbHBIX U MYJIbTHU(PPAKTATHHBIX CHCTEM B kocmomorun #**!3 | B kanToBO# cTaTHCTHKE
U T.1. OJHOBPEMEHHO, HaJIM4YKE CTENIEHHOTO 3aKOHAa B HEAKCTEHCUBHOW CTaTUCTHKE MO3BOJIN-
JIO CKOHCTPYHMPOBATh HEAIJUTUBHBIE TEPMOJAMHAMHUKH, B YACTHOCTH, HA OCHOBE 3HTPONUU
Tcammaca' " u supormu Pensn™ 0%,

Heckonbko mo3iHee B CTaTUCTHUYECKYIO MEXAaHUKY ObLT BBEIEH HOBBIM (DyHKIIMOHAT SH-
TPONMHU — JIBYXITAPAMETPUUECKAS SHTPONUS H_[apMa—MI/ITTaJ'Ia63 (SM), xotopasi, B 4aCTHOCTH,
00o6maet >aTponuu bonsimana—Iu66ca—Illennona, Penbu u Tcamnuca, mocpeacTBOM Ma-
HUITYJIUPOBAHUS IByMsI TapaMeTpaMu ehopMaIiu, TeM CaMbIM PacCMaTPHUBAst TH SHTPOITHU
KaK HEKOTOpbIE NpeAesibHbIE OJHOMApaMETPUUYECKHE cnyqan64’65 6% Coiicta SHTPONUU
[ITapma—MutTana ObLIM MCCIEAOBAHBI PSIZIOM aBTOPOB (CM., HaHpI/IMep,66’69'73). Muorue He-
9KCTEHCUBHBIE OJHOMApaMETPUUECKHE SHTPONHH, BBEIEHHBIE B TUTEpaType B paMKax 0000-
MIEHHON CTaTUCTUYECKOM MEXaHUKHU, OTHOCITCS K cemeicTBy SM u, Takum oOpa3om, MOTYT
U3ydaTbcs MO equHooOpazHoi cxeme. Cpenu HUX, YIIOMSHYTBIE BBIIIE SHTpONHH bonbliMa-
Ha—['u66ca—Illennona, Pensu u Tcamnuca, a Takxe SHTPOMHS HaHz[c6epra—Bez1pana74, la-
yccoBa 3HTpOHI/I}I64 1 HEKOTOpbIE APYTHE.

Ontponus [llapma—Murtrana, BBeAEHHAS NIEPBOHAYAIBHO B TEOPHH WH(GOPMAIHH, TaKKe
Obla MCIOJIb30BaHA ISl TOCTPOCHUS TepMOCTaTI/ICTI/IKI/I64. B pa160Te69 ObUTH JaHbl TOYHBIE
pelIeHusl HecTalmoHapHbIX ypaBHeHUd Dokkepa—IlnaHka, CBI3aHHBIX ¢ 3HTponusMUA PeHbu
u lllapma—Murrana. B pa60Tax66’75 JUTSL TIOTy4YeHHs] 00OOIIEHHBIX TEPMOIUHAMUYECKHUX CO-
OTHOIIEHH Ha 6a3e SHTponuu SM yUYHUTHIBAJIACh TUIIOTE3a MYJIBTUIUIMKATUBHOCTH BEPOSITHO-
CTHOTO paclpeeiIeHus: COBMECTHON BEPOSITHOCTU JBYX HE3aBUCUMBIX CUCTEM.

[lenbto maHHOM pabOTHI ABISETCS MOCTPOEHUE HA OCHOBE HEIKCTEHCHUBHOM CTaTHUCTHYE-
CKOM MeXxaHUKH OOOOIIEHHBIX TEPMOJMHAMHUK, COOTBETCTBYIOIIUX OJHOMAPAMETPUUYECKUM
SHTPONUAM, IIpUHALIe)KAUM K cemencTBy [Ilapma—Murrana. [Ipu 3TOM ocpeHEHHBIE 3Ha-
YEHUsl TUHAMMYECKUX MapaMeTPOB CHCTEMbI MOJIYUYEHBI [0 HOPMHPOBAHHOMY 3CKOPTHOMY
pacnpenenenno, KoTopoe OOBIYHO HCIOJIB3YETCSl NMPU CTATUCTUYECKOM PACCMOTPEHHUU Xao-
TUYECKUX CIIOKHBIX CHUCTEM, COCTOAIIUX M3 OONBIIOTO YKCIa B3aUMOACHCTBYIONINX YacTeH.
OJHAKO B OT/IHYME OT PSa M3BECTHBIX paboT (cM., Hampumep,’® >'®), B KOTOPBIX T0K06HEIE
UCCJIEIOBAHMS TT0 TEPMOJAMHAMHUKE MPOBEJICHBI C MPUBJICYECHUEM IBYKPATHO NeOPMUPOBAH-
HBIX DKCTIOHEHTHI U Jorapudma (BBEIEHHBIX NEPBOHAYAILHO B Teopuu uHpopmanuu [llapma
u Murranem B 1975 r.), ocoOeHHOCTh AaHHON pPabOTBI COCTOMT B TOM, YTO TMOCTPOEHHUE
0000MIEHHBIX HEIKCTEHCHBHBIX TEPMOJWHAMHK IPOBEICHO C MOMOIIBI0 0OJee MPOCTHIX U
XOpOIIO U3YYEHHBIX OJHOKPATHO AehOPMUPOBAHHBIX (QYHKIUN — neOPMUPOBAHHOTO JIOTA-
pudma u sxcrioHenTa Tcammca.
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2 OTHOITAPAMETPUYECKHWE TUITHI SHTPOIIMIA CEMEACTBA
INAPMA-MUTTAJIA

Beenénnas lllapma u Mutranom (1975) nByxmapameTrpuueckas 3HTPONMIHAs Mepa
CITy4aitHON BEIMUUHEL P = {p ].} onpenensercss GOpMyIIon

1- (ijjq)u—l)/(q—l)

SM(p):=k
T () r—1

, (1

rne 1,4>0, r#1#¢q, r#q. B Beipaxenun (1) p= {p].} — nuckpeTHas (QyHKIMS

j=1,., W
pacrpeieNicHust BEpOSITHOCTEH cocTosiust, a VW 0003HaYaeT KOJIMYECTBO JOCTYIHBIX B CHC-
TEMe MUKPOCOCTOsIHUIL; k — mocTosiHHas Bosbimana.
OHnTponwmiiHas Mepa (1) BKIIOYaeT Kak KIaCCHYECKYI0, TaK U Je(OPMHPOBAHHBIEC OIHO-
napaMeTpUuecKre SHTPOIMH, XOPOILIO U3BECTHBIE B JINTEPAType, B YACTHOCTH:
¢ suTponuio bonpimana—I u66ca—1llennona

811 = 8" (p)= kY p;Inp;; 2)
® DHTPOIUIO Penpu™’
k
S =S, (p) 3=Hln(szjq), >0, g#1; 3)

SHTPOIHUIO Tcammca >?

=27
SM _ cTs/ 0\ . 7).
Sq,q _Sq (p) = kW, “4)

e ourponmio Jlanncbepra-Bepana’

1
g g TP 5)
NI

® DBHTPOIUIO l“aycca64

M _go 4 1- {exp(r - 1)2]. p; In P; }
qg—-Lr r
(r=1)

, >0, g=#1. (6)

Ikcnonenta Tcanauca u nedpopmupoBanHbiii Jorapudm. Jlamee Mpl OyneM HIUPOKO
UCIIOJIb30BaTh TaK Ha3bIBaeMble Ae(GOpMUpOBaHHBIC (DYHKIMH, B YaCTHOCTH, Ae()hOpMUPOBaAH-

HBIN JToTapudm 1nq(x) 1 1e(OPMHUPOBAHHYIO IKCIIOHCHIIUATBHYIO (DYHKITHIO (KCITOHEHTY

Tcammca) exp ] (), KOTOpBIE OMPEENSIOTCS CIEAYIOMIM 00pasom ' :
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I-q
x _1 +
lnq(x):z P xeR", geR, (7)
1 0, ecrug<lux<-1/1-g;
exp (¥):=[1+(1-q)x]. =4[1+(1-q)x]  ecau <lux>-1/1-g; (8)
p,(0):=[1+(1-al. = {[1+(1 -] g g

[1+(1—q)x]/1/1_qemuq>1ux<—1/1—q,

rae x € R, g€ R; Beipaxenue, cTosee B KBaPaTHBIX CKOOKAX, JIMOO MOIOKHUTENBHO, TU-
60 pasno Hymo, [y], = max(y,0). U3 onpenenenus nedpopmupoBanHoil sxkcnoneHTs! Tcan-
nuca ciexyer, 9ro it g <1, skcrionenra equ(x) ucuesaer st X < —1/(1—q), nenpepsis-
Ha ¥ MOHOTOHHO yBenuuuBaercs or 0 mo oo, xorga x ysemnuuusaercst or —1/(1—¢) go o©;
s g >1, dynkuus exp ] (x) HempepbIBHA U MOHOTOHHO yBenuuuBaercst or 0 g0 00, Koraa
X YBCIMYHBACTCS OT —0O J0 1/(1 - q) , OCTaBasCh pacxonameﬁca i X > 1/(6] —1).

Jlerko npoBepuTh, uTo B npexene § —> 1 xedopmupoBaHHble HYHKIMH IPHHIMAIOT CTaH-

JIapTHBIN BU:
In, (x)= linll lnq(x) =In(x) (Vx),
q—>

exp,(x) = lim exp (x) =lim exp (x)=exp(x) (Vx), 9)
G140 1 g->1-0 1
a TaK ke, 4To
equ[lnq(x)]: lnq[equ(x)] =x, Vx;Vq. (9%)

MoxHo Takke yoemuThes, 4yTo JUisl 1ehOpMUPOBAHHON 3KCIOHEHTHI CIIPaBEAJIUBBI Clie-
JYIOIIME COOTHOLIEHMUS:

a__ d . N
m = eXp2—q (_x) 5 [equ(x)] = expl_(l_q)/u(ﬂX) s aeq — (eq )‘7 (vq) ’

exp, (x)-exp,(y) =exp [x+y+(1-qxy] (Vx;Vq). (10)

CooTBeTCTBEHHO U1 Ae(pOpMUPOBAHHOTO Jorapudma lnq(x) UMeeM:

X 1 1 1
lnq (;j = yl_q (lnq X — lnq y), lnq (;j = —Flnq x, (Y(x,y);Vq), (11)

—lnz_q(l/x):lnq(x), (x>0;Vqg), %qu:é (x>0;Vq), (11%)
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In, (xy)=In, (x)+In (1) + (1 -In, ()0, (1) (Y@ y)i V). (2
HpI/IBe,Z[eHHLIC COOTHOIIICHML GYI[yT HCIIOJIB30BATHCA AaJiceC.

Jurponuiinbiii pynkuuonasa I[Mapma—MuTTrana, Kak poJOHAYAJIbLHHUK ceMelicTBa
oJHONapaMeTpH4YecKuX HTponuii. [IpoaemMoHCcTpupyeM Teneps, 4To onpeenstomue Gop-
MyJibl Jutst SHTponuit (1)-(6) cBsi3aHbl paBeHCTBAMU, NPEACTABISIOIIUMHI Yepe10BaHUS O0bIY-

HeIX (In, exp) u medopmupoBaHHEIX (lnq, equ) J0orapu(MOB U IKCIIOHEHT, 3aJaHHBIX

dopmynamu (7) u (8).
Hcnonp3ys o603HauCHNE

€= ijfq =D, (13)

JUISL TaK Ha3bIBaeMOUl 000OIIEHHON CTaTUCTUYECKOW CYMMBI, TepenuiieM Belpaxenus (3) u
(4) nna suponmii Penwsu u Tcannuca B Buzie

[Z p; }:Tlnc (14)

q

{(Zm]’q)m_q) T_q)‘l N

Squzk T =kIn_ cql‘” . (15)

ConocraBieHne 3TUX BBIPAKEHUHN TAET UX CBA3b
1
¢, = exp(k™'S)) =exp, (k7'ST), (16)
U3 KOTOPOi1 CIEIYIOT CBA3YIOLIKME 3T SHTPOIIMH PABEHCTBA
Sk (p) = kln{equ [k—lsf(p)]}, SP(p)=kIn, {exp[k—ls};(p)]}. (17)

®opmyna (16) mMo3BOJISET TaKXKE TMOMYYUTh PABEHCTBA, CBs3bIBatomue >HTpornuu Illap-
ma—Murtana u Jlanncoepra—Benpana ¢ surponusmu Tcannuca u Penbu:
(1-r)

[ .

SM _ 1-g | _
S (n=k - =kln, ¢, |=

= kin, exp, [k 'S (p)] =kIn, {exp[k—lsj(p)]}, (18)
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1=q
(Z.pﬂ)l/(q‘l)} 1
LV __[ jt _
5, (P =~k -

1

:—klnq c;j :—klnq {exp[—k_lsf(p)]}. (19)

Taxum o6pasom, g -nedopMuUpoBaHHBIA Torapudm M SKCroHeHTa Tcammuca MO3BOJISIOT

3amMcarh BCe TEepeUHCIeHHBIC Mepbl B KOMMakTHOU ¢dopme (16)-(19). Kpome storo, mako-
HU4HbIE cooTHomeHus (17)-(19) mus sHTponuii 00aeryaroT HaXx0XKACHUE MPEeAeIbHBIX 3HAUe-
Ui (yHKIoHanoB (1)-(6), Mo cpaBHEHHUIO C WX 3aMMCHIO B SBHOM BHJE. B wacTHOCTH, ipn
ucnonbs3oBanuu Gopmynsl (18) u cootHomenuit (9%), nerko HailTu ciaenyIoIe NPEaeIbl:

Sorq(p)=kIn,_, exp,[K7'SF(p)]= S (p), (20)
S (p) =Kn,_, {explk 'S} ()]} =S¥ (p). e

-1
Iockomeky npu g — 1 umeem p jq = exp{(q -1)In p; }—) 1+(q-1)Inp;, ro npenens-
HOe 3HadeHWe OHTpomuu Tcammca lim Sgs(p) CBOAWTCS K OHTpONHH bombima-
-1

BGS
S

Ha—[ub66ca—Illennona . Heficteurensho, npu g — 1 umeem:

Ts _ 1 k -1y _ __ ¢BGS
Sq%(p)—gﬁzma—pﬂ )=—k>..p;Inp)=S""(p). (22)

AHaOru4HO MOKHO MOJIYYUTD CICAYIOIIHNEC IIPEACIIBHBIC 3HAYCHUA:

In[Y p.p.T In[Y p.(1+(g-1)Inp.]
Sy, (p) = klim Z]P]P] =klim Z]P] 7 L=
1 g1 1-gq g1 1-gq

In[1+(7-1)2, .p;Inp;]

— ki ~ _ gBGS
_kg_)m1 =g = kE ]_p].lnp].)—S ()., (23)
S,?Kl(p) =—klim {lnq exp[—k‘lsf(p)]} =S5 (p). (24)

g—1

Hakonen, ucnons3ys cootnomenus (18) u (23), monyuum Gopmyy JjIsi OpeeIeHHs dH-
Tponuu ['aycca
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q—->1r

M (p)= qulil} In, {eXp[k*Sf;(p)]} = kIn_exp(k'S?%) =

1- -1)) p.Inp.
i exP{(T( )12):]?] nP]} =SE(P)- 25)
r_

HcepoagauruBHocTh 3HTpOonuM Hlapma—Murtrana s He3aBUCHMBIX cucteM. [lo-
KakeM, 4TO Mo100HO sHTpormu Tcamnuca, saTponus [llapma—MuTTana noquuHseTCs MCEB-
A0AAUTUBHOMY 3aKOHY I ABYX CTATUCTHYCCKU HC3aBUCHUMBIX CHCTCMBI. HyCTL 06H_Ia$I
CHCTEMa XapaKTEPU3YETCS HOPMHUPOBAHHBIM PACIPEICICHHEM BEPOSTHOCTEH MHUKPOCOCTOSI-

HUH P, = {pl]} i j=1,.,w ¥ oHTponueii lllapma—Murrana
SSM(plz) kln {equ[ lSTS(Pu)}} (26)

I[J'ISI ABYX HC3aBUCHUMBIX CHUCTCM CHPABCIJIMBO MYJbTUINNIMKATUBHOC PACIPCACICHUC

D1 =PiPystae py={ptiy wup,={p ]} i=1,.,w OTHOCATCS COOTBETCTBCHHO, K IICPBOM 1

BTOpO# cucreme. [loncrasnss pacnpenenenue p,, = p;pP, B (26) n yunutsisas popmyisl (10),

(12) u (18), nomyuum paBeHCTBO

SSM(plz) kln {equ [STS(pl)JrSTs(pz)Jr(l q)STS(pl)STs(pz)]}

=kln, {equ {%Sqﬁ (p1)} -exp, {%Sqﬁ(pz )}} =kln, {equ {%Sqﬁ(pl)}} +
+k(1-7)In, {equ { STS(p1 )}} {equ { STS(p2 )}} +kln, {equ { STs(pz)}}

—SSM(P1)+SSM(P2)+ —(1=1)S3(p))S; ) (P2) 27

U3 KOTOPOIO CIIEAYyeT CBOMCTBO NCEBOAAMUTHUBHOCTH dHTponuu Illapma—Mutrana s 1Byx
He3aBUCHUMBIX cucteM. [lapamerp 7 B (27) ompezenser cTeNeHb HEAAAUTUBHOCTH SHTPONUN
n3 cemencria [llapma—Mutrana. 13 3T0ro BeIpaskeHMs! BUJHO, YTO TOJBKO I SHTponuid Pe-
upu (7 =1) u bonbimana—T'u66ca—Illentona (7,4 =1) BbImoNHAETCS 3aKOH aJJUTHBHOCTH.

3 IKCTPEMYM SHTPOIINMU ITAPMA-MUTTAJIA U HETUBBCOBOE
PABHOBECHOE PACIIPEJIEJIEHUE

ITycTe paccMaTpuBaeMas craTuctudeckas cucrema ¢ mepou [llapma—Murrana peanusyer-
Csl IBYMsI MHOXKECTBAMH: MHOYKECTBOM BCEX COCTOSIHUM CHUCTEMBI, OIMCBIBAEMBIX PACIIpPENE-

81



A.V. KOLESNICHENKO

JICHUEM BEpOSITHOCTEU p={pl,...,r)w}, M MHOXCECTBOM JMHAMHYCCKHUX MAapaMeTpOB

T(p) = {Tl,...,TW}, XapaKTepU3yIOIUX CUCTeMy. ByJaeM nanee cuurtarh, 4TO CpPEIHEB3BE-
IIEHHOE KON caydyaitHON BenuunHbl T B COCTOSIHMM C PacHpe/IeieHueM P ONpeJenseTcs
1o popmyie”

D)y =2, T @) =¢,' 2, T;p} (28)
rac

f@=p)l2pl =plc, (29)

— 5CKOPTHOE (HOPMHPOBAHHOE) PACIIPELCICHHE ', KOTOPOE OOBIYHO MCIIOIB3YETCs IIPH Pac-
CMOTPEHUHU XAOTUYECKHX, (PpaKTalbHBIX M MYJIbTU(PPAKTATIBHBIX CHUCTEM. JIerko mokasarb,

4TO PACIpENENeHus P; U fl MOTYT OBITh 3aMKCaHbI B CJIEAYIOIINX SKBUBAICHTHBIX (hopMax

po=Fep)] = £y

f(@)=pl exp{k(q-1S} (n)].

Jlns onpeneneHus paBHOBECHOTO paclpesiesieHusl CUCTEMbI HalEM 0e3yCIIOBHBIN IKCTpE-
MyM sHTponuu [Hlapma—Murrana

=" (1 e,/ VD) = kin, [ ¢, | (30)

IIpU 3aJaHHOCTHU CPCAHCTO 3HAYCHUA Eq OHEPIrun CUCTEMbI U COXpPAHCHUU HOPMHPOBKH pac-

Opeac/ICHUA p :

Eq =Z],8].f]. = const, Z],pjzl

CornacHo BapHAMOHHOMY MpHHIKIY JUKeHHCa *, Ui HAXOX/ICHHS BEPOSTHOIO PacIIpe-
JieNieHust He0OOXOAMMO BBIYHUCIUTE O€3yCIIOBHBIN 3KCTpEMYM (PyHKIIMOHAA

1/(q

-1
A(p) ::klnr[szjq] _BZ]‘Sjqu /ijjq_kaszj ’ G

i) B cBs3u ¢ onpeneneHneM CpeHEB3BEILIEHHOTO 3HAYE€HUs CIIy4aiiHON BEIUUYUHBL I OTMETUM CIIEAYIOLIEE: B
HEIKCTEHCUBHOHN CTATUCTHKE BO3SMOXKHBI TPH CIIOCO0a OCPETHEHHUS 0 PaCcTIpeACTICHUSAM: D, piq fi = P;I / 2 ]'P,(-l
(cm. Bibliography/ http://tsallis.cat. cbpf. br/biblio.htm). Itu ciocoObl ocpenHeHMs, KAXKABIH 13 KOTOPHIX UMEET
CBOU l'[pel/IMyIJ_[eCTBa N HEOOCTATKH, onpeuenﬂ}oT COBepLLIeHHO pa3H1>1e q-TepMOIlI/IHaMI/IKI/I, COOTBCTCTByIOU_ll/le
TEM WJIN WHBIM CTaTUCTUYCCKA aHOMAIBHBIM cUcTeMaM. [1o 3To# mpuuuHe BHIOOP OCPETHEHUS B (DH3UUCCKUX
MIPHJIOKCHHUAX HOCUT MPHUHIUIIHATBHEBIN XapaKTep, MOCKOIBKY OH OKa3hIBACTCS CYIICCTBEHHBIM MPU 00paboTKe
SKCTIEPUMEHTAIBHBIX naHHpIx 040668,
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rJe mapamerpsl 3 U O SBISIOTCS HEONPEAEIEHHBIMU MHOKHUTEsiMHU Jlarpamka. V3 ycnoBus
paBEHCTBa HYJIIO NIEPBOM Baprauu GyHKIHOHaMa OA , MOIy4YnM paBeHCTBO

r—

)

OA _ kq g g1 B o4
—=—lp T —qg—p," (¢,—E)-ka=0,
3p,; 1-g"1 1 c, J ;oA
N3 KOTOPOTIo CIEAYET
- g a ~ 4 1=
Pl 1-k 1(1—q)—rB (e,-E)|=T, —qqa : (32)
qr

3H6Cb " JaJIeC UCII0JIb3YCTCS BCIIMUNHA Fq ,o omnpeacirieMast COOTHOILICHUEM

<
—_

()
—_

I =c¢

= (33)

3Hak (TUWIbAbD> Y IMapaMCTPOB CUCTEMbI O3HAYACT X BBIYUCICHUC HJIs1 paBHOBECCHOI'O pac-

IpeeIeHUs. BEPOATHOCTEN f?j 3ameruM, uto A sHTpornuu Tcammuca I’ gr=q = Cq3 AL OH-
tporuu Pensu [ e 1; nnst surponuu JlanacGepra—Benpana [’ qre2-g = 1/c .
[TockobKy MHOKHTENH Jlarpanka [3 ¥ oL MMEIOT MPOU3BOJIBHBIE 3HAYEHHS TO, TIoJIarast
r—1
N\ A,
GEL(ZW?)q%i, (34)
1-g\= 1-¢g

3anumieM (32) B BUE CIEAYIOIIEro Herno06CcoBOro paBHOBECHOTO paclpeieieHus ¢ mapaMeT-

poMm BW
P, = Zoy[ 1=K 1-0B, (e, - E) [ 1=

= Zgyexp [ k7B, (5~ E,) ], (35)

rIe

1/(1-q)
— > — 7 U(-q)_
Z%(—[E ﬂﬂ} =C, =

i ~
_ Z},[l —k7 (-8, (s~ Eq)]i—q: Y exp,[ k7B, - E)]  G6)

— CTaTUCTHYECKMH HHTErpas, ONpeAeiseMblii M3 yciaoBHsd HOopMupoBku (31); mapamerp

Bq,r =B/I g,r ABIACTCS oOpaTHO# ¢usnueckoir Temmeparypod B cratuctuke [llap-

Ma—MurtTana (CM. HUXKe).
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IIpu ycnosun r =g wu3 (35) ciaenyeT BhIpaKEHUE AJIs PABHOBECHOTO PACIPENEICHHs Be-

POSITHOCTEH COCTOSIHHUS P ; B cTatucThke Teamnuca

1
7,8, =Zi[1— (- B, (e, ~ E) |7 = ——exp, [ KB, (e, E)]. (37
Ts " ZTs
rac

1 N
ZiB)=2 [ 1-K (-0, (e~ E) [F1= 3 exp, [ kB (e ~E)|  G9)

— CTaTUCTUYECKUU MHTErpall B CTaTUCTUKE Tcaumca; napamerp Bq =B/ Eq SABIISIETCS 00paT-

HOU (PU3MYECKOH TEMIIEPATYPOIl CHCTEMBI, Tph =1/ ¥ B — muoxwurens Jlarpanka, KOTO-
pbIi CBSI3aH C OTPAHUYECHUEM HA CPEIHIOI0 SHEPTUI0 B HEAKCTEHCHUBHOM CTATUCTUYECKON Me-
xamuke. [pn 1— k7' (1- q)Bq(sj— Eq) <0 umeem f?]. =0, anpu g=1 u3 (37) u (38) cneny-

€T KJIaCCUYECKOe KaHOHUYEeCKoe pacnpenenenue ['mb0ca

7,(B) = exp{-k'B(e;~ E,)}/ Z},exp{—k*lﬁ(sj— E)l. (39)
B ciyuae, korma ¥ =1 u3 (35) crieayer paBHOBECHOE paclpe/ie/icHHe B CTATUCTHKE PeHbr
A = T 1 g
p = Z—R[l ~kBL-g)(e;~ Eq)]i 1= 7P |kBE-E)| @)
3nech
1
Zy®) =" "= [ 1-k"BA-9)e,~E) 7 >0 (41)

— craructuueckuii unterpan; 3 =1/T — oOparnas TemnepaTypa (M3MEHSIOMIAsACS B IpeIe-

Jax JOMYCTHUMBIX 3HaueHHi). Takum o0pa3om, pacrpeeseHne BepOsSTHOCTEH COCTOSIHUSA CTa-
TUCTUYECKOT0 aHCaMOJIsl HEOKCTEHCUBHBIX CUCTEM ¢ Mepoil PeHbH, KOTOpbIe HaXOJsATCs B Te-
TUIOBOM PAaBHOBECHUM C BHEIIHEW Cpeqoi (TepMOCTaTOM) U MOTYT OOMEHHMBATHCS C HEH IHEP-
rUeil Mpu MOCTOSIHHOM O00BEME U MOCTOSHHOM YHMCIJI€ YACTHII, COOTBETCTBYET 0000IEHHOMY
KaHOHH4YecKoMy ancaMOuro ['ub06ca (40).

4 TEPMOJAUMHAMHWYECKHUE COOTHOIIEHUA OBOBIIEHHOM PABHO-
BECHOU TEPMOJUHAMMUKHN

[Tpuctynum Temeps K TJIABHOW IEJIM JAaHHOW pabOThl — KOHCTPYHPOBAHUIO PAaBHOBECHOM
TEPMOJAVHAMHUKH, OCHOBAHHOM Ha HEIKCTeHCUBHOM cratuctuke [llapma—Mur- tana. Baxno
UMETh B BUJY, YTO MAKPOCKONMMYECKUN TEPMOJWHAMHYECKUI YPOBEHb OIMCAHUS, HUCIIOJb-
3YIOIMI HEMHOTOUNCIIEHHBIE CTATUCTUYECKUE CPEHNE XapPAKTEPUCTUKU CUCTEMBI (ITapameT-
PBI COCTOSIHUS), TTO3BOJISIET CXKMUMATh OTPOMHOE OOMIIME CTaTUCTUYECKOM MH(pOpMaluu, MOoA-
Jexaieit 00paboTKe ISl MOTyUSHHS IeTaJIbHOTO OMUCAHUS TIOBEJCHHUS CII0KHOW CUCTEMBI.
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[Tockonbky cooTHomenue (18) crpaBeqIMBO TakKe M I PABHOBECHOTO pacHpeesCHHs

~ SM
p] , TO IJIA SKCTPEMAJIBHOT'O 3HAYCHUS SHTPOIIUH Sq v HMCEM

~ (1-r)/(1-q) -
C — 1 Zl r_ 1
S, =k =k=*—=kIn, Z,,,, (42)
1-r 1-r

a JUIs KBa3UpaBHOBECHOW nedopMupoBaHHOW CBOOOAHOW sSHepruu [ eapmroibiia Fq L H

0000IEHHOTO CTATUCTUYECKOTO HHTerpana Zg,, CHPAaBEIIUBEI CIICIYIOIIHE BHIPAKCHHUS

~ = lay = 1 1/(1-9)
Fq,i’ = Eq _Esq’r = Eq —Eklnr ZSM’ |:Z pOJ . (43)

C yuerom (36) u (42) paBHOBECHOE HOPMHPOBAHHOE pactpeseieHue (35) MoxkeT ObITh Tie-
pEMHCaHO B CIIEAYIONIEM BUJIC:

= 1)
i 1-o(q)B, (¢, ~ E,)
Pj(Bq,r): olg g 8J q =

q

[1-o@B, @B} exp, (KB, (- E))

ras ™ ew 5] ““”

31ech 1 panee nenonb3yiotes obosHauerns: o(r) =k (1-7), o(g) =k (1-q).
YuureiBas cootHomenus (33) u (36), mepenuieM CTaTUCTUYECKUH UHTerpan Z,, cie-

TyIONTUM 00pazoM:
Zo(B)= X exp, | ~Z5 ke~ E)) . (43)

Huddepenrmpyst Terneps (45) mo mapamerpy 3, ¢ yuérom dhopmysi (10) momydnm

%ZSMz—Zj{equ[ 70k B(s—E)J}

(r-1) OE
X128k (6~ E )+ k B(g—E)aZSM -ZG kBt =
B B
] o] onzZyV . OF
_7(r-1) 1 .\ _
=7, ZZME:]-p}?{k E)+ kT Ble,- E)—— 2k Baﬁ}—
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OE
=273,75¢ k7! B =Z k' B—L. (46)
B B

Ortcrona, ¢ UCHOIB30BaHUEM COOTHOLIEHHs (11), mosyunm crienyromiee BBIpaKEHUE IS
nuddepeHnrpoBaHHOTO 1e(hOPMUPOBAHHOTO JIoTaprdma:

oln Z 6Z
— L =7 =k B— (47)
op GB op

C npyroii cToponsl, ¢ yuetoM (42) u (45), OyneM uMeThb

5"=In {Z exp, | ~Z4, kB (e~ Eq)]}, (48)

OTKyJa Clexyer
084y _, 0In, Zy, _
OF OF
1 9 (49)

S 7B Y (exp, [ 20K e~ E))]) =pE,zt =5,

k
Zi’

Takum oOpa3om, IJis PaBHOBECHON TEPMOJIWHAMHUKHU, MOCTPOEHHOW Ha 0a3e SHTPONMUU
[ITap- ma—MurTTana, cupaBeIuBbI CIEAYIOMINE COOTHOUIEHUS:

_ 1 on 1
SM 2 Fq,i’_ Eq _ESQJ’_EQ —EklanSM,

SM=kln, Z

o5 O(BF O 1
— q,r — k ah’lr ZSM , E _ (B q,r) , B 5] _ k a nr ZSM . (50)
éEq GEq i B B B

(3HaK «TUIIBABD) 3/1€CH OIYIIEH)
ITo nmoBoay cootHomreHuit (50) BayKHO OTMETUTH ciiefytolee: Bennunna Z,, onpenens-

€TCs MUKPOCKOIIMYECKOW JHEpPrueu &€ j OTHOCHMTENLHO CpEeIHEN dHEepruu Eq CUCTEMBI (CM.

(36)). OngHaxo, B cIydae NCIONIb30BaHNS HOBOW BETMINHEI Z,,
= -1
In Z, =In Z, -k BE_, (51)

(koTOpasi ompenensieTcss MHUKPOCKOTMYECKON PHEepruei € j OTHOCHTEJIbHO HYJICBOM TOYKH),

COOTHOILIEHUS] paBHOBECHON TepMOIUHAMUKH (50) NpUHUMAIOT OYTH KIIACCUYECKYIO (hopMy

s = B( qr), ds? = BdE, .
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- oL OE
F :—ElanSM, E = 0 W), C =-p>—L. (52)

qr B q P q P

5 TEPMOJIUHAMMNYECKOE PABHOBECHE /IBYX HE3ABUCUMBIX CHUC-
TEM C SDOHTPOIIUAMMU INAPMA-MHUTTAJIA

PaCCMOTpI/IM TCIIOBOC PAaBHOBCCHUC JIBYyX HC3aBHCHMMBIX (-CHCTCM C OSHTPONHUAMH

S M (pl ) SSM (pZ) MPECTABISAIONINX 000 00IIYI0 3aMKHYTYIO CUCTEMY C TIOCTOSIHHBIMU

3HAYEHUAMHM SHTpormH S =S (Pu) npu P, = P,p, u cymmapHoii suepruu E (py,).

CornacHo CBOWCTBY HeaaaUTUBHOCTH (27) suTponuit B craructuke [llapma—Murrana, »H-
TPOIUIO COBOKYITHOM CHCTEMbI MOKHO MEPENUCaTh B CIEAYIOIIEM BUJIE:

S (Pn) =S () T+ (S (p,) |+ S5 () 1+ (1S3 (1) | -
~o(r)S (p)S) (p,). (53)

JI7ist HaXOKICHUST OCPEAHEHHON SHEPTUH Eq(plz) COBOKYITHOH (] -CHCTEMBI BOCIIOJIB3YEM-

Csl paBHOBECHBIM pacmpezeneHueM (44)

o 75,50
exp, {kilS:lAf }

p;= (54)

rue A[S].] = (8]- - Eq) — (uykryanus sHepruu dactuil. IIpu yuére yCcaoBusi MyJIbTHIDIHKA-

THBHOCTH P;, = P;P, ¥ Gopmyisl (10) Oynem uMeTh

exp, {_quq rAu[S']} _exp, {—k’lﬁq A [8-]} exp, {—quq A, [8']} _
expr{ 1SSM(P12)} exp, { 155M (Pl)} expr{ 1SSM(p2)}
_ equ {_k_lﬁq T(A1[8'] + Az[g.] + m(q)Al[g'] ) A2[gf])}

~exp, {7 (S (p)+ S (p) + o(n)S () S2 (1))}

[Tockonpky 3HaMEHaTENM B MPaBOM M JIEBOM 4acTAX COOTHOIIEHUs (55) OAMHAKOBBI, TO
MOYKHO 3aKJIFOUUTh, YTO

(55)

Alz[s].] = A1[5]~] + Az[aj] + co(q)Al[sj] . Az[sj] : (56)

B »TOM cooTHOIIEHHH H€06XOI[I/IMO HCIIOJIB30BAaTh YCJIOBUC aJAUTHUBHOCTU OCpeI[HéHHBIX
SHEpruu
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Ej = E; + E;, (57)

MOCKOJIbKY 0€3 3TOr0 MpEeanoI0KeHNUsT OCPEIHEHHBIE BETMUNHBI CUCTEMbI OYIyT 3aBUCETH OT
MHKPOCKOTINIECKHX BETHUNH, UTO SIBIsieTcs HermpreMieMsiM’ . Torma u3 (56) 11 MEKPOCKO-
IINYCCKUX 3Heprm"1 MoJIyuuM CJICAYIOUICC YCJIIOBUC KBA3HAAAUTUBHOCTH MHKPOCKOIINMYCCKUX
SHEpruun

€, =€, +&, —0(q)BA, [si]Az [si] (58)

OTMmeTHM, 4YTO UMEHHO HaJM4Yue 3TOTO PaBEHCTBA SABIISETCS, B YACTHOCTH, TOW MPUYHHOMH,
Osarosapst KOTOpOi CTaTUCTUKY Ha Mepe PeHbU OTHOCAT K HEIKCTEHCUBHOM CTaTUCTHUYECKON
MEXaHUKE.

BaprsupoBanue cootHomenuii (53) u (57) ans COBOKYIMHOW 3aMKHYTOM CHUCTEMBI C MOCTO-

SM 12
SIHHBIMY 3HAYEHUSIMU SHTPOIIUH Sq’r (p,,) 1 oHEprUU Eq IIPUBOJUT K PABEHCTBY

85,7 (p2) = 0= 88, (p)| 1+ (S} (p,) |+ 85, ()| 1+ (1S, (p)]
JJIs1 SHTPOIINU U PaBEHCTBY
12 A _ 1 2
SEq =0= 8Eq +8Eq

i cpeanet suepruu. O0beUHAS UX, B UTOTE TOJTYYHM ypaBHEHHE

M 1 M 2
857 (p,)/8E)  3S3(p,)/SE;

T

= , 59
TraS () 1+ (NS, (p,) ©
u3 Kotoporo, rpu yuére (33), (42) u (50), BeITEKaeT yciaoBue
p p = p = Bq’r , (60)

1+a(n)S)) (p)  1+0(nS)(p) T,

03HaYaKoIee PaBeHCTBO (U3MUECKHUX Temmeparyp 3 g, ABYX HE3aBUCHMBIX ( -CHCTEM IPU UX

TEIUIOBOM KOHTakTe. OTHOILIEHUE 3KBUBaJIeHTHOCTH (60) siBIsieTcs: 000O0IIEHHEM HYJIEBOTO
3aKOHa TEPMOJAMHAMHUKH Ha HEDKCTECHCUBHBIE CHUCTEMBI, ONUCBIBacMble crtatuctukou Lllap-

ma—Muttana. OHO TIOKa3bIBAET, YTO B OTIIMYKE OT Kinaccudeckoro ciuydas (4,7 —> 1) ¢usn-

o . -1
yeckas TeMIeparypa Tph He SIBISIETCSl 0OpaTHOM BeMInHOM MHOKUTENs Jlarpamka, B, HO

T,=1/,,=I,, /B=(1+o(rnS*)T=T,T. (61)

BaxHo uMeTh B BUAy, UTO Takoe mepeonpeneneHie 3pGeKTUBHON TemMrnepaTypbl B CTaTH-
ctuke [Ilapma—Murrana npoTUBOPEYUT OCHOBHBIM IPHUHIMIIAM KJIACCUYECKOM TEpMOIMHA-
MUKH, T1e aOCONMOTHAs TeMIeparypa | SBJISeTCs MHTEHCHBHBIM MapaMeTpoM, a He (yHK-
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LIHOHAJIOM Tph(P) . B cBsi3u ¢ 3TUM cpenaem ciieyromiee oduiee 3ameuanue. B 0oibImHCTBe

HE3KCTEHCHBHBIX CHCTEM BaXXHYIO pOJIb UIPAOT JJMHHOMAcCIITaOHbIE MPOCTPAHCTBEHHO-
BpPEMEHHBIE KOppeNaluu B (a30BOM WM T€OMETPHUYECKOM IPOCTPAHCTBE. JTO O3HAYAET, B
YaCTHOCTH, YTO CYIECTBEHHOE 3HAYECHUE NMEET Ta 4YaCTh BHYTPCHHEW YHEPTUU CHCTEMBI, KO-
TOpast CBA3aHa C CWJIOBBIM B3aMMOJEHCTBUEM OTIAJIEHHBIX JPYT OT Ipyra €€ 4acTeu, a UMEH-
HO IOTECHIMAIbHAsI SHEPrUs. B KilacCMYeCKON CTaTUCTUKE BHYTPEHHSSI SHEPTHUsS ONPEIEIIsIeT-
Cs, KaK IPaBUIIO, CyMMOM KMHETUYECKUX DHEPIHMM BCEX MOJIEKYJI COBOKYITHOW CHUCTEMBI. B
TaKOM CHCTEME «TEIJIOBOM OallaHC» TOCTUIAETCs B OCHOBHOM 3a CUET JIOKAJIbHOI'O TEII000-
MEHa MEXJy OJIN3KO PACHOJIOXKEHHBIMH €€ YacTSIMH, T.€. «TEIJIO» CBS3aHO C Nepenadeit Ku-
HETHUYECKON YHEPIMH MOJIEKYJIAMHU.

[Tockonbky (u3myeckas Temmneparypa Tph OTBEYACT 3a «IJIOOAIBHBIA TETIOBOM OaslaHCy
MCKAY PA3JIMIHBIMU YaCTAMH CUCTCMBbI, TO eé BHCPFGTI/I‘-IGCKI/Iﬁ Ganch 6y;[eT CHUJIBHO OTJIN-

4aTbCsl OT JIOKAJIBHOIO TEIUIOBOro OanaHca. JIokanpHbIN OanaHc, Kak M3BECTHO, MOYKHO OXa-
paKkTepu30BaTh abCONIOTHOM 00paTHO# Temmeparypoit f=1/T , usmepsemoit TepMOMETPOM.

OpnHako m000€ n3MepeHne (pU3NUECKol TeMIepaTypsl Tph HEpEeaJIbHO, YTO CBA3aHO C HAJH-

yrem Koo puimenta [ g, » 3ABUCAIIETO, COTTIACHO (33), ot BBIOOpa MapaMeTpoB nedhopManuu

q U T CHUCTEMBL

TakuMm 00pa3oM, 000OIIEHHBIN HYJIEBOM 3aKOH CTaTUCTUYECKOU TepmoauHamuku (60) mo-
Ka3bIBaeT, 4To (hu3nyeckasi Temreparypa B cratuctuke lllapma—MurtTana otanygaeTcs OT UH-
Bepcun MHOXuTenst Jlarpamka 3. DToT dakT TpeOyeT mepeonpeneneHusi TepMOHNHAMUYe-
ckux cootHoweHui (50) u (52), nonyueHHbIX B pamkax ctatuctuku [llapma—Murrana. B pa-
6ote'>"”’, B KauecTBE OCHOBHBIX MPEMNOCHLIOK, B3STHIX 38 HCXOIHbIH MYHKT MOJ0GHOTO mepe-
OTIpeNIeJICHUs] TIPU TIOCTPOCHUH MOJU(PHUIMPOBAHHONW TEPMOTUHAMUKH Tcayuinca, BHIOpaHBI
HEePBBIH 3aKOH TEPMOJUHAMUKH U CTPYKTypa mpeodpazoBanus Jlexanapa. Jlagee Mbl HCHOIb-
3yeM 3TOT IOJAXOJ JJISi TepeorpeIeieHUus] HEKOTOPBIX TEPMOJUHAMUYECKHX COOTHOIICHHIMA
IpY NOCTPOEHNUU MoAu(pUIMpOBaHHON TepmoauHaMuku [lapma—Murrana.

6 JE®OPMUPOBAHHBIE TEPMO/IMHAMUWYECKHUE COOTHOILIEHUA
[Ipexxne Bcero BBeAEM, MO aHAJIOTUU C (PU3MUECKON TeMIepaTypoi Tph’ buznyeckoe

JaBJICHHUC pqh HYTéM pacCMOTPCHUA MCXAaHMYCCKOTO PAaBHOBCCHs JIBYX HC3aBUCHMBIX ( -

CHCTEM, MPECTABISAIOMINX COOOH OOIIYI0 3aMKHYTYIO CUCTEMY C MOCTOSHHBIMU 3HAYCHUSIMHU

V,+V,=const . B 3ToM ciryyae SHTPONUS COBOKYITHON

SHTPONUH S:,Af(pu) u 00béma V=

CHUCTEMBI JIOJDKHA MAaKCHMHU3UPOBATHCS ¢ (Pukcanueir obmiero oobéma. B pesynbrare Oyaem
HUMCETH

85, (p)/8Vy _ 857 (p.)/ 8V, _ P

1+o(SY(p)  1+o(S) (p,) L,

; (62)

rac pph — TaK Ha3bIBACMOC (I)I/ISI/I‘ICCKOC HAAaBJICHUC, KOTOPOC ONPCACTIACTCA COOTHOLICHUCM
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T 85, _ 1w 35, (63)

T1te(nst sV T, 8V

pph :

OueBHIHO, YTO BBEACHHBIE TaKMM CHOCOOOM (u3MYEecKHe TemIeparypa M JaBlIeHUE
JIOJDKHBI TIPUBECTH K MOAM(UKALIMY OTIPE/ICTICHNs TEPMOAMHAMUYECKOH »HTponun Knaysny-
ca.

YroObl MOKa3aTh 3TO, PACCMOTPUM CTPYKTYypy mnpeoOpasoBanusi Jlexanmapa. YpaBHEHHE

(50) B= 85% / OE ; YKa3bIBACT H4 TO, YTO N1APAMETPbI B u Eq 00pa3syIoT mapy nepeMeHHbIX

Jlexanapa. 3To IPUBOJIUT K CIEAYIOIIEMY OMpeaesieHuI0 cBOOOAHOM sHeprun [ enpmrombiia
(M30XOpHO-U30TEPMHUUYECKOTO NoTeHIrana) (cM.(43) u (50)):

_E _TSM_E _ _F_ 1/(1-0)
F,=E,~TS=E ~kTIn,Z, =E kT, | /"], (64)

DT0 BBIpaXEHHUE, OJJHAKO, HEYJOBIECTBOPUTEIHHO C TOUYKH 3pEHUS Ae(POPMUPOBAHHON Tep-

. -1
MoauHaMukd. CBOOOIHAS SHEPTHS JOJIKHA 3aBHCETh OT 1, , a He oT nepemennoit T = .

ph>
[To aHanorum ¢ MOAXOAOM, Pa3BUTBIM B pabore®, mepeompeneniM MakpOCKOMHMYECKYIO
CBOOOIHYO SHEPTHIO (64) creayronM o0pa3oM:

1/(1-
E (T,)=E kT, 1n[cq ( '7)}, (65)

YTO OTJIMYAETCS OT COOTBETCTBYIOILIETO BBIPAKEHUS B TPAAUIIMOHHOW TepmoauHamuke. Mc-
noJib3ysi cootHomeHus (42), (33) u (61), MmoxkHO yOenuThCsi, UTO TepeonpeaeaEHHass TaKuM

00pazoM cBOOOHAS PHEPTHUS Fq/r SBISIETCSl QYHKIHEH Tph. Huddepennmpys GyHKITHIO Fq,r,

B pe3yJIbTATE MOJYYUM

iF =dE —| X ine laT I As™ 66
qr 1-g G 1% I qr° (66)
q,r

Ecan TCIICPb UCIIOJIb30BATh HCpBHfI 3daKOH TCpMOJUHAMHUKN

dQ, =dE, +p, AV, (67)

rac Qq — KOJIMYCCTBO TCINJIOTHI, ITIOABOJNMOC K TGpMOI[HH&MH‘-ICCKOfI q -CUCTEMC (I/IJ'II/I OTBO-

nuMoe OT Heé), To (66) MOXKHO Mepenucarb B BUE

, k Tph SM
qu,T =d Qq - ppth - mlncq dTph _F_dsq’r . (68)
q,r

Orcroga crnenyer, 4To ONpeiesieHue TepMoauHamuueckod sHTponuu Kiaysmyca monu-
bunupyeTcs 11 HeaJJUTUBHBIX CUCTEM CIIEIyIOIIUM 00pa3oM:
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SM __ i
sy, =r,.dQ, /T, (69)

BBeném Tenepb B paccMOTpeHHE CIEAYIONUe XapaKTepucTuieckue (GpyHKIuu: 0000meEn-

Hyl0 OHTambmuio H i~ E .t pphV 1 O0OOIIEHHBI TEPMOIMHAMMYECKUN IOTEHIMAT
GW: FW+ pphV. 3aMeTUM, 4YTO XapaKTepUCTUYECKHWE (PYHKIMHM OONaNaloT CIAEAYIOIUM
CBOMCTBOM: €CJIM M3BECTHA XapakTepucTtudeckas (yHKIUS, BBIPAKCHHAS 4epe3 COOTBETCT-
ByIOIIKE (CBOM I KaXXAOW (yHKIIUH) MEPEMEHHBIC, TO U3 HEe€ MOXXHO BBIYHCIIUTH JIFOOYIO
TEPMOJUHAMHUYECKYIO BETTUUHHY .

B stom HeTpynHo yoeauThes. 13 ypaBHeHui

dE —idsm -p,dV, dH = Lo dS™ +VdP 70
q_F q,r pph D q—l_, E],7’+ ph? ( )
q,r q,r

k
%" ( Inc, 1dT,~p,dV, dG, =- Ine, \dT,+ Vdpy, (71

"= 1-4)
CHENYIOT 0000MIEHHBIE TEPMOANHAMMIECKHE COOTHOLIEHHS
% ~ GFW . 3Eq _ qu _ Tph 7
- - pph ? SM SM ? ( )
ov |, | av 25 25 §
Sy Ton v v a7 Py, q.r
oH oG oF oG
9| _ wooZy, a1 = I == Inc,.  (73)
6‘Pph S;z\r/f apph T, anh v 6Tph B, (1 - q)

YpaBHenue s temnoémkocreil. Kak n3BecTHo, B KJIacCUUECKONH TEPMOAMHAMUKE TETI-
JT0EMKOCTh BelllecTBa B Hambosiee OOIIEM BHIE OINPEACNSICTCS CIEAYIOMUM 00pa3oMm:

C, = T(@S / GT) . 3nece C_ — TemI0EMKOCTh B TaKOM HpOLECCE, B KOTOPOM COXPAHAECTCS
z

IOCTOSIHHBIM TapaMeTp Z, rae z — Jo0ble 0000mEHHBIe KoopauHaTel. Hanbonee pacnpo-
CTpaHEHHBIMHU SBIIAIOTCA N300apHas U U30XOpHAas TEIIOEMKOCTH:

SM SM
| B ¢, =) Pur (74)
P ’ 14 ’
r,.\otT, . r,.\oT, |

Tak KaK B COOTBETCTBHU C (HOPMYJIOi (63/ / 6x)z = (6y / 6u)z (6u / ax)z (cipaBenmBoON

JUIA ciiydast AByX MEPEMEHHBIX, Koraa Y = y(x, Z) uu= u(x, Z)) nMeeM
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L= = wo| | | = . (75)
O ), \OH, ) \oT, ) = \ 0T, ), \ %, ),\oT, ),

85% r p &Sﬂf r .
a u3 (72) u (73) cnenyet, 4TO - =—— 171 =27 | 1o cooTHOLICHNS (74)
r Vv

ph ph

oH, ) T, (O ), T,

MOTYT OBITH 3aIIMCaHbI B BHUAC

sz(qu/anh)p . C,=(0E,/0T,,) . (76)

ph
ypaBHeHI/Ie, YCTaHaBJIMBAIOMICC CBA3b MCKIY TEMJI0EMKOCTIMHU CP u CV’ MOKHO IIOJTy-

YUTH CJICAYIOMUM 00pa3oM. B cooTBeTCTBUH C COOTHOIIEHUEM" |
o) (&) (&) (2 () -
om), \ox)\om) \ay)\om),

SIBIISIFOLIMCS CIIC/ICTBUEM BBIPAKCHUSI 11sl OJHOro auddepenimana Gpyukuun z = z(X, V),

MOJKHO 3amucarh (rosarast 11 = X )

855M 855M assM
{aijq :[aiiwj +( axq//rJ {881"/ } | 7
b, Ph )y T, N PP,
Orcrozia, MCTIONB3ys ypaBHEHHE MakcBea (85% /8V)Tph: (Gpph /T o )y » TIOITYdnM
T
C,-C, = Zh[a’;fh} (W} . (79)
I, oT,, y oT,,

ph

9t0 BBIPAKCHUC MOXKCT OBITE MNpeaACTaBJICHO B APYTOM BHJC, CCJIM HCIIOJIB30BATh CBA3KY

ox ) \oy ) \ oz

m =x, n =z ), U3 KOTOPOH clenyeT

(9Pf0T,0), ==(0VIRT,,), (9Pl V), (80)

ph

oz ) [ ox
TPEX MPOU3BOJHBIX (—J (—J (ay} =—1 (cnencrue coorHomrenus (77) mpH
y z x

C yuérom (80) cBA3b MeXKy TEIUIOEMKOCTSIMH ITPHOOPETAET KIACCUUECKUIN BHUL:
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2

T
C-C =2 2| | 2] 81)
Fq,r ph Pph pph Tph

Takum o0pa3zom, craHaapTHas (Gopma TepMOAMHAMHUYECKUX cooTHoueHud (72), (73) u
(81) B repmoanaamuke [llapma—MuTTana mo3BoJIsSET 3aKIIOYUTh, YTO OHU OCTAIOTCS MHBAPH-
AQHTHBIMM OTHOCHUTENIBHO HEAJIUTHBHON MOIU(HUKAIMM MX KiaccHuyeckux aHaioron. Iloa-

uepKHEM BaxHbIH (pakT, uto Temnepatypsl 1 =1/ n o= 1/B g,r HE 3ABUCAT OT BbIOOpA
HYJISl SHEPIUi, U MO3TOMY OHM JOMYCKalOT (PU3MUECKYI0 MHTEpIpeTalrio. 3aMeTuM, 4TO B

JIOTIOJIHEHNE K CTPYKType Jlexkanapa pasiMuHble Ipyrue BaKHbIE TEOPEMBI U CBOMCTBA OCTa-
OTCS! (] -MHBapPHAHTHBIMH

7 ABYXITAPAMETPUYECKASA HHO®OPMALIUAA PA3INYAA
INAPMA-MUTTAJIA. OBOBIIEHHASA H-TEOPEMA BOJIBIIMAHA

v QSM 49
Hapsiny ¢ sHTponuei SW , nHpopmanus paznuuus lapma-Mutrana

1-r

KSM(p u)——_ (Z P] ub q)l 1-1|=-kln, (ij?u}l.‘q)liq (82)

Tak)Ke OTHOCHUTCS K HanOoJiee CYHICCTBCHHBIM CTATUCTHYCCKUM XapAKTCPUCTUKAM HEIKCTCH-
CUBHOUW MUHAMHYECKOMU ( -CUCTCMBI. SBnssach Q)YHKHI/IOHEIHOM, OHa XapaKTCPHU3YCT IICPEXO]

CHUCTCMBI OT COCTOSAHMA P B COCTOSHHUC U , Korga CTaTUCTHUECKHE Ha6J'IIOI[eHI/I5[ BEAYTCA OT-
HOCHUTCJIbHO COCTOSAHHUA P .

SM
3amerum, uro npu ¥ —> 1 Bemmumna K g, TIEPEXOIUT B PA3IHHAIONLY IO unpopmanuio Pe-

49
HBbHN

M R k )
K=K = yin i

SM
a mpu (=7 BEIHYUHA KW MepexoJuT B pasnuyaronryro uHpopmanuio Pa-
49

The—KaHHamnmnana
1
KSM(p u) KRK(p u) _ |: Z p] :| kln (Z p] 1 ‘7)1 q

Boinykiocts ungopmanuu paznuuus Hlapma-Murtrana. Paznuyaronias naop-manus

SM
Kq v (p u) SABJIICTCS BCILCCTBCHHBIM, BBIITYKIIBIM U IMOJIOXKUTCIIbHBIM (I/IJ'II/I OTpI/II_IaTeJ'IBHLIM)

(YHKIIMOHAJIOM C MUHUMYMOM (MaKCUMYMOM) B 3aBUCUMOCTH OT COYETAaHHs 3HAKOB Mapa-
MeTpoB gedopmanuu ¥ u (. ITokaxkeM 310. {19 HEKOTOPOro AEHCTBUTENLHOTO yKcna 71> 0

HNMECM
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-1 _
n—lzl—l, ecau g >0,
g—1 n
=1-1/n, ecauqg=0, (83)

<1-1/n, ecauq<O0.

[Tostomy, Hanpumep, 11t § <0 crpaBeIMBO HEPaBEHCTBO

g-1
(pj/uj) 2 q+(1_Q)(”j/Pj),

MIPH UCTIOJIb30BaHUU KOTOPOTO MOJTydaeM
) =1 1
-1 |g-1 P
P

k k u.
KM= .|+ ~1p< .| g+rd-g)—L || -1}=0, (84
o= 71| 2P . | 2| q)pj (84)

ecnn r < 1 . Jlerko MMPOBEPUTH, YTO UMCIKOT MECTO CJICAYIOIINEC HCPABCHCTBA
KM(p:u)<0 <0, r<1 >0, r>1;
gt p:u)s U, ecnm (g , , WA ( , T ;

SMy, .
KW (p:u)=0, ecmm g<0,r>1,mm g>0, r<1 . (85)

B gactHOM ciydae, korna ¥ — 1, u3 HepaBeHCTB (85) BBITEKAIOT CICAYIONIHE HEPABCHCT-
Ba JUIS pasiHyaromeii nadopmaruu PeHpn’ K; (p:u):

Kf;(p:u)SO, (g<0); K;(p:u)ZO, (g>0). (86)

— SM. ) —
Ba)XHO OTMETHTB, YTO OCKOJIBKY pU U = P umeer Mecto paBeHcTBo K o (p:p)=0,10

pasimmuaromas nubopManus Lllapma—Murrana siBisercs Gyrkimeit JlsmyHosa'

Jnst paznugaroneit uadopmarmuu Patbe—Kannanmnana K;K(p: u) u3 (85) caemyer
RK /. . RK (., _ — N\- RK ().
K, (p:u)20, (9>0); K (p:u)=0,(q=0); K (p:u)<0, (7<0), (87)

T.€. BbIpakeHue (87) yIOBIETBOPSIET TaKOMY € OCHOBHOMY CBOWCTBY, YTO M OSHTPOIUS
Kynns6aka—Jleitbiaepa KIacCHUECKON CTATUCTUKH, a TIOTOMY MOKET HCIIOIB30BATHCS JJIS TEX
e nened. OIHako B JaHHOM ClTy4ae UMEETCsl CBOOO0/a BEIOOpA IapaMeTpa ¢, YTO HO3BOJISET

HCCICI0BAaTh HEOKCTCHCUBHBIC CUCTCMBbI.

iii . .
) Hamomunm, uto ¢yHkuueit JIsmyHoBa Ha3bIBaeTCs 3HaKOONpeAenEHHas GYHKIU, KOTopas odparaer-
Csl B HyJIb B TOUKE paBHOBecHUs cuCTeMbl. COCTOSIHHE PAaBHOBECHS SBISETCS aTTPAKTOPOM, KOTrJa MPOU3BOAHAS
10 BpeMeHH oT (yHKIuH JImyHOBa MMeeT 3HaK, TPOTHUBOIIOJIOKHBIM 3HAKY CaMOW (DYHKIIHH.
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O000ménnas H-teopema B cratuctuke lllapma—Murrana. PaccMoTpuMm Teneps 3amk-
HYTYIO CHCTEMY, JJI1 KOTOPOH pacHpeneieHue p ; AABJIACTCS NPOU3BONILHBIM, A pacrpesiese-

HHC U; = p i~ PAaBHOBECHBIM (CM. (44))

v = 1-o@B,, (¢ - F)

] ]
CFI

1/(1-9)

(88)

[Tpu ucnonwszoBanuu cootnomenuit (8), (11), (30), (33) u (36) nerko mokaszaTh, YTO CIOH-
TaHHBIM NEPEXOJ MEXKIY ITUMU COCTOSIHUSMH ONUCHIBAECTCS CIEAYIOIIECH pa3jinyaroliedl WH-
dopmarueit [llapma—Murrana

1-r

- k ~1-q \1=q
K i) = 1-(3,p1 )7 |-

1-r
ko[ ¢, | . N s
=1, g (1—®(q)Bq,r(Eq —Eq))1 17-1|=
1/(1-q) 13 -
b ¢, 9 equ[ k BW(Eq Eq)] _

~ 1/(1-9)
CEI

— 1 1/(1-q) -1 k ~ 1/(1-q) _
= —ka—lnr {cq exp, [—k B, (E, - Eq)}}+6—lnrcq =
g q (89)

_7q-1) [gsm _gsm\ _ 15 N
=7, { (SW SW) kcq In, exp, [ k Bq,r(Eq Eq):|}
C PaBEHCTBOM K;A,A(P p) =0 npu pacnpenenenun p;= f;], .

Ecmu g,7 =1, 1o u3 (89) BbITEKACT Cieayomiee H3BECTHOE BBIPAKEHHE JUIsl HH(POPMALIHH
pasmuuust Kyns6aka—Jleitonepa K (p,u):= kz],p J In(p ]./ u ].) KJIACCUYECKON CTAaTHCTUYe-

CKOM MEXaHUKHU IS ClIy4das CIIOHTAHHOTI'O IEPEXoJa CUCTEMBI OT IIPOU3BOJILHOTO COCTOSIHUS C
48
pacnpeaciicCHuEM p K COCTOSHHIO C KAaHOHHWYCCKUM pPaCHpCACICHUCM I'nb6ca

p;= z™ exp(—k‘lﬁsj)
K*(p:p)=—(S""~5")+B(E,~E,) =0 (90)

XapaKTCPUYIOIICE CTCIICHb OTKIIOHCHU S Xa0THUYECKOM CUCTEMBI OT HOJHOTO PaBHOBCCHHSI.
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IIpu BeImONTHEHHH yenosus [u66ca® Eq: Eq U ¢ y4€ToM CBOICTBA (85) 3HAKOOMpEIenEH-
SMy . =~ )
HocTH HH(opManuu pasnmuaus K o (p:p) 13 (89) cnenyroT 1Ba HEpPaBEHCTBA:

K (p:p)Zi ==(S0 =51) >0, ecnm q>0, r<1,mm g<0,7>1; (1)

K;fﬁ(p:ﬁ)Z;q :—(S;],\ﬁ —§;ﬁ)<0, ecmn <0, r<1,mwm g>0, r>1, (92)

KOTOpble 0000matoT Teopemy ['m66ca Ha HeskcTeHCHBHYIO cTaTucTUKy Illapma—Murrana.
) “ SM
CormacHo 93TOif  Teopeme, Ui 3aMKHYTOW CHCTeMbl OHTpomus Penpu S or =

SM L " CSM
Sq ; —C K (p:p) Bospacraer (yObIBaer) IO OSKCTPEMAIBHOTO ©€ 3HAYCHHS SW npu

qg>0 (q < O) O/JIHOBPEMEHHO C yMEHbIIEHHEM (YBEJIIMYEHHUEM) MOJOXHUTEIbHON (OTpHIa-

TENBLHOM) MH(POPMALIUH K;M(p : p). Takum 06pa3oM, pasnudaroras HHGOPMAIWs IPEeICTaB-

JIeHa 3/1eCh B BUJE OTPULIATEIBHOIO BKJIAJA B TeKyllyro sHTponuto Illapma—Murrana u no-
TOMy MOJKET OBITh HA3BAHA HErSHTPOIHCH
[Tockonbky wuHbopManusi paznuuus [llapma—Mmurrana sBiseTcs 3HAKOOMPEIEICHHON

¢yskuueit JismyHoBa, TO uIs TOTO, 4YTOOBI COCTOSIHHE PABHOBECHS S ObUIO YCTOHYMBBIM,

HEO0OXOMMO BBITTOTHEHHUE CIICTYIONTUX HEPABEHCTB

(s -5) -

Zi1 =
K (p:p) g7

dt ecmn g>0, r<1,mwm g<0,r>1; (93)

SSM
dKSM(P p)Zlq——M>O ecIIn q<0 r<1, nmm q>0 r>1. (94)

dt dt
W3 3THX COOTHOWLIEHUH CllelyeT HEpaBeHCTBO a1 SHTponuu [Hlapma—Mutrana:
dSZﬁ/dt>O mpu 4<0,7r>1, wm g>0, r<1, (95)
dSZi\f/dt<O npu §<0, r<1, wm g>0, r>1, (96)

KOTOpPbIE BBIpAKAIOT H -T€OpeMy Ul CTOXACTUYECKOM ( -CHCTEMBI, OIUCHIBAEMOM SHTPOIIH-
el [llapma—MuTTana: npu BpPEMEHHOW 3BOJIOLMHM K PAaBHOBECHOMY COCTOSIHUIO SHTPOIHS

o . ASM
3aMKHYTOHU CHUCTEMBI MOXKCET KaK BO3pacCTaTb A0 3KCTPEMAJIBHOI'O €€ 3HAYCHUA Sq ;o TaKk U

yOBIBaTh B 3aBUCHMOCTH OT BBIOOpA YMCIICHHBIX 3HAYCHUM IIaPaMETPOB HEDKCTEHCUBHOCTH (]

ur.
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8 3AK/IIOYEHHUE

HccnenoBanust B 00JaCTH CTATUCTUUECKOM MEXAHUKU U TEPMOJUHAMUKN HEAKCTEHCUBHBIX
CHCTEM NPUOOPEIH B HACTOSIIEE BPEeMs 3HAUUTENILHBIN 00IETEOPETHUECKUI HHTEPEC B CBS3U
C MPOSIBJICHUAMHU HEIKCTECHCUBHBIX CBOICTB B AaHOMAJIbHBIX (PU3NYECKUX SBJICHUSIX U BaXKHO-
CTBIO MpHIIOKEHUIH. B HacTosmel padote naércs Jormyeckas cxema rmocTpoeHus 1edopmMu-
POBaHHBIX TEPMOJNHAMUK HEAKCTEHCUBHBIX CHCTEM, OCHOBAHHAsI HA MHOT'OIIApaMETPUIECKON
suTponuu [llapma—Murrana. B otnuuune ot psiia u3BecTHBIX padboT (cM., HaHpHMep,72’76’84)
KOTOPBIX MOAOOHBIE UCCIIEAOBAHUS [0 TEPMOCTATHKE MIPOBEAEHBI C NMPHUBJICYEHUEM JBYKpAT-
HO /1e()OPMHUPOBAHHBIX SKCIIOHEHTHI M JIorapu(ma (BBEAEHHBIX MEPBOHAYAIBHO B TEOPHUHU
uHpopmanuu llapma u Mutranem B 1975 r.), 0COOEHHOCTD TaHHOW pabOTHI COCTOUT B TOM,
YTO MPOBEJCHO MOCTPOEHHE 00OOIEHHBIX HEIKCTEHCUBHBIX TEPMOJMHAMUK C MOMOILBIO 00-
Jiee TPOCTHIX M XOPOIIO M3YYECHHBIX OJTHOKPATHO Ae(POpMUPOBAHHBIX (PYHKIUI — Jorapudpma
Y DKCIIOHEHTHI Tcamuca.

B pa6ore ¢ynkumonan lllapma—MuTtrana paccMmaTpuBaeTcs Kak (opmatop cemeiicTBa
KJIACCUYECKOM U Ie(OPMHUPOBAHHBIX OJIHONAPAMETPUYECKUX SHTPOIUHM, COCTOSALIET0 U3 IH-
tporuii Pennn, Tcammmca, Jlanncoepra—Benpana, ['aycca u ['m66ca. Bee a3t sHTpOTIHH CBSI-
3aHbl PaBEHCTBAMHU, MIPECTABISIIONIMMH YepeoBaHus OOBIYHBIX (/n, exp) u nedopMUpOBaH-
HbIX (Ing, exp,), norapudmoB u 3xcroHeHT. [lokazano, yro suTponus llapma—Mutrana noa-
YUHSETCS TICEBI0AAIUTUBHOMY 3aKOHY Ul IBYX CTaTUCTUYECKH HE3aBUCUMBIX cucteM. Haii-
JIEHO YHUBEPCAJIbHOE PACIIPEIEICHUE CTEIIEHHOTO 3aKOHAa Ha OCHOBE MaKCHMU3AILIUU JIByXIIa-
pametpudeckoi 3HTponuu [llapma—MuTTana npyu 3a1aHHBIX OTPAaHUYEHUSAX HA OCPEIHEHHbBIE
3HAUEHUS NapaMETPOB CHCTEMBI, MOITYYEHHbIE IO HOPMUPOBAHHOMY 3CKOPTHOMY pacIipeie-
JICHUIO BEPOSTHOCTEH.

[Toctpoena Ha 6aze cratuctuku [llapma—Mutrana qByxmapameTpuuecKas TepMOAHMHAMHU-
Ka HE3KCTEHCHBHBIX CHUCTEM U TOKa3aHa €€ B3aMMOCBS3b C 00OOIEHHBIMU OJHONApaMeTpH-
YEeCKHMMH TEPMOJAMHAMHUKAMK, OCHOBAaHHBIMH Ha YKa3aHHBIX BBIIIEC 1e(HOPMUPOBAHHBIX IH-
tponusix. [losyueHo 00o0IIeHHE HYJIEBOTO 3aKOHA TEPMOAMHAMMKH JUI ABYX HE3aBUCHUMBIX
HEIKCTEHCUBHBIX CHCTEM IPU UX TEIJIOBOM KOHTAKTE, BBOASILEE B PACCMOTPEHHUE TaK Ha3bl-

3

BaeMyl0 (U3UYECKYI0 TeMIepaTypy Tph(p) OTJIMYAIOIIYIOCS OT MHBEpCHM MHOxuTens Jla-

rpamka 3. D1oT akt moTpeGoBal MepeonpeeeHusi HEKOTOPIX TEPMOJANHAMUYECKUX CO-

OTHOILICHMH, MOJTlyyaeMbIX B pamkax cratuctuku lllapma—Murrana. B kauecTBe OCHOBHBIX
NPEIOCHIIOK, B3ATHIX 38 MCXOJHBIA MyHKT HaXOXACHUS 1e(OPMHUPOBAHHBIX TEPMOJAHHAMHU-
YEeCKHX COOTHOILEHUH B paboTe ObUM BBIOPAHBI MEPBBIN 3aKOH TEPMOJUHAMUKU U CTPYKTYpa
npeobpa3oBanus Jlexanapa. HakoHel, Ha OCHOBe AByXIapaMeTpU4ecKoi HH(OpMaIUHU pas-
anuus Hlapma—Murrana popMynupyroTcs U JoKa3biBatoTcsi TeopeMbl [106ca nu H-teopema
00 M3MEHEHUH 3TUX MEP MPU SBOJIOIIMH BO BPEMEHH.

OTmeTuM, YTO MOJIydYE€HHBIE TaKUM 00pa3oM MOJU(PHUIHMPOBAHHBIE TEPMOJUHAMUYECKHE
COOTHOILIEHHUS] COOTBETCTBYIOT Pa3IMYHBIM BBIPAKEHUSIM OJHONAPAMETPUUYECKUX SHTPONUN U3
ceMeiicTBa SM, UMeIOT OOIIMIA BUJ U MOTYT OBITh HCIIOJIb30BaHbI IIPU PACCMOTPEHUH Pa3HO-
00pa3HbIX TEPMOJMHAMUYECKHX MPOLIECCOB (HEOOPaTUMOCTH, YCTONUYUBOCTH, CAMOOPraHu3a-
11K, GPAKTAIBHOCTH U T.I.) B 3aMKHYTBIX U OTKPBITHIX XaOTHUECKUX HEIKCTEHCUBHBIX CHUC-
TeMax.

Pabota Bbmmonnena npu nojaepxkke I[Iporpammsr Ilpesuanyma PAH Ne 28 u rpanrta
POOU Ne 18-01-00064.
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Abstract. The results of the Seventeenth International Scientific Seminar "Mathematical
Models and Modeling in Laser-Plasma Processes & Advanced Science Technologies"
(LPPM3-2018), held from 28 May to 1 June 2018 in Montenegro (Budva), were briefly
summarized by the program committee of the seminar.

1 INTRODUCTION

From May 28 to June 1, 2018, the 17th International Scientific Seminar "Mathematical
Models and Modeling in Laser-Plasma Processes & Advanced Science Technologies"
(LPPM3-2018) took place in Montenegro, Budva. Figure 1 presents participants of LPPM3-
2018 at the opening day. Seminar organizers: Keldysh Institute of Applied Mathematics of
Russian Academy of Sciences, A.M. Prokhorov General Physics Institute of Russian
Academy of Sciences, University of Montenegro (Podgorica), Forum of University Professors
and Researchers of Montenegro, Scientific Journal "Mathematica Montisnigri".

2 MAIN CHARACTERISTICS OF THE SEMINAR

More than 70 well-known scientists from Russia, Montenegro, France, Great Britain took part
in the Seminar in 2018. From Russia, scientific results were presented by researchers from five
Institutes of the Russian Academy of Sciences, six research centers and universities. Montenegro
was represented by researchers at the University of Montenegro. France was represented by the
University of Paris-Saclay, Great Britain - Queen Mary's University of London.

The seminar still has the information support of the international scientific journal
Mathematica Montisnigri. In 2018, the articles on LPPM3-2018 will be published on the pages of
42th and 43th journal's volumes. The publication in the journal of innovative articles that have
scientific novelty and passed approbation at the Seminar, contributes to the development of
mathematical science, demonstrates to the scientific community the possibilities of the
methodology of mathematical modeling.

All reports were made on the main scientific topics within the framework of two sections.

Section I. Laser-plasma processes, laser action.

— Laser ablation - experiment, theory statement of the problem.

—  Continuum and atomistic models.

2010 Mathematics Subject Classification: 00B20, 00A66, 97M10, 97M50.

Key words and Phrases: Proceedings of conferences of general interest, Mathematical Modeling,
Computational Mathematics, Laser Technology, Parallel/Distributed Computing, Heterogeneous Computational
Technologies, Russian Space, Advanced Science Technology.
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Simulation of various modes of laser action on materials.

Generation of nanoparticles and nanostructures by ultrashort laser pulses.
Non-equilibrium low temperature laser plasma.

Plasma theory and simulation.

Mathematical modeling and computer experiment in applied problems.

Section II. Advanced science technologies.

Models and algorithms for high performance computing.
Models of mathematical physics and complex analysis.
Russian space.

Advanced scientific technologies in humanitarian knowledge.
Mathematical methods in biology.

The seminar traditionally keeps an interdisciplinary focus, based on the scientific
methodology of mathematical modeling, which allows to unite scientists working in different
subject areas: mathematics, physics, chemistry, biology, medicine, economics, history.

bty

Fig. 1. Participats of the seminar LPPM3-2018 at the opening day.

The main scientific directions of the seminar were formulated in invited papers. One of the
main topics discussed was the problems of short-pulse (nanosecond) laser action on condensed
media and methods for their solution. Three invited reports were devoted to this area. The
sequence of complex phenomena initiated by short nanosecond laser pulses upon irradiation of
metal surfaces was considered in two aspects: theoretical and experimental.

According to the results of theoretical studies, the main tool of which is mathematical
modeling, in the report [1], presented by the Keldysh Institute of Applied Mathematics of RAS,
(Russia), a complex sequence of events that occur during and after the end of the laser pulse was
analyzed. The presented results were obtained within the complex of continuum models: 1D -
RGD model, conjugated with the multifront model of phase transformations in the Al target.
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The problem of studying nanosecond laser ablation with the help of molecular dynamical
modeling was considered in the report [2] presented by the A.M. Prokhorov General Physics
Institute of RAS (Russia).

The results of an experimental study of nanosecond ablation by laser pulses and their
theoretical analysis were presented in an invited paper [3] presented by the University Paris-
Saclay (France).

Another discussed direction of the seminar was the problems of developing numerical methods
in the context of improving modeling results in various subject areas. The report [4] is devoted to
the construction of exact solutions of equations of hyperbolic type containing a discontinuity. The
paper shows the construction of discontinuous solutions for the quasilinear transport equation and
the system of shallow water equations with the use of the characteristic approach, the urgency of
constructing analytical solutions for complex problems of applied importance is noted.

Recently, the topic "Models and algorithms for high-performance computing”, which was
reinforced in 2018, was presented by an invited report [5]. The report presents effective
technology and software solutions on graphics processors (GPU) of the problem of modern oil
and gas engineering related to increasing oil recovery of oil reservoirs by preventing the
phenomena of unstable (incomplete) oil displacement. Software solutions of the problem are
based on the use of distributed computing and parallelization of graphical calculations using
modern shader technologies. The proposed technology includes the construction on the GPU of a
polygonal isosurface model, its arbitrary flat section, as well as the visualization of the isosurface
model in mono and stereo mode.

The traditional topic is "Russian space" within the framework of the section "Advanced
science technologies". In the invited report [6] the retrospective and prospects of space research
at the Keldysh Institute of Applied Mathematics of RAS (Russia) since the creation of the Soviet
R-7 rocket which brought on the orbit world's first Earth artificial satellite to modern international
space research projects. During the sectional discussions, the problems of observing space objects,
developing observational systems and statistical processing of the obtained data, and modeling
problems of operator-controlled robots were considered.

The problems outlined in the invited papers were discussed during the sessions of the sections.
The diagram (Figure 2) shows the quantitative characteristics of the reports submitted by
scientific organizations for discussion at the sessions of the sections. Among the scientific centers
presenting scientific results at the LPPM3 seminar, the Keldysh Institute of Applied Mathematics
of RAS has recently retained the leading position in the number of scientific reports submitted.
The share of reports submitted by scientists from the University of Montenegro has increased. A
consequence of this was a change in the thematic structure of the reports. As compared to 2017,
the number of reports devoted to high-performance computing, molecular dynamics modeling,
computational methods, models of mathematical physics has increased significantly.

In the topic "Models of mathematical physics and complex analysis " the problems of
numerical methods development in context of improvement of simulation results in various
subject areas were discussed. In particular the discontinuous Galerkin method for problems
with shock waves is discussed [7]. This method has a number of advantages inherent in both
finite-element and finite-difference approximations. It provides a given order of accuracy on
smooth solutions and can be used for grids of arbitrary structure. Difference schemes of the
method of support operators [8] for the equations of the theory of elasticity in displacements
are debated. Such approximations preserve the properties of divergence, self-adjointness and
sign-definiteness of differential operators, and applicable to the solution of non-stationary
problems of hydrodynamics with allowance for elastic processes.
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For the numerical solution of three-dimensional diffusion equations a self-adaptive
Chebyshev iterative method is presented [9]. This algorithm is capable of evaluating an
unknown lower bound of the discrete operator spectrum. It is shown that adaptive procedure
ensures the convergence of the adaptive method with computational costs close to the costs of
the Chebyshev method, which uses the exact boundaries of the spectrum.

2% 2% 29, 204

= Keldysh Institute of Applied Mathematics of RAS, Moscow, Russia

u University of Montenegro, Podgorica, Montenegro

u A.M. Prokhorov General Physics Institute of RAS, Moscow, Russia

u Scientific Research Institute for System Analysis of RAS, Moscow,
Russia

m Space Research Institute, Moscow, Russia

= Joint Institute for high temperatures of RAS, Moscow, Russia
National Research Nuclear University“MEPhI”, Moscow, Russia

Université Paris-Saclay, France

1Queen Mary University of London, UK

Fig. 2. Structure of reports on scientific organizations of speakers.

The molecular dynamics modeling methodology (MDM) was discussed, and the growing
importance in the studies of the atomistic approach associated with the development of
computing facilities was noted. A new technique for modeling liquid molecular systems in
different spaces and time scales simultaneously with a consistent transition between scales
was presented in the report [10]. Within the framework of the molecular dynamics
methodology, the results of studies of the properties of metals [11] and semiconductors [12]
in the melting range and critical phenomena were presented.
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The increase in the share of reports presented by scientists of the University of Montenegro
(Fig. 2) reinforced the theme of the fundamental aspects of complex analysis, the n-
dimensional bialgebra. The following reports were presented.

e Complex analysis. In this area, the results of studies of various spaces of analytic and
harmonic functions were presented [13 - 16];

e Algebra. The results of investigations of various algebraic structures, such as
hypernormal rings and semisimple n-dimensional bialgebras, are presented [17, 18];

e Dynamic systems. The results of a study of the motion of particles on a compact Lie
group are presented, the swarm model developing on the 3-D sphere [19-21];

e Graph theory. Molecular graphs have been studied in this field [22].

Within the framework of the section "Advanced science technologies" in the topic topic
"Mathematical Methods in Biology", the problems of modeling in biomedicine including the
problems of multichannel analysis of data, allowing to restore the structure and dynamics of
complex systems, such as the human body, including the brain, heart and muscles [23];
modeling of non-stationary processes of infection spread.

Materials of the LPPM3-2018 conference can be found at
https://lppm3.ru/historyeng/history-of-programmes .

3 SEMINAR DECISIONS

The following decisions were made:

— In every possible way to strengthen and develop international scientific cooperation in
the field of application of methods of mathematical modeling;

— To maintain the basic principles of the Seminar, strengthening its interdisciplinary,
involving, scientists from various fields of science;

— To hold in 2019 the 18th International Scientific Seminar LPPM3, the 10th held in
Montenegro.

Detailed information on the preparation of the seminar, the materials of the speeches and
the results of the annual sessions can be found on the website: http://lppm3.ru/.

Chairman of the Program Committee, Professor V.I. Mazhukin.
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KiroueBble ciaoBa: MaremaTHueckoe MOJEIMPOBAHUE, JIA3€pPHO-IUIA3MEHHBIE IPOLECCHI,
Ja3epHble TEXHOJOTWH, Ja3epHas IUIa3Ma, JIa3epHOE BO3JACHCTBUE, BBIYHUCIMTEIbHAS
MareMaruka, Pycckuil KocMOC, Hay4yHasi )KU3Hb

AnHoTanusa. Pesynbratel CemHanumaroro MeXaIyHapoOgHOTO HAy4YHOTO  CEeMHUHapa
«MareMmaTn4eckue MOACIM W MOACIHUPOBAHUC B JIA3CPHO-TNNIA3MCHHBIX IIPOHCCCaxX &
nepeaoBbIX HaydHbIX TexHoJorusx» (LPPM3-2018), npoxoausmiero 28 mas mo 1 urons 2018
roga B YepHoropuu (r.byzaBa), kpatko 06001IeHB TPOrPAMMHBIM KOMUTETOM CEMUHApA.

1 BBEJEHHUE

C 28 mas mo 1 wmrons 2018 roma B ropome bynsa (UYepnoropus) cocrosics 17-i
MexnyHapoaHblii Hay4dHbIH cemuHap «MaremaTuyecKkue MO W MOJECIMPOBAHUE B
Ja3epHO-1IIa3MeHHbIX mpoieccax & IlepenoBeix Hayunbix TexHonorusx» (LPPM3-2017) Ha
puc.l mpexncrasieHa ¢ororpadus ygactHukoB cemuHapa LPPM3-2018 B neHb OTKpBITHS.
Opranuzaropsl cemuHapa: WMHcTuTyr npukiaagHoid warematukun uM. M.B. Kengeina
Poccuiickoii akanemun Hayk, UHCcTUTYT 00mIel ¢u3uku um. A.M. IIpoxopoBa Poccuiickoit
akagemun Hayk, YHuBepcuteT UYepHoropum (Ilogropuma), ®opym mnpodeccopoB u
uccaenoareneir Yepnoropuu, Hayunerii sxypHan «Mathematica Montisnigri.

2 OCHOBHBIE XAPAKTEPUCTUKU CEMHUHAPA

B pa6ore Cemunapa 2018 roga nmpunsiau yyactue 6osnee 70 u3BecTHBIX yueHbIX u3 Poccuu,
Uepnoropuun, Ppanuuu, BenukoOpuranuun. W3 Poccum HaydHble pe3yibTaThl — ObLIN
MpeAcTaBIeHbl HuccienoBarensiMu nAtd WHcturytoB Poccmiickoit Axanemun Hayk, mectu
Hay4HBIX EHTPOB U YHUBEPCUTETOB. YepHOTrOpHIO MPEACTABIISUIA UCCIIEOBATENN Y HUBEPCUTETA
Uepnoropuu. ®pannus Obuta npeacrasieHa yausepcurerom [lapmk-Caxnail, BeaukoOpuranus —
JIOHIOHCKUM YHHUBEPCUTETOM KOpOJieBbl Mapuu.

[To-npexxuemy CemuHap mnonydaeT HHGOPMAIMOHHYIO TMOJIICPKKY HAYYHOTO >KypHajIa
«Mathematica Montisnigri». [lo mokmazam, BBI3BaBIIMM HAMOOJBITUN HWHTEPEC YYACTHUKOB
Cemunapa B 2018 romy, Ha crpanumax 42 u 43 TOMOB KXypHajia OyayT OMyOJMKOBAHBI CTaThH.
[MyOonukanuss Ha CTpaHMIAX IKypHAla WHHOBAIIMOHHBIX CTaTed, OOJIAMAIONMX HAyIHOU
HOBM3HOM U mpoweamux amnpobanuio Ha CemMuHape, BHOCUT BKJIaJ B pa3BUTHE

2010 Mathematics Subject Classification: 00B20, 00A66, 97M10, 97M50.

Key words and Phrases: Proceedings of conferences of general interest, Mathematical Modeling,
Computational Mathematics, Laser Technology, Parallel/Distributed Computing, Heterogeneous Computational
Technologies, Russian Space, Advanced Science Technology.
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MaTeMaTHYeCKOM HAayKH, JEeMOHCTPHPYET HAyYHOMY COOOIIECTBY BO3MOXKHOCTH METOJIOJIOTHH
MaTeMaTH4eCKOI0 MOJEIUPOBAHNS.

Puc. 1. Yuactauku cemunapa LPPM3-2018 B 1eHb OTKPBITHSL.

Bce noxnaaer ObuH clieiaHbl 10 OCHOBHBIM HaYYHBIM TEMaM B paMKaXx JBYX CEKIIHI
Cexuus 1. JIazepHo-11a3MEHHBIE TPOLIECCHL, JIA3EPHOE BO3/ICHCTBHE.

JlazepHast aOis1Ms - SKCIEPUMEHT, TEOPHsl, TOCTAHOBKH 3a/1a4.

KonTunyanbHble 1 aTOMUCTUYECKHE MOJCIH.

MonenrpoBaHue pa3IuUHbIX PEKUMOB Ja3€PHOTO BO3ACHCTBHS HA MaTEpUaJIbl.
['enepanust HAaHOYACTULl U HAHOCTPYTYP YIAbTPAKOPOTKUMHU JIA3€PHBIMU UMITYIbCAMH.
HepaBHoBecHas HU3KOTEMIIEpaTypHas Ja3epHasl IIa3mMa.

Teopust m1a3Mbl U BHIYUCIUTENIbHBIA SKCIIEPUMEHT.

Maremarrnueckoe MOACIUPOBAHNE U BHIYMCIUTEIILHBINA SKCIIEPUMEHT B MPUKJIIATHBIX

npobiiemMax
Cexmnus II. TlepenoBbie HayYHBIE TEXHOJIOTHH.

Mopenu 1 anropuTMBI U1 BBICOKOIPOU3BOAUTEIIBLHBIX BBIYUCICHUI
Monenu maremaTnyeckoi (PU3MKU U KOMIUIEKCHBIA aHAU3.
Pycckuii kocmoc.

IlepenoBble Hay4HBIE TEXHOJIOTUM B TYMAHUTAPHBIX 3HAHUSIX.
MaremaTHueckue MeTo/ bl B ONOMETULIMHE.

CemMuHap  TpaJUIMOHHO  COXpaHAeT  MEXIUCUUIUIMHAPHYIO  HANpaBJICHHOCTH,
OCHOBBIBAIOIIYIOCS Ha HayYHOW METOJOJIOTMM MAaTEMaTHYECKOTO MOICIMPOBAHUS, KOTOpas
MO3BOJIIET OOBEAMHHUTHh YYEHBIX pabOTAIOUMX B Pa3IWYHBIX MPEIMETHBIX OO0IaCTAX:
MaTeMaTuke, pu3uke, XuMuu, OMOIOTHH, MEIUIIMHE, YKOHOMUKE, HCTOPHUH.
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OcHOBHbBIC HAaYYHBIC HAIPABJICHUS CEMHUHAapa ObUIM CHOPMYITUPOBAHBI B MPHUTIAMICHHBIX
noknanax. OJIHUM W3 OCHOBHBIX OOCYKJAaeMbIX HANpaBJIEHUH CTald MpoOIeMbl
KOPOTKOMMITYJIbCHOTO (HAHOCEKYHJHOT'O) JIa3€pHOTO0 BO3IECHCTBUS Ha KOHACHCHUPOBAHHbIE
Cpellbl U METOJIbl UX peUIeHHs. DTOMY HAIPaBICHUIO ObUIO MOCBALICHO TPH MPUTJIAIIEHHBIX
noknana. IlocnenoBaTenbHOCTh  CHOXKHBIX — SIBICHMHM, HMHULUUPYEMBIX  KOPOTKHUMH
HAaHOCEKYHIHBIMU JIa3€pPHBIMH UMITYJIbCAMU TPHU O0JYyYEHUH METaUIMYECKUX MMOBEPXHOCTEH,
ObUIa PaCCMOTpPEHA B JIBYX aCIEKTaX: TEOPETUYECKOM M IKCIIEPUMEHTAIHLHOM.

[To pesynbrataM TEOPETUYECKUX HCCIEAOBAHUN, OCHOBHBIM HHCTPYMEHTOM KOTOPBIX
SIBJISIETCS MAaTEMAaTHUUECKOE MOJIeIupoBanue, B qoknanae [1], npencrasnennom UIIM um. M.B.
Kenneimma PAH (Poccust), 6puta mpoananu3upoBaHa CI0KHAS TTOCIEI0BATEIFHOCTh COOBITHH,
KOTOpBIE IIPOUCXOAST BO BPEMS U MOCJIE OKOHUAHUS JIa3epHOro umnysbca. IIpencraBieHHble
pe3yabTaThl OBLIM TOJYYEHBl B paMKaxX KOMILIEKCa KOHTHHYaJIbHBIX Mozenei: 1D — PI'JI
MO/IEIIH, CONPSKEHHOM ¢ MHOTO(GPOHTOBOM MOJIENbIO (ha30BBIX MpeBpalleHuil B Al MumeHu.

[IpobGnema nccnenoBaHUsT HAHOCEKYHIHOM JIa3epHOM abJSAIUUA C TIOMOIIBI0 MOJIEKYIISIPHO
JMHAMUYECKOTO MOJeTUpOBaHMs Obljla paccMOTpeHa B Jokiaze [2], npeacraBienHom OO
uM. A.M. IIpoxoposa PAH (Poccus).

Pe3ynpTaThl SKCIEPUMEHTAIBHOTO HMCCIEIOBAHUS HAHOCEKYHIHOM aOJsIMU J1a3epHBIMU
UMIYJIbCAMH U MX TEOPETUYECKUH aHaiau3 ObUIM MpeACTaBIEHbI B MPUTJIAIIEHHOM JOKJIaae
[3], npenctaBnenHoM YHusepcuteToM Ilapuxk-Cakinait (Opannus).

Hpyrum oOCyXJa€MbIM HAampaBJICHUEM CEMHUHapa CTajad MpobjeMbl pa3paboTKu
YHUCJIEHHBIX METOJOB B KOHTEKCTE YIYYIIEHHUS PE3yJbTaTOB MOJAEIUPOBAHUS B Pa3IMUHBIX
npeaMeTHBIX 00nacTax. [locTpoeHUIo TOUHBIX peleH! ypaBHEeHUH runepOoInYecKoro THIa,
CoJIepKalnX pa3pbiB, MOCBAILIEH N0KIa] [4]. B mokiane mokaszaHo mocTpoeHUE pa3phIBHBIX
pELICHHI 1J11 KBa3WJIMHEWHOTO YPaBHEHUS MEPEHOCA U CUCTEMbl YPABHEHHUI MEIKOU BOJBI C
UCIIOJIb30BAaHUEM XapaKTEPUCTHUUECKOIO IMOAXO0/a, OTMEYAETCS aKTYalbHOCTh IOCTPOCHUS
AQHAIUTUYECKUX PEIICHUHN AJIS CIOXKHBIX 33/1a4, UMEIOIIUX MPUKIIaJHOE 3HAUCHHUE.

HenaBHo mnosiBuBLIEecs Ha cemMuHape, HO ycwiuBlieecs B 2018 roxay, HampaBieHue
«Mopenu 1 anroOpUTMBI 1711 BBICOKOTIPOU3BOAUTEIbHBIX BBIUYUCICHUNY, OBIJIO MPEICTaBICHO
OpUrJamieHHsIM AoknaaoMm [5]. B nokmage mpencrtaBneHa 3¢ (eKTUBHAS TEXHOJOTHS H
mporpamMMHbIe penieHus Ha rpadudeckux mpoueccopax (GPU) mpobGieMbl COBpeMEHHOTO
He(TEera30BOro HMHXHUHUPHHTA, CBA3aHHOW C IMOBBIIIEHHEM HE(PTEOTAaYH HE(PTECHOCHBIX
IUIACTOB 32 CUET MPEeAOTBpAICHUs SBICHUI HEyCTONYMBOIO (HEMOJHOI0) BBITECHEHHS
HedTu. [IporpammHubie pemeHust MpoOieMbl OCHOBAHbI HAa MCIOJIB30BAHUU PACIPEACICHHBIX
BBIUMCJICHUM M pacnapayieIMBaHUM TpaQUuecKUX pPacyeToB € MOMOIIbIO COBPEMEHHBIX
meiaepHbIX TexHoJorui. I[IpemnaraemMas TeXHOIOTUs BKIIOUaeT B cedst moctpoernue Ha GPU
MOJIMTOHAJIBHON MOJIENM H30MOBEPXHOCTH, €€ NMPOU3BOJIBHOTO IUIOCKOTO CEYEHMS], a TaKkKe
BU3YaIM3aI{I0 MOJIETIH U30MIOBEPXHOCTH B MOHO- M CTEPEOPEKUME.

TpanMuMOHHOM Ha ceMUHape craja TeMmaruka «Pycckuii kocmocy. llpurnameHHsbli
JIOKJIaz [6], moKa3ajn peTpOCIEKTUBY M MEPCIIEKTUBBI UCCIECIOBAHUN KOCMHUYECKOM TEMATUKU
B UIIM um. M.B. Kengeimia PAH (Poccust) ot mepuona co3gaHusi pakerbl-Hocutens P-7,
KOTOpasi BbIBeJIa Ha 3€MHYIO OpOUTY MEpBBIH B MUpPE HMCKYCCTBEHHBIH CIYTHUK 3€MIIH, 10
COBPEMEHHBIX MEXIAYHAapOJHBIX IIPOEKTOB HCCIENOBAaHUS KocMoca. B Xozne CEeKIIMOHHBIX
00CYXICHUI paccMaTpUBAIMCH MPOOJEeMbl HAOMIONEHUS 32 KOCMHYECKUMU OOBEKTaMH,
pa3BUTHS CHUCTEM HAONIOJACHUS UM CTATUCTUYECKOH OOpabOTKM TONYyYEHHBIX JaHHBIX,
po0OJIeMbl MOJIEIMPOBAHUS YIIPABISIEMBIX OIIEPATOPOM POOOTOB.
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[IpoGnempl, HaMEeUEHHBIC B MPUTJIAMICHHBIX JOKIAAaX, OOCYKIAIMCh B XOJE 3aceIaHui
ceknuii. Ha amarpamme (puc. 2) mokazaHa KOJWUYECTBEHHAs XapaKTEPHCTHKA JIOKJIAJOB,
MPEJICTABICHHBIX HAYYHBIMU OpPTaHHU3AIUSMHU IS OOCYXKICHHS Ha 3aCCHaHUAX CEKIIHU.
IlepBeHCTBO MO KOJIMYECTBY MPEACTABICHHBIX HAYYHBIX JOKJIAI0B Ha cemuHape LPPM3 B
2018 romy cpenu HaydHbBIX LEHTPOB coxpaHseT MHCTUTYT MPUKIATHON MaTeMaTHUKU HM.
M.B. Kenmpima PAH. CrneactBueM 3TOro cTajio HM3MEHEHHE TEMAaTHYECKOW CTPYKTYPHI
noknanoB. Ilo cpaBHenuto ¢ 2017 ronom 3HAYUTENBHO YBEIMYMIOCH KOJIMYECTBO JTOKJIAI0B
MOCBSIIEHHBIX BBICOKOTIPOU3BOAUTEIBHBIM BBIUMUCICHUSM, MOJIEKYJISIPHO-IUHAMUYECKOMY
MOJICTIMPOBAHUIO, BEIYUCIUTEIHLHBIM METOIaM, MOJCIISIM MAaTEMAaTHIECKON (PU3UKH.

2% 2% 29, 204

B IIIM sm. M.B. Keaapima PAH, Mocksa, Poccns

B Vausepcurer Yepnoropun, [Hoaropnna, Yepnoropusn
B HO®D nm. A.M. IIpoxoposa PAH, Mocksa, Poccnn
B HHIICH PAH, Mockga, Poccns
u IIKH PAH, Mocksa, Poccna
B IIOBT PAH, Mocksa, Pocca
M®TH, Mocksa, Pocca
VaneepcurerT Iapma-Caknail, ©panmusd

JloHgoHCKNi YHHBepCcHTET KopoJeBbl Mapun, Beamkodpuaranms

Puc. 2. CtpykTypa IOKJIaI0B MO HAyYHBIM OPTaHU3AIMAM JOKJIAIIHKOB.

B paznene «Mogenun maTemaTrnueckod GU3MKM U U KOMIUICKCHBIN aHAN3» 00CYKIAINCh
npoOJieMbl  pa3pabOTKH YHCICHHBIX METOJOB B KOHTEKCTE VIIYUIICHHS pPe3yJIbTaTOB
MOJICTIMPOBAHUS B PA3IMYHBIX MPEAMETHBIX 001acTsax. B wactHoCcTH, 00Cy)KIacs pa3pbIBHBII
Meron [lanmepkuHa st 3ama4 ¢ yJapHBIMH BoOJHaMH [7]. DTOT MeETON HUMeEET psif
NPEUMYIIECTB, MPHUCYIIMX KaK KOHEYHO-dJIEMEHTHBIM, TaK U KOHEYHO-PA3HOCTHBIM
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npubimxkeHusM. OH oOecrieuynBaeT 33JaHHBIA MOPSIOK TOYHOCTH Ha TVIAJAKHX PEIICHUSIX H
MOJKET HCIIOJIb30BaThCs JJI CETOK MPOU3BOJIIBHOM CTPYKTYpbl. OOCYXAanuch pa3HOCTHHIE
CXEMBI METOJ]a ONOPHBIX ONEPATOPOB [8] ISl ypaBHEHUM TEOPUM YIPYTOCTH B CMELICHMSIX.
Takue anmpoKCHUMAallMKd COXPAHSIOT CBOMCTBA PACXOAMMOCTH, CAMOCOIPSKEHHOCTH U
3HAKOOIPE/ICTICHHOCTH TU(PEpeHIINATbHBIX ONEPaTOpOB W TNPUMEHUMBI K PELICHUIO
HECTAllMOHAPHBIX 33Jay THIPOJMHAMHUKU C Y4E€TOM YIPYruX MporeccoB. i YUCIEHHOTO
pElIeHUs TPEXMEPHBIX YpaBHEHH MU y3Ur IPEICTABICH CaMOaIallTUBHBIA UTEPAIIHOHHBIHA
mMetoa YeoOrwimeBa [9]. DTOT airOpUTM COCOOEH OIIEHUTh HEM3BECTHYIO HIKHIOIO TPAaHUILY
JMCKPETHOTO CrHekTpa omepartopa. IlokasaHo, 4To ajanTHBHAs INpoleaypa obecreunBaeT
CXOJUMOCTh aJIalITUBHOTO METO/A C BBIUYUCIMTEIBHBIMH 3aTpaTaMH, OJM3KUMHU K 3aTparam
MeTosa YeOblieBa, KOTOPBINA UCIIOIB3YET TOUHBIC TPAHUIIBI CIICKTPA.

OO0cyxaanach MOJIEKYJISIPHO-TUHAMUYECKast MEeTooJIoTHusl MoaemupoBanus (MJIM), 6110
OTMEUEHO BO3pPACTAIOLIEE 3HAUEHHUE B MCCIEJOBAHUAX ATOMHCTHYECKOTO IOAXO0AA,
CBA3aHHOTO C Pa3BUTHUEM BBIUMCIMTEIbHBIX cpeacTB. HoBasg meroauka MoIenupoOBaHUS
KUJKUX MOJCKYISPHBIX CHCTEM B pa3HBIX TMPOCTPAHCTBAX M BPEMEHHBIX MaciiTabax
OJIHOBPEMEHHO C IMOCJIEIOBATEIbHBIM NEPEXOAOM MEXAY MaciTadaMu Obljia peICTaBIeHa B
noknazne [10]. B paMkax MoJeKyssIpHO-AMHAMUYECKON METONOOTHH OBbLTH MPEACTaBICHBI
pe3yabTaThl HMCCIENOBAaHUN CBOMCTB MeTauioB [11] m momympoBomHukoB [12] B oGmactu
TUTABJICHUS U KPUTUYECKUX SIBJICHUH.

VYBenuueHue 0K JIOKJIAJ0B, MPEACTAaBICHHBIX YUEHbIMH YHUBepcurera UepHoropuu
(puc.2) ycunuino TeMaTtuky (QpyHIaMEHTAIbHBIX acleKTOB KOMIUIEKCHOTO aHAJIN3a, N-MEepHOU
O6uanreOpsl. bbutn mpecTaBIeHbI TOKIAbI MO0 CIEIYIOIIUM HANIPABICHUSIM.

» KommekcHblit ananus. B 3Toit obmactu ObLIM MPEACTaBICHBI Pe3yIbTaThl UCCIEIOBAHUN
Pa3IMYHBIX TPOCTPAHCTB AHATTUTUYECKUX U TapMOHUYECKUX GyHKImiA [13 - 16];

* Anrebpa. IlpenctaBieHsl pe3ysibTaThl HCCICIOBAHUN PasHBIX anreOpanyecKux CTPYKTYp,
TaKUX Kak TUIIEPHOPMAaJIbHBIE KOJIBIIA U TTOIYIIPOCThIE N-MepHbIe Onanreopsl [17, 18];
 lunamuueckue cucremsl. [IpencraBieHsl pe3yabTaThl UCCIEIOBAHNS IBUKEHHUS YacTHIl Ha
KOMITaKTHOM rpymie JIu, Mmonens pos pasBuBaromrytocs Ha 3-D cdepe [19 -21]

* Teopus rpacdoB. B 310l 06mactu uccieqoBaaucy MoJIeKyIspHbie Tpadbl [22].

B pyOpuke «Maremarndyeckue METOAbI B OHMOJOTHH» PACcCMaTPHBAJIOCh MPOOIEMBI
MOJCIIMPOBAaHUsT B OHMOMEIMIIMHE, B TOM WYHCIIE MPOOJEeMbl MHOTOKaHAJIHHOIO aHAJIN3a
JAHHBIX, TIO3BOJISIOLIET0 BOCCTAHOBUTH CTPYKTYPY U TUHAMUKY CIOXKHBIX CUCTEM, TAKMX Kak
YEJII0BEYECKOE TENo, BKJIOYas MO3l, cepaune M Mblunsl  [23];  MoAenupoBaHUs
HECTAIlMOHAPHBIX MPOLIECCOB PACIPOCTPaHEHUSI HHPEKIINH.

Marepuansl BBICTYIUICHHH y4acTHUKOB KoH¢pepeHiuun LPPM3-2018 moxHO HaiiTu Ha
caifre https://Ippm3.ru/en/historyeng/history-of-programmes.

3 PEHIEHUSA CEMHMHAPA

Bbumu npuHSATHL CleayIOIINe pEeHIeHUs:
— BCEMEpHO YCHJIMBATh U Pa3BUBATh MEXKIYHAPOIHOE HAYYHOE COTPYIHHUYECTBO B
o0JacTu MPUMEHEHHUSI METOJIOB MAaTEMAaTUYECKOTO MOJICIIMPOBAHHS,
— TMOAJIEPKUBATh OCHOBHBIE MPUHIUIIBEI CeMHUHapa, YCUIINBAsL €ro
MEXIUCUUIUTMHAPHOCTD, IPUBJIEKAsl ISl 3TOTO YUYEHBIX U3 pa3IMuHbIX oOjacTen
HAYKH;
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— nposectu B 2019 roay 18-it MexxnyHapoausiii HayuHblii cemuHap LPPM3, necsarslii B

UYepHoropuu.
[TogpoOHyto mH(pOpMaIMIO O MOATOTOBKE CEMHHapa, MaTepuagaxX BBICTYIJICHHH U

UTOTaX €XKETOIHBIX CECCUI MOXKHO HAWTH Ha caite: http://Ippm3.ru/.
[Ipeacenarens [Iporpammuoro Komurera, mpodeccop B.U. MaxykuH.
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