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Summary.  Hardy and Copson type inequalities have been studied by a large number of authors 
during the twentieth century and has motivated some important lines of study which are currently 
active. A large number of papers have been appeared involving Copson and Hardy inequalities (see [2-
16] for more details).
    In this paper some Hardy-Steklov and Copson-Steklov type integral inequalities were established. 
Namely the integral inequalities were proved there. 
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   Where (ℱ𝑠𝑓) is the Hardy-Steklov type operator and (𝒞𝑠 𝑓) is the Copson-Steklov type operator (see 
the main results for more details).  
   Several Hardy-Steklov type, Hardy-type and Hardy integral inequalities were derived from (∗). 
Similarly, some Copson-Steklov type and Copson type integral inequalities are deduced from (∗∗). 

1. INTRODUCTION

   In 1928, G.H. Hardy proved the following integral inequalities [6]. Let 𝑓 non-negative 
measurable function on (0, ∞) 
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In 1976,  E.T. Copson proved the following integral inequalities (see [4], Theorem 1, 
Theorem 3). Let 𝑓,𝜙  non-negative measurable functions on (0,∞)  
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  Inequality (2) can be easily rewritten in the following form 
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The Hardy-Steklov operator is defined by 
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where 𝑔 is a positive measurable function and 𝑟, ℎ are functions defined on an interval (𝑎,𝑏) 
such that   𝑟 (𝑥) < ℎ(𝑥)  for all  𝑥 ∈ (𝑎, 𝑏). 

  Particular cases of this operator are Hardy operator (ℱ𝑓)(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡𝑥
0 ,  the Hardy 

averaging operator �𝐹𝜇𝑓�(𝑥) = 𝑥𝜇 ∫ 𝑓(𝑡)𝑑𝑡𝑥
0   and the Steklov operator (𝑆𝑓)(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡𝑥+1

𝑥−1 , 
which  has been studied intensively (see [9] for example). 

 Let 𝑓,𝑣, 𝜙  be non-negative measurable functions on (0,∞) . Suppose that 𝑟  and ℎ  are 
increasing differentiable functions   on  [0,∞),  such that 

�0 <  𝑟(𝑥) < ℎ(𝑥) <  ∞     for   all     𝑥 ∈  (0,∞),
𝑟 (0) = ℎ (0) =  0     and     𝑟 (∞) = ℎ (∞) =  ∞. (4)  

The Hardy-Steklov and Copson-Steklov type operators are defined as follows, 
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 Φ(𝑥) = � 𝜙(𝑡)𝑑𝑡,      for    𝑥 ∈  (0,∞) .  
𝑥

0
 

We adopt the usual convention:   0
0

= ∞
∞

= 0 .   

2. MAIN RESULTS 

     Let 0 <  𝑏 ≤ ∞.  Throughout the paper, we will assume that the integrals exist and are 
finite. The following lemma is needed in the proof of the main results (was proved in [1]).  

Lemma 2.1. Let 1 < 𝑝 ≤ 𝑞 < ∞  and 𝑓,𝑔,𝑤 be non-negative measurable functions on (𝑎, 𝑏) 
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    The main results are presented in the following Theorem and Corollaries. 

Theorem 2.1.  Let 𝑓, 𝑣,𝜙  be non-negative measurable functions on (0,∞), 1 < 𝑝 ≤ 𝑞 < ∞  
and  𝑟(𝑥), ℎ(𝑥)  satisfied the conditions (4).  If α < 𝑝 − 1, then   
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Proof. We consider the inequality (11), then 
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Remark 2.2.  If h (𝑥) = 𝑥 in Corollary 2.1, we obtain the following weighted Hardy inequality and 
Copson-type inequality 
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     If  we  put h (𝑥) = 𝜆 𝑥  and  r (𝑥) = 𝛽 𝑥 and 𝑞 = 𝑝 in Theorem 2.1, we get following 
corollary. 
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𝑣(𝑥) , 

 

𝐽 3(𝑥) =
Φ(𝑥)
𝜙(𝑥) �

𝜆 𝜙(𝜆𝑥)
Φ (𝜆𝑥) 𝑓

(𝛼𝑥) −
𝛽 𝜙(𝛽𝑥)
Φ (𝛽𝑥) 𝑓(𝛽𝑥)� . 

 

Remark 2.3.  One can prove the boundedness of the operator ℱ𝑠,3 from L𝑝(0,∞) to L𝑝(0,∞)  

by using the Minkowski integral inequality for p > 1, it means that ��ℱ𝑠,3𝑓�(𝑥)�
L𝑝(0,∞)

≤

𝐶(𝜆,𝛽,𝑝)‖𝑓(𝑥)‖L𝑝,𝑣(0,∞), where L𝑝(0,∞) is the classical Lebesgue space and L𝑝,𝑣(0,∞) is the 

weighted Lebesgue space, with the following norm  ‖𝑓(𝑥)‖L𝑝,𝑣(0,∞) = �∫ |𝑓(𝑥)𝑣(𝑥)|𝑝𝑑𝑥∞
0 �

1
𝑝 
 

and  𝐶(𝜆,𝛽,𝑝) is a positive constant depending only on    𝜆,𝛽    and   𝑝. 

Remark 2.4.  For  𝜆 = 1 and β = 1
2
 , we get a Pachpatte-type inequality.  

Let   

     (ℱ𝑠∗𝑓)(𝑥) = � 𝑓(𝑦)𝑣(𝑦)𝑑𝑦
∞

𝑟(𝑥)
,          (𝒞𝑠∗𝑓)(𝑥) =   �

𝑓(𝑦)ϕ(𝑦)
Φ(𝑦) 𝑑𝑦

∞

𝑟(𝑥)
,          𝑥 > 0,  
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with

�0 <  𝑟(𝑥) <  ∞     for   all     𝑥 ∈  (0,∞),
𝑟 (0) =  0     and    𝑟 (∞) =  ∞.  (19) 

By setting ℎ(𝑥) = ∞  and reasoning a manner  analogous to the proof of Theorem 2.1, we get 
the following corollary. 

Corollary 2.3  Let 𝑓, 𝑣,𝜙  be non-negative measurable functions on (0,∞), 1 < 𝑝 ≤ 𝑞 <  ∞. 
If   α > 𝑝 − 1,  then   

�
𝑣(𝑥)

𝑉𝑝−𝛼(𝑥)
(ℱ𝑠∗𝑓)𝑝(𝑥)𝑑𝑥

𝑏

0
≤ �

𝑝
𝛼 − 𝑝 + 1

�
𝑝

 �� 𝑣(𝑥)𝑑𝑥
𝑏

0
�
1− 𝑝𝑞

 ��
𝑣(𝑥)

𝑉𝑞−
𝛼
𝑝𝑞(𝑥)

|𝐾∗(𝑥)|𝑞𝑑𝑥
𝑏

0
�

𝑝
𝑞

, (20) 

�
𝜙(𝑥)

Φ𝑝−𝛼(𝑥) (𝒞𝑠∗𝑓)𝑝(𝑥)𝑑𝑥
𝑏

0
≤ �

𝑝
𝛼 − 𝑝 + 1

�
𝑝

 �� 𝜙(𝑥)𝑑𝑥
𝑏

0
�
1− 𝑝𝑞

 ��
𝜙(𝑥)

Φ𝑞−𝛼𝑝𝑞(𝑥)
|𝐽∗(𝑥)|𝑞𝑑𝑥

𝑏

0
�

𝑝
𝑞

, (21) 

where 

𝐾∗(𝑥) = −
𝑉(𝑥) [𝑉 (𝑟(𝑥))]′𝑓(𝑟(𝑥))

𝑣(𝑥) , 

𝐽∗(𝑥) = −
Φ(𝑥)
𝜙(𝑥)

�Φ �𝑟(𝑥)��′

Φ �𝑟(𝑥)�
𝑓(𝑟(𝑥)) . 

Remark 2.5.  The following particular case of Corollary 2.3 can be derived by taking 
r(𝑥) = 𝑥 𝑎𝑎𝑑 𝑞 = 𝑝.   

�
𝑣(𝑥)

V𝑝−𝛼(𝑥) �ℱs
∗�  𝑓� 𝑝(𝑥)𝑑𝑥 ≤ 

𝑏

0
�

𝑝
𝛼 − 𝑝 + 1

�
𝑝

 �
𝑣(𝑥)

V−𝛼(𝑥) 𝑓
𝑝(𝑥)𝑑𝑥

𝑏

0
,  (22) 

�
𝜙(𝑥)

Φ𝑝−𝛼(𝑥) �𝒞s
∗�𝑓�

𝑝(𝑥)𝑑𝑥 ≤ 
𝑏

0
�

𝑝
𝛼 − 𝑝 + 1

�
𝑝

 �
𝜙(𝑥)

Φ𝑝−𝛼(𝑥) 𝑓
𝑝(𝑥)𝑑𝑥

𝑏

0
,  (23) 

where 

�ℱs∗�  𝑓�(𝑥) = � 𝑓(𝑦)𝑣(𝑦)𝑑𝑦
∞

𝑥
, 𝑥 > 0 ,      �𝒞s∗�𝑓�(𝑥) =  �

𝑓(𝑦)ϕ(𝑦)
Φ(𝑦) 𝑑𝑦

∞

𝑥
,  𝑥 > 0 . 
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Remark 2.6 We note that if  𝑣(𝑥) = 1 in the inequalities (15) and (22), we get the Hardy 
inequalities  (1). 

3. CONCLUSION

    By using Hardy-Steklov and Copson-Steklov type operators and by introducing a second 
parameter of integrability 𝑞, some new integral inequalities were established and proved. 
These integral inequalities generalize certain classical inequalities like those of Hardy   
Copson and Pachpatte. As a perspective, we propose to extended these results to ℝ𝑛 or 
subsets of ℝ𝑛 for 𝑎 ≥ 2 . Also it would of interest to try apply some of this integral 
inequalities in the study of deferent fields of mathematics (partial deferential equations, 
functional spaces, mathematical modeling, …). 
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