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Summary. Hardy and Copson type inequalities have been studied by a large number of authors
during the twentieth century and has motivated some important lines of study which are currently
active. A large number of papers have been appeared involving Copson and Hardy inequalities (see [2-
16] for more details).

In this paper some Hardy-Steklov and Copson-Steklov type integral inequalities were established.
Namely the integral inequalities were proved there.
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Where (F;f) is the Hardy-Steklov type operator and (Cs f) is the Copson-Steklov type operator (see
the main results for more details).

Several Hardy-Steklov type, Hardy-type and Hardy integral inequalities were derived from (x).
Similarly, some Copson-Steklov type and Copson type integral inequalities are deduced from (x).

1. INTRODUCTION

In 1928, G.H. Hardy proved the following integral inequalities [6]. Let f non-negative
measurable function on (0, «)

J f (©dt for a < p-—1,
FHX) =
d f (dt for a > p— 1,

then
[ee] p [ee]
Jo x P (Ff)P (x)dx < (m_f(—_u) JO xfP()dx, forp > 1. @

In 1976, E.T. Copson proved the following integral inequalities (see [4], Theorem 1,
Theorem 3). Let f, ¢ non-negative measurable functions on (0, )

x J f®¢)de, for ¢ > 1,
P(x) =J p®dt,  (€CH(x)=
’ kj f We()dt, for ¢ <1,
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then
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Inequality (2) can be easily rewritten in the following form

( X
| J f o (t)dt, for a<p—-1,
0
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The Hardy-Steklov operator is defined by

h(x)

N =g | fod, fzo,

where g is a positive measurable function and r, h are functions defined on an interval (a, b)
suchthat r (x) < h(x) forall x € (a,b).

Particular cases of this operator are Hardy operator (Ff)(x) = f(f f(®)dt, the Hardy

averaging operator (F,f)(x) = x* f(f f(t)dt and the Steklov operator (Sf)(x) = f;ff f(®)de,
which has been studied intensively (see [9] for example).

Let f,v, ¢ be non-negative measurable functions on (0,%). Suppose that » and h are
increasing differentiable functions on [0, ), such that

{O < r(x)<h(x)< oo for all x € (0,), @
r(0)=h(0)=0 and 71 () =h(x») = oo.
The Hardy-Steklov and Copson-Steklov type operators are defined as follows,
h(x)
(FfHx) = - fOv(y)dy, x>0, (5)
") £ (y)p(y)
Csf) = ———"dy, 0, 6
en=| TEya. x> ©)
where

50



B. Benaissa and A. Senouci

d(x) =Jx¢(t)dt, for x€ (0,0).
0

We adopt the usual convention: 2=2=0.
2. MAIN RESULTS

Let0 < b < . Throughout the paper, we will assume that the integrals exist and are
finite. The following lemma is needed in the proof of the main results (was proved in [1]).

Lemma2.l. Letl <p < q < and f, g, w be non-negative measurable functions on (a, b)
such that W(x) = [ w(t)dt. If m € R,m # 1, then

j WO o eydx < j w0dx i j SRR %)
a Wm(X)g - a a W%(x)g .

Remark 2.1. Let V(x) = f;‘v(t)dt. By putting m = p — a in inequality (7), w(x) = v(x),
W(x) =V (x) (respectively w(x) = ¢p(x), W(x) = ®(x) and f(x) = g(f(x))), we obtain

" v AT v :

J =1 )fp(x)dx< <Jo v(x)dx) (JO Vq-%q(x)fq(x)dx> _ (8)
Pop(x) b =G [ (b ¢ () a
o q)p—a(x)fp(x)de (JO ¢(x)dx> (O o q(x)fq( x)dx ) 9)

The main results are presented in the following Theorem and Corollaries.

Theorem 2.1. Let f,v, ¢ be non-negative measurable functions on (0,x), 1 <p < q < ®
and r(x), h(x) satisfied the conditions (4). Ifa <p -1, then

1-P
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Proof. We consider the inequality (11), then

h
wﬁﬂw=w@2&g£ﬂmm—f@igggﬂmm
_ ()] (x)
T o(x)

integrating by part in the left-hand side of (11), we get
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(p-—a-DoP " (x)| p-a-1
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Since a < p — 1, we have
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The Holder integral inequality for %+p% = 1, gives
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therefore
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b
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€ rwax < (—t—) | s
Finally, by using inequality (9), we get (11).
The proof of inequality (10) is similar. So, the proof of Theorem is complete.
Now let r (X) =0 in (5) and (6), thus

h(x)
(Fs1f)(x) = ) fOv(ydy, x>0,
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h(x)

Ifwesetq=pin (10) and (11), we obtain the following corollary.

Corollary 2.1. Let f, v, ¢ be non-negative measurable functions on (0,0), p > 1, a<p-1
and

0 < h(x) < o for all x € (0,),
{ h(0)=0 and h ()= oo. (12)
Then
b V(x) p o\ (P v(x)
’ ¢ p PP )
o PP (x )(C“f) (dx < (’p—a—l) ) By 10 (14)
where
Ve[V (h h
K. = @H(52¥ﬂ<w)
@ (h
J1(x) _ 2 fof @)I f(r()).

NOEI)

Remark 2.2. If h (x) = x in Corollary 2.1, we obtain the following weighted Hardy inequality and
Copson-type inequality

P v(x) p P\ (P v()

JO - (Fsof) ()dx < (p_a_ 1) JO ) fP(x)dx, (15)
P o(x) ¢(x)
- a(x)((fszf) (x)dx< p—a—l o a()f()d (16)

where
(ﬂﬂﬂ@=Lf@h@M% x>0,

*fOne (y)

() x>0.

(Cs,zf) (x) =
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If we puth(x)=Ax and r(x) = S xand g = p in Theorem 2.1, we get following
corollary.

Corollary 2.2. Let f,v,¢ be non-negative measurable functions on (0,%), 0 < B < 1 < o,
p > 1and

Ax
(Foaf) (0) = jﬂ OOy, x>0,

Ax
(Cs,,sf)(X) = N %ﬂ;?’)d% x>0.
If a<p-—1, then
b v(x) p o\ (P v(x)
Jo Vr—a(x )(Tssf) x)dx < (m) Jo Vp_—a(x)IKz(x)lpdx, (17)
' o) PV [P W)
0 Pbp- a( )(653 f) ( )dx < (m> | q)p——a(x)UZ(x)lpdx' (18)
Where
V) [Av(Ax)f(Ax) — B v(ﬁx)f(ﬂx)]
Ki(x) = 200
_ O (Ap(Ax) B ¢(Bx)
156 =57 ){WX) Flax) = s (B )}

Remark 2.3. One can prove the boundedness of the operator F ; from L, (0, ) to L, (0, )

by using the Minkowski integral inequality for p > 1, it means that || (7, ;) ()|, .
»(0,

Cappllf (x)Ile'y(O'w), where L, (0, ) is the classical Lebesgue space and L, (0,) is the
1
weighted Lebesgue space, with the following norm [If(0)ll., o) = ( Jy 1f @) Pdx)r

and C;,p,p) Is a positive constant depending onlyon 4, and p.

Remark 2.4. For A=1andp = i , We get a Pachpatte-type inequality.

Let

0]

fv(y)dy, CH) = f( )Md% x>0,

#pe = | o

r(x)
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with
{O <r(x)< o for all x € (0,0),

r(0)=0 and 7 ()= oo. (19)

By setting h(x) = oo and reasoning a manner analogous to the proof of Theorem 2.1, we get
the following corollary.

Corollary 2.3 Let f,v,¢ be non-negative measurable functions on (0,»), 1 <p <q < .
If o>p—1, then

b v p p [ (b =G /b v(x) a
[ s @t < (i) ([ vwa) (jo e (x)l"dx> ,(20)
P L W ‘
J dP—a(x) @ f)p(x)dx<( -p+1 <J ¢(x)dx> (O R 7" (019dx ) ,(21)
where
ko = VO CEIFCE)
v(x)
¢ !
el LAGED)) ey

px) @ (r(x)

Remark 2.5. The following particular case of Corollary 2.3 can be derived by taking
r(x) =xand q = p.

vl p v(x)
JO Vr—a(x) (Ts f)p(x)dx < (a—p+1> JO Valx )fp( x)dx, (22)
b)) o b P\ [P p(x)
| Brego (Gf) Wdx < (a—p+1> ) dragn ) 4 23)
where
@Ne=[ fontay, x>0, @EHw= [ f%)%y)d x> 0.
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Remark 2.6 We note that if v(x) = 1 in the inequalities (15) and (22), we get the Hardy
inequalities (1).

3. CONCLUSION

By using Hardy-Steklov and Copson-Steklov type operators and by introducing a second
parameter of integrability g, some new integral inequalities were established and proved.
These integral inequalities generalize certain classical inequalities like those of Hardy
Copson and Pachpatte. As a perspective, we propose to extended these results to R™ or
subsets of R™ for n > 2. Also it would of interest to try apply some of this integral
inequalities in the study of deferent fields of mathematics (partial deferential equations,
functional spaces, mathematical modeling, ...).
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