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Summary. An expression in a closed form is proposed for the approximation of the Debye

function used in thermodynamic models of solids. This expression defines an analytic function

that has the same limiting behavior as the Debye function at low and high temperatures. The

approximation gives the maximum relative deviation from the value of the Debye function less

than 0.001. The proposed expression can be useful in the equations of state of solids in a wide

temperature range.

1 INTRODUCTION

The Debye model [1] was proposed for description of thermodynamic behavior of materials

in a wide range of temperatures. It represents the phonon contribution to equations of state of

solids as an interpolation between limiting cases of low and high temperatures [2–25]. Equations

of state of matter are necessary for analysis and numerical simulation of physical phenomena

under extreme conditions of high temperatures and high pressures [19, 26–40].

Analytic expressions of thermodynamic potentials within the Debye model contain the De-

bye function in a form of integral [1],

D(x) =
3

x3

x
∫

0

t3dt

et −1
, (1)

x > 0, which cannot be expressed in elementary functions. Despite of that this integral can

be written as analytic expression with infinite series [1, 3, 41, 42] or special functions (poly-

logarithms and the Riemann zeta function) [43], closed-form expressions approximating the

Debye function are interesting for practical use in thermodynamic calculations. Many works

are devoted to elaboration of simple approximations of the Debye functions with different ac-
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curacy [14, 44–50]. All of such approximations can be sorted as piecewise continuously differ-

entiable functions [44, 45, 47] and smooth (in particular, analytic) functions [14, 46, 48–50].

In the present work, an expression is proposed approximating the Debye function in a closed

form of analytic function. Some results of calculations are presented illustrating the accuracy of

this approximation.

2 MODEL OF THERMODYNAMIC PROPERTIES OF SOLIDS

Thermodynamic potential the Helmholtz free energy is traditionally taken as a basis of equa-

tion of state model. This potential can be presented as a sum of three parts:

F(V,T ) = Fc(V )+Fa(V,T )+Fe(V,T ), (2)

those are a portion of energy corresponding to zero temperature T = 0 (Fc) and thermal con-

tributions of ions and electrons (Fa and Fe, respectively). Here V is the specific volume; T is

the temperature. Considering thermal contribution of ions in solids, one can take into account

portions of energy of acoustical (Fac) and optical (Foα ) modes of ions vibrations. For the unit

cell of the crystal structure with ν particles, this contribution is as follows:

Fa(V,T ) = Fac(V,T )+
3(ν−1)

∑
α=1

Foα(V,T ). (3)

The energy of acoustic vibration modes is usually considered within the framework of the Debye

model [1]:

Fac(V,T ) =
RT

ν
[3ln[1− exp(−θac/T )]−D(θac/T )]. (4)

Optical mode contributions are commonly considered in terms of the Einstein model [51]:

Foα(V,T ) =
RT

ν
ln[1− exp(−θac/T )]. (5)

Here, θac and θoα are the characteristic temperatures of the acoustical and optical modes of ions

vibrations.

The first and second derivatives of the Helmholtz free energy with respect to temperature

determine the entropy and isochoric heat capacity of a substance:

S =−(∂F/∂T )V , (6)

CV = T (∂S/∂T )V . (7)
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Consequently, the first and second derivatives of the Debye function appear in the entropy and

the isochoric heat capacity of solids. In particular, if the characteristic temperature θac does

not depend on temperature, one can obtain the following expressions for the contributions of

acoustic modes:

Sac =−
R

ν

[

3ln[1− exp(−x)]−
3x

ex −1
−D(x)+ xD′(x)

]

, (8)

CV ac =
R

ν

[

3x2ex

(ex −1)2
+ x2D′′(x)

]

, (9)

where x = θac/T .

Sometimes, it is convenient to take into account the properties of the Debye function:

D′(x) =
3

ex −1
−

3

x
D(x), (10)

D′′(x) =−
3ex

(ex −1)2
−

3

x

[

3

ex −1
−

4

x
D(x)

]

. (11)

Then the entropy and specific heat capacity are related to the value of the Debye function:

Sac =−
R

ν
[3ln[1− exp(−x)]−4D(x)], (12)

CV ac =
3R

ν

[

4D(x)−
3x

ex −1

]

. (13)

However, relations (10) and (11) may not be valid for approximation functions used instead of

the Debye function. Then using equations (12) and (13) will lead to some inaccuracy.

3 INFINITE-SERIES FORMS OF THE DEBYE FUNCTION

Following Debye [1], one can rewrite integral in equation (1) and obtain

D(x) =
3

x3

∞
∫

0

t3dt

et −1
−

3

x3

∞
∫

x

t3dt

et −1
. (14)

The first integral in equation (14) has known value π4/15 [1, 52]; the last integral in equa-

tion (14) can be simplified using the Taylor series

1

1− y
=

∞

∑
k=0

yk, (15)

98



K. V. Khishchenko

which is convergent for |y|< 1, and integrated by parts:

∞
∫

x

t3dt

et −1
=

∞
∫

x

t3e−t
∞

∑
k=0

e−ktdt =
∞

∑
k=1

∞
∫

x

t3e−ktdt =
∞

∑
k=1

(

x3

k
+

3x2

k2
+

6x

k3
+

6

k4

)

e−kt . (16)

So, one obtains

D(x) =
π4

5x3
−3

∞

∑
k=1

1

k

(

1+
3

kx
+

6

k2x2
+

6

k3x3

)

e−kt (17)

for x > 0.

At high temperatures, one can use the following relation [53]:

t

et −1
=

∞

∑
n=0

Bn

n!
tn, (18)

which is convergent for |t|< 2π . Here, Bn are the Bernoulli numbers [53]. One obtains

x
∫

0

t3dt

et −1
=

x
∫

0

t2
∞

∑
n=0

Bn

n!
tndt =

∞

∑
n=0

Bn

n!

x
∫

0

tn+2dt =
∞

∑
n=0

Bn

n!

xn+3

n+3
. (19)

So,

D(x) =
∞

∑
n=0

3Bn

(n+3)n!
xn (20)

for |x|< 2π .

4 APPROXIMATION FORM

Truncated series (17) is normally used as the basis of approximation of the Debye function

at low temperatures.

In this work, a similar form of approximation function is proposed:

KLM(x) = A03x−3 −
L

∑
l=1

(

Al0 +Al1x−1 +Al2x−2 +Al3x−3
)

e−lx. (21)

Evidently, the value of first-term coefficient

A03 =
π4

5
(22)
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secures the same limiting behavior of the function KLM(x) and all its derivatives as the Debye

function D(x) and its derivatives for x → ∞.

Using the Taylor series

ey =
∞

∑
n=0

1

n!
yn, (23)

one can evaluate limiting behavior of the function KLM(x) for x → 0:

KLM(x) = A03x−3 −
∞

∑
n=0

L

∑
l=1

1

n!
(−l)n

(

Al0xn +Al1xn−1 +Al2xn−2 +Al3xn−3
)

. (24)

Representing series (24) in the form

KLM(x) =
∞

∑
m=−3

Cmxm, (25)

one can easily obtain sequence of relations between coefficients of equations (24) and (25):

C−3 = A03 −
L

∑
l=1

Al3, (26)

C−2 =−
L

∑
l=1

(

Al2− lAl3

)

, (27)

C−1 =−
1

2

L

∑
l=1

(

2Al1 −2lAl2+ l2Al3

)

(28)

and

Cm =−
L

∑
l=1

(−l)m

(m+3)!

(

(m+1)(m+2)(m+3)Al0− (m+2)(m+3)lAl1+(m+3)l2Al2 − l3Al3

)

(29)

for m > 0.

Comparing form (25) with series (20), one can formulate conditions of coincidence of limit-
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ing behavior of the function KLM(x) and its derivatives up to order M 6 4(L−1) for x → 0:

A03 −
L

∑
l=1

Al3 = 0, (30)

−
L

∑
l=1

(

Al2− lAl3

)

= 0, (31)

−
L

∑
l=1

(

2Al1 −2lAl2 + l2Al3

)

= 0 (32)

and

−
L

∑
l=1

(−l)m
(

(m+1)(m+2)(m+3)Al0− (m+2)(m+3)lAl1+(m+3)l2Al2− l3Al3

)

= 3(m+1)(m+2)Bm (33)

for 0 6 m 6 M.

Solving this system of M +4 equations, one obtains M +4 coefficients (AL3, AL2, AL1, AL0,

A(L−1)3 and so on, if any) of the function KLM(x) (21) with the same limiting behavior as the

Debye function D(x) for x → 0 up to order M of derivatives.

Values of the rest of coefficients A10, A11, A12, A13, A20 and so on (if any) can be naturally

taken from series (17):

Al0 =
3

l
, Al1 =

9

l2
, Al2 =

18

l3
, Al3 =

18

l4
. (34)

5 APPROXIMATION WITH L = 1

For L = 1, the approximation function KLM(x) has the only variant K10(x) with 4 coefficients

Ali with l = 1, i = 0, 1, 2 and 3:

A10 =
π4

30
−1, A11 =

π4

10
, A12 =

π4

5
, A13 =

π4

5
. (35)

Calculated values of the function K10(x) and its first and second derivatives K′
10(x) and K′′

10(x)

are shown in figures 1–3 in comparison with the values of the Debye function D(x) and its

derivatives D′(x) and D′′(x). In addition, the relative deviations of the function K10(x) and its

derivatives K′
10(x) and K′′

10(x) from the reference function D(x) and its derivatives D′(x) and

D′′(x) are presented in figures 1(b), 2(b) and 3(b), respectively. The reference values of D(x),

D′(x) and D′′(x) were calculated using truncated series (17) with k 6 12 for x > 3.34 and (20)

with n 6 66 for x 6 3.34.

101



K. V. Khishchenko

0.2

0.4

0.6

0.8

1.0

(a) D

K21

K20

D
; K

LM

K10

0 2 4 6 8 10
10-8

10-6

10-4

10-2

100

(b)

|
D
LM

|; 
|
D

P|

x

| DP|
| D23|

| D22|

| D24|

| D21|

| D20|

| D10|

Figure 1: (a) The Debye function D(x) and the approximation functions KLM(x). (b) The absolute values of the

relative deviations of the functions KLM(x) from the reference function D(x), |δDLM(x)| = |1−KLM(x)/D(x)|;
|δDP(x)|= |1−DP(x)/D(x)|, where DP(x) is the approximation function by Prut [47].
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Figure 2: (a) The first derivative with respect to x of the Debye function, D′(x), and the approximation functions,

K′
LM(x). (b) The absolute values of the relative deviations of the derivatives K′

LM(x) and D′
P(x) from the reference

derivative D′(x), |δD′
LM(x)|= |1−K′

LM(x)/D′(x)| and |δD′
P(x)|= |1−D′

P(x)/D′(x)|.
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Figure 3: (a) The second derivative with respect to x of the Debye function, D′′(x), and the approximation functions,

K′′
LM(x) and D′′

P(x). (b) The absolute values of the relative deviations of the derivatives K′′
LM(x) and D′′

P(x) from the

reference derivative D′′(x), |δD′′
LM(x)|= |1−K′′

LM(x)/D′′(x)| and |δD′′
P(x)|= |1−D′′

P(x)/D′′(x)|.
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The maximum absolute values of the relative deviations in the region x> 0 are approximately

0.1 for K10(x), 0.5 for K′
10(x) and 4.0 for K′′

10(x). Note that the relative deviation of the third

derivative K′′′
10(x) from the reference D′′′(x) grows at x → 0 in inverse proportion to x.

The ratios of the isochoric heat capacity CV (x) to its value in the high-temperature limit

(x → 0), Ch = 3R/ν , from equation (9) with the approximation derivative K′′
10(x) and from

equation (13) with the approximation function K10(x) are shown in figure 4 in comparison with

the reference dependence CV (x)/Ch that is obtained using equation (9) with the reference D′′(x).

The maximum absolute value of the relative deviation from the reference dependence CV (x)

is approximately 0.07 for the case of equation (9) with K′′
10(x) and 0.3 for the case of equa-

tion (13) with K10(x), as one can see in figure 4(b).

6 APPROXIMATIONS WITH L = 2

For L = 2, the approximation function KLM(x) has 5 variants K2M(x) for M = 0, 1, 2, 3 and

4 with 8 coefficients Ali at l = 1 and 2, i = 0, 1, 2 and 3:

A10 = 3 (for M = 0, 1, 2 and 3) or A10 =
8π4

15
−49 (for M = 4), (36)

A11 = 9 (for M = 0, 1 and 2) or A11 =
8π4

5
−

219

2
−12A10 (for M = 3 and 4), (37)

A12 = 18 (for M = 0 and 1) or A12 =
16π4

5
−117−36A10 −8A11 (for M = 2, 3 and 4), (38)

A13 = 18 (for M = 0) or A13 =
16π4

5
−39−24A10 −12A11 −4A12 (for M = 1, 2, 3 and 4),

(39)

A20 =
4π4

15
−1−A10 −A11 −

1

2
A12 −

1

6
A13, (40)

A21 =
2π4

5
−A11 −A12 −

1

2
A13, (41)

A22 =
2π4

5
−A12 −A13, (42)

A23 =
π4

5
−A13. (43)

Calculated values of the functions K2M(x) and their first and second derivatives K′
2M(x) and

K′′
2M(x) are shown in figures 1–3. One can see that the functions K20(x) and K21(x), as well as

the function K10(x), are easily distinguishable from the reference function D(x) in figure 1(a).

The derivatives K′
2M(x) and K′′

2M(x) with M = 0, 1 and 2, as well as the derivatives K′
10(x)

and K′′
10(x), are also easily distinguishable from the reference derivatives D′(x) and D′′(x) in

figures 2(a) and 3(a).
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Figure 4: (a) The reference (black line) and approximation ratios CV (x)/Ch (colored lines) and (b) the absolute

values of the relative deviations |δCVA(x)| of the approximation dependences (A = LM and P) from the reference

CV (x): solid lines—equation (9) with K′′
LM(x) and D′′

P(x); dashed lines—equation (13) with KLM(x) and DP(x).
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A |δDA|m |δD′
A|m |δD′′

A|m |δD′′′
A |m |δCV A(9)|m |δCV A(13)|m

10 1.00×10−1 4.98×10−1 3.99×10+0 ∞ 6.87×10−2 2.66×10−1

20 2.49×10−2 3.01×10−1 4.61×10+0 ∞ 1.32×10−2 8.20×10−2

21 7.50×10−3 2.05×10−2 5.48×10−1 ∞ 5.68×10−3 1.94×10−2

22 3.05×10−3 4.36×10−3 2.40×10−2 ∞ 3.07×10−3 6.00×10−3

23 9.51×10−4 1.29×10−3 2.02×10−3 9.70×10−2 1.27×10−3 1.38×10−3

24 6.99×10−4 9.59×10−4 1.53×10−3 3.69×10−2 9.48×10−4 1.01×10−3

P 4.73×10−4 1.25×10−3 2.52×10−2 5.42×10−1 4.62×10−3 7.06×10−4

Table 1: Maximum absolute values of the relative deviations δDA(x), δD′
A(x), δD′′

A(x), δD′′′
A (x)

and δCV A(x) for x > 0, where the cases A = LM and P correspond to the approximation func-

tions KLM (21) and DP [47]; the last two columns correspond to the use of equations (9) and

(13), respectively.

The remaining functions K2M(x) and derivatives K′
2M(x) and K′′

2M(x) almost coincide with

the reference dependences D(x), D′(x) and D′′(x) in figures 1(a), 2(a) and 3(a).

The absolute values of the relative deviations of the function K2M(x) and their derivatives

K′
2M(x) and K′′

2M(x) from the reference function D(x) and its derivatives D′(x) and D′′(x) are

presented in figures 1(b), 2(b) and 3(b), respectively. One can see that the maxima of these

absolute values for L = 2 are less than the corresponding maxima for K10(x), K′
10(x) and K′′

10(x).

These maxima at L = 2 decrease monotonically with increasing M (table 1).

In the best case for L = 2, the maximum absolute values of the relative deviations for x > 0

are approximately 0.0007 for K24(x), 0.001 for K′
24(x), 0.002 for K′′

24(x) and 0.04 for K′′′
24(x).

Note that, for L = 2 and M = 0, 1 and 2, as well as for L = 1, the relative deviations of the

third derivatives K′′′
2M(x) from the reference derivative D′′′(x) grow at x→ 0 in inverse proportion

to x.

The ratios of the isochoric heat capacity CV (x)/Ch from equation (9) with the approximation

derivatives K′′
2M(x) and from equation (13) with the approximation functions K2M(x) are shown

in figure 4. One can see that, for L = 2 and M = 0 and 1, as well as for L = 1, these ratios are

easily distinguishable from the reference dependence CV (x)/Ch in figure 4(a). For L = 2 and

M = 2, the dependence CV (x)/Ch can be distinguished in the case of the use of equation (13)

with the approximation function K22(x). The dependences CV (x)/Ch for the remaining cases

of L = 2 and M = 2, 3 and 4 almost coincide with the corresponding reference dependence in

figure 4(a).

As one can see in figure 4(b) and table 1, the maximum absolute values of the relative de-

viations |δCV LM|m (for x > 0) decrease monotonically with increasing L from 1 to 2 and with
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increasing M from 0 to 4. Moreover, using equation (13) gives a higher relative deviation than

using equation (9). In the best case for L = 2 and M = 4, the maximum absolute value of the

relative deviation |δCV LM|m in the region x > 0 is approximately 0.0009 using equation (9).

For comparison, the results of using the piecewise continuously differentiable approximation

function DP(x) [47] are presented in figures 1–4 and table 1. Unlike analytic functions KLM(x),

using equation (13) with DP(x) gives a lower relative deviation than using equation (9) with

discontinuous derivative D′′
P(x). Despite the slightly lower values of the maximum deviations

|δDP|m ≈ 0.0005 and |δCV P(13)|m ≈ 0.0007, the use of the analytic approximation function

K24(x) seems preferable in thermodynamic models.

7 CONCLUSIONS

Thus, a family of analytic functions KLM(x) is proposed that approximates the Debye func-

tion D(x), x > 0, in closed form. Among these functions with L = 1 and 2, the case of K24(x)

for x > 0 gives the lowest maximum relative deviations of the function and its first and second

derivatives from the reference function D(x) (less than 0.0007) and its derivatives D′(x) (less

than 0.001) and D′′(x) (less than 0.002), as well as the lowest maximum relative deviation for

the value of the isochoric heat capacity (less than 0.001). The proposed expressions can be use-

ful in modeling the equations of state for solids in a wide range of temperatures and densities.
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