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Summary. In this article we present a mathematical model used for surface runoff simulation in 
GeRa software. The model is based on diffusive wave approximation for the shallow water equations 
with Manning formula for flow velocity estimation. It is implemented using INMOST 
software platform for parallel mathematical modeling. Parallel efficiency of the model 
implementation is adressed for some widely used verification benchmarks. We also present 
surface-subsurface coupling approach used in GeRa software and discuss practical aspects of the 
nonlinear solver. 

1 INTRODUCTION 
Surface water is one of the key components of the hydrologic budget of the watershed. 

Thus computational efficiency of the surface runoff model implementation as well as 
effective surface-subsurface coupling become of great concern to hydrologic modeling 
software developers. Considering multiprocessor architecture of the modern computers it is 
natural to use distributed approach for mathematical models implementation.  

Surface runoff model in GeRa software [1] based on 2D diffusive wave approximation of 
the shallow water equations [2] coupled with subsurface flow model based on 3D Richards 
equation with consideration of fluid and medium compressibility [3] is implemented 
numerically using finite volume discretization method with two-point flux approximation and 
Newton iterations as a nonlinear solver. Surface and subsurface models are coupled by first-
order exchange flux [4], [5].  

Recently, a large number of different highly efficient computational codes for groundwater 
modelling have appeared [6][7][8][9] and parallelization of different aspects of this process 
remains challenging [10], [11], [12], [13]. The GeRa software was developed taking into 
account the necessity of massive parallel calculations [14]. Now this code is used for high-
performance modelling of real objects [15]. Parallelization of surface flow modelling unit is 
required for the integration with the rest part of the GeRa software. Coupled surface-
subsurface model parallelization is carried out using INMOST platform for distributed 
mathematical modeling [16]. Moreover, feature set of INMOST includes tools for automatic 
differentiation for residual vector and jacobian matrix construction for nonlinear solver. 

In this article, we address parallel efficiency of the surface runoff GeRa model in 
conjunction with groundwater flow model. The serial version of the model was previously 
discussed in [17]. Here we address the parallel implementation of the model. Coupled model 
is tested and verified using benchmarks presented in [4]. The solution obtained using GeRa 
software is compared to numerical results of other surface-subsurface simulators such as ATS 
[11], GEOtop [17], [18], HGS [19], Parflow [20], InHM [21], [22], An and Yu model [23], 
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OpenGeoSys [24], [25], Cast3M [26], CATHY [27], MIKE-SHE [28]. 
We also address numerical issues caused by discontinuous surface-subsurface flux close to 

zero surface water levels.  
 

2 SURFACE RUNOFF MATHEMATICAL MODEL 

Let's consider a domain 3Ω∈  with boundary s g∂Ω = Γ ∪Γ , where sΓ  is surface 
boundary and gΓ  is subsurface boundary. Ω  corresponds to a geological domain with sΓ  
being the land surface. Surface runoff model is applied in the two-dimensional domain sΓ . In 
GeRa the model is based on diffusive wave approximation of shallow water equations and 
Manning formula for friction slopes [19]: 
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and ( , )s sh h x t=  is the unknown surface water depth, ( , ) ( , ) ( )s sH x t h x t z x= + , ν  is the 
Manning's roughness coefficient, q  is the precipitation rate, ssq  is the surface-subsurface flux 
density. We refer to sK  as a surface conductivity coefficient. 

Two types of boundary conditions are considered on the boundary s∂Γ . The first one is 
critical depth boundary condition [19]: 

3
s s sK H gh− ∇ ⋅ =n , (3) 

and the second one is homogeneous Neumann boundary condition: 

0s sK H− ∇ ⋅ =n , (4) 

 
where n  is outward unit normal vector, g  is the gravity acceleration. 

To model groundwater flow we use modified Richards equation for variably saturated 
media with consideration of fluid and medium compressibility in domain Ω  [3]: 
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where θ  is the water content, gh  is the pressure head, ( )g
s

S S h θ
θ

= =  is the saturation, stors  is 

the specific storage, ( )g gK K h=  is the hydraulic conductivity, sθ  is the maximum (saturated) 
water content. 

Water content θ  is associated with pressure head by van Genuchten model [29]: 

71



V. Kramarenko and K. Novikov 

( )
, 0,

1

, 0,

s r
r gmn

g

s g

h
h

h

θ θθ
αθ

θ

− + < += 


≥

, 

(6) 

where rθ  is residual water content, α  and n  are model parameters, 1 1/m n= − . Hydraulic 
conductivity is approximated using Mualem's model [30]: 
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where satK  is saturated conductivity, r
e

s r

S θ θ
θ θ
−
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−

 is the effective saturation. 

The following Neumann type boundary conditions are set on ∂Ω : 
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Here n is an outward normal vector to the boundary.Thus on sΓ  the flux is defined by 
surface-subsurface water interaction and is zero on the rest of the boundary. 

Surface-subsurface coupling approach is based on first-order exchange coefficient [31] (i.e. 
flux density is proportional to difference between surface water depth and subsurface pressure 
head): 
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where ssK  is bottom sediments conductivity, d  is the bottom sediments layer thickness, gh  
is the limited groundwater pressure head. The latter is determined by the following formula 
with small positive g : 

( )2 21 ( )
2g g g g gh h d h d= − + + + −  . (10) 

This expression is used to provide nonlinear solver convergence and smoothly approximate 
the following value: 

 max{ , }g gh h d= − . (11) 

As one can get negative sh  during the nonlinear solver iterations, definition of expression (10) 
should be extended for 0sh < : 
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( , )

0 for ( 0, ).

ss
s g s g s g s

ss s g

s g s

K
h h h h h h h

dq h h

h h h


       

 
  

. 

(12) 

This definition means that water flow cannot have a downward direction (from surface to 

subsurface) when there is no water on the surface. 

Equation (12) is discontinuous with respect to both arguments for 0, 0s gh h  . The 

discontinuity may result in nonlinear solver oscillations near the surface-subsurface flux 

discontinuity line. To overcome this problem, we use modified formula (smoothed) for 

surface-subsurface flux. To provide further details we first decompose the range of sh  and gh  

into 3 subdomains (see fig. 1). We use the domain A as an interface between domains B and C 

and smooth the flux function in it. The following expression is used for surface-subsurface 

flux which is continuously differentiable with respect to both arguments for 0sh   except the 

square domain 0 ,0s gh h     , where it is discontinuous along the s gh h  segment, 
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Figure 1. Decomposition of sh  and gh  range 
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3 NUMERICAL SOLUTION 

The system to be solved is composed of coupled surface flow equations (1) and subsurface 

flow equations (5). We use finite volume method and implicit Euler scheme to discretize 

model equations. Newton-Raphson method with relaxation is applied to solve the nonlinear 

problem in GeRa. Surface mesh on S  is obtained as trace of 3D mesh in Ω. 

To define the residual on every Newton-Raphson iteration l  we decompose it into three 

parts. Consider first the residual ,

,

l n

s iR  of the surface flow equation in i -th cell iE  of surface 

mesh in s  at n -th timestep: 

, , , ,

, , , , , , ,
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,

, ,
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,

, ,

l n

flow s iR  corresponds to water flow inside the computational domain (i.e. s  for surface 

runoff) and surface-subsurface term 
,

, ,

l n

ss s iR  corresponds to surface-subsurface flux. The same 

approach is applied to calculate groundwater flow equation residual: 
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Note that 
,

,

l n

s iR  and 
,

,

l n

g iR  are functions of both surface water depth and groundwater pressure 

head as surface-subsurface flux depends on both of these variables and we use fully implicit 

scheme. 

The combination of two vectors 
,

,

l n

s iR  and 
,

,

l n

g iR  is a residual vector for Newton–Raphson 

method. 

 

3.1 Discretization of surface runoff model 

Accumulation term corresponding to time derivative and source term (precipitation) can be 

written as follows: 
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where iS  is the area of iE , n  is the time step index, 
,

,

l n

s ih  is the surface water depth at l -th 

Newton–Raphson iteration in iE , 
nt  is the time increment, n

iq  is the precipitation rate (or 

other sources) in iE . 

Flow term corresponds to water flow on the surface domain. Using linear two-point flux 

approximation, we get the following expression: 

, ,, ,
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where summation is over surface mesh cells neighboring to iE  through edges, 
,

,

l n

s ijK  is 
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discretization of surface conductivity on a common edge ije  of cells iE  and jE , i jc c  is the 

distance between iE  and jE  cells' centers, ijl  is the length of ije . 
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where 
,

,

l n

s ijh  is approximation of sh  on ije  at l -th Newton iteration at n -th timestep, 

, ,

, ,,l n l n

x s ij y s ijH H     is approximation of sH  on ije  at l -th nonlinear iteration at n -th time 

step. For negative 
,

,

l n

s ijh , 
,

,

l n

s ijK  is assumed to be equal to zero. 

We use upwind approximation for the numerator of (18): 
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where iz  and jz  are z -coordinates of iE  and jE  centers respectively. We also use upwind 

approximation for the denominator of (18). Assume, that kE  is the upwind cell, i.e.  
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For a cell kE  consider two sets of cells. edge

k  is a set of surface mesh cells neighboring to kE  

over an edge, node

k  is a set of surface mesh cells neighboring to kE  over a node. For example 

shown in fig.  2    1 2 1 2 3 9, , , , , ,...,edge edge edge node edge node node node node

j j ji j j j j j j      . 

 

Figure 2. Illustration of 
edge

jE  and 
node

jE  sets for j -th cell, 
edge

jE  consists of cyan-colored cells, 
node

jE  

consists of cyan and pink-colored cells 
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For each element of edge

k  we consider the following equation based on Taylor series: 

, , , ,
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where   is an element of edge
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Equations (21) for each edge

k   compose a linear system of equations for unknown ,
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where 1 2 3, , ,..., m     are elements of edge

k  or node

k  (depending on  whether linear system 

Ax b  is underdetermined or not for edge

k ). 

The gradient , ,

, ,,l n l n

x s ij y s ijH H     is defined as 2

x

argmin Ax b‖ ‖  (linear least squares 

problem solution): 
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3.2 Discretization of groundwater flow model 

Again, consider separate components of nonlinear residual. 
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where iV  is the volume of i -th subsurface cell of 3d mesh, 
,

,

l n

g ih  is the groundwater pressure 

head at l -th nonlinear iteration at n -th time step in this cell. 
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where summation is over cells of subsurface mesh neighboring to i -th cell through a face, 

i jc c  is the distance between centers of i -th and j -th cells, ijS  is the area of a common face 

of these cells, ( )g gK h  is defined by (7), 
,

,

l n

g ijh  is upwind pressure head defined by 

, , ,

, , ,{ , }.l n l n l n

g ij g i g jh max h h  
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3.3 Discretization of surface-subsurface flux 

Consider residual term ,

, ,

l n

ss s iR . We define this residual term as follows (domains A , B  and 

C  are depicted on fig. 1): 
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The groundwater counterpart of this term can be defined by 
, ,

, , , , ,
s

l n l n

ss g i ss s iR R   where i  is an 

index of top level 3d subsurface mesh cell, which has si -th 2d surface mesh cell as one of its 

faces. 

4 NUMERICAL EXPERIMENTS 

Three numerical experiments are considered. In the first one no groundwater flow is 

modelled as we verify simple surface runoff model without coupling. The following two 

experiments are devoted to coupled surface-subsurface simulation. Coupled numerical 

experiments are then examined for parallel implementation efficiency. 

4.1 Surface runoff 

In this numerical experiment, we model surface runoff without coupling with groundwater. 

Numerical solution is compared to analytical solution of kinematic wave equation. Note that 

assumptions of diffusive wave approximations differ from kinematic wave. However, we 

propose to compare diffusive and kinematic wave approximation solutions due to the 

following arguments. First, analytical solutions for diffusive wave equation presented in 

papers are obtained using additional strong assumptions [33], [34]. Second, both 

approximations are formulated for the same original shallow water equations, thus 

approximate the same model.  

Ground surface is a 200m100m rectangle tilted with slope equal to 0.01 along the longest 

side. However, we add artificial river banks to prevent water outflow from the lateral sides of 

the domain. Geometry of the domain is illustrated by fig. 3. Rainfall intensity is equal to 
65 10 m/s for the first 15000 seconds of the experiment and 0 for the next 15000 seconds of 

the experiment. Overall experiment duration is 30000 seconds. Manning roughness 

coefficient is 0.05  s/m
1/3

. Comparison of the numerical results for linear discharge density 

through the outlet with the analytical solution is depicted on fig. 4 (linear discharge density is 

equal to the discharge divided by the outlet length, which is equal to 100 m). As one can see 

on the figure numerical results are close to the analytical solution, however some qualitative 

difference remains. The latter may be caused by the slight diffusive and kinematic wave 
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model disagreement. 

 

Figure 3. Geometry of tilted v-catchment numerical experiment domain 

 

Figure 4. Water discharge dynamics for tilted v-catchment numerical experiment 
 

4.2 Tilted v-catchment with subsurface 

This numerical experiment as well as corresponding other simulators' numerical results are 

described in [4]. Ground surface is a 10m wide channel with parallel walls with banks tilted in 

x  and y  directions. Slope in y  direction is constant and equal to 0.02, slope in x  direction is 

zero for the channel, and 0.05 for channel banks. Bottom of the domain has the same 

geometry as ground surface and is located 5m below the surface (see fig. 5 for domain 

geometry scheme). Two different precipitation scenarios were modeled: no rainfall during the 
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120 hours of experiment in the first scenario, 20 hours of rainfall with precipitation rate 0.1 

m/h and 100 hours of recession in the second scenario. Authors of  [4] suggest to use zero 

surface water depth and vertically hydrostatic initial conditions with water table 2 m below 

the ground surface as initial conditions. Boundary conditions are critical depth boundary 

condition for surface layer and no-flux boundary conditions for subsurface. 

 

Figure 5. Geometry of tilted v-catchment numerical experiment domain 
 

The following model parameters were used [4]: 

 31.74 10   h/m 1/3  for the channel and 41.74 10    h/m 1/3  elsewhere, 

 satK  = 10 m/h, 

 n  = 2 and   = 6 m
1
, 

 0.08, 0.4r s   , 

 510stors   m 1 , 

 precipitation rate: 0 for 120 h for the first scenario, 0.1 m/h for the first 20 h and 0 

afterwards for the second scenario. 

One of the simulators considered in [4] uses first-order exchange as a coupling method 

(HGS simulator), however there is no exact value defined for proportionality coefficient for 

the surface-subsurface flux in this paper. Therefore, bottom sediment parameters were 

estimated for GeRa to fit the results of other simulators. For this numerical experiment, we 

used 20ssK   m/day and 0.2d  m. 

Using these model parameters, we simulated the test case and obtained water dynamics for 

the surface and subsurface layers. Comparison discharge rate through the outlet obtained by 

GeRa code with other simulator results is presented in fig. 6 for the first scenario and fig. 7 

for the second scenario. As one can see from the figures Gera software produces the solution 
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close to the other simulators results. Absolute values of GeRa solution lie between other 

simulators.  

 

Figure 6. Water discharge dynamics for the first scenario of the tilted v-catchment benchmark 

 

Figure 7. Water discharge dynamics for the second scenario of the tilted v-catchment benchmark 

4.2 Borden benchmark 

Field study was originally presented by Abdul and Gillham [35], [36] where outlet 

discharge has been measured for 100 minutes of the experiment. The experiment site is 

approximately 18 m wide and 90m long. The exact surface geometry is described by Digital 

Elevation Model of the terrain [4] and is depicted in fig. 8. We considered a region with relief 
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level less than 3.02 m as a channel domain and the rest of the surface as channel banks. The 

subsurface computational domain is bounded by 0z   plane at the bottom. Numerical 

experiment is implemented and described in [4], [20], [23]. 

We used the following model parameters: 

 0.03   s/m 1/3  for the channel and 0.3   s/m 1/3  elsewhere [20], [23], 

 satK  = 0.036 m/h [4], 

 n  = 6 and   = 1.9 m 1 [4], 

 0.067, 0.37r s   [4], 

 610stors   m 1 , 

 precipitation rate: 0.02 m/h for the first 50 minutes, 0 for the last 50 minutes. 

For this numerical experiment 0.47ssK   m/day and 0.2d   m were used. Note that 

authors of [4] used constant value for Manning's roughness for the whole domain, while 

different values for the channel and the channel banks are used in [20], [23]. 

Zero water level on the surface and hydrostatic initial conditions with water table at z   

2.78 m were used as initial conditions. Boundary conditions are critical depth boundary for 

the surface layer and no-flux boundary conditions for the subsurface. 

Comparison between GeRa numerical discharge rate, other simulator discharge rate and 

experimental data is depicted in fig. 9. As one can see from the figure GeRa results are close 

to the experimental discharge rate. Moreover GeRa results agree with other simulators under 

consideration. 

 

Figure 8. Borden benchmark surface elevation described by Digital Elevation Model with 0.5m 

resolution [4] 
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Figure 9. Water discharge dynamics for Borden benchmark 

4.3 Parallel numerical experiments 

In this section, we consider parallel efficiency of the coupled surface-subsurface model 

implemented in GeRa. Parallelization is implemented with MPI technology used in INMOST. 

For the numerical experiments presented in the section we dramatically refined the meshes for 

the experiments described previously. During Newton iteration, we need to solve a system of 

linear equations. Note, that in case of convergence failure we refine the time step. Maximum 

number of Newton iterations before the time step refinement is one of nonlinear solver 

parameters. To solve the linear systems of equations obtained on each Newton iteration we 

use PETSc package [37], namely BiCGStab solver with Schwartz preconditioner. On each 

processor ILU(k) preconditioner is used. For the mesh cell distribution between processors 

ParMETIS package is used [38]. 

All experiments are performed on INM RAS cluster [39] using the computational nodes of 

the x12core segment: 

 Compute Node Arbyte Alkazar+ R2Q50 

 24 cores (two 12-core Intel Xeon E5-2670v3@2.30GHz processors or Intel Xeon 

Silver 4214@2.20GHz); 

 RAM: 64 GB; 

 Operating system: SUSE Linux Enterprise Server 15 SP2; 

 Network: Mellanox Infiniband.  

Due to node configuration we consider not 1, 2, 4,…,2
n
 cores, but 3, 6,…, 3*2

n
 cores to 

measure parallel efficiency. 

For the tilted v-catchment numerical experiment, (first precipitation scenario is considered) 

mesh size is 285750 cells. For Newton iterations, nonlinear problem parameters are the 

following: 

 initial time step is 0.001 days; 

 maximum number of nonlinear iterations before time step reduction is 40;  
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 stopping criterion is residual reduction by 10
-3

 factor.

For linear system solution PETSc parameters are the following: 

 Schwartz overlap between processors is 1;

 ILU factor level for each processor is 1;

 stopping criterion is initial residual reduction by factor 10
-9

;

In the Borden experiment, mesh size is 278140 cells. For Newton iterations, nonlinear 

problem parameters are the following: 

 initial time step is 0.001 days;

 maximum number of nonlinear iterations before time step reduction is 300;

 stopping criterion is residual reduction by factor 10
-4

.

For linear system solutions PETSc parameters are the following: 

 Schwartz overlap between processors is 3;

 ILU factor level for each processor is 3;

 Stopping criterion is initial residual reduction by factor 10
-9.

Results are shown in the Table 1 for the tilted v-catchment experiment and Table 2 for the 

Borden experiment. For each number of processors (first column) we list total solution time 

of the experiment (second column), acceleration (third column) and efficiency of 

parallelization (fourth column). Acceleration is the ratio between total solution times for 

current number of processors and for the baseline number of processors. The baseline number 

is equal to 3 for tilted v-catchment benchmark and 12 for Borden benchmark (we do not use 

serial computation on a single processor due to long computational time for the refined mesh). 

Parallelization efficiency is the ratio between solution times for current number of processors 

and for two times smaller number of processors. In other words, efficiency value shows a 

speedup for one step of processors number increasing. 

Number of 

processors 

Solution time Acceleration Efficiency 

3 29456 1.0 - 

6 19521 1.5 1.5 

12 11039 2.7 1.8 

24 5081 5.8 2.2 

48 2645 11.1 1.9 

96 1267 23.4 2.1 

192 838 35.1 1.5 

Table 1. Parallel efficiency results for the tilted v-catchment experiment 

Number of 

processors 

Solution time Acceleration Efficiency 

12 92684 1.0 - 

24 51997 1.8 1.8 

48 28083 3.3 1.8 

96 15138 6.1 1.9 

192 9111 10.17 1.7 

Table 2. Parallel efficiency results for the Borden experiment 
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Both experiments demonstrate good scalability and parallel efficiency of coupled surface-

subsurface water simulations. Maximum speedup is 35 times for tilted v-catchment 

experiment on 192 cores (theoretical maximum is 64 times). Both experiments also 

demonstrate fair efficiency. Average efficiency is more than 1.6 for both experiments and in 

some cases hyper linear speedup is observed.  

 

 5 CONCLUSIONS 

Surface runoff model implemented in GeRa software package is described in the article. 

Verification benchmarks previously applied to the serial implementation of the model in [17] 

were used here to demonstrate validity of the parallel version of the model itself as well as 

coupled surface-subsurface model. We also used these benchmarks to assess parallelization 

efficiency of the coupled model. Numerical experiments show good scalability of the 

implementation. The acceleration for the parallel implementation is up to 35 times for 192 

processors for the tilted v-catchment benchmark relative to the baseline time obtained for 3 

processors. 

We also suggested surface-subsurface flux smoothing approach in order to prevent 

nonlinear solver oscillations. 
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