
MATHEMATICA MONTISNIGRI 
Vol XLV (2019) 

2010 Mathematics Subject Classification:  49Q99, 76M27.
Key words and Phrases: comparative estimation of accuracy, OpenFOAM solvers, oblique shock wave

COMPARATIVE ANALYSIS OF THE ACCURACY OF OPENFOAM 

SOLVERS FOR THE OBLIQUE SHOCK WAVE PROBLEM 

A. K. ALEKSEEV
1
, A.E. BONDAREV

1*
, A.E. KUVSHINNIKOV

1

 1Keldysh Institute of Applied Mathematics Russian Academy of Sciences 
Moscow, Russia 

*Corresponding author. E-mail: bond@keldysh.ru

Summary. The article is devoted to a comparative assessment of the accuracy for solvers 
of the OpenFOAM open software package. As a test problem, we consider the classical two-
dimensional problem of a supersonic inviscid compressible flow falling on a flat plate at an 
angle of attack. As a result, an oblique shock wave is formed before the start of the plate. The 
simulation results for the solvers considered in comparison are compared with the known 
exact solution. Calculations for all solvers participating in the comparison were carried out 
with the same setting of the parameters of the incident flow and angle of attack. Special 
attention was paid to QGDFoam solver, which has controlled dissipative properties. For this 
solver, within the framework of a general comparison, calculations were carried out with a 
variation of the parameter that allows controlling dissipative properties. The results of 
estimates of deviations from the exact solution in various norms for all solvers are given. 

1 INTRODUCTION 

A comparative assessment of the accuracy and efficiency of numerical methods and 
algorithms for mathematical modeling of CFD problems has been the subject of special 
attention of researchers throughout the development of mathematical modeling. Over a long 
period, a certain set of CFD test problems has developed, and the verification of the efficiency 
of the developed numerical method was based on testing the method on this set of problems. 
These aspects are reflected in a fairly large number of reviews, for example, [1, 2]. 

Currently, the task of comparative assessment of numerical methods accuracy has not lost 
its relevance. New technical problems and the appearance of new mathematical models entail 
intensive development of numerical methods. Developed new numerical methods and 
algorithms are often implemented in the form of solvers integrated into various software 
packages, both commercial and open. In this process, not always and not all solvers pass a full 
test on the classical set of test problems. This set can include such well-known problems as: 
falling an oblique shock wave onto a plate, rarefaction wave, forming a boundary layer on a 
plate or a smooth curved surface, flow in front of the obstacle, flow in front of a spherically 
blunt obstacle, flow around a cone, flow behind a ledge, flow in the far wake. Such a set of 
tests provides testing of a numerical method and its software implementation for 
mathematical models, describing both inviscid flows and viscous ones. 

It should be noted that the analysis of the accuracy of numerical methods in the simulation 
of discontinuities has been relevant since the main directions and approaches to the simulation 
of flows with shock waves were formed. Two major directions were formed here - methods 
for gas-dynamic flows modeling without marking discontinuities and methods where 
discontinuities were defined as boundaries of a flowfield. A detailed description of these 
directions can be found in [3,4]. Both directions are characterized by a large number of 
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numerical methods implemented in their framework. As examples of approaches without 
isolating of discontinuities, one can cite papers [5–9]. 

Methods that use the isolating of discontinuities in the form of the boundaries of the 
computational domain can be found, for example, in [10–12]. Practical experience of using 
both approaches has shown that both approaches have both clear advantages and obvious 
disadvantages. Thus, numerical methods without isolating of discontinuities require to make 
the computational grid more detailed in the vicinity of discontinuities and, as a result, give a 
vague picture of the flow structure. In turn, methods that use discontinuity detection encounter 
problems when modeling rapidly changing structures of shock waves, which leads to the need 
for a rapid restructuring of the geometry of the computational regions and the introduction of 
scenario approaches for organizing such a restructuring. Nevertheless, serious attempts are 
being made to overcome such difficulties in both directions. 

For methods without isolating discontinuities, it is possible to note the work [13]. The 
approach proposed in this paper makes it possible to clearly identify the locations of 
discontinuities by automating the processing of the computed results. In this approach, gas-
dynamic functions are considered as the intensity of the image, and the values of the functions 
at each point as the elements of the image (pixels). A differential detector is used and a 
detectable fracture is classified using discrete analogs of gas-dynamic relations performed at 
the discontinuity. The stated approach does not depend on the specific type of the problem 
being solved and does not require any a priori information about the flow. As an example of 
an approach combining both directions, we can mention the method of dynamic adaptation 
presented in [14-18]. The method is based on the transition to an arbitrary nonstationary 
coordinate system in which not only grid functions, but also coordinates of grid nodes are 
unknown. According to [18], this approach allows for calculations using methods without 
isolating discontinuities with automatic condensing of grid nodes to the solution features, and 
with explicit selection of moving boundaries and discontinuities when necessary. It should be 
emphasized that for methods that do not use the selection of boundaries, an analysis of the 
solution behavior at a discontinuity and an assessment of the accuracy are necessary. 

This paper is devoted to comparing the accuracy of solvers of an open software package 
OpenFOAM [19] at an oblique shock wave and continues the research on the comparative 
assessment of numerical methods accuracy on classical test problems. At the previous stages 
of this study, a comparative assessment was made of the accuracy of the OpenFOAM solver 
group for the task of flow around a cone under the angle of attack. Studies were performed 
with a variation of the Mach number, the angle of the cone and the angle of attack in wide 
ranges with the selected step. Thus, a study was performed for a class of problems defined for 
these determining parameters within the ranges of variation. The results of the comparison 
with the well-known tabular solution allowed us to construct the dependence of the error on 
the determining parameters for each solver and to make a comparison for the class of 
problems in question. The main results are presented in [20–23]. 

It should be noted that these numerical studies were based on the principles of constructing 
a generalized computational experiment [24-27]. The construction of such an experiment is 
based on numerical parametric studies and the solution of optimization analysis problems. 
Solving such problems implies a multiple solution to the direct problem of numerical 
modeling of a gas-dynamic process with various input data. The defining parameters of a 
class of problems, such as the characteristic Mach number, Reynolds number, geometric 
parameters, etc., vary in certain ranges with a certain partitioning step. As a result, the 
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resulting solution is a multidimensional volume of data. To analyze this volume, modern 
methods of data analysis and visual analytics are used. 

In this paper, a comparison is made for the solvers of the OpenFOAM (Open Source Field 
Operation And Manipulation CFD Toolbox) open source software package. This is a free 
software product created for solving problems of hydro and gas dynamics. Widely used in 
many areas of science and technology, the OpenFOAM package contains a number of solvers 
with different computational properties. The OpenFOAM package also allows one to develop 
new solvers on the platform of package. Four solvers participated in the comparison: two 
standard solvers - rhoCentralFoam and sonicFoam and two new solvers - pisoCentralFoam 
[28] and QGDFoam [29,30]. The last two solvers were developed by teams of Ivannikov 
Institute for System Programming and Keldysh Institute of Applied Mathematics of the 
Russian Academy of Sciences. It should be noted that the QGDFoam solver has a controllable 
parameter that allows one to adjust the dissipative properties of the numerical method, which 
is extremely important in suppressing unwanted oscillations at shock waves. The research in 
this paper for QGDFoam was performed with a variation of this parameter. 

Previously, most comparative estimates of numerical methods accuracy in simulating a 
shock wave were reduced to a comparison of the width of the shock wave spreading zone 
along a selected line crossing the discontinuity. In this paper, we use error estimates for the 
entire flow field in the computational domain in different norms.  

2 FORMULATION OF THE TEST PROBLEM 

In this paper, the classical two-dimensional inviscid problem of modeling an oblique shock 
wave is used to compare solvers. The general flow scheme is shown in Fig. 1. A supersonic 
gas flow with Mach number M at an angle β falls on a flat plate. At the beginning of the plate, 
an oblique shock wave S occurs. This problem is considered within the framework of the 
Euler system of equations and has an exact analytical solution. 

 
Fig.1. Flow scheme. 

At the input boundary, the parameters of the external flow are specified for the Mach 
number M and a certain value β. On the part of the lower boundary corresponding to a flat 
plate, a no-flow condition is specified. At the output boundary, we set the derivatives of gas-
dynamic functions equal to zero along the normal to the boundary. On the upper boundary for 
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the velocity components the boundary conditions are set similarly to the conditions for the 
input boundary. For the remaining gas-dynamic functions of the upper boundary the 
conditions are set similarly to the conditions for the output boundary. 

3 THE PROCEDURE OF COMPARISON 

The solution of the problem was performed using 4 solvers of the OpenFOAM software 
package. These solvers were: rhoCentralFoam, sonicFoam, pisoCentralFoam, QGDFoam. 
We give below their brief characteristics. 

Solver rhoCentralFoam — is based on a central-upwind scheme, which is a combination 
of central-differential and upwind schemes [31,32]. The essence of the central-upwind flow 
schemes consists in a special selection of the control volume containing two types of 
domains: around the boundary points - the first type; around the center point - the second 
type. The boundaries of the control volumes of the first type are determined by means of local 
propagation velocities. The advantage of these schemes is that, using the appropriate 
technique to reduce the numerical viscosity, it is possible to achieve good solvability for 
discontinuous solutions — shock waves in gas dynamics, and for solutions in which viscous 
phenomena play a major role. 

Solver sonicFoam is based on the PISO algorithm (Pressure Implicit with Splitting of 
Operator) [33]. The basic idea of the PISO method is that two difference equations are used to 
calculate the pressure for the correction of the pressure field obtained from discrete analogs of 
the equations of moments and continuity. This approach is due to the fact that the velocities 
corrected by the first correction may not satisfy the continuity equation, therefore, a second 
corrector is introduced which allows us to calculate the velocities and pressures satisfying the 
linearized equations of momentum and continuity. 

Solver pisoCentralFoam is a combination of a central-upwind scheme [28] with the PISO 
algorithm. 

Solver QGDFoam [29,30] is based on a system of quasi-gas dynamic equations [34–36] 
developed by a research team led by B.N. Chetverushkin. A quasi-gas dynamic algorithm is 
built on the basis of a mathematical model that generalizes the Navier-Stokes system of 
equations and differs from it by additional dissipative terms, having the form of second spatial 
derivatives with a small parameter in the form of a coefficient [36]. The principal difference 
of QGD (quasi-gas dynamic and quasi-hydrodynamic) systems from the Navier-Stokes 
system of equations is the space-time averaging for determining the main gas dynamic 
quantities. The presence of a controlled parameter with dissipative terms makes it possible to 
successfully suppress unwanted oscillations at discontinuities. The calculations used the 
values of this parameter in the range from 0.1 to 0.3. 

To organize the comparison, the unification of calculations was performed. There are two 
ways in the OpenFOAM package to select the approximation variant of differential operators: 
directly in the solver’s code or using the fvSchemes and fvSolution configuration files. To 
make the comparison correct, we used the same parameters, where it was possible, acting in 
the same way as [20-23]. The following parameters were selected in the fvSchemes file: 
ddtSchemes – Euler, gradSchemes – Gauss linear, divSchemes – Gauss linear, 
laplacianSchemes – Gauss linear corrected, interpolationSchemes – vanLeer. In the 
fvSolution file: solver – smoothSolver, smoother – symGaussSeidel, tolerance – 1e−09, 
nCorrectors – 2, nNonOrthogonalCorrectors – 1. 
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To estimate the deviation of the obtained numerical results from the known exact solution 
in the entire computational domain, analogs of the L2 norms were used 

  𝜕𝐿2 =  √∑ |𝑦𝑚 − 𝑦𝑚
𝑒𝑥𝑎𝑐𝑡|2𝑉𝑚𝑚  √∑ |𝑦𝑚

𝑒𝑥𝑎𝑐𝑡|2𝑉𝑚𝑚  ⁄    

and L1 

 𝜕𝐿1 = ∑ |𝑦𝑚 − 𝑦𝑚
𝑒𝑥𝑎𝑐𝑡|𝑉𝑚𝑚 ∑ |𝑦𝑚

𝑒𝑥𝑎𝑐𝑡|𝑉𝑚𝑚⁄ . 
Here, ym is the pressure p, the local Mach number Ma, the density ρ in the cell, and Vm is 

the volume of the cell. All calculations were carried out with setting the following flow 
parameters: flow angle β = 6 °, Mach number M∞ = 2, pressure P∞ = 101325 Pa, temperature 
T∞ = 300 K. 

4 CALCULATION RESULTS 

Calculations for all solvers allowed us to obtain a well-known flow pattern for the 
simulated oblique shock problem. A typical flow pattern is shown in Fig. 2 as a pressure 
distribution in the computational domain. The presented pressure distribution was obtained 
using rhoCentralFoam solver. The destruction of the solution was not observed for any of the 
solvers, which testifies to the high stabilizing properties of all solvers participating in the 
study. 

 
Fig. 2. Typical pressure distribution.  

For all solvers, comparisons were made with the known exact solution [2]. The results are 
presented in tables 1 and 2 for the norms L1 and L2, respectively. The bold font indicates the 
minimum values. Further, in the tables for solvers, the abbreviations are used: rCF 
(rhoCentralFoam), pCF (pisoCentralFoam), sF (sonicFoam), QGDF (QGDFoam). The 
deviations from the exact solution over the entire computational domain were calculated for 
the local Mach number Ma, pressure p and density ρ. 

The upper row of both tables shows the value of the parameter α given for the QGDFoam 
solver, which allows adjusting the additional artificial viscosity. 
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 rCF pCF sF QGDF, 
α=0.1 

QGDF, 
α=0.15 

QGDF, 
α=0.2 

QGDF, 
α=0.3 

Ma 0.000592 0.000768 0.001014 0.000646 0.000668 0.000757 0.001005 

p 0.001755 0.001902 0.003182 0.002245 0.002203 0.002406 0.003061 

ρ 0.001350 0.001480 0.002211 0.001549 0.001532 0.001677 0.002131 

Table 1. Norm L1, M=2, β = 6° 

 rCF pCF sF QGDF, 
α=0.1 

QGDF, 
α=0.15 

QGDF, 
α=0.2 

QGDF, 
α=0.3 

Ma 0.004231 0.004572 0.005504 0.004086 0.004318 0.004699 0.005500 

p 0.013287 0.013744 0.017505 0.014393 0.014734 0.015647 0.017753 

ρ 0.009331 0.009633 0.012146 0.009940 0.010222 0.010860 0.012305 

Table 2. Norm L2, M=2, β = 6° 

The results in the tables show that the smallest deviation from the exact solution for the 
flow field in almost all cases is provided by the solver rhoCentralFoam. It can also be noted 
that for the QGDFoam solver, decreasing the α parameter significantly reduces the error. 
When evaluated in the L2 norm for the Mach number, the result of the QGDFoam solver 
provides the smallest deviation from the exact solution. 

We now turn from general integral estimates to a more careful consideration of the 
behavior of gas-dynamic functions in the vicinity of the shock wave. Fig. 3,4,5 show the 
results for all solvers in the form of a density, pressure and a local Mach number distribution 
along the horizontal line AA1, crossing the computational domain at a distance from the lower 
boundary equal to y = 0.15 (Fig 1). The exact solution is indicated by a dotted line. All 
solvers are indicated by the colors shown in the corresponding table in the figures. 

 
Fig.3. The distribution of pressure in the vicinity of the shock wave. 
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Fig.4. The distribution of density in the vicinity of the shock wave. 

 

 
Fig.5. The distribution of the local Mach number in the vicinity of the shock wave. 

 
The pattern of pressure distribution in the lower part of the shock and in the upper part is 

shown in close-ups in Figures 6 and 7, respectively. 
 

101



A. Alekseev, A. Bondarev, A. Kuvshinnikov 

 
Fig.6. Pressure distribution in the vicinity of the lower part of the shock wave. 

 
Fig.7. Pressure distribution in the vicinity of the upper part of the shock wave. 

 
The presented figures make it possible to judge the degree of spreading of the shock for all 

the solvers considered in comparison. The result closest to the exact solution is provided by 
the rhoCentralFoam solver. For solver QGDFoam, the effect of variation of the parameter α 
is very clearly represented. A decrease in the parameter α brings the calculated results closer 
to the exact solution; however, oscillations that appear are noticeable in the upper part of the 
shock wave. This confirms the well-known fact that often the general assessment of accuracy 
in the norm of monotone schemes that provide smooth solutions shows worse results than for 
less monotonic schemes with oscillations. In the case of the QGDFoam solver, the user of the 
solver has the opportunity to choose either to obtain a smooth solution, or to improve the 
estimate at the norm. 
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5 CONCLUSIONS 

 
A comparative evaluation of solution accuracy for the four OpenFOAM solvers has been 

made. As a test problem, we used the classical two-dimensional oblique shock problem 
caused by the fall of a supersonic flow of an inviscid compressible gas on a flat plate at an 
angle. The calculations were performed for fixed values of the parameters of the incident flow 
and angle of attack. Comparison of results with the exact solution was carried out over the 
entire field of calculated data using analogs of the norms L1 and L2. 

The results obtained showed that in almost all cases the solver rhoCentralFoam provides 
the smallest deviation from the exact solution. For solver QGDFoam, reducing the parameter 
that controls the artificial viscosity can significantly reduce the deviation from the exact 
solution, but at the same time, oscillations appear in the upper part of the shock wave that do 
not destroy the solution. 

The results of the comparative evaluation can be useful both for users of the OpenFoam 
software package and for developers of the software content of this package. 

In the future, the authors consider the expansion of a comparative estimate based on the 
construction of a generalized computational experiment by varying the Mach number and 
angle of attack for the oblique shock wave problem considered. It is also planned to solve an 
optimization problem for the QGDFoam solver in order to find the optimal control of the 
dissipative properties of the solver on strong discontinuities. 

 
 

Acknowledgements: This work was supported by grant of RSF № 19-11-00169. 

REFERENCES 

[1] V.M. Paskonov, V.I. Polezhaev, L.A. Chudov, Chislennoe modelirovanie processov teplo- i 

massoobmena, M.: Nauka (1993). 
[2] E.N. Bondarev, V.T. Dubasov, Y.A. Ryzhov et al., Aerigidromeckanika, M.: Mashinostroenie 

(1993). 
[3]  A.G. Kulikovsky, N.V. Pogorelov, A.Yu. Semenov, Matematicheskie voprosy chislennogo 

resheniya giperbolicheskih uravneniy, М.: Phizmatlit (2001).. 
[4]   A.A. Samarsky, Yu.P.Popov, Raznosnye shemy gazovoy dinamiki, M.: Nauka (1981). 
[5]  A. Harten, “High resolution schemes for hyperbolic conservation laws”, Journal of Computational 

Physics,  49, 357-393  (1983). 
[6]  S. Osher, “Riemann solvers, the entropy condition, and difference approximation”, SIAM J. 

Numer. Anal., 21 (2), 217-235 (1984).   
[7]   A. Harten, “ENO schemes with subcell resolution”, Journal of Computational Physics, 83, 148-

184 (1989).  
[8] X-D. Liu, S. Osher, T. Chan, “Weighted essentially non-oscillatory schemes”, Journal of 

Computational Physics, 115, 200-212 (1994).  
[9] Ph. Colella, P.R.Woodward, “The piecewise parabolic method (PPM) for gas-dynamical 

simulations”, Journal of Computational Physics, 54 (1), 174-201 (1984).  
[10] S.K. Godunov, A.V. Zabrodin, M.Ya. Ivanov et al., Chislennoe reshenie mnogomernyh zadach 

gazovoy dinamiki, М.: Nauka (1976). 
[11] A. V. Zabrodin, G. P. Prokopov, V.A. Cherkashin, “Self-adapted algorithms of gas dynamics”, 

Lect. Notes Phys., 90, 587-593 (1979).  
[12] A. V. Zabrodin, “O problemah chislennogo modelirovaniya gazodinamicheskih techeniy co 

103



A. Alekseev, A. Bondarev, A. Kuvshinnikov 

slozhnoy strukturoy", Konstruirovanie algoritmov b reshenie zadach matematicheskoy phiziki, 
М.: IPMatem. AN SSSR (1987). 

[13] S. B. Bazarov, “Digital Image Processing for Visualization of Numerical Results in Fluid 
Dynamics”, Application of Scientific Visualization in Applied Problems, M: MGU, 39–42 (2000). 

[14] N. A. Dar'in, V. I. Mazhukin, A. A. Samarskii, “A finite-difference method for solving the 
equations of gas dynamics using adaptive grids which are dynamically connected with the 
solution”, U.S.S.R. Comput. Math. Math. Phys., 28 (4), 164–174 (1988). 

[15] V.I. Mazhukin, A.A. Samarskii, M.M. Chuiko, “Metod dinamicheskoi` adaptatcii dlia 
chislennogo resheniia nestatcionarnykh mnogomernykh zadach Stefana”, Doclady RAN, 368(3), 
307 – 310 (1999).  

[16] V. Mazhukin, M. Chuiko. “Solution of the Multi-interface Stefan Problem by the Method of 
Dynamic Adaptation”, Computational Methods in Applied Mathematics, 2(3), 283–294 (2002). 
DOI: https://doi.org/10.2478/cmam-2002-0017. 

[17]  P.V. Breslavskii, V.I Mazhukin. “Dynamic adaptation method in gasdynamic simulations with 
nonlinear heat conduction”, Comput. Math. Math. Phys., 48(11), 2102-2115 (2008). DOI: 
10.1134/S0965542508110158).  

[18] P. V. Breslavskii, V.I Mazhukin. “Dynamically adapted grids for interacting discontinuous 
solutions”, Comput. Math. Math. Phys., 47(4), 687-706 (2007), DOI: 
10.1134/S0965542507040124 

 [19] OpenFOAM, website: http://www.openfoam.org (accessed  July 7, 2019) 
[20] A.E. Bondarev, A.E. Kuvshinnikov, “Comparative study of the accuracy for OpenFOAM 

solvers”, Proceedings of Ivannikov ISPRAS Open Conference. IEEE Xplore, 132-136 (2017).  
doi:  10.1109/ISPRAS.2017.00028 

[21] A. E. Bondarev, A. E. Kuvshinnikov, “Analysis of the Accuracy of OpenFOAM Solvers for the 
Problem of Supersonic Flow Around a Cone”, Lecture Notes in Computer Science, 10862, 221–
230 (2018). doi:10.1007/978-3-319-93713-7_18 

[22] A. E. Bondarev, A. E. Kuvshinnikov, “Comparative Estimation of QGDFoam Solver Accuracy 
for Inviscid Flow Around a Cone”, Proceedings of the 2018 Ivannikov ISPRAS Open Conference, 
IEEE, 82-87 (2018). doi: 10.1109/ISPRAS.2018.00019 

[23] A.K. Alekseev, A.E. Bondarev, A.E. Kuvshinnikov, “Verification on the Ensemble of 
Independent Numerical Solutions”, Lecture Notes in Computer Science, 11540, 315–324 (2019).  
doi: 10.1007/978-3-030-22750-0_25    

[24] A.E. Bondarev, V.A. Galaktionov, L.Z. Shapiro, “Postroenie I vizualniy analiz parallelnyh 
resheniy dlya optimizacionnyh I parametricheskih issledovaniy v vychislitelnoy gazovoy 
dinamike”, Proceedings of 26-th International conference of computer graphics and vision, 211-
215 (2016).  

[25] A.E. Bondarev, “On the Construction of the Generalized Numerical Experiment in Fluid 
Dynamics”, Mathematica Montisnigri, 42, 52-64 (2018).   

[26] A.E. Bondarev, “On visualization problems in a generalized computational experiment”, 
Scientific Visualization, 11 (2), 156-162 (2019).  doi: 10.26583/sv.11.2.12 

[27] A.E. Bondarev, “On the Estimation of the Accuracy of Numerical Solutions in CFD Problems”,  
Lecture Notes in Computer Science, 11540, 325–333 (2019).  doi:   10.1007/978-3-030-22750-
0_26 

[28] M. Kraposhin, A. Bovtrikova, S. Strijhak, “Adaptation of Kurganov-Tadmor numerical scheme 
for applying in combination with the PISO method in numerical simulation of flows in a wide 
range of Mach numbers”, Procedia Computer Science, 66, 43–52 (2015). 
doi:10.1016/j.procs.2015.11.007. 

[29] M. V. Kraposhin, D. A. Ryazanov, E. V. Smimova, T. G. Elizarova, M. A. Istomina, 
"Development of OpenFOAM Solver for Compressible Viscous Flows Simulation Using Quasi-
Gas Dynamic Equations", Ivannikov ISPRAS Open Conference, 117-123 (2017). 

104



A. Alekseev, A. Bondarev, A. Kuvshinnikov 

[30] M. A. Istomina, "About realization of one-dimensional quasi-gas dynamic algorithm in the open 
program OpenFOAM complex", Preprint IPM No. 1 (Moscow: KIAM), (2018). 

[31] A. Kurganov, E. Tadmor, “New high-resolution central schemes for nonlinear conservation laws 
and convection-diffusion equations”, J. Comput. Phys., 160, 241–282 (2000), 
doi:10.1006/jcph.2000.6459. 

[32] C. J. Greenshields, H. G. Wellerr, L. Gasparini, J. M. Reese, “Implementation of semi-discrete, 
non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-
speed viscous flows”, Int. J. Numer. Meth. Fluids, 63 (1), 1–21 (2010), doi:10.1002/fld.2069. 

[33] R.Issa, “Solution of the implicit discretized fluid flow equations by operator splitting”,  J. 

Comput. Phys., 62 (1), 40–65 (1986). doi:10.1016/0021-9991(86)90099-9 
[34] B. N. Chetverushkin, T. N. Elizarova “Kinetic algorithms for calculating gas dynamic flows,” 

U.S.S.R. Comput. Math. Math. Phys., 5 (5), 164–169 (1985). 
[35] B. N. Chetverushkin, Kinetic schemes and Quasi-Gas Dynamic system of equations, CIMNE, 

Barcelona (2008). 
[36] T. G. Elizarova, Quasi-Gas Dynamic Equations, Springer (2009). 

Received June 18, 2019

105




