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Summary. Theoretical model of the ions formation in a liquid dielectric and flows caused by

high electric field is proposed. The three-dimensional system of macroscopic pre-breakdown

electro-hydrodynamic equations is written. The influence of electric field on the molecule dis-

sociation rate is taken into account. The system includes the Poison equation for electric field

potential, equation of ion formation and the Navier–Stokes equations with the electric force. Au-

thor’s steady analytical electrodynamic solution of these equations for the electric field distribu-

tion and potential of spherical high voltage capacitor with liquid transformer oil type dielectric

is described. Analytical non-stationary and numerical steady solutions for velocity distributions

in liquid dielectric flows are obtained.

1 INTRODUCTION

Deviations from the Ohm’s law for slightly ionized solid media in pre-breakdown uniform

electric fields were experimentally discovered by Poole about 100 years ago [1]. In a weakly

conductive liquid media the same experimental effect was obtained by M. Wien about 10 years

later [2, 3].

Theoretically this exponential effect for considerable number of media was explained by

Frenkel for solid dielectrics and by Onsager [3] for liquid weak electrolytes and for weakly

conductive liquid dielectrics. The space charge and electro-hydrodynamic (EHD) flows have

been observed in these dielectrics at the pre-breakdown conditions [4].

The space charge formation, according to [5], occurs in the pre-breakdown fields until all

the EHD characteristics become steady. Herein, steady conduction can be as unipolar (corona-

discharge type), as quasi-neutral (plasma or electrolyte type). The last was considered early

in [5] and in the present work.

The pre-breakdown current–voltage theoretical and experimental characteristics of consid-

erable media in non-uniform electric fields are described by us in [6]. Purpose of present work

is researching of the electro-hydrodynamic flows, caused by these high non-uniform electric

fields. These intense flows are observed in transformer oil type liquids [7, 8] with complex

molecular structure [9]. The hydrodynamic transfer of high voltage space charge, appeared in

considerable liquids, is described in [10]. In the review [8] the surface high voltage electrode ef-

fects influence on considerable pre-breakdown electro-hydrodynamic flows is researched. This
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influence must be taken into account at plan high voltage electrodes. When applied high voltage

field is non-uniform, the volume effects influence on considerable flows is dominated.

The transport properties of charged and neutral components of weakly conducting media

under consideration are investigated in [11,12]. In [11], using the quantum formula Kubo, a new

method for calculating the conductivity of dense media has been developed. The calculations

were carried out using the Monte-Carlo method as well as the molecular dynamics method. The

Wigner–Liouville equation was used. The graphs of dependence of the studied media electrical

conductivity on the initial parameters and their plasma non-ideality are presented. In [12], the

thermal conductivity of the silicon electron gas is simulated, using the corresponding Fermi–

Dirac distributions. Coefficients of thermal conductivity are obtained, and their dependence on

temperature is presented graphically.

The transfer processes in the considered irreversible thermodynamics are used in [13]. The

approach of the continuous medium and the local thermodynamic equilibrium are used. The

transfer equations are derived with recommendations for their use in the analysis of thermal

conductivity, electrical conductivity and diffusion. The formation of mixtures of liquids is used

when applying a simple mathematical model from the equations of irreversible thermodynam-

ics. The Navier–Stokes and heat inflow equations are solved. The formation of droplets during

the evaporation of a liquid is substantiated [14].

In [15], the equations of a low-density plasma magnetosphere are written in a strong mag-

netic field. The Vlasov equation of kinetic is used. The equation of the magnetohydrodynamic

mixture motion is derived. This method is used to study the evolution of the plasma under

consideration.

2 THEORETICAL MODEL OF ELECTRO-HYDRODYNAMIC PROCESSES IN THE

LIQUID INSULATOR

The following inequalities are valid for bulk charge concentrations n
±

, impurities concentra-

tions np and neutrals na concentrations in a low-conducting medium:

n
±
≪ na, np ≪ na. (1)

The above relations can be considered as a condition for a weak ionization (dissociation) or

low conductivity in the considered medium. The rates of volume ionization (or dissociation)

and recombination are supposed to be known as the thermodynamics functions of the above

mentioned concentrations, temperature and field intensity |E| (up to the breakdown values).

They can be represented in the following form:

Wi =Wi(na,np,T, |E|) =Wi(na,np,T,0) f (|E|). (2)

75



M. S. Apfelbaum and A. N. Doludenko

Here, T is the absolute temperature; |E| is the intensity of the electric field. The rate of the ions

recombination is










Wr = Krn+n
−
,

Kr =
(b++b

−
) |e|Z

εε0
;

(3)

Wi denotes the rate of ionization (dissociation); Wr is the rate of ion recombination; Z is the

valence; ε is the dielectric constant of liquid insulator; b+ and b
−

are the mobilities of the

corresponding ions. The expression for Kr (recombination constant) was obtained by Langevin

in 1903 and by Onsager in 1934 for particular case of weak electrolytes. This is the two-particle

ion–ion recombination, when the energy excess is absorbed by a medium.

Onsager had shown weak influence of sub-breakdown electrical fields on Kr when direct and

reverse processes are ionization and recombination correspondingly. But in the case when these

processes are dissociation and reverse dissociation the influence of E on Kr can not be neglected.

Besides weak electrolytes, the Langevin’s formula is valid for dense gases with chemical reac-

tions, where ionic conductivity is much greater than electronic one. Corresponding conductivity

occurs due to various processes.

Among them, there are the neutral molecules (with ionic chemical bonds) dissociation and

the neutral molecules (with covalent chemical bonds) ionization. The latter goes through the

electron ionization from some neutral particle with relatively low ionization potential and at-

taches it to another with relatively high electron affinity.

For the ion diffusion coefficient, we have used more known Einstein–Nernst relation:

ZD
±
=

kBT b
±

|e|
, (4)

where kB is the Boltzmann constant, T is supposed to be a constant and equals to 300 K, because

the Joule heat is small for the pre-breakdown phenomena.

Function f (E) describes the dependence of the ionization (dissociation) rate on the electric

field intensity. The expression, describing it, was obtained by Frenkel for the solid dielectric and

generalized by Ostroumov in [4] for the case when Z > 1 with ion chemical bonds in molecules.

It was used in the present research, and has the form

f (E) = exp
(

β |E|1/2
)

, β =
|Ze|3/2

√

πεε0kBT
, Z = 2, ε = 2.5. (5)

The value of valence Z for dissociating molecules of transformer oil was taken from [9], and

the dielectric constant of transformer oil ε was taken from [4]. This function f of the high field

shock ionization rate is not well known for gases.
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The equations, describing creation and annihilation of the space charge, high voltage con-

ductivity and the electric field distribution can be written as [5]



















∂q

∂ t
+(V,∇q)−

kBT b

|Ze|
∆q+(E,∇σ) =−

qσ

εε0
, ∆φ =−

q

εε0
,

∂σ

∂ t
+(V,∇σ)+b2(E,∇q)−

kBT b

|Ze|

∆σ

Z
−

σ 2
0

εε0
exp
(

β |E|1/2
)

+
σ 2

εε0
= 0,

(6)

where q is the bulk charge, V is the velocity vector, σ is the electrical conductivity.

The well-known hydrodynamics equations should be added to equations (6) to construct

the closed system of equations. The first of them is the continuity equation for incompressible

media

divV = 0. (7)

We used the equation (7) to obtain electrodynamic equations (6). For our purpose it is enough

to consider the law of momentum conservation without considering the law of energy conser-

vation. The momentum conservation equation can be written as























ρ

(

∂u

∂ t
+u

(

∂u

∂x

)

+ v

(

∂u

∂y

))

=−

∂ p

∂x
+µ

(

∂ 2u

∂x2
+

∂ 2u

∂y2

)

+qEx,

ρ

(

∂v

∂ t
+u

(

∂v

∂x

)

+ v

(

∂v

∂y

))

=−

∂ p

∂y
+µ

(

∂ 2v

∂x2
+

∂ 2v

∂y2

)

+qEy.

(8)

Some properties of oil and the initial conditions for the system of equations (6)–(8) are

µ = 0.00016 Pa s, ρ = 800 kg/m3, σ0 = 10−13 Ohm−1cm−1,

P|t=0 = P0 = 105 Pa, q|t=0 = 0, V |t=0 = 0.
(9)

Upon further calculation, the following boundary conditions were adopted: the condition of

adhesion on the surface of the electrode-wire and flat electrodes was set:

V|∂∆ = 0,

where ∂∆ is the boundary of the electrodes.

At the remaining boundaries of the computational domain, the condition of free flow was

set:
∂V

∂n

∣

∣

∣

∣

∣

∂Ω

= 0,

where n is the external unit normal to the boundary ∂Ω of the calculation domain Ω.
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Figure 1: Graphics of the constant flow jets (12) for U = 4 kV and debit 0.1 L/s for different time moments.

The quasi-stationary analytical electrodynamic solution of equations (6) for the spherical

symmetry electrical potential distribution in quasi-neutral medium can be obtained from charge

conservation law (this well-known law can be obtained from equations (6) too). This solution

looks like

φ(r) =

(

I

4πσ0

)1/2[

8

β
−

√

εε0

τσ0

(

|E|1/2 +
8

β

)]

sign(φ(r0)),

|E|exp

(

β

2
|E|1/2

)

=
I

4πσ0r2
, |φ(r0)|=U.

(10)

This quasi-neutral solution (10) is zero approaching of hydrodynamic space charge transfer

differential operator series [10]

q =
∞

∑
i=0

(τv∇)i σE∇τ, (11)

where τ is the charge relaxation time. Mathematical space of differential operators, obtained

in [10], is not the Banach one. The quasi-exponential dependence as dependence [6] for volt-

ampere pre-breakdown characteristics calculations of high voltage spherical capacitors can be
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obtained from (10). These deviations were explained in [3] for plan capacitors early. The Laplas

condition of pre-breakdown electric field, obtained in [7], can be also obtained from (10).

In contrary to the unipolar conduction solutions of our equations (6), the analytical formulae

for pre-breakdown volt-ampere characteristics can be obtained analytically only for the case

of cylindrical symmetry. This solution was obtained for slightly ionized gases in [16] early.

The non-stationary hydrodynamic solution of equations (6)–(8) with the use of (9) and (10) for

development of weakly conductive liquid jet flows from high voltage pinpoint electrode is

Ψ =
εε0U2(t − τ)sin2 θ

32πρr
. (12)

The graph of solution (12) is shown in figure 1. According to this graph, the jet flows are more

developed, when time increases.

3 NUMERICAL CALCULATIONS

Numerical calculations of the isothermal two-dimensional system of equations (7)–(10) were

carried out for the “wire above the plane” configuration of electrodes mentioned above. The

need to determine the maximum speed of the fluid is important task due to the cooling prob-

lem of low-power non-pressure 10 kV transformers. We believe that the voltage inside such a

transformer is proportional to the generated one and can reach value of 500 V and higher. The

method applied and solving system of equations was described in detail earlier [17].

Calculations, mentioned in this paper, were carried out for the wire with square cross-section.

This was done because the transverse dimension of the wire is much smaller than the linear

dimensions of the calculation region. This region has to be not less than the distance from the

wire to the flat electrode, and, in its turn, should be quite large to minimize the influence of

boundary conditions on the calculation. As a compromise on the speed of calculation and flow

details outside the region of wire electrode such a grid was chosen, in which the size of each

side of the wire electrode equals to 8 computational cells.

When conducting full-scale experiments and in reality the cross section of wire electrode is

a circle. There is a question: how reliable are the simulation results with the square-shape elec-

trode and how much are they differ from the simulation results with a round-shape electrode?

To determine this, four calculations were carried out: two on a coarse grid, figure 2(a, b), with

a wire of square and “round” (as far as possible) cross-sections, and two on a finer grid with

a similar sectional view, figure 2(c, d). The calculations were carried out until the flow was

completely established.

Coarse grid parameters: 100×100 cells, cell size equals to 0.0005 m or 0.5 mm. Parameters

of the finer grid: 500×500 cells, cell size equals to 0.0001 m or 0.1 mm.
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(a) (b)

(c) (d)

Figure 2: Square (a, c) and round (b, d) wire cross-sections on a coarse (a, b) and more detailed (c, d) grids.

Figure 3 demonstrates the axial velocities of fluid motion between the electrode-wire and the

electrode-plane without taking into account the effect of the bulk charge. Voltage between the

electrodes equals to 500 V. Inter-electrode distance equals to 2 cm. Different configuration of

the wire cross-section and various fineness of the calculation grid are presented without taking

into account the effect of space charge. One can see in figure 3 that the result has not changed

qualitatively, but the shape of the electrode affects the quantitative result quite strongly. The

maximum flow speed on the straight line connecting the electrodes increases with increasing

fineness of the grid. In addition, when calculating on a fine grid in the region of a square-section

electrode, the reverse flow is noticeable at a distance of 18 to 20 mm from the flat electrode,

shown by the arrow in figures 3 and 4. Besides, the maximum of fluid velocity is greater if the

shape of the wire cross-section is close to rounded.
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Figure 3: Distribution of the axial velocity between the electrodes in the electrode system “wire above the plane”

in the axisymmetric electro-hydrodynamic flow of a weakly conducting liquid.

Figure 4: Streamlines and magnitude of the velocity for a weakly conducting liquid in an electric field without

taking into account the effect of space charge. The cross section of the wire-electrode is square.
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Figure 5: Same as in figure 4 but for the round cross section of the wire-electrode.

Figures 4 and 5 present comparative pictures of the motion of a weakly conducting liquid in

the region of electrodes at a voltage of 500 V using a grid of 500×500 cells. It can be seen that

in a case of the electrode with a circular cross section, the jets on both sides of the electrode

are combined in a single jet at a distance of 10 mm from the flat electrode. In a case of the

quadrate electrode, these two streams remain disconnected. It is also evident that the maximum

fluid velocities are observed not in the central jet on the connection line of the two electrodes,

but on both sides of the electrode-wire. And, as it was already mentioned earlier, there is a

noticeable upward flow near the square electrode. This is not observed near the electrode with

circular cross-section.

4 CONCLUSIONS

• For the pre-breakdown volt-ampere characteristics of transformer oil and liquid heptane,

the squared current–voltage dependencies are obtained, and with decreasing electrode

distance they become quasi-exponential. In addition, as the electrode distance decreases,

the pre-breakdown current increases; this agrees with the results of the experiments.

• This work shows how fineness of the calculation grid and the cross-section of the wire

electrode influence on the weakly conducting liquid flow in the inter-electrode space.
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Flow structures and velocity distribution are obtained both for square and round shape

of the wire electrode. The maximum axial velocity between the electrodes increases if

the wire with the round cross-section is considered. Besides that, it is shown that this

maximum axial velocity increases while using finer calculation grid. Further conclusions

about what cross-section form should be chosen can be made after conducting relevant

experiments.
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