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Summary. We investigate new method for calculation of radiance of scattering
medium by bi-directional Monte-Carlo ray tracing with photon maps. Usually photons
are collected by an integration spheres at the ends of camera ray segments, or a cylinder
along that segments. Meanwhile in our method several integration spheres are distributed
at random along the first camera ray segment. The rest segments do not collecting pho-
tons. The method optimal for a particular scene is the one which produces the least
noise, so one need to be able to estimate it. In this paper an analytic calculation of noise
in the general bi-directional Monte-Carlo ray tracing is derived and then applied to the
proposed method. Then the analytic estimates of noise can be used to find optimal pa-
rameters and/or to choose between single integration sphere, multiple integration spheres
and integration cylinders.

1 INTRODUCTION

A bi-directional Monte Carlo ray tracing is well-known as a powerful method of cal-
culation of a virtual camera image. The forward part of the method traces the light
rays from light sources and creates photon maps which allow calculating luminance and
illuminance of scene surfaces. Then the backward part traces the light rays from camera,
estimates the luminance in the hit point and then accumulates it along the camera ray
path into the pixel.

The method can be implemented via several techniques [1, 2, 3, 4] of which the photon
map visualization approach [5, 6, 7, 8] is the mostly usable now. Most of these methods
calculate global illumination in the form of photon maps and then visualize them as the
luminance of secondary and caustic illumination [5, 7, 9]. There is an approach that
implements the reverse calculation scheme, i.e. generates a visibility map as spheres
of the illuminance integration in the direction of observation, which are “filled” with
the light photons related to the caustic and the secondary illumination [6, 8]. In these
methods the camera ray is traced stochastically until it terminates due to some criterion,
for example, after the given number of diffuse events is reached. An integration sphere to
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collect Forward Monte Carlo ray tracing (FMCRT) rays is set in each point of scattering.
After a forward ray hits that sphere we calculate the surface luminance for the view
direction equal to the camera ray direction before the sphere center. This luminance is
then scaled by the camera ray attenuation accumulated to this point and added to the
pixel luminance, [1, 6, 10].

In scattering medium the integration spheres are distributed over the volume, not
only on boundaries, see e.g. [11], [12]. Frequently it is advantageous to use integration
volumes other that spheres, e.g. cylinders [13]. One can find comparison and analysis in
[5, 12, 14, 13]; [15]. Alternatively, the integration volume can be a union of spheres [16].

Usually the bi-directional ray tracing with photon maps is applied progressively, i.e.
ray tracing goes iteration by iteration, and the error vanishes as time goes on. In each
iteration we trace camera rays and place integration spheres in the ends of the segments.
Then during FMCRT phase we estimate illuminance in the centers of integration spheres
from the photons that hit them.

It is important to have a reliable analytic estimate of the noise in the stochastic
rendering. Firstly this allows optimizing parameters of the method so that the noise
remaining after the fixed simulation time was minimal (or do that with the constraint on
the RAM used). Secondly there are several other inaccuracies besides the noise in the
method, e.g. bias. This latter is unavoidable because of the final size of the integration
area used for the illuminance estimation. And it grows rather quickly with area size.
Therefore it is advantageous to decrease this size. But in such a case number of used
photons is also reduced and thus the noise is increased. Therefore there exists the optimal
size which minimizes the total error. And to calculate it one needs to predict the noise.

In [17] the authors operated the simplest case when the integration spheres are in the
first camera rays hit so that position of the integration sphere for the given pixel is not
random. In [18] the camera ray is allowed to be “glossy” (nearly specular diffuse) scattered
before, so position of the integration sphere and view direction for it is random. This
introduces additional source of noise which is analyzed. The authors consider progressive
rendering when the radius of integration spheres decrease from iteration to iteration,
so after large simulation time the results are for a very small radius. They derive the
estimates of the bias and variance (noise) for some class of the radius decrease rule and
show that there is a range of parameters for which both errors vanish in course of time.

They however assume that there is only one camera ray per pixel in each iteration.
This is good when the integration sphere is set prior to the first random scattering of
the camera ray as in [17] or when this scattering is “weakly diffuse” (“glossy”) as in [18].
But this strategy is not optimal when the camera ray undergoes a wide diffuse scattering
before setting the integration sphere. Indeed, now the centers of integration spheres for
adjacent pixels are not close but can spread over the whole scene and even beyond the
visible area. The density of integration spheres can then be low and they capture only a
small fraction of the forward photons. In other words a substantial part of calculations in
the FMCRT phase are lost because these photons miss the sparsely distributed integration
spheres. The natural remedy is to increase the number of camera rays through pixel so
that the integration spheres to cover a decent fraction of illuminated area. This introduces
an additional control parameter: the number of backward rays per pixel. In principle it
can vary across the image and change with time. Setting it too low is not advantageous

61



S. V. Ershov, D. D. Zhdanov, A.G. Voloboy

Figure 1: Several integration spheres along the camera ray segment. Left: positioning of the spheres.
Right: Camera ray propagation with sub-steps: it strides by ζm then with probability q it undergoes
extinction otherwise goes the same direction

because a many FMCRT rays whose tracing took time are not used. But using too much
camera rays per pixel is also bad because this increases simulation time while the effective
number of FMCRT rays used in the given pixel saturates. Therefore there exists an
optimal relation between the number of forward and backward rays.

In this paper we derive an estimation of the noise as a function of the number of camera
rays per pixel which applies to a general case of bi-directional MCRT with progressive
photon maps. Then we apply it to calculation of luminance of turbid medium with
multiple integration spheres [16] and derive an analytic dependence of noise as a function
of the control parameters of the method: the number of forward and backward rays, the
average number of integration spheres per camera ray segment and so on. This analytic
estimate can be used to find optimal parameters.

2 MULTIPLE INTEGRATION SPHERES

In [16] we suggested to use integration volume composed of several integration spheres
distributed randomly over a camera ray segment. The basic idea is that when tracing an
camera ray we perform many “sub-steps” of length ζ so that the ray goes straight during
several of them and only then an extinction which can be scattering or absorption occurs,
see Figure 1.

These sub-steps are independent from each other, the density of ζ being always the
same pζ(ζ).

After the ray propagated the next step length ζ its further destiny is decided at
random. With probability q there is an extinction event (scattering or absorption is
then decided at random); otherwise the next step is made retaining the ray direction.
Absorption is processed as a “Russian roulette” killing the ray at random.

In [16] it was obtained that step length must be distributed as

pζ(ζ) = αe−αζ (1)

α ≡ σext/q (2)
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The total ray length after n such steps then has the density

pn(s) = αe−αs
(αs)n

n!
(3)

The contribution of an FMCRT ray segment that crosses the BMCRT ray at distance
s to the pixel luminance C(s) is

C(s) = qC (s)× σexte−σextsds (4)

see [16], notice this applies to both single segment and whole forward ray trajectory. Here

C (s) =
σscf(−u,v)

σextπR2
F (5)

and F is the total flux (sum over all light sources), f is the phase function and σsc is
scattering of the medium and σext is its extinction.

Here and below we use the term “luminance” as an equivalent of “radiance”

3 GENERAL ESTIMATE OF NOISE IN BI-DIRECTIONAL MCRT

In bi-directional MCRT each forward ray interacts with each camera ray, and the
luminance of a pixel is

L =
1

NF

NF∑
i=1

1

NB

NB∑
j=1

Ĉ(i, j) (6)

where i enumerates forward rays, j enumerates backward rays, Ĉ(i, j) is the increase of
pixel luminance from interaction of the i-th forward with the j-th camera ray, NF is
the number of forward rays and NB is the number of camera rays traced through this
pixel .

The above sum L is a random variable, and its noise is 〈L2〉− 〈L〉2 where the average
is taken over the ensembles of rays. It can be thus understood as a repeated average over
the forward and backward ensembles. Let us square (6)

(NFNB)2L2 =

NF∑
i=1

NB∑
j=1

Ĉ2(i, j) +

NF∑
i=1

NB∑
j 6=j′

Ĉ(i, j)Ĉ(i, j′)

+

NF∑
i6=i′

NB∑
j=1

Ĉ(i, j)Ĉ(i′, j) +

NF∑
i6=i′

NB∑
j 6=j′

Ĉ(i, j)Ĉ(i′, j′)

and average over the forward ray ensemble and over the backward ray ensemble. These
averaging are denoted as 〈·〉F and 〈·〉B and their order is arbitrary. This gives

〈〈L2〉〉 =
1

NFNB

〈〈Ĉ2〉F 〉B +
NF (N2

B −NB)

(NFNB)2
〈〈Ĉ〉2B〉F

+
NB(N2

F −NF )

(NFNB)2
〈〈Ĉ〉2F 〉B +

(N2
F −NF )(N2

B −NB)

(NFNB)2

(
〈〈Ĉ〉F 〉B

)2
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where we used the obvious fact that

〈Ĉ(i, j)Ĉ(i′, j′)〉F = 〈Ĉ〉F (j)〈Ĉ〉F (j′) if i′ 6= i

〈Ĉ(i, j)Ĉ(i′, j′)〉B = 〈Ĉ〉B(i)〈Ĉ〉B(i′) if j′ 6= j

The noise is therefore

〈〈L2〉〉 − 〈〈L〉〉2 =
1

NFNB

(
〈〈Ĉ2〉B〉F − 〈〈Ĉ〉B〉2F

)
(7)

+
1

NB

(
1− 1

NF

)(
〈〈Ĉ〉2F 〉B − 〈〈Ĉ〉B〉2F

)
(8)

+
1

NF

(
1− 1

NB

)(
〈〈Ĉ〉2B〉F − 〈〈Ĉ〉B〉2F

)
(9)

〈〈L〉〉 = 〈〈Ĉ〉B〉2F (10)

4 ESTIMATION OF NOISE FOR MULTIPLE SPHERES

The noise is as sum of three terms, see (7), (8), (9), (10) where now Ĉ is the contri-
bution of one forward ray to all n integration spheres set by the given camera ray:

Ĉ =
n∑

m=0

C(ζ̂m), (11)

C(s) is contribution from one FMCRT ray to the single integration sphere at distance s
from the camera ray start,

ζ̂m ≡
m∑
i=0

ζi (12)

is position of the m-th sphere set after m sub-steps. Here and below ζ0, ζ1, ζ2, ... are
successive ray sub-steps between the 1st, 2nd, ..., integration spheres.

Notice the above estimate assume that each of NF forward rays is checked for inter-
action with each of NB camera rays. If the whole process runs progressively, iteration by
iteration and for the next iteration both forward and backward rays are all new, then this
estimates applies to one iteration only. The relative variance obtained in M (identical)
iterations will be M times lower (instead of replacing NF 7→MNF , NB 7→MNB).

4.1 Calculation of the averages 〈Ĉ〉B and 〈Ĉ2〉B
The contribution from one forward ray (11), averaged over the BMCRT ensemble i.e.

sphere positions i.e. the 〈C〉B is obviously

64



S. V. Ershov, D. D. Zhdanov, A.G. Voloboy

〈Ĉ〉B =
∞∑
n=0

P (n)

ˆ ∞
0

· · ·
ˆ ∞
0

Ĉpζ(ζ0) · · · pζ(ζn)dζ0 · · · dζn

= q
∞∑
n=0

(1− q)n
ˆ ∞
0

· · ·
ˆ ∞
0

(
n∑

m=0

C(ζ̂m)

)
pζ(ζ0) · · · pζ(ζm)dζ0 · · · dζm

where ζ̂m is given by (12).
The outer sum is over the number of integration spheres n and changing the order of

summation we arrive at

〈Ĉ〉B =
∞∑
m=0

(1− q)m
ˆ ∞
0

· · ·
ˆ ∞
0

C(ζ̂m)pζ(ζ0) · · · pζ(ζm)dζ0 · · · dζm

The sum of steps ζ̂m has density (αζ̂m)m

m!
αe−αζ̂m (3), and using (2) and (4) we obtain

〈Ĉ〉B =

ˆ ∞
0

C (t)σexte
−σexttdt (13)

Similarly, the squared contribution of one FMCRT ray, averaged over the BMCRT
ensemble i.e. the 〈Ĉ2〉B is

〈Ĉ2〉B =
∞∑
n=0

P (n)

ˆ ∞
0

· · ·
ˆ ∞
0

(
n∑

m=0

C(ζ̂m)

)2

pζ(ζ0) · · · pζ(ζn)dζ0 · · · dζn

= q
∞∑
n=0

(1− q)n
n∑

m=0

ˆ ∞
0

· · ·
ˆ ∞
0

C2(ζ̂m)pζ(ζ0) · · · pζ(ζm)dζ0 · · · dζm

+2q
∞∑
n=0

(1− q)n
ˆ ∞
0

· · ·
ˆ ∞
0

n∑
m=1

m−1∑
m′=0

C(ζ̂m)C(ζ̂m′)pζ(ζ0) · · · pζ(ζn)dζ0 · · · dζn

or, changing the order of summation,

〈Ĉ2〉B =
∞∑
m=0

(1− q)m
ˆ ∞
0

· · ·
ˆ ∞
0

C2(ζ̂m)pζ(ζ0) · · · pζ(ζm)dζ0 · · · dζm

+2
∞∑
m=1

m−1∑
m′=0

(1− q)m
ˆ ∞
0

· · ·
ˆ ∞
0

C(ζ̂m)C(ζ̂m′)pζ(ζ0) · · · pζ(ζn)dζ0 · · · dζn

The sum of steps ζ̂m′ has density (αζ̂mm′

(m′)!
αe−αζ̂m′ (3). Then, ζm = ζm′ + ζm′+1 + · · ·+ ζm

is a sum of two independent random variables, ζm′ and ζm′+1 + · · · + ζm. Since the
all sub-steps are equally distributed, the density of the sum of m − m′ − 1 of them is

pm−m′−1(s) = αe−αs (αs)
m−m′−1

(m−m′−1)! , so

65



S. V. Ershov, D. D. Zhdanov, A.G. Voloboy

〈Ĉ2〉B =

ˆ ∞
0

C2(t)αe−qαtdt+ 2(1− q)
ˆ ∞
0

ˆ ∞
0

C(t)C(t+ s)
∞∑
m=0

m∑
m′=0

(α(1− q)t)m′

(m′)!

(α(1− q)s)m−m′

(m−m′)!
α2e−α(s+t)dsdt

and using the obvious identity

∞∑
m=0

m∑
m′=0

xm
′

(m′)!

ym−m
′

(m−m′)!
=

∞∑
m′=0

xm
′

(m′)!

∞∑
m=m′

ym−m
′

(m−m′)!
=

∞∑
m′=0

xm
′

(m′)!

∞∑
m=0

ym

m!
= exey

together with (2) and (4) we arrive at

〈Ĉ2〉B = q

ˆ ∞
0

C 2(t)σexte
−σexttdt+ 2(1− q)

ˆ ∞
0

ˆ ∞
0

C (s)C (s+ t)σ2
exte

−σext(s+t)dsdt (14)

4.2 Combined averages

Averaging (13) and (14) over the FMCRT ensemble, we arrive at

〈〈Ĉ〉B〉F =

ˆ ∞
0

〈C 〉(t)σexte−σexttdt (15)

〈〈Ĉ2〉B〉F = q

ˆ ∞
0

〈C 2〉(t)σexte−σexttdt

+2(1− q)
ˆ ∞
0

ˆ ∞
0

〈C (s)C (s+ t)〉σ2
exte

−σext(s+t)dsdt (16)

where 〈C 〉(t) (respectively 〈C 2〉(t)) is contribution (respectively squared contribution) of
a single forward ray to the integration sphere located at distance t from the camera ray
start averaged over the forward ray ensemble.

Notice that because of linearity of averaging, 〈〈Ĉ〉B〉F = 〈〈Ĉ〉F 〉B and 〈〈Ĉ2〉B〉F =
〈〈Ĉ2〉F 〉B.

For (8) and (9) we also need the averages 〈〈Ĉ〉2F 〉B and 〈〈Ĉ〉2B〉F . The former can be
calculated as in the above Section just replacing C(x) with 〈C〉F (x), so (14) transforms
into

〈〈C〉2F 〉B = q

ˆ ∞
0

〈C 〉2(t)σexte−σexttdt

+2(1− q)
ˆ ∞
0

ˆ ∞
0

〈C 〉(s)〈C 〉(s+ t)σ2
exte

−σext(s+t)dsdt (17)

The remaining 〈〈Ĉ〉2B〉F is calculated even simpler. Squaring the 〈C〉B is given by (13)
and averaging over the FMCRT ensemble yields

〈〈Ĉ〉2B〉F =

〈(ˆ ∞
0

C (t)σexte
−σexttdt

)2
〉

=

ˆ ∞
0

ˆ ∞
0

〈C (t)C (s)〉σ2
exte

−σext(t+s)dtds (18)
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4.3 Averages over the forward ray ensemble and correlations

For the above, we need contribution (or squared contribution) of a forward ray to the
given integration sphere at point t averaged over the forward ray ensemble,

If we assume a forward ray hits the given integration sphere no more than once (which
is so if the latter is small), then one ray contribution if it hits the sphere is (5) and 0 if it
misses the sphere, so

〈C 〉(t) = FH1(t) (19)

〈C 2〉(t) =
F2

πR2
H2(t) (20)

where

Hm(t) ≡
ˆ π

0

ˆ 2π

0

fm
F

F
sinϑdϑdϕ

and F is the angular distribution of radiance in the sphere center t.
Besides, we need correlations, i.e. average of the product of contributions of the same

forward ray to two integration spheres with centers at s and at s+ t, 〈C (s)C (s+ t)〉.
The product C (s)C (s + t) is not 0 only if the forward ray hits both spheres. In

principle it is possible that it hits one sphere, then bounces somewhere, returns and hits
the second one, but in case of small spheres it has too small probability (about O(R4)),
so we neglect this and consider only the case when the same one segment hits both
spheres. The probability of that event equals the area of overlap of the projection of the
two spheres onto the plane perpendicular to the segment times attenuation of the ray
between the spheres. The above area is the of overlap of two circles of radius R whose
centers are separated by l ≡ t sinϑ where ϑ is the angle between the view direction and

the forward ray. This area is

(
arccos l

2R
− l

2R

√
1−

(
l

2R

)2)
/π times lower than the whole

sphere projection πR2, and attenuation of the ray is e−σextt|cosϑ|, so the probability that
C (s)C (s+ t) 6= 0 is

R2 ×

arccos
l

2R
− l

2R

√
1−

(
l

2R

)2
 e−2σextt|cosϑ|

and if this happens, C (s)C (s+ t) is the square of (5).
Recalling that 〈C 2〉 is that same squared (5) times probability of hitting the sphere

i.e. πR2, we obtain

〈C (s)C (s+ t)〉 =
F2

π2R2

ˆ 2π

0

ˆ π

0

A

(
t sinϑ

R

)
e−σextt|cosϑ|h(ϑ, ϕ, p) sinϑdϑdϕ (21)

where ϕ is the azimuthal angle of rotation about the view direction,
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A(x) ≡

{
arccosx− x

√
1− x2, |x| ≤ 1

0, x > 1

and

h ≡ f 2F

F
is taken at the center of sphere which the forward ray with direction (ϑ, ϕ) hits first i.e.
at the camera ray point p

p =

{
s, cosϑ ≥ 0

t, cosϑ ≤ 0
(22)

4.4 The total noise

Substituting (15), (16), (17), (18), (19) and (20) into (7)–(9) we obtain

〈〈L2〉〉 − 〈〈L〉〉2 = q

´∞
0
〈C 2〉(t)σexte−σexttdt

NFNB

+2(1− q)
´∞
0

´∞
0
〈C (s)C (s+ t)〉σ2

exte
−σext(s+t)dsdt

NFNB

+
q

NB

(
1− 1

NF

) ˆ ∞
0

〈C 〉2(t)σexte−σexttdt

+
2(1− q)
NB

(
1− 1

NF

) ˆ ∞
0

ˆ ∞
0

〈C 〉(s)〈C 〉(s+ t)σ2
exte

−σext(s+t)dsdt

+
1

NF

(
1− 1

NB

) ˆ ∞
0

ˆ ∞
0

〈C (s)C (t)〉σ2
exte

−σext(t+s)dtds

− 1

NFNB

(ˆ ∞
0

〈C 〉(t)σexte−σexttdt
)2

It contains two integrals of correlations which for R → 0 are estimated as (25) and
(26).

Using (19) and (20), we have

〈〈L2〉〉 − 〈〈L〉〉2

〈〈L〉〉2
≈ 1

R2NF

(
qD1 + σextR(1− q)D2

NB

+

(
1− 1

NB

)
σextRD3

)
+

1

NB

(
1− 1

NF

)
(qD4 + (1− q)D5)−

1

NFNB

where Di are some constants composed from space integrals of
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Hm(t) ≡
ˆ π

0

ˆ 2π

0

fm
F

F
sinϑdϑdϕ

H̃m(s) ≡
ˆ π

0

ˆ 2π

0

fm
F

F
dϑdϕ

and are thus independent from any ray tracing parameters, i.e. q, R and the number of
rays.

One can see that for small R but not very large number of rays the noise is smaller
for q < 1 then for q = 1 i.e. for the standard method.

5 CONCLUSION

In previous work [16] we developed a method of gathering of photons in scattering
medium which uses several integration spheres stochastically distributed over a camera
ray segment. The resulting disjoint integration volume is intermediate between usual
integration sphere (one per segment) and integration cylinder. In our method the con-
trol parameter q allows to vary integration volume from a single integration sphere to
practically a cylinder which is a limit of the union of a large number of spheres.

We obtained analytical estimates of noise in the bi-directional MCRT and applied
them to the particular case of calculation of luminance of turbid medium, suggested in
[16]. It happened possible to derive a closed-form analytical expressions for the noise
and its dependence on the method parameters. These can be used to find the optimal
parameters and/or choose between single and multiple integration spheres or cylinders.

One must realize that the method (or parameter) that provides the lowest noise for
the given number of rays is not always really the best. One reason is that if integration
volumes occupy most of the medium domain, interaction of them with an FMCRT ray
is slow and this seriously decelerate ray tracing, thus the number of rays traced in the
same time of calculation drops and this increases noise. Second, the own luminance of
the medium is not the only image component but there is also the luminance of objects
“seen through” the medium. Usually both are calculated from with the same rays thus it
may happen that although because of better integration volumes the noise of the “own”
luminance of medium is still decreased in spite of the lower number of traced rays, the
noise in the rest part of image increases because there is no such “compensation” for the
rays count.

APPENDIX A. INTEGRALS OF CORRELATIONS

Let us calculate approximation for R→ 0 of

ˆ ∞
0

ˆ ∞
0

〈C (s)C (s+ t)〉σ2
exte

−σext(t+s)dtds (23)

and
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ˆ ∞
0

ˆ ∞
0

〈C (s)C (t)〉σ2
exte

−σext(s+t)dsdt

= 2

ˆ ∞
0

ˆ ∞
0

〈C (s)C (s+ t)〉σ2
exte

−σext(2s+t)dsdt (24)

where 〈C (s)C (s+ t)〉 is given by (21) and (22).
Both integrals are much similar and we begin with (23); as (24) differs from it only

by the extra factor e−σexts these calculations will apply to it as well. We thus begin with
(23).

Let us subdivide interval of integration in ϑ into 3 parts: the “main” [Θ, π − Θ] and
two short intervals near the poles: [0, Θ] and [π −Θ, π]. Then

ˆ ∞
0

ˆ ∞
0

〈C (s)C (s+ t)〉σ2
exte

−σext(t+s)dtds =
F2

π2R2
(I1 + I2a + I2b)

where

I1 ≡
ˆ ∞
0

(ˆ ∞
0

(ˆ 2π

0

ˆ π−Θ

Θ

A

(
t sinϑ

R

)
e−σextt|cosϑ|h(ϑ, ϕ, p) sinϑdϑdϕ

)
dt

)
ds

I2a ≡
ˆ ∞
0

(ˆ ∞
0

(ˆ 2π

0

ˆ Θ

0

A

(
t sinϑ

R

)
e−σextt|cosϑ|h(ϑ, ϕ, p) sinϑdϑdϕ

)
dt

)
ds

I2b ≡
ˆ ∞
0

(ˆ ∞
0

(ˆ 2π

0

ˆ π

π−Θ
A

(
t sinϑ

R

)
e−σextt|cosϑ|h(ϑ, ϕ, p) sinϑdϑdϕ

)
dt

)
ds

The idea is to take such small Θ that in the “main” part I1 the integration area in
t is very narrow, so p ≈ s thus integration over t can be done analytically and after
some tedious transformations we obtain a simple approximation to I1. For the rest parts
near the poles, the range of t is wide, and the point p is s in I2a and s + t in I2b. The
range of integration in Θ is small which allows to estimate the integrals from above and it
happens that for R→ 0 they are negligible as compared to I1, so the sought-for integral
of correlations is close to I1 for which we have a simple approximation. We shall see that
the small angle Θ must be chosen so that it as R → 0 it goes to 0 but slower that R so
that Θ → 0 but R/Θ → 0.

Now let us apply the above intentions quantitatively.
As the integrand vanishes for t sinϑ

R
> 1, in I1 the t ≤ R/Θ → 0. Therefore the point

p ≈ s even for cosϑ ≤ 0. Changing then the order of integration so that the one in t to
be the first, we obtain

I1 ≈ 2R

ˆ ∞
0

ˆ 2π

0

ˆ π−Θ

Θ

(ˆ 1

0

A(y)dy

)
h(ϑ, ϕ, s)σ2

exte
−σextsdϑdϕds

=
4R

3

ˆ ∞
0

ˆ 2π

0

ˆ π−Θ

Θ

h(ϑ, ϕ, s)σ2
exte

−σextsdϑdϕds

≈ 4R

3

ˆ ∞
0

(ˆ 2π

0

ˆ π

0

h(ϑ, ϕ, s)dϑdϕ

)
σ2
exte

−σextsds
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Now let us come to the integrals in the near-pole areas. Assuming illumination and
phase function are not singular near the view direction, we can take h exactly at the pole
direction. Then, we can replace sinϑ with ϑ or π − ϑ:

I2a ≈ 8π

ˆ ∞
0

(ˆ ∞
0

(
R2

t2

ˆ min( tΘ
2R
,1)

0

A(y)ydy

)
e−2σexttσ2

extdt

)
e−σextsh(0, 0, s)ds

I2b ≈ 8π

ˆ ∞
0

(ˆ ∞
0

(
R2

t2

ˆ min( tΘ
2R
,1)

0

A(y)ydy

)
e−2σexttσ2

exth(π, 0, s+ t)dt

)
e−σextsds

Since

ˆ X

0

A(y)ydy =
π
2
− (1− 4X2) arccosX −X (1 + 2X2)

√
1−X2

8

with very good accuracy is limited by πX2/4, we have

I2a ≤
π2

2

ˆ ∞
0

(ˆ ∞
0

(
min(

2R

t
,Θ)

)2

e−2σexttσ2
extdt

)
e−σextsh(0, 0, s)ds

≤ 2π2ΘσextR

ˆ ∞
0

σexte
−σextsh(0, 0, s)ds

where we used the inequality
´∞
X
u−2e−udu = X−1

(
e−X −XEi (1, X)

)
≤ X−1.

Similarly,

I2b ≤
π2

2

ˆ ∞
0

(
Θ2

ˆ 2R
Θ

0

e−2σexttσ2
exth(π, 0, s+ t)dt

+4R2

ˆ ∞
2R
Θ

t−2e−2σexttσ2
exth(π, 0, s+ t)dt

)
e−σextsds

The two its terms can be estimated as

ˆ ∞
0

(ˆ 2R
Θ

0

e−2σexttσ2
exth(π, 0, s+ t)dt

)
e−σextsds

≤
(ˆ ∞

0

h(π, 0, s)σexte
−σextsds

)(
1− e−

2σextR
Θ

)
≈ 2σextR

Θ

(ˆ ∞
0

h(π, 0, s)σexte
−σextsds

)
and
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ˆ ∞
0

(ˆ ∞
2R
Θ

t−2e−2σexttσ2
exth(π, 0, s+ t)dt

)
e−σextsds

≤ σ2
ext

(ˆ ∞
2σextR
Θ

t−2e−tdt

)(ˆ ∞
0

h(π, 0, s)σexte
−σextsds

)
≤ σext

Θ

2R

(ˆ ∞
0

h(π, 0, s)σexte
−σextsds

)
so

I2b ≤ 2π2ΘσextR

(ˆ ∞
0

h(π, 0, s)σexte
−σextsds

)
Therefore for R→ 0 we can neglect I2a + I2b as compared to I1, and obtain

ˆ ∞
0

ˆ ∞
0

〈C (s)C (s+ t)〉σ2
exte

−σext(t+s)dtds

≈ 4σextF2

3π2R

ˆ ∞
0

(ˆ 2π

0

ˆ π

0

h(ϑ, ϕ, p)dϑdϕ

)
σexte

−σextsds (25)

The second integral, (24) differs only by the extra factor e−σexts. Therefore the calcu-
lation done above applies to it as well and give in this case

ˆ ∞
0

ˆ ∞
0

〈C (s)C (t)〉σ2
exte

−σext(s+t)dsdt

≈ 8σextF2

3π2R

ˆ ∞
0

(ˆ 2π

0

ˆ π

0

h(ϑ, ϕ, p)dϑdϕ

)
σexte

−2σextsds (26)
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