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Summary. In a wide temperature range, including the semiconductor-metal phase transition 
region and the near-critical region, the results of modeling the silicon phonon thermal 
conductivity are presented. Since the transfer of thermal energy is carried out by phonons and 
free charge carriers, it is necessary to take into account both the contribution of phonons and 
electrons in the total thermal conductivity. In contrast to metals, heat transfer in silicon in the 
solid state is determined by phonon thermal conductivity. Although the contribution of the 
electronic component to the total thermal conductivity increases with increasing temperature, 
the inclusion of phonon thermal conductivity is of particular importance in liquid silicon. At 
higher temperatures, phonon thermal conductivity plays an important role in the modeling of 
the mechanisms of interaction of pulsed laser radiation with silicon in the framework of the 
two-temperature continuum model. Obtaining the temperature dependence of phonon thermal 
conductivity in such a wide temperature range from experiment is problematic. In this work, 
phonon thermal conductivity was obtained in the range 300 ≤ T ≤ 6500 K from molecular 
dynamics simulation using the KIHS potential. 

1 INTRODUCTION 

Over the past decades, laser processing of silicon by short pulses has been developing 
rapidly. The possibility of introducing of a large amount of energy into a densely localized 
region through laser irradiation has been used in a large number of applications. Among them 
are such as the production of nanomaterials [1–4], surface nanostructuring [5, 6], chemical 
and physical synthesis [6–8]. Therefore, the fundamental mechanisms of the interaction of 
short-pulse laser radiation with a silicon target cause a long-term steady interest of 
researchers. A recognized tool for the theoretical study of laser interaction with a target is 
mathematical modeling. The problem of the adequacy and reliability of simulation results is 
associated with determining the properties of the target. The information on the temperature 
dependence of thermal conductivity is a necessary characteristic of a target when modeling 
laser heating of a substance using continuum models [9]. It is known that in accordance with 
the classical concepts, in a solid there are two mechanisms of heat transfer: elastic lattice 
vibrations and free electrons, therefore, thermal conductivity can be represented by lattice and 
electronic components. However, the contributions of phonon and electronic thermal 
conductivities at high temperatures are difficult to obtain from experiment. Therefore, in this 
work, the study of the thermal conductivity of the silicon lattice is carried out in the 
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framework of the atomistic approach, which gives an understanding of the thermal behavior 
of silicon at the nanoscale. 

Atomistic models are a system of differential equations that describes a set of interacting 
particles (atoms, ions, molecules). When using atomistic models to study various properties of 
substances, the most important role is played by the choice of the interaction potential 
between the particles, since the reliability of the results obtained directly depends on it. 

The construction of the interatomic interaction potential for silicon has a number of 
features and is more complicated than for metals. Therefore, in order to determine the 
applicability of the selected interaction potentials in certain particular conditions, careful test 
calculations are required. This problem is especially acute in materials with covalent bonds, 
which include silicon. In [10], based on a comparison of the interaction potentials, it was 
found that the most suitable for modeling silicon are the Stillinger – Weber potentials (SW) 
and KIHS [11-13]. In this study, the KIHS potential was used to simulate the phonon thermal 
conductivity of silicon. 

The thermal conductivity of phonons of single-crystal silicon was simulated over a wide 
range of temperature values using the widespread LAMMPS (Large-scale Atomic/Molecular 
Massively Parallel Simulator) application package [14]. It implements support for many pair 
and many-particle short-range potentials, it is possible to write atomic configurations to a text 
file, and thermostats and barostats are built-in. The computational algorithm is based on the 
Verlet finite-difference scheme [15]. The velocity and pressure for the ensemble of particles 
were adjusted using a thermostat and a Berendsen barostat [16]. 

The determination of phonon thermal conductivity in the framework of classical molecular 
dynamics is a complex problem. Despite the fact that research on the theoretical 
determination of the thermal conductivity of a silicon lattice has been going on for several 
decades, it has not been possible to obtain the temperature dependence in a wide range 
necessary for mathematical modeling, which confirms the complexity of the problem. The 
results of modeling the phonon thermal conductivity of silicon, as a rule, contain values at 
one, two, or three temperatures [17–21], either a temperature dependence, but only for the 
solid phase [22–28], or a narrow range dependence near the melting point [29]. 

The most common methods for calculating thermal conductivity are the direct method 
“heat source - sink” [17, 30, 31] and the Green-Kubo method [17, 30, 32]. The direct method 
is nonequilibrium, it is based on the application of a temperature gradient on the modeling 
cell, and therefore is similar to the experimental situation. The Green-Kubo method is 
equilibrium; it uses current fluctuations to calculate the thermal conductivity using the 
fluctuation-dissipation theorem [33]. Thermal conductivity, according to the Green-Kubo 
method, can be expressed through the autocorrelation function of the microscopic heat flux. A 
detailed analysis of the use of both methods for calculating the phonon thermal conductivity 
of silicon was carried out in [17]. One of the advantages of the direct method, in comparison 
with the Green-Kubo method, is the saving of computational resources, which is very 
important, sometimes determining for choosing a modeling method. For example, as noted in 
[17], for a direct method, a simulation time of 1 ns is sufficient to obtain a smooth 
temperature profile, and the value of κ converges to within ± 10%, the same simulation time 
using the Green-Kubo method leads to statistical errors up to ± 50%. Both methods 
demonstrate the effects of finite size. These effects arise if the mean free path of phonons is 
comparable to the size of the simulation cell. For a system such as Si, the required size of the 
computational domain to achieve a completely convergent value of κ may be beyond the 
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reach of atomistic modeling. Finite size effects impose a restriction on the smallest length of 
the computational domain. The thermal conductivity of silicon can be obtained by a direct 
method from modeling systems of different sizes and extrapolating the results to a system of 
infinite size. The equilibrium Green-Kubo method, in comparison with the direct method, has 
an advantage for calculating the thermal conductivity of highly anisotropic materials [30]. 

The Evans method [34, 35] is characterized by the combination of the elements of the 
equilibrium (Green-Kubo) and nonequilibrium perturbation method developed in [36.37]. 
Like the direct method, the Evans method reduces the computational time required to obtain 
the phonon thermal conductivity. Like the Green-Kubo method, this method is well suited 
only to describe the properties of homogeneous systems. 

Along with classical molecular dynamics, the ab-initio approach [19, 22], the method of 
lattice dynamics and molecular dynamics based on the solution of the Boltzmann equation 
[38, 39], are also used to determine phonon thermal conductivity. 

In this paper, the direct method (DM) was chosen as the most simple and economical from 
a computational point of view as an approach to determining the temperature dependence of 
the phonon thermal conductivity of silicon using molecular dynamics (MD). 

The aim of this work is to obtain the temperature dependence of phonon thermal 
conductivity in the range from normal conditions to the critical region using the KIHS 
potential [11–13] in the framework of the DM of molecular dynamics modeling. The obtained 
temperature dependence of phonon thermal conductivity is planned to be used in the 
continuum simulation of laser evaporation of silicon. 

2 STATEMENT OF THE PROBLEM. COMPUTATIONAL ALGORITHM. 

To determine the thermal conductivity of the phonon subsystem of silicon, a series of 
calculations was performed based on molecular dynamics models. The phonon thermal 
conductivity was determined on the basis of the DM. 

DM is a method of nonequilibrium molecular dynamics (NEMD), where regions of a heat 
source and sink are created in a modeling cell to apply a constant heat flux along the direction 
of interest. The thermal conductivity κlat is determined by the known heat flux according to 
the Fourier law [40] 

x

T
W lat 


         (1) 

where W is the heat flux, x is the coordinate in the direction of flux. The difficulty in applying 
the direct method to solids lies in the fact that the size of the modeling region should be much 
larger than the mean free path of phonons in a substance. For a crystal, this is difficult to do, 
because requires a very large size of the computational domain and, accordingly, a very large 
number of atoms. For example, 500 million atoms were used in [41]. Therefore, when 
calculating with a small number of atoms, the thermal conductivity coefficient turns out to be 
dependent on the length of the region due to phonon scattering at the boundary. Therefore, to 
limit the size of the simulation cell and make the simulation feasible, you can use the scaling 
procedure in which thermal conductivity is determined for several lengths of the simulation 
cell along the x direction. Then, the inverse dependence of the thermal conductivity 1/κlat is 
constructed with respect to the inverse value of the length of the simulation cell, 1/L, and the 
thermal conductivity is determined by extrapolating the data 1/L → 0 [17]. Such a procedure 
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is justified by the expression for thermal conductivity obtained from the kinetic theory [17, 
31]. Another disadvantage of the direct method is that the temperature gradient must be large 
in order to reduce the influence of temperature fluctuations. Also, the average temperature is 
reached only in the middle of the region, and the rest of the region is at a temperature different 
from the average value. 

The simulation domain in the form of a parallelepiped with sizes of 10×10×20 unit cells 
(lattice constant 0.543 nm) with periodic boundary conditions along three axes was 
considered. As the interaction potential, the KIHS potential is used [13]. The region along the 
x axis was divided into 20 intervals, and heating is performed in the first interval, and the heat 
sink is in the 11th. At each time step, a fixed amount of heat dQN was pumped into the heating 
region, and the same amount was taken from the sink region. The heat flux W was calculated 
as 

W = dQ/(SNdt)/2,      (2) 

where dQ = N×dt×δQN is the total energy released, where δQN is the energy released in 1 time 
step, N is the number of time steps, dt is the time step size, S is the cross-sectional area of the 
region. Division by 2 is used due to periodic boundary conditions, i.e. heat distribution goes 
in 2 directions. Then, the resulting temperature gradient was calculated, and the Fourier law 
(1) was used to obtain thermal conductivity. The choice of time step depended on 
temperature, and took the values from 3 fs at 300K to 1 fs at 4000K and higher. 

3 MODELING RESULTS 

Fig. 1 shows the time-averaged spatial temperature profile used to calculate the thermal 
conductivity. The average temperature is 1690 K. In a small region (~ 8 nm), a very nonlinear 
temperature profile is observed in the immediate vicinity of the source. The same strongly 
nonlinear temperature profile is also observed near the sink. In the intermediate region, the 
temperature profile is close to a linear dependence. This gap between the heat source and the 
heat sink is indicated on the graph (Fig. 1) by dashed lines. In this interval, a temperature 
gradient was measured. The presence of a heat source and heat sink and the use of periodic 
boundary conditions create a current in two opposite directions. Since the heat flux passes 
along a clearly defined direction in the lattice, a single simulation can be used to obtain 
thermal conductivity along only one direction of the crystal lattice. Therefore, the heat flux 
was determined by a series of calculations. For the crystal, calculations were carried out for 5 
different sizes of the region from 20 to 320 unit cells with a constant cross section of 10×10 
cells. The maximum number of atoms was 256,000. 

The heat flux (2) was determined from the temperature difference between the heating and 
heat sink areas, for which the instantaneous temperature difference was averaged over the 
entire calculation time after establishing the stationary distribution. To increase the accuracy 
of the calculations, the temperature difference was calculated not over the entire interval 
between the source and the sink, but in its central part with a length of 0.8 of the full length. 
The calculation time varied from 480 ps for a temperature of 350 K to 3.8 ns at 1550 K and a 
higher temperature. 

To calculate the thermal conductivity from the Fourier law (1), the scaling procedure 
described above was used. The inverse dependence of the thermal conductivity 1/κlat was 
constructed with respect to the reciprocal of the length of the simulation cell 1/L, and the 
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thermal conductivity was determined by extrapolating the data 1/L → 0. For the liquid state, 
only one calculation was performed for a size of 40 cells, for large sizes the results were 
approximately the same. Fig. 2 shows the dependences of the reciprocal of the thermal 
conductivity on the reciprocal of the size of the region for two temperatures 350 K and 
1550 K. 

 
Fig. 1. Spatial profile of the temperature at one of the time instants. 

 
Fig. 2. Dependence of the reciprocal of the thermal conductivity on the reciprocal of the size of the 

region for two temperatures. 
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The results of calculations on the graph are shown by red lines and markers. Extrapolation 
was performed using the least squares method at the three points corresponding to the longest 
lengths of the region (red lines and markers in Fig. 2). 

Fig. 3 shows the obtained temperature dependence of the phonon thermal conductivity 
with the experimental data [42] and the data from [29] for the Stillinger – Weber potential, as 
well as a theoretical estimate [44, 45]. The dashed line shows the extrapolation of the phonon 
thermal conductivity to the critical point. In this work, we used the silicon critical point 
parameters Tcrit = 6750±250 K, ρcrit = 0.24±0.06 g/cm3, Pcrit = 800±300 bar obtained from 
molecular dynamics modeling with the KIHS potential in [43]. 

According to theoretical concepts [45], the thermal conductivity of the lattice of crystalline 
silicon is calculated as follows 

  FFvlat lсT 
3

1
      (3) 

where F  is the velocity of sound, or the group velocity of thermal vibrations of phonons; 

Fl is the average mean free path of elastic waves - phonons; cv is the specific heat of the 
lattice, ρ is the density. Figure 7 shows the approximation of the theoretical estimate (blue 
line) obtained in [44] 

κlat(T) = 15,85×Tlat
-1.23 W/mK 

Phonon thermal conductivity is difficult to obtain from experiment, therefore, experimental 
data are given for the total thermal conductivity of silicon. 

 
Fig. 3. Temperature dependence of the phonon thermal conductivity of silicon (this work), 

experimental data for total thermal conductivity [42], and data from [29] for the Stillinger-Weber 
potential. A theoretical estimate for the solid phase is also given [44]. 
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In crystalline silicon, phonon thermal conductivity is decisive. The difference between the 
calculation data with the KIHS potential and the experimental values of the total thermal 
conductivity is approximately 60% at 350K. At the melting temperature, the difference from 
experiment doubles, which is explained by an increase in the contribution of electronic 
thermal conductivity to the total thermal conductivity. A comparison of the results of 
calculations with a theoretical estimate [44, 45] shows a qualitative coincidence. 

At the semiconductor-metal phase transition, the phonon thermal conductivity decreases 
stepwise, which is explained by the destruction of long-range bonds. At the equilibrium 
melting temperature Tm = 1687 K, the jumps in the phonon thermal conductivity of silicon is 
88.9%. In the calculation of thermal conductivity with the Stillinger – Weber potential [29], 
the jump estimate is 92.08%. 

After melting, silicon from a semiconductor becomes a metal, because of which the 
electronic component in the thermal conductivity becomes decisive [46, 47], and the phonon 
component differs significantly from the experimental data on total thermal conductivity. 

The difference between the phonon thermal conductivity in the liquid of the potentials 
KIHS and SW [29] is 60%. At a temperature of 2000 K, the difference between the results 
obtained in this work and the data obtained using the ab-initio approach from [19] is 30.8% 
(0.91 and 0.63 W/(mK), respectively). 

At the temperature T > 5000 K, phonon thermal conductivity tends to decrease, which does 
not contradict theoretical concepts. In the near-critical region, the phonon thermal 
conductivity obtained from the simulation results is approximately 0.47 W/(mK) at 
T = 6500K, approximately the same value at temperature T ≈ Tcrit (0,45 W/(mK)). 

4. CONCLUSION 

1. Based on a series of calculations by the direct method using molecular dynamics 
modeling, the temperature dependence of the phonon thermal conductivity of silicon was 
obtained in the temperature range 300 <T <6500 K. The KIHS potential was used in the 
simulation. 

2. Comparison of the simulation results with the KIHS potential (this work) with the 
simulation results with the Stillinger – Weber potential [29] showed that for high-temperature 
processes (Tm <T <Tcrit) in silicon, the best results are achieved when the KIHS potential is 
used, in contrast to low-temperature processes (T ≤ Tm), where the classic Stillinger –Weber 
potential has an advantage. 

3. Comparison of the results obtained at a temperature T = 2000K with the results obtained 
using the ab-initio approach [19] showed a slight discrepancy of 30.8% (0.91 and 
0.63 W/(mK), respectively). 

4. Comparison of the results of modeling of the phonon thermal conductivity with the 
experimental values of total thermal conductivity [42] makes sense only in crystalline silicon 
in the range 300 K <T <1000 K, since at a temperature above T > 1000 K the degeneracy of 
charge carriers increases, the band gap decreases, which leads to a rapid increase in the 
concentration of carriers and, accordingly, to an increase in the thermal conductivity of 
electrons [46, 47]. The difference between the phonon thermal conductivity and the total 
thermal conductivity with increasing temperature will only increase, especially after a phase 
transition in liquid silicon. After melting at the equilibrium melting temperature Tm = 1687 K 
from the side of the solid phase, the phonon thermal conductivity obtained from molecular 
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dynamic modeling (MDM) is 2.9 times less than the experimental data and theoretical 
estimate. From the side of the liquid phase, the phonon thermal conductivity obtained from 
MDM is ~ 50 times lower than the experimental values of the total thermal conductivity. 

5. In the near-critical temperature range of 5000 K < T < Tcrit, the phonon thermal 
conductivity decreases, which does not contradict theoretical concepts, and at T ≈ Tcrit its 
value is approximately κlat ≈0 .45 W/(mK). 
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