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Summary. In this article we prove that a continuous mapping on a simply-connected domain 

of the extended complex plane, which is normal with respect to the cycle group of all 

conformal automorphisms of the domain with a fixed attractive point, which belongs to the 

domain is a constant function. Applying this result we obtain new proofs of the classical 

Theorem of Liouville and little Picard Theorem for holomorphic, meromorphic and harmonic 

functions in complex plane. We also prove some results from the dynamic of Möbius 

mappings. 

1 INTRODUCTION 

A problem of  Ch. Pommerenke, formulated in [1, p. 169], is if there exists a non-constant 

meromorphic mapping on the unit disc of the complex plane, which is automorphic and 

normal with respect to any non-continuous group   of Möbius mappings of the unit disc. The 

same problem was considered by D. Mind in [2, p. 119].   

In [3] P. Järvi solved this problem by constructing an open Riemann surface which does 

not allow non-constant normal analytic mappings. 

 The question of connection between normality and constancy of functions was also 

considered by J. Väisälä in the article [4]. In this article it is shown (Theorem 2, p. 17) that 

styding the normal continuous functions on the complex plane and the extended complex 

plane does not make sense, since the family of all continuous functions on a simply connected 

elliptic (parabolic) domain in the complex plane, that are normal with respect to the group of 

all conformal automorphisms of such kind of domains, reduce to the family of constant 

functions. However, in this paper a more general result is proved. We prove that if for a 

simply connected domain of the extended complex plane there exists conformal 

automorphism g  which has at least one attractive fixed point in that domain which is not  , 

then any function f  which is continuous in that domain and which maps that domain in the 

Riemann sphere ℂ or extended set of real numbers ℝ },{  , for which the family 

{ ngf
n Z} is a normal family of functions, is a constant function in that domain 

(Theorem 3.2 and Theorem 5.2). 
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From this result it follows that if a domain is of the parabolic type (complex plane) or the elliptic 
type (extended complex plane) then a continuous mapping on that domains will be a constant, if 
the family of all compositions of that function with all elements of cyclic group with generating 
element of the hyperbolic or parabolic Möbius mapping, is a normal family on the domain. We 
emphasize that the position of fixed points of a conformal automorphism plays the main role in 
obtaining these results. 

These results are later used for obtaining the simple proof of the classical Liouville Theorem and 
little Picard Theorem for holomorphic, meromorphic and harmonic functions. Namely, in the the-
ory of functions of complex argument the Liouville’s Theorem on constancy of entire functions 
and little Picard Theorem on values of holomorphic and meromorphic functions have a special 
place. Proofs of these Theorems often use the classical results in the theory of analytic functions 
such as: Cauchy integral formula, the expansion of an analytic function in Taylor series and prop-
erties of elliptic modular function (see for example [5, 6, 7, 10]). The analogies of these Theorems 
for harmonic functions on the complex plane are also known (see [6, 11, 12]). We would like to 
highlight the reference [11], where the authors give six proofs of the Liouville Theorem for har-
monic functions in the complex plane. The proof of Liouville’s Theorem for harmonic functions 
on , 2,nR n ≥ from [12], is interesting, as it has not used any single mathematical symbol. Our 
article gives a new approach in proving these results. 
As a direct consequence of considering of constancy of continuous functions, we also obtain the 
known results which say that fixed points of parabolic and hyperbolic Möbius transforms, which 
are automorphisms of the unit disc, must be on the boundary of the unit disk, and that the fixed 
points of elliptic automorphisms of the unit disk cannot be attraction points as well as they cannot 
be on the boundary of the unit disc.  We find a connection between the notion of normality and 
discontinuity of subgroups of Möbius group of all conformal automorphisms of the Riemann 
sphere  (see [7, 8, 10]). 

2. PRELIMINARY NOTATIONS  AND  DEFINITIONS  

With  we denote the set of all real numbers,  will denote the set of all integers,  the set 
of all natural numbers, and { },  ,z z x iy x y R= = + ∈   

will be the set of all complex numbers, 

i.e., the complex plane, z zz=  and { }= ∪ ∞   is Riemann sphere. 

For 1z  and 2z  we denote by ( )1 2 1 2,d z z z z= −  the Euclidean metric on  , and  

( ) 1 2
1 2 1 2

1 2

2
, , ,

1 1
sd

ω ω
ω ω ω ω

ω ω

−
= ∈

+ ⋅ +
 ; ( )1 2 1 22

1

2, , ,  ,
1

sd ω ω ω ω
ω

= ∈ = ∞
+

  is the 

spherical Riemann distance on  . 
The set with the metric ( )1 2,d z z  is Hausdorff and complete metric space, but it is not compact. 

However, { }= ∪ ∞   with the metric ( )1 2,sd ω ω  is a compact metric space. On the compact 
subset of   these metrics are equivalent. 

The convergences are meant in these metrics. 

32



ЛазернаŽя ф Ž. Pavićević  and J. Šušićзика ика плазмы 
Ž. Pavićević  and J. Šu 

 
 

šićзика ŽŽžž 

The group ( )  , , , ,  1az bG a b c d ad cd
cz d

− = ∈ − = − 
 

 
is the group of all conformal automor-

phisms of the Riemann sphere  , and the group ( ) { } , , 0G az b a b C a= + ∈ ≠  is the group of 

all  conformal  automorphisms of the complex plane  . The group ( )  G  is a subgroup of the 

group ( ).G 

 
We use notation: ( ) ( ).G G∆   Groups, ( ) ,G  ( )i  G   are Möbius groups for 

the  Riemann sphere   and  the complex plane  , respectively, and their elements are referred 
to as Möbius mappings. 

The Möbius mappings 1 2 i  g g  are  equivalent if  there exists a Möbius mapping ( )h G∈   such 

that ( ) ( )( )1
1 2 ,  z .g z h g h z−= ∈    

For every ( ) ( )az bg z G
cz d

+
= ∈

+


 there exists a matrix 
   
    

a b
A

c d
 

=  
 

 in the group

( )
  

2,  ,  , , , ,  0 
   

a b
GL A A a b c d ad bc

c d
   = = ∈ − ≠  

   
  . 

It may be shown that the group ( )G 

 is isomorphic to the group ( ) { }2, / ,SL I I− ,  where  I  is 

the identity matrix, and  ( )2,SL   is the set of all matrices A such that det 1.A =  On the  group 

( )G 

 one may introduce the norm ( )2 2 2 2 ,g a b c d= + + +  which generates the metric on 

( )G 

 , which defines the topology on it. With respect to that topology, ( )G 

 is a topological 

group.  

For ( ) ( )az bg z G
cz d

+
= ∈

+


   we have: 
a b

M
c d
 

=  
 

 and  ( ) ( )2

det
a d

tr g
M

+
= . 

With the symbol O we will always denote a simply connected  domain of the Riemann sphere ,
i.e., O⊂ . 
Let ( )G O  be the group of all conformal automorphisms of the domain O. A point 0z O∈  is fixed 

point of ( )g G O∈  if ( )0 0.g z z=  Then we have ( )1
0 0 ,g z z− =  and therefore 0z  is also a fixed 

point for 1g −
. 

For ( )  g G O∈  we use notation  ( ) ( (( ( ) ) )
 times

... ...n

n

g z g g g z=


 and 
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( ) ( ) ( ) ( (( ( ) ) )1 1 1 1

 times

... ...
nn

n

g z g z g g g z− − − − −= =


, n∈ . 

For a fixed point 0z  of g in the group ( )G O  the equality ( )0 0 ,  ng z z n= ∈  holds. 

A fixed point 0z O∈  of  ( )  g G O∈ , 0g i g≠ = , where i  is the identity mapping, is an attractive 
point of an automorphism g,  if for every z O∈  we have ( ) 0lim n

n
g z z

→∞
= .  

3. FRAGMENTS OF DYNAMIC OF MÖBIUS MAPPINGS 

Further, we need to analyse the fixed points of Möbius mappings of the group ( ).G 

 

In [8], on p. 67, a classification of Möbius mappings in ( )G 

 based on description of fixed points 

of their Poincare extensions on { }3 ∪ ∞  is given. 
Namely, if ( )g G∈ 

, g i≠ , has one fixed point in  , then it is called the  parabolic element of 

the group ( ) ,G 

 or parabolic Möbius mapping.  

If the  Poincare extension of an element ( )g G∈ 

 on ( ){ }3 , , , ,x y z x y z= ∈ 
has only two 

fixed points in 3
 , then it is called the loxodromic Möbius mapping. 

 
If for a loxodromic Möbius mapping g  there exists an open circle or an open half plane in the 
complex plane   which are invariant with respect to g, then we call g the hyperbolic element of 
the group ( ) ,G 

 or hyperbolic Möbius mapping. In opposite case it is called the strictly loxo-

dromic mapping. 
 
If the Poincare extension of ( )g G∈ 

 on { }3 ∪ ∞  has infinitely many fixed points on 

{ }3 ∪ ∞ , then it is called the elliptic element of the group ( ) ,G 

or elliptical Möbius mapping. 

 
Theorem 3.1 ([8], see Theorem 4.3.4, p. 67). For ( )g G∈ 

, g i≠  we have: g  is a parabolic 

element if and only if we have ( )2 4,tr g = g  is an  elliptic element if and only if ( ) [ )2 0, 4 ,tr g ∈   

g is the hyperbolic element if and only if ( ) ( )2 4,tr g ∈ ∞  and g  is strictly loxodromic element if 

and only if ( ) ( )2 4,tr g ∉ ∞ .  
Any element of  ( )G 

, different from the identity, has one or two fixed points in  . 

 
Theorem 3.2 ([8], p. 73). ( )i  If ( )g G∈ 

, g i≠ , is a parabolic element with a fixed point 0 ,z ∈

then for every z∈   we have  ( ) 0lim .n

n
g z z

→∞
=  
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( )ii  If g is a loxodromic element with fixed points 0z  and 1z , then for one of these points, with-

out loss of generality 0z  , that for every { }1\z z∈ the equality ( ) 0lim n

n
g z z

→∞
= holds, but then for 

every { }0\z z∈ ( ) 1lim .n

n
g z z−

→∞
=  

( )iii  If g  is an elliptic element with fixed points 0z  and 1z , then  g  remains invariant for every 

circle with respect to which the points 0z 1z   are invertible. 

For elements of  G () we will use the following Lemma in the proof of Theorems in sections  5, 

6  i 7.  

Lemma 3.3.  For ( ) ( ){ } ,  0,  cg G g z az c a a∈ = = + ∈ ≠ ∈  
, g i≠ the following holds:

(i) g is a parabolic Möbius mapping if and only if 1a = , ant it’s fixed attractive point is ∞ ; 

(ii)     g is  an elliptic  Möbius mapping if and only if 1,  1,a a= ≠ and it’s fixed points are 
1

c
a−

and   ;∞  

(iii)    g  is a hyperbolic Möbius mapping with fixed attractive points
1

c
a−

if and only if  

,  0< 1,a a∈ < ,  and ∞  is its repulsive fixed point; 

(iv)  g  is a hyperbolic Möbius mapping with repulsive fixed point 
1

c
a−

if and only if 

,  1 ,a a∈ <    and its attractive point is ∞ ; 

(v) in other cases g is strictly loxodromic Möbius mapping. 

Proof of Lemma 3.3.   For ( ) ( ) ,  ,  ,  0,  g z az c G g i a a b= + ∈ ≠ ∈ ≠ ∈   , we have 

( )2 1 2tr g a
a

= + + .   Since ( )g z  is parabolic, elliptic or hyperbolic Möbius mapping we have that   

( )2 .tr g ∈  If ,  , ,a iα β α β= + ∈  then we have ( )2
2 2

12 1tr g i
a a
αα β

 
= + + +  − 

 
 

, so we ob-

tain ( )2tr g ∈  if 2
11 0
α

− =  or 0.β =  
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I case. Assume that 2
11 0
α

− = , then 1.a =  It follows [ ), 0, 2 ,  ia e θ θ π= ∈ so 

cos  i sinα θ β θ= = . Since ( )2 2 2 2cos 2tr g α θ= + = + , from Theorem 3.1 we have that g is a 

parabolic  Möbius mapping if and only if 2cos 2 4θ + = . Therefore,  g  is a parabolic  Möbius 
mapping if and only if cos 1θ = , i.e., for 0θ = . It  follows that  sin 0 0  and  1.aβ α= = = =  It is 
easy to see that ∞  is its attraction fixed  point. We have proved the part  i). 

From Theorem 3.1 it follows that  g  is an elliptic  Möbius mapping if and only if ( )20 4.tr g≤ <  

We conclude that  0 2cos 2 4θ≤ + < , which is equivalent to 1 cos 1θ− ≤ < . Since 0 2 ,θ π< <  we 

have 1 sin 1θ− ≤ < . This yields cos sin ,0 2 .ia i i e θα β θ θ θ π= + = + = < <   Therefore, g  is an 

elliptic Moebius mapping if and only if 1,  1.a a= ≠  It is easy to see that all fixed points of it are 

1
c

a−
  and  ∞ . Thus, statement ii) is proved. 

From Theorem 3.1 it follows that  g  is a hyperbolic Möbius mapping if and only if ( )24 .tr g<  

This means that 4 2cos 2θ< + , which is equivalent to  1 cosθ<  , but this is impossible, this case 
excludes the hyperbolic Möbius mappings. 
We have finished the case I.  

II case. Let 0.β = Then { }\ 0a α= ∈ , and therefore  ( )2 1 2.tr g α
α

= + +  

If ( )2 1 2 4tr g α
α

= + + = , then g is a parabolic Möbius mapping. The preceding equality is equiv-

alent to ( )21 0α − = , and this is equivalent to 1α = , thus in this case we also have i).   

The mapping  g is an elliptic Möbius mapping if ( )20 4,tr g≤ <  from which it follows that 

10 2 4α
α

≤ + + < , or 
12 2α
α

− ≤ + < , which is equivalent to 
12 α
α

− ≤ +  and 
1 2α
α

+ < . 

If we would have 0α < , then we will derive 22 1α α− ≥ +  and 2 1 2α α+ > , i.e., ( )20 1α≥ +  and 

( )21 0α − > , but this is impossible. 

If we would have 0α > , then we will derive  22 1α α− ≤ +  and 2 1 2α α+ < , i.e., ( )20 1α≤ +  and 

( )21 0α − < , which is also impossible. 
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Therefore, the case  0.β =  excludes the elliptic Möbius mappings. Therefore we have proved  ii).    

The condition that  g is an hyperbolic Möbius mapping is that ( )24 tr g< . From this we obtain 

that 
14 2α
α

< + + , or 
12 α
α

< + . 

If we would have 0α < , this would imply 22 1α α> + , i.e., ( )20 1α> − , which is not true. 

If 0α > , 22 1α α< + , i.e., ( )20 1α< − ,  which is true for every ( ) ( )0,1 1,α ∈ ∪ +∞ . 

Therefore, ( ) ( )0,1 1,α ∈ ∪ +∞  is necessary and sufficient for g to be a hyperbolic Moebius map-

ping. 

If ( )0,1α ∈ , then form z c zα + =   we obtain that 
1

c
a−

 is a fixed point for g. Since we have

( ) ( )1 2
1

...
1

n
n n n n n

c
g z z c c c c z

α
α α α α α

α
− −

−
= + + + + + = +

−
, we obtain ( )lim

1
n

n

cg z
a→∞

=
−

 ,  from this  it 

follows that  
1

c
a−

 is a fixed attractive point for the hyperbolic Möbius mapping g , and ∞   is its 

repulsive fixed point.. This is the statement of the part iii). 

If ( )1,α ∈ +∞ then 
1

c
a−

and ∞   are fixed points for the hyperbolic Möbius mapping g . Since

( ) ( )1 2
1

...
1

n
n n n n n

c
g z z c c c c z

α
α α α α α

α
− −

−
= + + + + + = +

−
,  we conclude  ( )lim n

n
g z

→∞
= ∞ . From this 

we conclude that  ∞  is fixed attractive point for the hyperbolic Moebius mapping g, so 
1

c
a−

 is 

its repulsive fixed point, and we have finished the part vi). 
If g  isn’t parabolic, elliptic, or hyperbolic Möbius mapping, then it is strictly loxodromic 
Moebius mapping. Therefore we have v).   � 

4. THE MAIN RESULTS 

We say that a family of functions { }:f f Oℑ = →  is normal family on the domain O, ,O ⊂ 

if any sequence ( )nf  of ℑ  has a subsequence ( )knf  which is uniformly convergent to a function 

:f O →  on compacts of O. For this type of normality of the family ℑ  we say that it is normal 

in the sense of Montel. The family of functions { }:f f Oℑ = →  is normal in z O∈  if it is a 

normal family in a domain which contains z.  
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It is known (see for example [5, 9, 10,14]) that the family of functions { }:f f Oℑ = → is a

normal family on a domain O if and only if it is normal in every point of the domain O. 

If ,O ⊂   i.e., if O∞∈ , then the family of functions { }:f f Oℑ = →  is normal in ∞   if the

family 
1   f f
z

  ′ℑ = ∈ℑ  
  

 is normal in 0, and the function { }:f f Oℑ = →  is normal on O

if it is normal in every point of the domain O. 

 A family ℑ  of functions is equicontinuous in a point 0z O∈ , ,O ⊂   if for every 0ε >  there 

exists ( )0 , 0zδ δ ε= >  such that for every f ∈ℑ  and every  z for which ( )1 0,d z z δ<  there holds   

( ) ( )( )2 0,d f z f z ε< , where 1d  and 2d   are previously  defined metrics on   i    . We can take 

1 2 sd d d= = , if we consider a domain O ⊂   which contains the point ∞ . A family ℑ  of func-
tions is equicontinuous family of functions on a domain O if it is equicontinuous in every point of 
the domain. 

Let ( )G O    be the group of all conformal authomorphisms of the domain O. For a function

:f O →  we say that it is a normal  function  on the domain O with respect to the  group G if the 

family { }ϕ ϕℑ = ∈f G  
is normal family on O,  i.e., if any sequence of this family has a subse-

quence which is uniformly convergent on compact subsets of O.  

We will need the following Theorem for the proof of our main result which is given in Theorem 
3.2: 

Theorem 4.1. ([5], p. 12, or  [10]).  A family ℑ of continuous functions on a domain O is a 
normal family on that domain if and only if the family ℑ is equicontinuous in O.  

The main result in this paper is the following Theorem: 

Theorem 4.2. Let g be a conformal automorphism of simply connected domain O⊂which has 

a attractive fixed point 0z O∈ , 0 ,z ≠ ∞  and let :f O →  be a continuous function on O. If the

function  f  is normal on the domain O with respect to the cyclic  group { } 
n

gG g n= ∈ , which 

is determined by the conformal automorphism g, then  f  is a constant function on O. 
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Proof of Theorem 4.2. Assume the contrary, i.e., that there exists a continuous function f on  O  
which is not constant on O but is normal with respect to the group { } 

n
gG g n= ∈ . Then there 

exists a point 1z O∈ such that ( ) ( )1 0f z f z≠ , so   ( ) ( )( )2 1 0, 0.d f z f z >  Denote 

                          
( ) ( )( )2 1 0,

0.
2

d f z f z
ε = >                                                                (1) 

From the condition that  f  is normal on the domain O with respect to the cyclic group 
{ } 

n
gG g n= ∈  and Theorem 4.1 it follows that the family { }nf g n∈   

is equicontinuous on 

the domain O, so it is equicontinuous in 0z O∈ . It follows that for 
( ) ( )( )2 1 0,

2
d f z f z

ε =   there 

exists 0δ > , such that for every  z  for which  ( )1 0,d z z δ<  there holds   

                        ( ) ( )( )2 0,n nd f g z f g z ε< 
, n∈  ,                                                (2) 

where 1 2 i d d are metrics defined before. 

Let us consider the sequence ( )nw , ( )1 ,  n
nw g z n= ∈ . Since 0z  is an attractive fixed point for 

g , we have ( )1 0lim lim ,n
nn n

g z w z
→∞ →∞

= =  so for δ  there exists a natural number N such that for 

every n N≥  there holds that ( )0,nd w z δ< . From this and  (2) it follows that 

( ) ( )( )2 0,n n
nd f g w f g z ε− − < 

 for every n N≥ , i.e., ( )( ) ( )( )( )2 1 0,n n n nd f g g z f g g z ε− − < 

 

for every n N≥ ,  from this and from  (1) it follows that  ( ) ( )( ) ( ) ( )( )2 1 0
2 1 0

,
, .

2
d f z f z

d f z f z <  

Which is contradiction and the Theorem follows. � 

For ( )  g G∈  , g i≠ , with   gG  we will denote  in the further exposition  the cyclic group 

{ } .n
gG g n= ∈  The group  gG  is a group of all conformal automorphisms of the complex 

plane ,  as well as the Riemanin sphe  re  . Therefore ( ) ( )    gG G G∆ ∆  .   

Remark 4.3. If we take the complex plane   or the  Riemann sphere   for the domain  O in 
Theorem 4.2,  and the group  gG  for the group of conformal automorphisms ,where g is a hyper-

bolic element from part iii) of Lemma 3.3, then from Theorem 4.2 we have the statement of The-
orem 2  from  [5], on page 17.  Therefore, Theorem 4.2 is a generalization of Theorem 2 in [5]. 
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5. APPLICATIONS ON  HOLOMORPHIC AND  MEROMORPHIC  
FUNCTIONS  

In this section we prove that Liouville and little Picard Theorem may be obtained as a direct 
consequences of the Montel Theorem on normality of family of holomorphic and meromorphic 
functions. 

For the following considerations we will need the local boundedness of the family of functions. A 
family of functions { }:f f Oℑ = →

 is locally bounded on a domain O if for every  0z O∈  

there exists a constant ( )0 0M M z= >  and a disc ( ) { }0 0,   ,  ,  0,D z r z z z z r O r= ∈ − < ⊂ >  

such that for every ( )0 ,z D z r∈  and every f ∈ℑ   there holds ( ) .f z M<  

Theorem 5.1 ([10], Montel's Theorem, p. 35). If ℑ  is a family of locally bounded holomorphic   
functions on a domain  O, then  ℑ   is a normal family on the domain O.  

Theorem 5.2 ([7], Theorem 1.3 (Liouville's Theorem), p. 3).  A holomorphic  function :f → 

which is bounded on   , must be a constant on  .  

Proof of Theorem 5.2. Let  ( ) ,g G∈  ( ) ,0 1,g z az c a= + < < c∈ . From the boundedness of 

an holomorphic function on  , the function  f and  from Theorem  5.1  it follows that the family 
{ } n

f f g nℑ = ∈ 
is a normal family on   with respect to the group  gG . The statement  of  

Theorem 5.2  now follows straightforwardly from iii) of Lemma 3.3  and  Theorem 4.2.  � 

Theorem 5.3  (see [11], p. 112,  or Lemma 2.5, [7], p. 17). A holomorphic function :f → must 

be constant on  . 

Proof of Theorem  5.3.  From the Theorem of maximum of modulus of an holomorphic function 
it follows that  f   is a bounded holomorphic function  on   . Now from Theorem 5.1  it follows 
that   f  is normal function on with respect to the group  gG , ( ) ,0 1,g z az c a= + < < c∈ . 

Since  gG  is a group of all conformal automorphisms of  , from  iii) in Lemma 3.3  and Theorem 

4.2  it follows that  f a constant  function on  .     � 

Theorem 5.4 ([10], Fundamental Normality Test, p. 54)  If ℑ  is a family of  holomorphic functios 
on a domain O  that do not take two fixed values  a and  b in  , then  ℑ  is normal family on O.  

Theorem 5.5([7], Theorem 2.6 (Picard's Theorem), p. 17 ). An holomorphic  function  :f → 
, 

which is not constant on  ,takes all values in  , with at most one exception. 
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Proof of Theorem 5.5. Assume that the statement of Theorem 5.5  is not correct, i.e., that there 
exists an holomorphic function  :f → 

, which is not constant on  , which achieves  all values  

in  , except two or more fixed values in  . Let us consider the family { } ,n
f f g nℑ = ∈ 

where ( ) ,0 1,g z az c a= + < < c∈ , is  a hyperbolic element of the  group ( ).G 
 Then functions 

from the family  { } n
f f g nℑ = ∈ 

 does not assume two fixed values in  , therefore from 

Theorem 5.4 it follows that the family  { } n
f f g nℑ = ∈ 

 is a normal family in . Therefore 

the function  f   is normal on with respect to the cyclic group { } .n
gG g n= ∈ Since from iii) 

of Lemma 3.3  it follows that the element g has an attractive fixed point in  ,  Theorem 4.2 yields 
that  f  is constant on  ,  which is contrary to our assumption. This proves  Theorem 5.5.  � 

Theorem 5.6 ([10], Fundamental Normality Test, p. 74). Let ℑ  be a family of meromorphic func-
tions on a domain O such that any function in the family does not take any of three fixed values a,  
b and c  in   . Then  ℑ  is a normal family on O.  

Theorem 5.7 (Picard’s Theorem for meromorphic functions).  A meromorphic functions 

:f →  ,  which is not constant, achieves all values in  , with possible exception of at most 
two values. 

Theorem 5.7 may be proved in the same fashion as Theorem 5.5 using the cyclic group  

{ } ,n
gG g n= ∈ which is generated by a hyperbolic Möbius mapping ( ) ,0 1,g z z cα α= + < <

c∈ , which by iii) of Lemma 3.3  has an attractive  fixed point in ⊂  , but in the proof we 
should use Theorem 5.6  instead of Theorem 5.4. 

Theorem 4.2 shows that in given proofs of  Theorems of Liouville and Picard, instead of hyperbolic   
Möbius mapping ( ) ,0 1,g z az c a= + < <  in ( )  G   we could take any hyperbolic or parabolic 

Möbius mapping in ( ) G  , which has an attractive fixed point in  .  

Remark 5.8. The results of this section are proved in [13] using Theorem 2  from [5], p. 17. In 
this section for the proof of Theorem Liouville and Picard we use the weaker result which is given 
in Theorem 4.2, and which shows that for constancy of functions on a  simply connected domain  
O, O⊂ , the existence of conformal automorphism of the domain O, which has a fixed attractive 

point 0z O∈ , 0z ≠ ∞  is important. 
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6. APPLICATIONS ON MÖBIUS MAPPINGS 

Here we consider some properties of elements  and subgroups of the  Möbius  group ( )G 

. 

In the sequel we denote by D  the unit disc, H  a half plane  , i.e.,  { }  ,  1 ,D z z z= ∈ <
and 

{ } ,  ,  y 0H z z x iy x= = + ∈ ≥ , and with D∂  and  H∂  we denote the boundary of D and H , 

respectively. 

The next Theorem follows from the proof of Theorem 5.2.1 in  [7], p. 93, which will be shown: 

Theorem 6.1.  A parabolic or hyperbolic Möbius mapping in group ( )G 

 with invariant  disc D 

or half plane H, has fixed points that must be on the boundary D∂ , or on the boundary ,H∂ but 
fixed points of elliptic Möbius mappings cannot be attractive fixed points. 

The statement of 6.1 may be derived directly from Theorem 4.2. This is shown below:  

Proof of Theorem 6.1. Assume the contrary i.e., that there exists a hyperbolic element  ( ) ,g G∈ 

such that at least one of its fixed points is in D. Then by Theorem  4.2  g  is a constant function, 
but this is not so. 

Therefore, a fixed point of  g cannot be in D.  

In the same way one can show that a fixed point of g cannot be in  D .  

In the same way it is possible to prove a statement in the case of half plane H, and when ∞  is a 
fixed point, it is clear that it belongs to the boundary H∂ .  

The statement for fixed points of parabolic  Möbius mappings can be proved analogously. 
Since fixed points of elliptic mappings belong to D or H, it follows from  Theorem 4.2 that they 
cannot be attractive points, otherwise then it would follow that bounded analytic functions on  D 
or H are constants, which is impossible. This statement follows from the property that an elliptic 
Möbius mapping is equivalent to the Möbius mapping ( ) ,  1,g z k z k= =  which are rotations 

with respect to 0. This follows from  (iii), of  Theorem  3.2. � 

Subgroup G of group ( )G 

 is discrete if and only if for every 0k > the set { } g g k∈ <G is 

finite. 

The subgroup G  of the group ( )G 

  is discontinuous in the point 0z  if  0z  is not in the closure 

of the set ( ) ( ){ } z g z g= ∈G G ,  for every z∈ . In other words, the subgroup  G  of the group 
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( )G 

 is discontinuous in the point 0z  if there does not exist a sequence of mutually different 

elements  ng ∈G  such that for every z∈  we have ( ) 0ng z z→ , if   .n → ∞  The group  G  is 
discontinuous on the set S if it is discontinuous in every point of the set S. The group G is discon-
tinuous if it is discontinuous on an nonempty set. 

If a subgroup  G  of the group ( )G   
is discontinuous, then it is a discrete group. The converse 

statement does not hold. Namely, there exists a subgroup  G  of the group ( )G 

 which is discrete 

but not discontinuous. The example is the group of Picard (see [8], p. 95-103, or [10], p. 200-201).  

The next Theorem shows conditions under which a discrete subgroup G of the group ( )G 

 is 

discontinuous group on a domain.  

Theorem 6.2. ([10], Theorem 5.5.10, p. 205).  A subgroup G of ( )G 

 is discontinuous in a point 

α if and only if G  is discrete and makes a normal family of functions in α. 

Theorem 6.2 shows that it is important to answer under which conditions a subgroup  G of the  
group ( )G 

 is normal, or is not normal in a point. One answer is given by the following Theorem: 

Theorem 6.3. Let a subgroup G  of group ( )G 

 contain a loxodromic (parabolic) element of the  

group ( )G 

. Then: 

i) the subgroup G  is a not normal  family of functions in the fixed point of that loxodromic 
(parabolic) element, 

ii) G is not normal on any domain which contains a fixed point of a loxodromic  (parabolic) 
element of  subgroup G. In particular, G is not  normal on   .     

Proof of  Theorem 6.3. Assume that g a is loxodromic element  of the group G and let 0z   be a 

fixed point of g. Then  { } 
n

gG g n= ∈  
 is  a  cyclic subgroup of the  group G , and 0z  is an 

attractive  point of g or 1g − . Let 0z  be an attractive point for g , without loss of generality.  

For every fixed 1 0z z≠  we have  

                                           (1)           ( )1 0lim lim ,n
nn n

g z w z
→∞ →∞

= =  

where ( )1 ,  n
nw g z n= ∈  (see Theorem 3.2).    

Assume that the family G is a normal  family of functions in the point 0z . 
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From the normality of family G in 0z , the normality of family { } 
n

gG g n= ∈  in 0z  follows. 

Since  ,   ,ng n∈  is continuous on   , the family { } 
n

gG g n= ∈  is a normal family in 0z  if 

and only if there exists an neighbourhood O of 0z  on which the family { } 
n

gG g n= ∈ is 

equicontinuous  (Theorem 4.1). It follows that for every 0ε >  there exists ( )0 , 0zδ δ ε= > ,  such 

that for every ng , n∈ , and every z for which ( )0d z z δ− <  the inequality    

                                 ( )1 0 0.d z zε = − >                                                                        (3) 

 Then for  ε   given in  (3)  there exists  0δ >  such that for every  z which satisfies ( )0d z z δ− <  

it holds   

                                 ( ) ( )( )0,n nd g z g z ε< ,         n∈ .                                             (4) 

Since 1 0z z≠ ,  (1) yields  ( )1 0lim .n

n
g z z

→∞
=

 
Then there exists N ∈  such that for every n N≥  we 

have  ( )( ) ( ) ( )( )1 0 1 0
n n nd g z z d g z g z δ− = − < .  Now having in mind  (4)  we obtain   

                            ( )( ) ( )( )( )1 0, ,      .n n n nd g g z g g z n Nε− − < ≥                                  (5) 

From  (5) we obtain   ( )1 0 ,d z z ε− <  and from  (3) we conclude that ε ε< . This is a contradiction 

so the subgroup G in 0z  is not a normal family of functions in 0z , so we finish the proof of part 
i). 

The part ii) follows directly from the part  i).  

If the above proof for  g  we take an parabolic element of subgroup G we derive a proof for ele-
ments of parabolic type.  

Theorem 4.2 yields that G is not normal on  .� 

From Theorems 6.2  and  6.3 we obtain the following:  

Theorem 6.4. ([8], Lemma 5.3.3, p. 96). Let  G be a subgroup of  group ( )G 

and let O be an 

open set on Riemann sphere   which contains a fixed point of a parabolic or loxodromic element 

g in  G. Then  G does not acts discontinuously on  O.   
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7. Apendix:   APPLICATIONS ON HARMONIC FUNCTIONS
Further, we will need the set { },= ∪ −∞ +∞  , i.e., the extended set of real numbers  which 

is compactified by the two  points  −∞ and  + ∞. For 1x , 2x ∈  we will denote

( )1 2 1 2,d x x x x= −


the distance on  , but for 1x , 2x ∈  we have

( )1 2 1 2,   d x x arctg x arctg x= −


, ( ) ( ) + ,     
2 2

arctg arctgπ π
∞ = −∞ = − ,  a metric on  .  On compact 

subsets of    the metrics ( )1 2,d x x


 and ( )1 2,d x x


 are equivalent. The extended set of real num-

bers    with the distance ( )1 2,d x x


 is a Hausdorff compact and complete metric space. 

In the sequel we will also need the extended Arzela-Ascoli Theorem. Assume that X and Y are two 
compact metric spaces, let  ,X YC  be the set of all continuous functions f  which map X in Y and 

let for ,, X Yf g C∈ ( ) ( ) ( )( ), , sup ,X Y Y
x X

d f g d f x g x
∈

= .  With XYd  we have the distance functions on 

set , .X YC  From the convergence of the sequence ( )nf  in , X YC  in the metric  ,X Yd  follows the 

uniform convergence of that sequence on compact sets in X. 

In the sequel we will also need the definition of equicontinuous family of functions ℑ , ℑ⊂ .XYC

Namely, a familyℑ is equicontinuous on ,X  if for every 0ε >  there exists ( ) 0δ δ ε= >  such that

for every  f ∈ℑ  and all  ,x y X∈ ,  for which ( ),Xd x y δ< , we have   ( ) ( )( ),Yd f x f y ε< .

Theorem 7.1 ([14], a general Arzela-Ascoli Theorem, p. 114). A set ℑ ,ℑ⊂ ,X YC ,is precompact, 

(compact, since we have compact metric spaces X and Y), i.e., ℑ is a  normal family of functions 
in ,X YC , if and only if  ℑ is equicontinuous set of functions on X.  

Using Theorem 6.1, and statement iii) of  Lemma 3.3, one can show in a similar way as Theorem 
4.2, the following Theorem: 

Theorem 7.2. Let g  be a conformal  automorphism of a simply connected domain O⊂  which 
has a fixed attractive point 0z O∈ , 0 ,z ≠ ∞  and let :f →    be a continuous function on O. If

the function  f is normal on the domain O with respect to the cyclic group { } 
n

gG g n= ∈ , 

generated by the conformal automorphism g , then   f  is a constant function on O. 

We will consider a harmonic function in a domain of the complex plane. A function 
:f O → ⊂  is harmonic on a domain O, ,O⊂ if ( )2f C O∈   and   f   satisfies the Laplace
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equation 
2 2

2 2 0f f
x y

∂ ∂
+ =

∂ ∂
 on  O. If f is harmonic on a domain O and if  : O Oϕ ′→  is a conformal 

mapping of  O′ , ,O′⊂  onto  O, then a f ϕ  is harmonic on O′  (see [6]. or the [11]) .  

Let { }:f f O= → ⊂ H  denote a family of harmonic functions on a domain O . 

Theorema 7.3 ([10],  Theorem 5.4.2,  p. 185). A locally bounded family H of harmonic functions 

on a domain O is a normal family on that domain. 

 

Theorem 7.4 (Liouville’s Theorem for bounded harmonic functions). A harmonic and bounded 
function on the complex plane   is constant on  .  
 

Proof of Theorem 7.4. Let ( ) ,g G∈  ( ) ,0 1,g z az c a= + < < c∈ . From the boundedness of  

the harmonic function f on  and  Theorem 6.3  it follows that the family  { } ,n
f f g nℑ = ∈ 

 

is normal on   with respect to the group  gG . Since a  harmonic function  f  on   is continuous 

on  , the statement of  Theorem 7.4  now follows directly from part  iii)  of Lemma 3.3 and   
Theorem 7.2. � 

Theorem 7.5  ([10], Theorem 5.4.3,  p. 185). The family H+ of positive harmonic functions on a 

domain O is normal. 

 

Theorem 7.6 (Liouville's Theorem for positive harmonic functions). A positive harmonic func-

tion on the complex plane   is constant on  . 

Proof of Theorem 7.6. From the conditions of Theorem 6.6 and Theorem 6.5 it follows that 
{ } ,n

f f g nℑ = ∈  ( ) ,0 1,g z az c a= + < < c∈ , is a  normal family of harmonic functions 

on  .  Since the harmonic function  f  on   is also continuous on  , from the part iii)  of Lemma 
3.3 and  Theorem 7.2  it follows that  f   is a constant function  on  .� 

Corollary 7.7. If a harmonic function  f in the complex plane   is bounded above or below then  

f is a constant function on   . 

Proof of Corollary 7.7.  From the condition that a function  f  is bounded above it follows that 
there exists a constant M>0 such that for every z∈  we have ( ) .f z M<  Now the function 
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( ) ( ) ,  ,z M f z zϕ = − ∈ is positive and harmonic on  . From Theorem 7.6 it follows that ϕ  is 

a constant on  ,  then it follows that f  is also constant on  .  
Similarly one can show that if f  is bounded below on  then it is a constant. � 

 
Theorem 7.8  ([10], Corollary 5.4.5, p. 186). A family H of harmonic functions in a domain O 

which omit one specific real valueα  is normal. 

Theorem 7.9. (Picard’s Theorem for harmonic functions). A nonconstant harmonic function on 

the complex plane  takes every value in the set of real numbers  . 

Proof of Theorem 7.9. Assume contrary, i.e., that there exists a nonconstant harmonic function f 
on the complex plane   which does not take all values in the set of real numbers  . Then there 
exists a∈  such that for every ( ) the inequality  z f z a∈ ≠  holds. Now, Theorem 7.8 yields 

that ( )( ) ( ){ }  f g z g Gℑ = ∈   is a normal family of harmonic functions on  . From part iii) 

of Lemma 3.3 and Theorem 7.2 follows that the function f is constant on  . We have reached a 
contradiction, therefore our Theorem is proved. � 

8. CONCLUSION 
In this article we show that using theory of normal family of functions and properties of fixed 

points of Moebius mappings one can prove classical Theorems of Liouville and little Picard The-
orem for holomorphic, meromorphic and harmonic functions in a simple way. Our proofs show 
why in some domains of  Riemann  sphere one can study properties of classes of functions (for 
example: class of bounded holomorphic functions). Applying our result some properties of ele-
ments and subgroups of Möbius group ( )G 

 can be easily verified. 

It would be of interest to further investigate if the approach given in this paper concerning the 
Montel normality of family of functions and properties of Möbius mappings is helpful in proving  
some results for holomorphic, meromorphic or harmonic functions and compare the results that 
are known for the Bloch principle (see [10, 13,15]). 

Also it would be of interest to try to apply some of our approach in the study of functions on 2
  

and functions with a domain in ,  2.n n >  
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