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Summary. The paper contains a further concretization of the variational approach to the theory 
of systems of conservation laws described in the earlier author’s work. This approach involves the 
development of methods for proving the existence and uniqueness theorems for generalized solutions 
that are based on the search for critical points of functionals in Banach spaces. A new definition of 
the generalized solution is proposed and its equivalence to the traditional one for the functions of 
a simple structure is proved. A new strategy for proving existence and uniqueness theorems is 
proposed. A number of illustrative theorems outlining the implementation of this strategy are 
proved. 

1 INTRODUCTION 
The paper is devoted to further assessment of new approach to the theory of systems of 

conservation laws, which was proposed in [1]. In order to give brief impression why any new 
approach in the field of conservation laws seems to be necessary, we give below several 
guidelines, these guidelines in no way pretend to reflect even a main topics in an extensive 
literature on the conservation laws theory. As is known, the state of the art in the field of 
quasilinear hyperbolic conservation laws systems is far from completeness. Still a sufficiently 
complete theory has been constructed only for a single conservation law by S.N.Kruzhkov in 
1970, [2]. In the case of systems, fairly general results have been obtained only for one spatial 
variable and, as a rule, under the assumption that the variation range of the unknown functions 
is small, see basic research [3] and later interpretation in, for example, [4]. In the framework 
of present paper we set aside much more complex issues connected with the multidimensional 
case and do not mention the corresponding researches and results. For one dimensional 
systems, in order to remove smallness constraints, the vanishing viscosity method was used. 
This method leads to excellent results in the case of one conservation law (Kruzhkov theory) 
and in the case of systems it leads to the notion of measure-valued solutions [5]. Further the 
general existence theorems for generalized solutions to systems of two hyperbolic 
conservation laws (one spatial variable) with the aid of compensated compactness principle 
were obtained. But then the vanishing viscosity method seems to become the stumbling block 
for the theory because of the lack of necessary apriori estimates when the number of equations 
equals or more than three. 

Moreover there are the facts that can be interpreted in the sense that the vanishing viscosity 
method, may be, is not very relevant to study the quasilinear systems of hyperbolic 
conservation laws. First, certain systems of two conservation laws, which are strictly 
hyperbolic, genuinely nonlinear have no classical solutions to Riemann problem and the 
application of viscosity method gives the emergence of delta-functions along the shock lines 
[6]. This seems inappropriate because there is no satisfactory interpretation how to deal with 
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delta-functions in nonlinear problems. The example of such systems considered in [6] is 
shown below 

( )2 0t x
u u v+ − =

(1) 
( )3 / 3 0t x

v u u+ − = , 

here ( ) ( ), , ,u u t x v v t x= =  and ( ),t x +∈ ×  , the subscripts t  and x  denote the 
corresponding partial derivatives. Moreover, the system (1) can be obtained from the system 
of isothermal gas dynamics via certain nonlinear transformation.  

In addition the recent paper by D.Serr [7] studies the so-called divergence-free positive 
symmetric tensors (DPT) and their connection with the fluid dynamics. The DPT is locally 
integrable tensor ( ) ( ) { }1, ,..., , , 1,..., ; 1,...,m ijT y y y y T T i n j m= = = = , which is positive 

definite or positive semi-definite and 
1 1

/ 0
m

ij j
j i n

DivT T y
= ≤ ≤

 
≡ ∂ ∂ = 
 
∑ . The divergence is 

understood in the weak sense. Many physical systems can be put in such a form including 
Euler and Navier-Stokes systems. The main result of [7] is the discovery of new apriori 
estimate for DPT, namely the finiteness of integral 

( )( ) ( ) ( )( ) ( )1/ 11/ 1
det det

mm
T y dy T y dy

−−
≤∫ ∫ . (2) 

In case of multidimensional gas dynamics which is considered as the one of most 
important examples of conservation laws systems the estimate (2) yields the following 
estimate 

1/

0 m

T
mdt Pdy constρ ≤∫ ∫



, (3) 

where ρ  is the density and P  is the pressure. The estimates like (3) rule out the possibility of 
delta-shocks as in [6], which are obtained via vanishing viscosity method. Moreover, as it is 
highlighted in [7] though the Navier-Stokes system has the form of divergent-free tensor it 
lacks positivity and thus in general cannot provide estimates like (3). So [7] asserts that 
vanishing viscosity method seems not suitable but the construction of a generalized solution 
should involve an approximation process which is consistent with the estimate (3), i.e. for the 
Euler equation the Boltzmann equation approximation or numerical schemes are proposed in 
[7]. 

Taking into account the fact that abovementioned methods are known for a long time but 
their application still seems does not lead to satisfactory constructions, in the present paper we 
discus another possibility (see [1]) of approaching the notion of generalized solutions, which 
is different from traditional approaches. Namely, we strive developing the notion of 
generalized solution, which is based on the existence of critical points of functionals in 
Banach space. As it can be seen below this task in fact requires much investigation and 
therefore here we only establish the general framework for this new approach. 

The paper is organized as follows. In section 2 we recall the very basic known definitions 
and facts on the quasilinear conservation laws theory and introduce variational interpretation 
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of these concepts in lines with [1]. Also we give certain new interpretation of some results 
from [1] that are relevant to the topic of the present paper. In section 3 a new strategy for 
proving existence and uniqueness theorems is proposed. A number of illustrative theorems 
outlining the implementation of this strategy are proved though these theorems at the moment 
are still far from the proof of any existence and uniqueness theorem. Finally in section 4 
several concluding remarks are made. 

2 A VARIATIONAL VIEW ON THE SYSTEMS OF CONSERVATION LAWS 
Consider the Cauchy problem for the system of quasilinear conservation laws, which is 

assumed to be strictly hyperbolic 

( ) ( ) ( )00 , 0,t x
x x+ = =U F U U U , (4) 

where ( ) ( ) ( ) [ ]{ }, , : , 0,Tt x t x t x T∈Π ≡ ∈ × , ( ) ( ) ( )( )1, , ,..., ,nt x u t x u t x=U  and 

( )1,..., nf fF =  is a sufficiently smooth (at least of class ( )1 nC  ) vector function of variables 

( )1,..., nu u . The solutions to system (4) that take given initial values are understood in the 
generalized sense with respect to the following conventional definition. 

DEFINITION 1. Let ( )0
nx ∈U be a bounded measurable function. A bounded and 

measurable function ( ),t xU  in TΠ  is called a generalized solution to the problem (4) if, for 

every test function [ )( )0,C Tϕ ∞∈ ×  such that ( )0Cϕ ∞∈   for fixed [ ]0,t T∈  and 0ϕ ≡  for 

1 1,T t T T T≤ ≤ < , the following integral identity holds: 

( ) ( )0 0, 0
T

t x dxdt x dxϕ ϕ ϕ
Π

+ + =  ∫∫ ∫U F U U


. (5) 

It is well known that the relations (5) do not guarantee the uniqueness of a solution to the 
problem (4). Thus an additional conditions are required for the function ( ),t xU . In the 
modern literature it is believed that such conditions should have the form of entropy 
inequalities (and this is true at least for the unknown functions with apriori small variation 
range). 

DEFINITION 2. Let us call convex positive function ( ) ( )1 nCη ∈ U  an entropy for the 
system in (4) if for the classical solutions an additional conservation law holds 

( )( ) ( )( )( ), , 0
t x

t q tη + =U x U x , (6) 

providing certain smooth enough flow function ( )1,..., nq u u . 

DEFINITION 3. The function ( ),t xU , which is the generalized solution to (4) in the sense 
of Definition 1, will be called an entropy solution to the problem (4) if for every entropy 
( )η U  from the Definition 2 and test function ( ), 0t xϕ ≥  from the Definition 1 the following 

inequality holds 
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( ) ( ) ( ) ( )0 0, 0
T

t xq dxdt x dxη ϕ ϕ η ϕ
Π

+ + ≥  ∫∫ ∫U U U


. (7) 

In the present paper we will not touch the questions of uniqueness, certain interpretation of 
the notion of entropy solution from the variational point of view (see just below) can be found 
in [1]. Here we are interested in the non-conventional procedure of seeking any weak solution 
to system (4). 

The main idea of variational approach that has been developed to a certain degree in [1] is 
as follows. Let us consider instead of function ( ),t xU  the functional 

( ) [ ]( )1: 0, , nC Tχ τ ∈ → J ,

( ) ( ) ( )( ) ( ) ( )( )
0

, ; , , ,
T

dχ τ χ τ χ τ χ τ τ χ τ≡ ≡ −∫   
J L U L U U F U . (8) 

It is shown in [1] that under certain regularity restrictions to ( ),t xU  the condition = 0δ J  

along some trajectory ( )extrx tχ=  implies that ( ),t xU  satisfies (4) in classical sense along 

( )extrx tχ=  where ( ),t xU  is smooth and at the points of intersection of ( )extrx tχ=  with 

discontinuities of ( ),t xU  the Hugoniot relations hold. This means that having the aim of 
seeking the generalized solutions to (4) it could be useful to consider instead of functions 
( ),t xU  the functionals J , and study the extremal properties of such functionals. 

In order to further assess this idea we assume that ( ),t xU  belongs to the class K  of 
piecewise continuously differential functions with finite number of discontinuities. Such a 
class was used by O.Oleinik in [8] and it is useful for the initial stages of construction of 
theories connected with the systems of conservation laws (see also [1]). More precisely in [1], 
in particular, the following theorem was proved.  

 THEOREM 4. Let ( ),t x K∈U , and suppose that there exists a trajectory 

( ) [ ]( )1 0, ,extr t C Tχ ∈   such that = 0δ J  for this trajectory. Then, at the points ( )extrx tχ=  

where ( ),t xU  is smooth, equations (4) hold in the classical sense, and at the points of 

intersection of ( )extr tχ  with the discontinuity lines of the function ( ),t xU , the Hugoniot 
relations 

( ) ( ) ( )ds
dt

+ − + −⋅ − = −U U F U F U (9) 

are satisfied; here ( )x s t=  is the discontinuity curve and ( )( ), 0t s t± ≡ ±U U . Moreover, the

expression for 2δ J  on the trajectory ( )extrx tχ=  contains only terms depending on ( )2δχ (i.e. 
the quadratic form does not contain terms with δχ ). 

The Theorem 4 shows that the system (4) is ‘fulfilled in generalized sense’ along the 
extremal trajectories of J  and locally in ( ),t x  the extremum in general is either maximum or 
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minimum with respect to C-metrics. This means that the functional J , which corresponds to 
the generalized solution of (4), is the functional, for which any trajectory is extremal. Thus we 
can consider the set of all functionals of type (8) and try to find the one or ones with the 
property just described. This view constitutes a variational approach and potential strategy for 
finding the generalized solution to (4). 

In the present paper we extend such a view as follows. Introduce the function 
( ) ( ), ,t x t p dp≡ ∫V U  and consider the functional ( ) [ ]( ): 0, , nC Tχ τ ∈ → I  instead of J

( ) ( )( ) ( )( ) ( )( )
0 0

, , , .
T T

d dτ χ τ τ τ χ τ τ χ τ τ
τ

∂ ≡ ≡ + ∂ ∫ ∫ 

VI M U F U  (10) 

With the provisions of functional (10) we can notice that it, in general, acts on the space of 
only continuous functions ( )χ τ . 

THEOREM 5. Let ( ),t x K∈U , and suppose that there exists a trajectory 

( ) [ ]( )0, ,extr t C Tχ ∈  , ( ) ( )0 ,extr extry T Xχ χ= =  such that δ I  is defined at ( )extr tχ  (i.e., in 

particular, ( ) [ ]( )1 0, ,extr t C Tχ ∈  ) and = 0δ I  for this trajectory. Then, at the points 

( )extrx tχ=  where ( ),t xU  is smooth, equations (4) hold in the classical sense, and at the 

points of intersection of ( )extr tχ  with the discontinuity lines of the function ( ),t xU , the 
Hugoniot relations (9) are satisfied. Moreover, the property = 0δ I  means that the function 

( )M U  is continuous along discontinuities of ( ),t xU  and value of 2δ I  changes by the jump 

of ( )τM U .
PROOF. Because of the structure of class K for the proof of the theorem 5 it is enough to 

consider the situation when function ( ),t xU  has the single discontinuity line 

( ) [ ]( )1 0,x s t C T= ∈  and there exists only one point of intersection of ( )x s t=  and

( )extrx tχ= . Let us note that in this case, as it is shown below, δ I  is defined if ( ) ( )extr t s tχ ≠   

at the intersection point of ( )x s t=  and ( )extrx tχ= . Further the subscript ‘extr’ will be 
omitted for notations’ simplicity. We have 

( ) ( ) ( )( )
0 00 0

, ,
T T

h

d dd h d
d dχ α

α α

δ τ τ χ τ α τ τ
α α τ+

= =

∂ ≡ + + ∂ ∫ ∫ 

VI = M U F U (11) 

and 

( ) ( ) ( )( )
2 2

2
2 2

0 00 0

, ,
T T

h

d dd h d
d dχ α

α α

δ τ τ χ τ α τ τ
α α τ+

= =

∂ ≡ + + ∂ ∫ ∫ 

VI = M U F U  (12) 

where ( ) ( )0 0h h T= = . 

Suppose that 0τ  is such moment of time that ( ) ( )0 0sχ τ τ=  and consequently ( )*τ α  is the 

time moment where ( ) ( ) ( )* * *h sχ τ α τ τ+ = . Thus as ( )*0 τ τ α≤ ≤  the function 
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( ) ( )( ),τ χ τM U  is smooth and will be denoted as ( )−M U ; at ( )*τ τ α=  the function 

( )M U  has the discontinuity; and as ( )* Tτ α τ≤ ≤  the function ( ) ( )( ),τ χ τM U  is also

sooth and will be denoted by ( )+M U . Now we split the integrals in (11), (12) by the

integrals with respect to the segments ( ) ( )* *0, , ,Tτ α τ α       , perform the differentiation as
in (11), (12) and obtain for δ I

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

0

0

0

0

*

, ,

0 ,

T

x x
h d h d

τ

τ

α
τ τ

δ τ χ τ τ τ τ χ τ τ τ

τ

− +

− +

=

+ +

 − 

∫ ∫I = M U M U

M U M U
(13) 

and for 2δ I

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

0

0

0 0

0

2 2 2

0

* *
0

2*
0

, ,

0 2 0

0 .

T

xx xx

x x

x x

h d h d

h

τ

τ

αα α
τ τ τ τ

α τ τ τ τ

δ τ χ τ τ τ τ χ τ τ τ

τ τ τ

τ χ τ

− +

− + − +

= =

− + − +

=

+ +

  − + − +   

 − + − 

∫ ∫



I = M U M U

M U M U M U M U

M U M U M U M U

 (14) 

It is also easy to check that ( )
0

* 0 h
sα

τ τ

τ
χ =

=
− 

and ( ) ( ) ( ) ( )

0

2* *
* 0 2 0

0
s h

s
α α

αα

τ τ

χ τ τ
τ

χ
=

− +
=

−



 



. 

From (13) it follows that if = 0δ I  then 

( ) ( ) ( )
0

0, 0
x τ τ

± − +

=
 = − = M U M U M U  (15) 

because the ( )h τ  is arbitrary. Let us note that if ( ),t x K∈U  then ( ),t xV  is continuous and 

( )( ) ( )( ), ,s sτ τ τ τ− +=V V  for any [ ]0,Tτ ∈  where ( )x s τ=  exists. Thus

( ) ( )x xs sτ τ
− + + − + −− = − = − V V V V U U . Therefore from (15) we obtain 

( ) ( )( ) ( )( )

( ) ( )

( )
00

0

0 , , ,

0

,

xx
x

=

+

s +

τ

τ τ τ ττ τ

τ τ

τ χ τ τ χ τ
τ

±
± ± ± ±

− + − + − +

==

+ − − +

=

 ∂
= + = + ∂ 

   = − = − − =  

 − − 

 

 


 

VM U F U U F U

M U M U V V F U F U

U U F U F U

(16) 

and we’ve got the assertion of Theorem 5 concerning the = 0δ I  property. 
Finally, substituting expressions (15) into the formula (16) for 2δ I  it can be seen that if 
= 0δ I  then 
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( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

0

0

0

2 2 2

0

2*

, ,

0 .

T

xx xx
h d h d

τ

τ

α τ τ τ τ

δ τ χ τ τ τ τ χ τ τ τ

τ

− +

− +

=

+ +

 − 

∫ ∫I = M U M U

M U M U
(17) 

Thus the theorem 5 is proved. 

It is easy to check that the following relation is true ( ) ( ), 0,
yX

+ = T p dp p dp−∫ ∫I J U U .

Thus the results of theorem 5 clarifies the variational properties of J  and demonstrates the 
equivalence of introducing J  or I  for the functions ( ),t x K∈U . Further, it is possible to lay 
into the basis of the definition of generalized solution the variational properties of functional 
J  (but also use I  for technical reasons), i.e the function ( ),t xU  belonging to one or the 

other functional space will be the generalized solution if any 1C  trajectory for corresponding 
J  is its critical point. In the next section this approach will be put in more rigorous frame. 

3 A NEW STRATEGY FOR FINDING THE GENERALIZED SOLUTION 
Let us start with the variational definition of generalized solution to the system of 

conservation laws (4). We remind that in the present paper we do not touch the question of 
satisfaction with the initial conditions and the question of uniqueness. 

Consider the vector function ( ),t x B∈U , where B  is some functional Banach space (for 

example, 1 1,, , ,locBV L L L∞ , etc.). Also consider the set Χ  of all trajectories 

( ) [ ]( )1 0, ,t C Tχ ∈  . Let Γ ⊂ ΧU be the set of trajectories (depending on considered 

function U ) where the integral J , see (8), is well defined. Denote by ∆ ⊂ ΓU U  the set of 
trajectories where δ J  exists. 

DEFINITION 6. Consider the vector function ( ),t x B∈U , where B  is some functional 

Banach space. Consider the functional ( ) [ ]( )1: 0, , nC Tχ τ ∈ ∩Γ → UJ  with respect to 

expression (8). The function ( ),t xU  will be called the generalized solution to conservation 

laws system (4) if any trajectory ( ) [ ]( )1 0, ,C Tχ τ ∈ ∩Γ ∩∆ U U  is critical for J  (i.e.
= 0δ J ). 

Let us first show that there are sufficiently many trajectories where J  is defined for locally 
integrable function ( ),t xU . 

THEOREM 7. Consider any diffeomorphism of + ×   having the form: 
( ), ,t t x t xξ′ ′= = , 0xξ ≠ . Suppose ( ) ( )1,, loct x L +∈ × U  with respect to Lebesgue

measure. Then for a.e. x  the function ( )( ), ,t t xξU  is locally integrable with respect to t  and

the functional J  is defined provided the following estimate holds ( ) , n≤ ∈F U U U . 
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PROOF. Let us take the diffeomorphism ( ) ( ), ,t x t x′ ′ =ψ  in the form pointed out in the 

conditions of theorem 7. For any measurable set A  the set ( )Aψ  is also measurable and the 
change of variables formula is true 

( )
( )

( ) ( )
( )

,
, , .

,A A

t x
t x dt dx t x dtdx

t x
′ ′∂

′ ′ ′ ′ =
∂∫∫ ∫∫ U U

ψ

ψ  (18) 

At this, the function under the right hand side integral in (18) is integrable. By the Fubini 
theorem for a.e. x  the function ( )( ), , xt t xξ ξU  is locally integrable with respect to t  and so 

does the function ( )( ), ,t t xξU  because 0xξ ≠ . Taking into account the estimate on ( )F U
from the conditions of theorem 7 we get the definiteness of functional J . The theorem is 
proved.   

The next theorem demonstrates another way of investigation the relevance of definition 6. 
THEOREM 8. Suppose ( ) ( ),t x BV +∈ × U  and is a generalized solution of system (4)

in the sense of definition 6. Suppose there exists the following set of trajectories 
( ) ( ) ( ) ( )1 2: , , 1 ,x t t tξ α ε αχ α χ εΩ = ≡ + −U , [ ]0,1α ∈ , ( ) ( ) [ ]( )1

1 2 , 0, ,t t C Tχ χ ε< ∈   and 

( ) ( )2 1t tχ χ ε= +  for [ ] [ ]1 20, ,t Tτ τ∈ ∪ , 2 1 0τ τ> > ; 0ε >  is small. At this let J  and δ J
are defined for the trajectories from ΩU  and = 0δ J  for any trajectory. Then 

( )( ) 0t x
E

dtdx+ =∫∫ U F U  in the sense of measures, ( ) ( )1 2 1 2: , ,0E t t x tτ τ χ χ≤ ≤ ≤ ≤  . 

PROOF. Consider J  along the trajectories from ΩU  as the function of α  with fixed ε . 
Thus we have 

( ) ( )( ) ( ) ( )( )
0

, , , , , , , ,
T

dτε
α τ ξ τ α ε ξ τ α ε τ ξ τ α ε τ = − ∫ J U F U . (19) 

Further, according to the conditions of the theorem δ J  exists for trajectories from ΩU  and 
therefore  ( )ε αJ  is differentiable for any small 0ε > . By mean value theorem 

( ) ( ) ( )1 0 , 0 1ε ε εδ α α− = < <J J J . But δ J  vanishes for all trajectories from ΩU , hence 

( ) ( )1 0ε ε=J J  for any small 0ε > . Passing to the limit as 0ε →  we immediately have from 
(19) 

( ) ( ), , 0
E

t x dx t x dt
∂

− =  ∫ U F U . (20) 

For BV functions Green formula is valid and the assertion of the theorem follows from (20), 
see also [9]. The theorem is proved. 

REMARK 9. In case when there exist sufficiently many domains E  the solution in a sense 
of definition 6 will be also a weak solution in the sense of definition 1. 

Definition 6 in fact assumes the strategy for proving the existence theorems for 
conservation laws, which seems different from the method of apriori estimates. Let us 
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associate with any function ( ),t xU  from certain Banach functional space the functional J  
with respect to formula (8). Consider the set of such functionals. According to definition 6 in 
order to find the solution to system (4) we need to find J  with a lot of critical points. Thus 
the strategy is as follows: let us start from any function ( ),t xU  such that corresponding 
functional J  has some critical trajectory, than it is necessary to find the gradual perturbation 
of ( ),t xU  (and hence of J ) in order to move to the situation with more critical points of J . 
It can be formulated as the following problem. 

PROBLEM: To find the sequential deformation ( ),t xδU  of the function ( ),t xU  from the 
suitable Banach space B  in order that the corresponding functional J  has more and more 
critical points. 

At present there is no any solution of the posed problem. One possible way to achieve this 
could be using the various forms of mountain pass theorem, which states the existence of 
saddle critical points, see [10], for example. At this important requirement is the fulfillment of 
one or another form of so called Palais-Smale condition. Palais-Smale condition in its form 
from [10] says that if ( )E u  is some continuously differentiable functional on some Banach 

space B  and there exists such sequence mu B∈  that ( ) ,mE u const m≤ ∀ , while 

( ) * 0m B
E uδ →  as m →∞ , then { }mu  has strongly convergent subsequence. 
In order to demonstrate the ways to prove assertions similar to this condition we will prove 

easier result for functional I  (10). First, consider the function ( )( ),t xM U , see (10), and 

denote by ( ) ( ),
t

t xM U  the partial derivative of this function in its areas of smoothness. 

THEOREM 10. Suppose ( ),t x K∈U  and suppose the functional I  is coercive on some 

subset [ ]( )0, ,A C T∈  . Also we assume that ( )t
M U  is bounded while x  is bounded. Then

the set of critical points { } , 1, 2...i A iχ ∈ =  of I  such that ( )i constχ ≤I  for any i  has the 

weakly convergent subsequence in the space [ ]( )0, ,C T   and ( ) ( )( ), lim
ni

t tχM U  is 

continuous. 
PROOF. The estimate ( )i constχ ≤I  and the coerciveness of I  lead to the estimate 

i C
constχ ≤  uniformly with respect to i . Then some subsequence 

ni
χ  converges weakly in 

C , i.e. everywhere to some function χ . From (13) the criticality of 
ni

χ  means that 

( ) ( ) ( )( ),
nn

ii
τ χ τ≡M U M U  is continuous and ( ) ( )( ), 0

ni χ
τ χ τ =M U  where ( )

ni
M U  is

smooth. In the domains of smoothness  

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ), , ,
n n n nn

i i i ii τ τχ
τ χ τ τ χ τ χ τ τ χ τ= =

M U M U + M U M U . (21) 

Hence ( )
ni

M U  is uniformly bounded in the smoothness areas because of our assumptions

and boundedness of 
ni

χ . Passing to another subsequence if necessary and keeping the same 
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notation ni  we conclude that ( )
ni

M U  converge to some continuous function ( )τM . Because

of everywhere convergence of 
ni

χ  we have ( ) ( )( ) ( ),τ χ τ τ=M U M . The theorem is proved.

4 CONCLUSIONS 
We present the consistent variational point of view to the theory of 1D systems of 

conservation laws, which seems to be new in this area. The approach implies the alternative 
methods for the proof of existence and uniqueness theorems. Such methods are based on the 
methods of seeking critical points of nonlinear functionals in Banach spaces and differ from 
conventional methods of apriori estimates or vanishing viscosity. Here we describe only the 
framework, main problems of the theory remain open. The established theorems only 
illustrate the validity of the approach. The author expects the development of the highlighted 
theory in the forthcoming publications. 
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