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Summary. In this paper, we study the notion of ¢-biflatness, ¢-biprojectivity, approximate
biprojectivity and Johnson pseudo-contractibility for a new class of Banach algebras. Using
this class of Banach algebras, we give some examples which are approximately biprojective.
Also some Banach algebras are given among matrix algebras which are never Johnson
pseudo-contractible.

1 INTRODUCTION

Given a Banach algebra A, Kamyabi-Gol et al. in [4] defined a new product on A which is
denoted by *. In fact a x b = aeb, for each a,b € A where e is an element of the closed unit

ball BY of A. A Banach algebra A equipped with = as its product is denoted by 4,. They
studied some properties like amenability and Arens regularity of A,. In [6] some homological
properties of A, like biflatness, biprojectivity and ¢p —amenability discussed.

New notions of ¢p —amenability and approximate notions of homological Banach theory
introduced and studied for Banach algebras see[14], [15] and [5]. In fact a Banach algebra a
Banach algebra A is called approximate ¢ —contractible if there exists a net (m,) in A such
that am, — ¢(a)m, — 0. and ¢p(m,) = 1, for every a € A. where ¢ is a multiplicative
linear functional on A. For more information see [2]. Also a Banach algebra A is called
approximate biprojective if there exists a net of bounded linear maps from A into A ®,, 4, say

(Pa) aer» SUch that

1. a- pa(b) — palab) 20,

2. pa(ba) — pa(b) a0,

3. myopu(a)—a—0,

for every a,b € A . In [1] the structure of approximate biprojective Banach algebras and its
nilpotent ideals and also the relation with other notions of amenability are discussed.

We present some standard notations and definitions that we shall need in this paper. Let A
be a Banach algebra. Throughout this work, the character space of A is denoted by A(A), that

2010 Mathematics Subject Classification: 46M10, 46H20, 46HO05.

Key words and Phrases: Approximate ¢ —contratiblity, Approximate biprojectivity, ¢ —biflatness,
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is, all non-zero multiplicative linear functionals on A. For each ¢ € A(A) there exists a unique
extension ¢ to A** which is defined ¢(F) = F(¢). It is easy to see that ¢ € A(A™). The
projective tensor product A ®,, A is a Banach A-bimodule via the following actions

a-(bQ®c)=abRc.(bQc)-a=bQca (a.b.c €A).

The product morphism m4: A ®, A - Alis given by my(a @ b) = ab, for every a.b € A.
Let A and B be Banach algebras. We denote by ¢ @ 1 a map defined by ¢ @ Y(a ® b) =
¢(a)y(b) foralla e Aand b € B. Itiseasy to see that ¢ @ Y € A(A ®, B).

Let X and Y be Banach A —bimodules. The map T: X — Y is called A —bimodule morphism,
if
T(a-x)=a-T(x). T(x-a)=T(x)-a. (a €A xeX).
Also a net of (T,) of maps from X into Y is called approximate A —bimodule morphism, if
Ty(a-x)—a-Te(x) 2 0. Ty(x-a)—Tu(x)-a—0. (a€A.x €X).

The content of the paper is as follows. In section 2 we study ¢ —homological properties of
A, like ¢ —biflatness and ¢ —biprojectivity. Approximate biprojectivity and Johnson pseudo-
contractibility are two important notions of Banach homology theory, which we discuss for
A, in section 3. We give some examples of matrix algebras to illustrate the paper.

2. ¢ -HOMOLOGICAL PROPERTIES OF CERTAIN BANACH ALGEBRAS

This section is devoted to the concepts of Banach homology related to a character ¢.

Proposition 2.1 [4, Proposition 2.3] Let A be a Banach algebra and e € B_10 . Then A, is
unital if and only if A is unital and e is invertible.

Proposition 2.2 [4, Proposition 2.4] Let A be a Banach algebra and e € B .Then the
followings hold:

1. If ¢ is a multiplicative linear functional on A, then ¢(e)¢ is a multiplicative linear
functional on A,.

2. If A, is unital and y is a multiplicative linear functional on 4., then ¢(a) = Y (e ta)
is a multiplicative linear functional on A.

Proposition 2.3 [6, Proposition 2.3] Let A be a Banach algebra and e € B_lo. If A, is unital
then (4.).-z = A, (isometrically isomorphism ).

Proposition 2.4 Suppose that A is a Banach algebra and also suppose that e € B and
¢ € A(A). Then the followings hold:

1. If A is approximate ¢ —contractible and ¢(e) # 0, then A, is approximately -
contractible, where ¥ = ¢(e)¢.

2. If A, is unital and approximate i —contractible, then A is approximate ¢-contractible,
where ¢(a) = (e 1a) for each a € A.

Proof. Suppose that A is approximately ¢p —contractible. So there is a net (im,) in A such that
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—¢p(a)my > 0. Pp(my) = 1. (a € A).

Define n, = d:n"‘) = ¢(ae) = P(ea), we have

a*na’_lp(a)na :aena lp(a)na

“e ¢()

mg

e PG TG g T @A
Also

V() = W 2e) = p(me) = 1.

It follows that A, is approximate ¢ —contractible.
Suppose that ¢(a) = yY(e~1a) and also suppose that A, is unital and approximately left
Y —contractible. It is easy to see that Y (a) = ¢(ea). Let (m,) be anetin A, such that

a*mg—Y(a)ym, - 0. Pp(my) = 1. (a € A,).

Since
a*mg—yP(a)ym, =aemy,—P(a)ym,
= aem, — ¢p(ea)m,
= aem, — p(e)p(a)ymy,
= aem, — p(a)p(e)m,
= aem, — ¢p(ae)my,
we have

axmy, —YP(a)ym, = aemy, — p(ae)m, - 0
for each a € A. Replacing a with ae~! we have am, — ¢(a)m, — 0. Regarding
1=9(mgy) = p(emg) = p(e)Pp(my).
we may suppose that ¢(m,) # 0, for each a. Now define n, =
Also

—¢ang =ag

(m )
It finishes the proof.
Example 2.5 In this example we show that there exists a Banach algebra A, which is not

ai1 A1z dg3
approximate w-contractible. Let A = {(0 Az a23> la;; € C} and suppose that e =
0 0 ass
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[ N B N

\l. Clearly A with matrix operations and #1-norm is a Banach algebra. We know
1

6

o o olr
O lRr IR

that e is invertible and by Proposition 2.1, A, is unital. Define ¢p: A — C by

ai1 Q12 Qg3
(,‘b((O Az azs)) = as3.
0 0 ass
Clearly ¢ is a character(multiplicative linear functional) and ¢(e) # 0. Suppose
conversely that A, is approximate i —contractible. By previous Proposition(2), A becomes
approximate ¢ —contractible. On the other hand by the same arguments as in the proof of [7,
Theorem 5.1] A is not approximate ¢ —contractible, which is a contradiction.
Let A be a Banach algebra and ¢ € A(A). A is called ¢-biprojective, if there exists a
bounded A-bimodule morphism p: A - A @, A suchthat ¢ oy o p = ¢b. Also A is called ¢-
biflat if there exists a bounded A-bimodule morphism p: A — (4 ®, A)** such that Pomy o

p = ¢. For more information about ¢ —biflatness and ¢ —biprojectivity, the reader refers to
[8] and [9].

Theorem 2.6 Let A be a Banach algebra and ¢p € A(A). Suppose that e € B_l0 and ¢(e) # 0.
If A is ¢p-biprojective, then A, is = ¢(e)p-biprojective.

Proof. Since A is ¢-biprojective, there exists a bounded A —bimodule morphism p: A —
A ®p A such that ¢ omy o p = ¢. Define p = %p. We show that § is a bounded A,-
bimodule morphism. To see this, consider

5 =1 =1 = qe——
plaxb) = so=p(axb) = zplaeh) = aessp(b)
p(b)

= a * p(b). (a.b € Ap).

- %@

Also
5 -1 -1 -1
plax*b) = 7 p(a=b) s p(aeb) 7@ p(a)be

1
=s@oP@xb

= p(a) * b. (a.b € Ap).

On the other hand, since
Yoy, op=g(e)pomyonp.
we have

Pomy,op(a)=d(e)pomyop(a)=d(e)p(a) =¥(a). (a€A,).
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So A, is y —biprojective.

Using the similar arguments as in the proof of the previous theorem, we have the following
corollary:
Corollary 2.7 Let A be a Banach algebra and ¢ € 4(A). Suppose that e € BY and ¢ (e) # 0.
If A is ¢-biflat, then A, is Y = ¢(e)p-biflat.

Let A be a Banach algebra and ¢ € A(A). A is called ¢ —amenable if there exists a bounded
net (mg) in A such that am, — ¢(a)m, — 0 and ¢(m,) = 1, for every a € A. see [5].
Corollary 2.8 Let A be a Banach algebra and ¢ € 4(A). Suppose that e € B and ¢ (e) # 0.
If A is ¢-biflat and A has a left approximate identity, then A, is approximate ¥ = ¢(e)¢p-
contractible.

Proof. Since A is ¢-biflat and A has a left approximate identity, by similar arguments as in the
proof of [7, Theorem 2.2] A is ¢-amenable. It is easy to see that ¢p-amenability of A implies
that A is approximate ¢ —contractible. Applying Proposition 2.4, A, becomes approximate
1 —contractible.

Let A b a Banach algebra and ¢ € A(A). Then A is called approximate left ¢-biprojective if
there exists a net of bounded linear maps from A into A ®,, A, say (pg)qer, SUch that

1. pe(ab) — p(@)pa(b) 20,

2. pa(ba) — pa(b) a0,

3. myopu(a)—a—0,

forevery a,b € A, see [12].

Theorem 2.9 Let A be a Banach algebra and ¢ € A(A). Suppose that e € B_l0 and ¢(e) # 0.
If A is approximate left ¢-biprojective, then A, is approximate left Y = ¢(e)¢p-biprojective.

Proof. Since A is approximate left ¢-biprojective, there exists a net of bounded linear maps
(pg) from A into A ®,, A such that

pa(ab) = d(a)pa(b) = 0, pg(ab) —pq(a)-b—0, ¢pomyep(a)—¢(a)—0.

Define p, = $pa. We show that there exists a net of bounded linear maps (p,) from A, in

to A, ®, A, such that

Pa(axb) —P(a)pa(b) » 0. pglaxb) —pg(a)*b—0. Ppoemyep(a)—(a) - 0.
To see this, consider

Pa(a*b) —P(a)pa(b) = pa(aeb) —p(a)p(e)pa(b)

1
o) (po(aeb) — p(a)p(e)pq (b))

1
= 5ay (Pu(aeh) = $(ae)pa(b) + B(ae)pu(b) = (@ B(E)pa(h))

-0
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Also

— pg(aeb) ——— pg(a)eb = 0

Palab) = pg(a)*b = 2= @)

On the other hand, since

Yo Ty, ° Pog = p(e)p oMy o pq.
we have for (a € A,

Yomy, ope(a) —Pa) = p(e)p omy o pa(a) — p(e)p(a) » p(e)p(a) — p(e)p(a) = 0.

So A, is approximate left i —biprojective.

—A —B
Remark 2.10 Let A and B be Banach algebras and e, € B} and ez € By . Then there exist
two sequences (x,) and (y,) in the unit ball A and the unit ball B such that x,, - e, and
Yn = ep. respectively. Since

”xn ®:Vn — €y ®eB|| < ||xn®yn — €y ®yn|| + ”eA ®yn_eA ®eB|| - 0.

—AQyB
we have e, ® eg € By """ Define T:Ap, ®p B, > AQp Be,gey DY T(a®Db)=a®b

forevery a € A and b € B. It is easy to see that T is an isometric algebra isomorphism. Also
T is abounded A ®,, B, ,g., —bimodule morphism.

—A —B
Proposition 2.11 Let A and B be Banach algebras and e, € BY and egz € BY . Suppose that
¢4 € A(A) and ¢ € A(B) which ¢p4(es) # 0 and ¢pp(eg) # 0. 1f A and B are
¢4 —biprojective and ¢ —biprojective, respectively, then A ®,, B, ,ge,, IS Pa(es)Pa &
¢ (eg)pp —biprojective.
Proof. Since A and B are ¢, —biprojective and ¢y —biprojective, respectively, then by
Theorem 2.9, A, and B, are ¢,(es)dp4 —biprojective and ¢g(eg)pp —biprojective,
respectively. So there exist a 4,, —bimodule morphism py: 4., > A., ®, A., and a B, -
bimodule morphism p;:B,, = B., ®p Be, such that ¢,(es)Pa o my o po = Palea)pa and
$p(ep)pp o g ° p; = Pp(ep)Ps.

Define 0: (4., ®p Ae,) ®p (Bey ®p Beg) = (Ae, ®p Bey) Qp (A, Q@ Be) by
(a1 ® a;) ® (by ® by) = (a; ® b1) ® (a; & by).

where a;.a, € A and b,.b, € B. Clearly 6 is an isometric algebra isomorphism. Set p =
(TQ®T)o86o(py® py)oT 1, where T is the map defined as in Remark 2.10. We know that
p is a bounded linear map from A @, B.,ge; iN0 (A ®p Be,0e5) ®p (A Qp Be,@ep)-

Consider

10
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TA®pBe ,@ep © f(a; ® a, ® by ® by) = TA®pBe ,@ep (a; ® b; Q a; ® by)
= T4, (a1 ®az) ® L3P (b1 & by).

then clearly one can show that TAQpBe @ep ° 0 = Ta,, X U Hence,

TA®pBe ,@ep © 0(po(a) ® p1(b)) = Ta,, ° po(a) ® Ty ° p1(b)
and it is easy to see that
Palea)Pa @ Pp(ep)Pp © Ta®,5 ° 0(Po ® p1)(a @ b) = pa(ea)pa @ Pp(ep)Pp(a @ b).

the proof is complete.

3 APPROXIMATE HOMOLOGICAL PROPERTIES OF CERTAIN BANACH
ALGEBRAS

In this section we investigate approximate biprojectivity and Johnson pseudo-
contractibility of A,.

Theorem 3.1 Suppose that A is a Banach algebra and also suppose that e € BY. Then the
followings hold:

1. If A is approximately biprojective and A, is unital then A, is approximately
biprojective.

2. If A, is unital and approximately biprojective, then A is approximately biprojective.

Proof. To show (1), suppose that A is approximately biprojective and A, is unital. It follows
that there is an approximately A —bimodule morphism (p,) from A into A ®, A such that
Ty © pe(a) — a — 0 for each a € A. Note that
pa(a*b) —axpy(b) = po(aeb) —ax* pq(b)
= po(aeb) — aepq(b) + aepy(b) — a * pe(b) = 0.
and
pa(a*b) —pg(a) *b = py(aeb) —py(a)*b
= po(aeb) — py(a)eb + pg(a)eb — pg(a) * b — 0,
for each a € A,. It implies that (p,) from A, into A, ®,, A is an approximately A.-bimodule
morphism. Define T: A4, ®, A, > A ®, A. by T(a ® b) = ae”! ® b. Note that using
Proposition 2.1, the definition of T makes sense. It is easy to see that
Tla*(c®d)=a*xT(c®d). T((c®d)*a)=T(cQXd)*a. (a.c.d € A).
Set p, =T ° p,. Using direct calculations we can see that
Tp, © Pog = Ty © Pg
It follows that s, 0 p, —a = m4 0 p, —a — 0. (a € A,).
Thus A, is approximately biprojective.

11
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To show (2), suppose that A, is unital and approximately biprojective. By Proposition 2.3,
we know that A = (4.).-2. Now applying (1) it is easy to see that A is approximately
biprojective.

A Banach algebra A is called biprojective if there exists a bounded A —bimodule morphism
p:A—>AQ,Asuchthat, o p(a) = a foreach a € A. see [13].

Example 3.2 In this example we give a Banach algbra A, which is approximately

ai1 Q12 Q413
biprojective. Let A = {{ @21 @22 @23 ||a;; € C}. With the matrix operations and £*-norm,
az1 Qzz dzs

11 0\
4 4
A becomes a Banach algebra. Suppose thate = | 0 % 0 [. Clearly e is invertible and 4 is
1
0 0 -

4
unital. So by Proposition 2.1, A, is unital. It is well-known that A is biprojective, see [13]. So
A is approximately biprojective. Applying previous theorem A, becomes approximately
biprojective.

Definition 3.3 We say that a Banach algebra A has approximate (F)-property(or A is AFP) if
there is an approximate A —bimodule morphsim (p,) from A into (A ®, A)** such that
m," o py(a) —a — 0.for each a € A.

For the motivation of this definition see [3].

Proposition 3.4 If A is AFP and A, is unital, then A, is approximately biprojective.

Proof. Since A is AFP, there exists an approximate A —bimodule morphsim (p,) from A into
(A ®, A)™ such that my* o p,(a) —a — 0, for each a € A. It is easy to see that (p,) is an
approximate A, —bimodule morphsim from 4, into (A, ®, 4.)™ such that my’ o p,(a) —
a—0.foreach a€A,. Let T:4, ®, A, > A, ®, A, be the same map as in the proof of
Theorem 3.1. Clearly T is A,-module morphism, so is T**. Similar to the proof of Theorem
3.1, for the net (T*™ op,) is an approximate A, —bimodule morphism from A, into
(A, ®p, Ap)™" such that

Ty o T opy(a) —a=my opa(a) —a—0. (a€A).

We denote the identity of A, with a, and define m, = p,(a,). Clearly (m,) is a net in
(Ae ®p A.)™ Which satisfies

a*xmg—mg*a—->0. my(my)*a—a—0. (a€A,).

Take € > 0 and arbitrary finite subsets F € A,, A € (4, ®, 4.)" and I' € A;. Then we
have

[la*xmy, —mg xal|| <e. ||myi(my)*a—al|<e. (a€F).

e

12
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It is well-known that for each a, there exists a net (ngf)ﬁ in 4, ®, A, such that ngf 5 mg,.
Since m;’ is a w*-continuous map, we have 4, (ng) = m;’ (ng) % T, (My).

Thus we have |a * n§ (f) — a * mg(f)| < Ki In§ * a(f) — mg * ()| < Ki

and T4, (05)(9) = T, (M) (9] <
foreacha € F, f € Aand g € A*, where K, = sup{||f]|: f € A} and K; = sup{||g||: g € T}.

Since a *myg —mg *a - 0 and m;’ (mg) xa—a — 0. we can find f = B(F.A.T.€) such
that

laxnf(f) —nf xa(Nl <c Im, () *a(9) —a(@| <y (e€F.fEAGET)
for some ¢ € R*. Using Mazur’s lemma, we have a net (nzar.)) in 4. ®, A, such that
lla * nEare —Nrare *all 2 0. [[ma(nEare) *a—all = 0. (a€F).
Define pirar.e):Ae = Ae @p Ae DY prare(a) = a*ngare foreach a € A,. It is clear

that prare(a*b) = axpEare(b) foreach a, b € A. Also

llpr.ae)(@*b) — prare(@) xbl|  =|labxnEare —a* (MEare * b

3.1
< lallllb * ngeare — ngare * bl > 0. D

foreach a.b € A,. Also

[I7Ta, © prare(@) —al| = |lmg,(a@*nEare) — all
= ||ma, (@ * Npare) — Ta,(MEare * @) + Ta,(Npare *a) — al
< ||ma, (@ * npare) — Ta, Mpare * Ol + |[[Ta,(MEare) *xa —a
- 0.
for each a € F. Thus with respect to the net (pr.ar.e))(Fare- Ae beCOMes approximately
biprojective.

A Banach algebra A is called Johnson pseudo-contractible, if there exists a not necessarily
bounded net (mg) in (A ®, A)*" such that a-m, = m,-a and m;*(mg)a —a — 0. for
every a € A, see [11] and [10].

A Banach algebra A is called biflat, if there is a bounded A —bimodule morphsim p from A
into (A ®,, A)** such that ;" o p,(a) = a, for each a € A, see [13].

Proposition 3.5 Let A be a Banach algebra and e € B_lO Suppose that A, is unital. Then A is
Johnson pseudo-contractible if and only if A, is Johnson pseudo-contractible.

Proof. Since A, is unital, by Proposition 2.1 A is unital. So using [3, Theorem 2.1], Johnson
pseudo-contractibility of A implies that A is amenable. Thus by [13, Exercise 4.3.15], A is
biflat. Then by [6, Theorem 2.4] A, is biflat. Since A, is unital, biflatness of A, gives the
amenability of A,.

For converse, suppose that A, is Johnson pseudo-contractible. Since A, is unital by [3,
Theorem 2.1] A, is amenable, so is biflat. Applying [6, Theorem 2.4] follows that A is biflat.

13
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Using Proposition 2.1, A is unital, thus by [13, Exercise 4.3.15] A is amenable. So [11,
Lemma 2.1] implies that A is Johnson pseudo-contractible.

Example 3.6 We give a Banach algebra A, which is not Johnson pseudo-contractible. Let

0

ai1 412 4i3 \‘
A= {(8 a2 azs) la;; € C} and suppose that e = 0 |. Clearly e is invertible

0 ass

o o BIr
O BIRr IR

1
4
and A is unital. So by Proposition 2.1 A4, is unital. Using [11, Theorem 2.5] we know that 4 is

not Johnson pseudo-contractible. So by previous proposition A, is not Johnson pseudo-
contractible.
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Summary. Congruences involving sums of Harmonic numbers and binomial coefficients are
considered in this paper. Recently, many great mathematicians have been interested to find
congruences and relationships between these numbers such Sun & Tauraso, Koparal & Omiir,
Mao & Sun and Mestrovic & Andji¢. In the present paper, some new combinatorial
congruences are proved. These congruences are mainly determined modulo p? or p? (p in any
prime) and they are motivated by a recent paper by Mestrovi¢ and Andji¢. The first main
result (Theorem 1) presents the congruence modulo p? (p > 3 is any prime) involving sum
of products of two binomial coefficients and Harmonic numbers. Two interesting congruences
modulo a prime p > 3 (Corollary 2) involving Harmonic numbers Hj, Catalan numbers C;,
and Fermat quotient g, := (2P~ — 1)/p are obtained as consequences of Theorem 1. The
second main result (Theorem 2) presents the congruence modulo p? (p > 3 is any prime)
involving sum of products of two binomial coefficients and Harmonic numbers.

1. INTRODUCTION AND MAIN RESULTS

The harmonic number and the congruence in the ring of p integer Z,, ply important role in
mathematics. Recall that harmonic numbers are to be

n
1
Ho =0, Hn=zE, n>1,
k=1

Z,, is the set of rational numbers having denominators not divisible by p and the unit group
U(Z,) is the set of rational numbers having denominators and numerators not divisible by p.

We define, for all prime number p and for all numbers x,y € Z,
x =y (mod p) © numerator(x —y) = 0 (mod p).
This shows when x, y € U(Z, ) that
x =y (mod p) @iz% (mod p).

Congruences involving sums of Harmonic numbers and binomial coefficients in the ring of
p integer have been studied recently by many mathematicians and a considerable amount of
research results has been produced, such in 2011 Sun and Tauraso [9] proved, that for any
prime p > 5, the following congruences hold

2010 Mathematics Subject Classification: 11B39, 05A10, 05A19.
Key words and Phrases: Binomial coefficients, Harmonic numbers, Congruences, Catalan numbers.
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where (g) denotes the Legendre symbol and g, := (a?~! — 1)/p is the Fermat quotient with

a prime p and an integer a. Also, in 2016 Mao and Sun [5] established, that for a prime p >
3, the following congruences

p—-1
Z (Zkk) % = %(2) By (%) (mod p), 3)
k=1
& o Hye 7 1
(Zkk) TZk =12 (g) Bp—2 (g) (mod p), (4)
k=1

where B,,(.) is the n-th Bernoulli polynomial. In 2016 Koparal and Omiir [2] proved that

(r-1)/2

2k 2P
D EDF () i == (2Fypes = 57) (mod p), 5)
k=1 p
(-1)/2
Cka Qp+1 2p+1 (p+1)/2
— K = — (1 + 2P ) (mod p) (6)
& (=4 p p

and if (g) = 1 they also proved that

(p—-1)/2

Zk) Hy_4 _ 1( 2P

( = —(Fap41 — Fpiz2) ——Fp_1 (mod p), (7)

—_Ak 2p+1 p+2 p-1

kZl k7 (=H* p p

where E, is the Fibonacci numbers, (%) denotes the Legendre symbol, {Q,,} is the Pell-Lucas
sequence and C,, = ﬁ (21:1) is the n-th Catalan number.

We have the following two theorems and corollaries.
Theorem 1. Let p > 3 be a prime numberand m € {1,2,---, (p — 1) /2}. We have

(p-1)/2

-1
> opr(frmy (P D2 = o (rm) + SGmip) (mod p2), (8)
k=1

where
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T(m) = _4q2 + H2m—2 - 4‘Hm_1 and

g2 + Hpo1 — Hym—»

S(m) = 2q5 4+ Hyp—12 — 4Hom—2, + 4

2m—1
Reducing the modulus in this congruence to get
(p-1)/2 1 y 4
k+m\ " 2k m
z ( km) ( I )4—: =51~ Ham— + Hyp—q) (mod p). 9)
k=1

By the congruence (16), the congruence (9) for m € {1,2} and by the fact that

(k+2)‘1= 2 2

. - =

k+1 k+2

we may state:

Corollary 2. For each prime number p > 3 we have

(p-1)/2 CoH
kg
Z T = 4q, (mod p), (10)
k=1
(r-1)/2 H s g
2k k —
Z (k)—4k(k+2)=§+§q2 (mod p). (11)
k=1

Theorem 3. Let p > 3 be a prime number and m € {1,2,---, (p — 3)/2}. We have
(p-1)/2
(- =n™ R
% (O (8 S 1 R () et
k=1
Reducing this modulus to obtain
(p-1)/2
2k\ (\Ha _ (=)™ (P2 o
GOk S (R GO [P

Corollary 4. For each prime p > 3 we have

(-1)/2
_ 1 —1)-1)/2

> (@ kl)/Z)HZkzp_l(H( - )(modp3),

k=1

(p-1)/2
— 1 —1)p-1/2
Z (—1)k1 ((p kl)/Z) kHyy = 573 (1 + v )Zp > (mod p3)
=1

and
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(r-1)/2 H
2k -
2, ()3 =10 00 o)
k=1
(p-1)/2 KH 1 1
2, (O =3 (14007 tmoam)
k=1

To prove Theorem 1, we give the following two lemmas.

Lemmab. [8, Eq. 19] Let n > 0 and m > 1 be integers. The following identity holds

n

Z(_l)k_l (k -Il_{m)_l (E) Hk = a (Hm+n—1 - Hm—l)-

m+n
k=1

(14)

Lemma 6. Let p > 3 be a prime number. Then form € {1,2,---, (p — 1)/2} we have
1
HP_—1+m_1 =—-2q; + 2Hyp—2 —Hp-1—Dp (2H2m—2,2 - EHm—LZ - Q%) (mod p*). (15)
2
Reducing the modulus in this congruence to obtain

HPT—1+m_1 = —2q; + 2Hm—p — Hpp—1(mod p).

Proof. We have

m-—1

+(1 -2k
=Hp—1+22 p ( )

2 _ (1 _ 2
k=1p (1-2k)

= p+ (1 - 2K)

= Hp-1—2
5 (1 - 2k)?

m-—1 m-—1
H 2 —1 +2 —1
= Hp-1—24p Z 2 z _
- L Gk=172" " L 2k=1
1 1
= Hp-1—12p (HZm—Z,Z - ZHm—Lz) +2 <H2m—2 - EHm—1)»
2

which, by the result congruence of Lehmer [4] Hp-1 = —2q, + pq? (mod p?), the proof is
2
complete.
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Proof of Theorem 1. From the relation (14), we can write
(r-1)/2

I G U T S (R

_ 2m y "
S 2m+p-— 1( P hem-1 m_1>'

So, by the congruences (15) and
1 1

p
= - d p?
amtp—1-2m—1 @m—13Z medr?)
we obtain
(p—1)/2 1
_yk-1(k+m\y T ((p—1)/2
D, Cor () (PP
k=1
2m 2mp 1 )
= (Zm 1 @m- 1)2) (—ZQZ +2Hym—2 —Hyp1—p (2H2m—2,2 - EHm—l,Z - QZ) - Hm—l)

2m 2mp 1 ,
N (Zm -1 Q2m- 1)2) —2q2 + 2Hyy—p — 2Hpq —p (2H2m—2,2 - EHm—l,Z - qz)
m
= om—_1 (—4q; + 4Hym—2 — 4Hp—1)
qy + Hpy_1—Hypm
T (qu + Hypoqp — 4Homp + 4— ernn 1_ 1 2m 2) p (mod p?).
To prove the relationship (9) we use the known congruence [2]
(r-1/2 1
( k ) (@G ( ) (mod p). (16)

Proof of Theorem 2. Let n = ((p — 1)/2) in the identity of Corollary 2.2 [1]

m 22n-2m-2 2m
R ———

n—1
Then, we have
(p-1)/2 ( /2 D™ /(1 2 p—1-1 -
D, o (P )(m)Hzfm(z #2726 /2 ) )

2

1 -1 \!
-+ gp-am=2 Zm) ((pp_ 1)/2) )

< —
D™ <1+2p zm-1 2’”)( p-1 ) >

p—1-2m r—-1)/2

2(-=nm
p—1—-2m
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From the known congruence [7]

()F 7y /2) = D7 471 Gmod p,

»-1)/2
we have
(p-1)/2 o op-2m-1(2m
kZl o ( _kl)/z) (rl;) Hae =3 —( 113 2m| " S 4p—1( )

= —p E_llzmzm <1 + (—1)1)2;12—2m (27;”) <%)p—1> (mod p2).

To prove the relationship (13), use the congruence (16) and Fermat little theorem.
2. CONCLUSION

The principal results of this paper given by Theorems 1 and 2 represent an interesting
contribution in congruences. They are obtained upon using technical operations on the
binomial coefficients, harmonic numbers and Catalan numbers. To extend our results using
the useful technics or methods to study congruences in the ring of p-integers may be, in
general, difficult. A first question on the extension of these congruences is: how can us
generalize the obtained congruences modulo some successive powers of a prime number
p?. A second question on such extensions of Theorems 1 and 2 can be viewed as
generalizations on using the g-Binomial coefficients instead of the binomial coefficients or
the hyper-harmonic numbers instead of the harmonic numbers. These seem to be interesting
and require technical calculus and some mathematical tools based on number theory and on
complex integration.

Acknowledgements: The authors thank the anonymous referee for his/her careful reading
and valuable suggestions that led to an improved version of this manuscript.
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Summary. In this paper, we extend the characterizations of Kuroki [17], by initiating the
concept of intuitionistic fuzzy left ( resp. right, interior, quasi-, bi-, generalized bi-) ideals in

a class of non-associative and non-commutative rings ( LA-ring) . We characterize regular
(intra-regular, both regular and intra-regular) LA-rings in terms such ideals.

1 INTRODUCTION

In ternary operations, the commutative law is given by abc =cba. Kazim and Naseerudin
[7], have generalized this notion by introducing the parenthesis on the left side of this
equation to get a new pseudo associative law, that is (ab)c = (cb)a. This law (ab)c = (cb)a IS
called the left invertive law. A groupoid S is called a left almost semigroup (abbreviated as
LA-semi-group) if it satisfies the left invertive law. An LA-semi-group is a midway structure
between a commutative semigroup and a groupoid.

A groupoid S is said to be medial (resp. paramedial)if (ab)(cd)=(ac)(bd) (resp.
(ab)(cd) = (db)(ca)). An LA-semi-group is medial, but in general an LA-semi-group needs not
to be paramedial. Every LA-semi-group with left identity is paramedial and also satisfies
a(bc) = b(ac), (ab)(cd) = (dc)(ba).

Kamran [16], extended the notion of LA-semi-group to the left almost group (LA-
group). An LA-semi-group G is called a left almost group, if there exists a left identity
ee G suchthat ea =a forall a<G andforevery ac<G thereexists b eG such that
ba = e.

Shah et al. [22], by a left almost ring, mean a non-empty set R with at least two elements
such that (R,+) is an LA-group, (R,:) is an LA-semi-group, both left and right distributive
laws hold. For example, from a commutative ring (R,+,-), we can always obtain an LA-ring
(R,®,") by defining for all a,b « R, a®b = b—-a and a-b is same as in the ring. Although

the structure is non-associative and non-commutative, nevertheless, it possesses many
interesting properties which we usually find in associative and commutative algebraic
structures.

A non-empty subset A of R is called an LA-subring of R if a—be A and ab A forall

2010 Mathematics Subject Classification: 97H20, 97H40, 94D05.
Key words and Phrases: Intuitionistic fuzzy left ( right, interior, quasi-, bi-, generalized bi-) ideals, regular

(intra-regular) LA-rings.
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a,b e A A is called a left (resp. right) ideal of R if (A+) is an LA-group and
RA < A (resp. AR < A). A iscalled an ideal of R if it is both a left ideal and a right
ideal of R.

A non-empty subset A of R is called an interior ideal of R if (A,+) is an LA-group
and (RA)R < A A non-empty subset A of R is called a quasi-ideal of R if (A+) is an LA-

group and AR nRA < A An LA-subring A of R is called a bi-ideal of R if (AR)Ac A A
non-empty subset A of R is called a generalized bi-ideal of R if (A+) isan LA-group and
(AR)A c A

We will define the concept of intuitionistic fuzzy left (resp. right, interior, quasi-, bi-,
generalized bi-) ideals of an LA-ring R. We will establish a study by discussing the different
properties of such ideals. We will characterize regular ( resp. intra-regular, both regular and
intra-regular) LA-rings by the properties of intuitionistic fuzzy (left, right, quasi-, bi-,
generalized bi-) ideals such ideals.

2 INTUITIONISTIC FUZZY IDEALS IN LA-RINGS

After, the introduction of fuzzy set by Zadeh [24], several researchers explored on the
generalization of the notion of fuzzy set. The concept of intuitionistic fuzzy set was
introduced by Atanassov [1], as a generalization of the notion of fuzzy set. Liu [18],
introduced the concept of fuzzy subrings and fuzzy ideals of a ring. Many authors have
explored the theory of fuzzy rings (for example [3, 9, 11-15, 18, 19-20, 23]). Gupta and
Kantroo [4], gave the idea of intrinsic product of fuzzy subsets of a ring. Kuroki [17],
characterized regular (intra-regular, both regular and intra-regular) rings in terms of fuzzy
left (right, quasi, bi-) ideals.

An intuitionistic fuzzy set (briefly, IFS) A in a non-empty set X is an object having the
form A = {(X, £, (X),7 » (X)) : x e X}, where the functions x,: X —[0,1] and y, : X —[0,1]
denote the degree of membership and the degree of non-membership, respectively and
0< u, (X)+y,(x) <1 forall xex [1].

An intuitionistic fuzzy set A={(x, z,(X),7.(X)): xe X} in X can be identified to be an

ordered pair (u,,y,) in 1*x1*, where 1” isthe setof all functions from X to [0,1].

For the sake of simplicity, = we shall use the symbol A = (u,,y,) for the IFS

A={(xu,(¥),7,(¥): xe X}

Banerjee and Basnet [2] and Hur et al. [6], initiated the notion of intuitionistic fuzzy
subrings and intuitionistic fuzzy ideals of a ring. Subsequently many authors studied the
intuitionistic fuzzy subrings and intuitionistic fuzzy ideals of a ring by describing the different
properties (see [5]). Shah et al. [21, 22] initiated the concept of intuitionistic fuzzy normal
subrings over a non-associative ring and also characterized the non-associative rings by their
intuitionistic fuzzy bi-ideals in [8]. Kausar [10] explored the notion of direct product of finite
intuitionistic anti fuzzy normal subrings over non-associative rings.
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We initiate the notion of intuitionistic fuzzy left (resp. right, interior, quasi-, bi-,
generalized bi-) ideals of an LA-ring R.

An intuitionistic fuzzy set (IFS) A=(u,,7,) of an LA-ring R is called an intuitionistic
fuzzy LA-subring of R if

) pp(x=y) = mindu, (x) g, (N},
(2) 7a(x=y) < max{y , (x) 7, (N},
(3) s (xy) = mindu, (x) a5 (Y]
(4) 7a(xy) < max{y,(x) 7, (v} forall xyeR
AnIFS A= (u,,r,) ofanLA-ring R is called an intuitionistic fuzzy left ideal of R if
) pa(x=y) = mindu, (x) g, (N},
(2) 7a(x=y) < max{y , (x) 7, (N},
(3) 2 lxy) = ()
(4

) ( )<7’A(y), forall x,y € R.
AnIFS A = (u,,7,) ofanLA-ring R is called an intuitionistic fuzzy right ideal of R

in{e (), 224 (V)3
ax{ﬂ//.\ (X)! 7/A (y)}l

(4) ya(xy) < y,(x), forall xyeR

AnIFS A = (u,,r,) Oof R iscalled an intuitionistic fuzzy ideal of an LA-ring R if it is

both an intuitionistic fuzzy left ideal and an intuitionistic fuzzy right ideal of R.
Let A be a non-empty subset of an LA-ring R. Then the intuitionistic characteristic of A is
denoted by y, =(u, .7, ) anddefined by

(X)— lifxe A and (X)— Oifx e A
Hen W= 01ex ¢ A Vin WS iex ¢ A

We note that an LA-ring R can be considered an intuitionistic fuzzy set of itself and we
write R = 1, i.e., R(X) = (1g,75) = @0) forall x e R.
Let A and B be two intuitionistic fuzzy sets of an LA-ring R. Then

() AcB o puy cpugandy, oy,
(2 A=B< Ac B and B c A

(3) A® = (}/A’IUA)’
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(4) AnB = (II’[A ANHBsY A \/78): (IUA/\B'yAvB)'
(5) AUB = (/'IAV/uB77/A /\7/3): (ﬂAvB’yAAB)’
(6) 0~=(0,1),1~=(10)

The  product of A= (u,,y,) and B = (ug,/s) is denoted by
AoB = (u, oy, 7, oyg) and defined as:

AV {/\in=1{:uA(ai)/\,uB(bi)}} if X:Zn:aibi’ ai’bi cR
(:uA ° /JB)(X) = izlaibi i=1

0 if x;«rsiaibi

i=1

Ao A7) vrsB)I if x=2ab, a b R

X=

and (yaoyg)(X)= i1

1 if x#2ab
i=1

AnIFS A = (u,,y,) ofan LA-ring R is called an intuitionistic fuzzy interior ideal of R

Q) wa(x=y) =z (X)Ap, (),
7 a )V 74 (Y),

(
A(y), forall x,y,z e R.
AnIFS A = (u,,r,)of an LA-ring R is called an intuitionistic fuzzy quasi-ideal of R if
@) (unoR)N(Rop,) € pia,
@ (7aoR)U(Rey,) 274,
(3) wa(x=y) 2, (X)np,(y),
(4) ya(x=y) <7, ()vra(y), foral xyeR

An Intuitionistic fuzzy LA-subring A =(u,,r,) of an LA-ring R is called an

intuitionistic fuzzy bi-ideal of R if
@) un((9)2) 2 g1, ()22, (2),
(2) 7. (0y)2) < 7 A (X)vy,(2) forall x,y,z e R.

AnIFS A = (u,,r,)of an LA-ring R is called an intuitionistic fuzzy generalized bi-ideal
of R if

@) pax=y) = g, (X)A g, (),
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(2) 7alx=y) < 7a (v ra (),
(3) /‘A((XY)Z) ke ILIA(X)/\ILIA(Z)’
(4) ;/A((xy)z) < }/A(X)vyA(Z), forall x,y,z e R.

An intuitionistic fuzzy ideal A = (u,,7,) of an LA-ring R is called an intuitionistic

fuzzy idempotent if y, o, = p,and y, oy, =y,.
Now we give some imperative properties of such ideals of an LA-ring R, which will be

very helpful in later sections.
Lemma 2.1: Let R be an LA-ring. Then the following properties hold:

(1) (AoB)oC = (CoB)oA,

(2) (A=B)s(C+D)=(A=C)o (B~ D),

(3) Ao(BoC)=Bo(AoC)

(4) (AcB)o(CoD)=(DoB)o(Co A),

(5) (AeB)o(CoD)=(D-C)s(BA), for all intuitionistic fuzzy sets A B,C and D of R.

Proof: Obvious.
Theorem 2.2: Let A and B be two non-empty subsets of an LA-ring R. then the following

properties hold:

L) If AcB then 7, < z5.

(2) Xao°Xe = X+

4) 2a0Xs = Zans:

Proof: (1) Supposethat A< B and ac R. If a e A, thisimpliesthat a e B. Thus
H, @=1=pu, (@ and y, (@ =0=y, (@), ie, yp S ¥s-

If ag¢ AbandagB. Thus u, (@ =0=x, (@ and y, (@ =1=y, (a), ie,
Xa S Xe-

If a A and o eB. Thus pa(e) = 0 and p,s(e) =1 and y,a(e) = 1 and y,g(a) =0, i.e.,
(2) Let xR and x eAB. This means that x=ab for some a A and b B.

Now
ey, om0 =V oo A, @), b))

p,, @ru, (0)=1Al=1=pu, (X
Aso e Bl @)vr,, )
7,, @vy, (0)=0v0=0=y, (X).

\%

and (y,, °7,, )X

IN

If x ¢ AB, i.e., x # ab forall a € A and b e B. Then there are two cases.
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(i) If x =uv forsome u,v e R, then

(o, 0=V oo A, @)au,, 6
0A0=0=p, (x)
NSt &y, @)vr,, b))
vli=1=y, (0.

and (y,, °7,. )X

(i) If x=uv forall uyveR, thenobviously (y,oxs)(X) =0 =z, (X). Hence
Xa°Xs = Xns-

Similarly, we can prove (3) and (4).
Theorem 2.3: Let A be a non-empty subset of an LA-ring R. then the following properties
hold.

(1) A is an LA-subring of R ifand onlyif y, isan intuitionistic fuzzy LA-subring of R.

(2) A is a left (resp. right, two-sided) ideal of R if and only if y, is an intuitionistic
fuzzy left ( resp. right, two-sided) ideal of R.
Proof: (1) Let A be an LA-subring of R and a,b € R. If a,b e A, then by definition
U@ =1=pu,(@{) and y,(2)=0=y,(b). Since a—b and ab € A, A being an LA-
subring of R, this implies that x,(a—-b) =1= x,(ab) and y,(a—-b) =0 =y, (ab).
Thus
ta(a=b) = /UA(a)/\/uA(b)' i, (ab) = ﬂA(a)/\ﬂA(b)

and y,(a-b) < VA(a)V7A(b)’7/A(ab) < 7/A(a)v7A(b)'

Similarly, we have

pa@=b) 2 g, @Au,b) p,@b) 2 s, (@)Au,(b)
and 7,(@-b) < 7,@vy,(b)y.(@h) < y,(@vy,b)
when a,b ¢ A Hence y, isan intuitionistic fuzzy LA-subring of R.
Conversely, suppose that y, is an intuitionistic fuzzy LA-subring of R and let a,b € A
Thismeansthat x,(a) =1= u,(b) and y,(a) = 0 =y, (b). Since
fa@=b) > p,@nap,b)=1a1=1
pa(@b) > i, (@ A, b)=1a1=1
ya@-b) <y, (@vy,b)=0v0=0
7a(@b) < y,(@vy.b)=0v0=0

¥ being an intuitionistic fuzzy LA-subring of R. Thus u,(a-b) =1= u,(ab) and
yr(@-b)=0=y,(ab), iie, a—b and ab € A Hence A isan LA-subringof R.
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(2) Let A be a left ideal of R and ab e R If abe A then by definition
U@ =1=pu,() and y,(@) =0=y,(b). Since a—b and ab € A, A being a left
ideal of R, thisimpliesthat ¢, (a-b) =1= u,(ab) and y,(a—b) = 0 = y, (ab). Thus
Ha(a—b) > ,UA(a)/\,UA(b)' 14 (ab) = ,UA(b)

and 7,(@-b) < 7,@v7y,b)r,(@) < y,(b)
Similarly, we have
pa@Apy(b) p,(@0) = u,(b)
72 @v7,0) 7y, (@) <y, (b)

when a,b ¢ A. Therefore y, isan intuitionistic fuzzy left ideal of R.

#p (a=b)

2
and y,(a-b) <

Conversely, assume that y, isan intuitionistic fuzzy left ideal of R and let
a,b e Aand z e R. This means that x,(@) =1= u,(b) and y,(@) =0 =y, (b).
Since

ta@=b) 2 @A, b)=1a1=1,
Hp (ZD) 2 ﬂA(b):L

ya@-b) < y,@vy,(b)=0v0=0,
7 a(2b) < VA(b) =0,

¥ being an intuitionistic fuzzy left ideal of R. Thus u,(a—b)=1=y,(zb) and
y,(@-b)=0=y,(zb), ie, a—b and zb € A Therefore A isa leftideal of R.
Remark 2.4: (i) A is an additive LA-subgroup of R if and only if y, is an intuitionistic
fuzzy additive LA-subgroup of R.

(ii) A is an LA-subsemigroup of R if and only if y, is an intuitionistic fuzzy LA-

subsemigroup of R.
Lemma 2.5: If A and B are two intuitionistic fuzzy LA-subrings (resp. ( left, right, two-

sided) ideals) of an LA-ring R, then ANnB is also an intuitionistic fuzzy LA-subring
(resp. (left, right, two-sided) ideal) of R.

Proof: Obvious.

Lemma 2.6: If A and B are two intuitionistic fuzzy LA-subrings of an LA-ring R, then

A o B isalso an intuitionistic fuzzy LA-subring of R.
Proof: Let A = (u,,7,)and B = (u,,y, ) be two intuitionistic fuzzy LA-subrings of R. We

have to show that A o B is also an intuitionistic fuzzy LA-subring of R. Now
(;UA OIUB)2 = (;UA OIUB)O(,UA OIUB) = (/UA OﬂA)O(ﬂB OILlB) S Hp°oHg
and (7A°7/B)2 = (acre)o(acys) =acra)o(reore) 27a°7s-

Since g —uy < pgand ¥y —75 2 7, B = (1y,74 ) being an intuitionistic fuzzy
LA-subring  of R. This  implies  that Upo(g —Hg) C Hpolg and
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Ya°c(re —7s) 27a°7s, ie., HpoHlg —HpA°Hg & Hp°Hp and
YaOVg —VaoVg 2 7ac°yg- Therefore A o B isan intuitionistic fuzzy LA-subring of R.
Remark 2.7: If A is an intuitionistic fuzzy LA-subring of an LA-ring R, then Ao A is
also an intuitionistic fuzzy LA-subring of R.

Lemma 2.8: Let R be an LA-ring with left identity e. Then RR = R and eR = R = Re.
Proof: Since RR < R and x = ex € RR, where x € R, i.e,, RR = R. Since e is the left
identity of R, i.e., eR = R. Now Re = (RR)e = (€R)R = RR = R,

Lemma 2.9: Let R be an LA-ring with left identity e. Then every intuitionistic fuzzy right
ideal of R is an intuitionistic fuzzy ideal of R.

Proof: Let A = («,,r, ) be an intuitionistic fuzzy right ideal of R and X,y € R. Now

/UA(Xy) = /uA((e )y) = ,UA((yX)e) = /UA(yX) 2 ﬂA(y)
and y, (Xy) =7a ((ex) y) = 7A((yx)e) <7a (yx) S7a (y)
Thus A is an intuitionistic fuzzy ideal of R.
Lemma 2.10: If A and B are two intuitionistic fuzzy left ( resp. right) ideals of an LA-
ringR with left identity e, then Ao B is also an intuitionistic fuzzy left (resp. right)

ideal of R.
Proof: Let A = (u,,7,) and B = (u,,y, ) be two intuitionistic fuzzy left ideals of R. We

have to show that Ao B is also an intuitionistic fuzzy left ideal of R.
Since prpopg —fHpoHg S HpoMg ANA y, 0y —yaoyg D7 are- NOW
Ro(upopg) = (RoR)o(upoug) = (Ropp)o(Roug) < (1p o)
and Re(y,oyg) = (ReR)o(ypeyg) = (Royn)o(Roy,) 2 (raeve)
Hence A o B is an intuitionistic fuzzy left ideal of R.
Remark 2.11: If A is an intuitionistic fuzzy left (resp. right) ideal of an LA-ring R with

left identity e, then A o A isan intuitionistic fuzzy ideal of R.

Lemma 2.12: If A and B are two intuitionistic fuzzy ideals of an LA-ring R, then
A-B < AnB.
Proof: Let A=(u,,y,) and B = (u,,7,) be two intuitionistic fuzzy ideals of R and

X € R. If X cannot expressibleas x = >.'_,a;b,, where a,,b; € R and n is any positive

integer, then obviously AocB < An B, otherwise we have

(14 OILlB)(X) = VX:Z_nz ab. {/\inzl{:uA(ai )/\IUB(bi )}}

< VX:Zn: ab, {/\inzl{/uA(aibi)/\/uB(aibi)}}
= szz_nz ab, N (g m:uB)(aibi)} = (U, m/UB)(X)-

= HpoHg & HpMHUg-

Similarly, we can prove y, oy, D7, YU ¥s.
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Therefore AcB < AN B for all intuitionistic fuzzy ideals A and B of R.

Remark 2.13: If A is an intuitionistic fuzzy ideal of an LA-ring R, then A-A c A
Lemma 2.14: Let R be an LA-ring. Then AoB < An B for every intuitionistic fuzzy right
ideal A and every intuitionistic fuzzy left ideal B of R.

Proof: Same as Lemma 2.12

Theorem 2.15: Let A be a non-empty subset of an LA-ring R. Then A is an interior (resp.
quasi-, bi-, generalized bi-) ideal of R if and only if y, is an intuitionistic fuzzy interior

(resp. quasi-, bi-, generalized bi-) ideal of R.
Proof: Let A be an interior ideal of R, this implies that A is an additive LA-subgroup of

R. Then y,is an intuitionistic fuzzy additive LA-subgroup of R by the Remark 2.4. Let
Xx,y,ae R If aeA then by definition x, (a)=1 and p, (a)=0. Since
(xa)y € A, A being an interior ideal of R, this means that «, ((xa)y)=1 and

7, (x@)y) =0. Thus x, ((xa)y) > u, (a) and y, ((xa)y) <y, (a). Similarly, we
have ux, ((xa)y) > u, (@) and y, ((xa)y) <y, (a), when a ¢ A Hence y, isan
intuitionistic fuzzy interior ideal of R.

Conversely, suppose that y, is an intuitionistic fuzzy interior ideal of R, this meansthat y,
is an intuitionistic fuzzy additive LA-subgroup of R. Then A is an additive LA-subgroup of
R by the Remark 2.4. Let x,y e Randae A so u, (a)=1and y, (a) =0. Since

u, ((x@y)=>u, (@=1and y, ((xa)y) <y, (@ =0 x, being an intuitionistic
fuzzy interior ideal of R. Thus », ((xa)y)=1and y, ((xa)y) =0, ie, (xa)y e A
Hence A is an interior ideal of R. Similarly, we can prove for (quasi-, bi-, generalized bi-)
ideal.

Lemma 2.16: If A and B are two intuitionistic fuzzy bi- (resp. generalized bi-, quasi-,
interior) ideals of an LA-ring R, then AN B is also an intuitionistic fuzzy bi- (resp.
generalized bi-, quasi-, interior) ideal of R.

Proof: Obvious.
Lemma 2.17: If A and B are two intuitionistic fuzzy bi- (resp. generalized bi-, interior)

ideals of an LA-ring R with left identity e, then Ao B is also an intuitionistic fuzzy bi-
(resp. generalized bi-, interior) ideal of R.
Proof: Let A = (u,,7,) and B = (u,,y,) be two intuitionistic fuzzy bi-ideals of R. We

have to show that A o B is also an intuitionistic fuzzy bi-ideal of R. Since A and B are
two intuitionistic fuzzy LA-subrings of R, then Ao B is also an intuitionistic fuzzy LA-

subring of R by the Lemma 2.6. Now
((pomg)oR)o(upopug) = ((tpopg)o(RoR))o(1ry optg)
= ((upoR)o(ug oR))o(tpotty)
= ((/LIAOR)OILIA)O((ILIBOR)OILIB)
S Hpa°Hg:
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Similarly, we have ((y,c7g)°R)o(yacys)27acys. Therefore Ao B is an intuitionistic
fuzzy bi-ideal of R.

Lemma 2.18: Every intuitionistic fuzzy ideal of an LA-ring R is an intuitionistic fuzzy
interior ideal of R. The converse is not true in general.

Proof: Let A= (u,,7,) be an intuitionistic fuzzy ideal of R and X,y,z € R. Thus

Ha ((xy)z) = Hap (Xy) 2 Hy (y) and y, ((xy)z) =7a (Xy) SV (y) Hence A is an intuitionistic
fuzzy interior ideal of R.

The converse is not true in general, giving an example:

Example 2.19: Let R = {0,1,2,3,4,5,6, 7} is an LA-ring.

+ 012 3 456 7 - 012 3 456 7
0 01234567 000O0OOOTOOO
120316 475 104 400440
2130257 46 2 04 400440
3321076 5 4 and 3 0000O0O0O0OTGO
4 45670123 403 300323@P0
56 4752031 507700770
6 57 46130 2 6 07700770
7 76543210 703 30033@P0

Let A=(u,,7,) bean IFS ofan LA-ring R. We define
1) =, (4) =07, IUA(]-) = 1uA(2) = IUA(?’) = ILlA(S) = ﬂA(6) = ILlA(7) =0
and 7A@ =7,8) =0, 7, =72 =7,Q8) =ya() =y(6) =y,(7) =07

A = (u,,y,) is an intuitionistic fuzzy interior ideal of R, but not an intuitionistic fuzzy
ideal of R, because A isnot an intuitionistic fuzzy right ideal of R, as

pa(4l) = 1,3 =0.
u,(4) =0.7.
= ua(4)) 2 u,(4).
and y,(41) = y,(3) = 0.7.
7A(4) = 0.
= ya4)) £ 7, (4).

Proposition 2.20: Let A = (u«,,7 ,) be an IFS of an LA-ring R with left identity e. Then
A is an intuitionistic fuzzy ideal of R if and only if A is an intuitionistic fuzzy interior ideal
of R.

Proof: Let A=(u,,7,) be an intuitionistic fuzzy interior ideal of R and X,y € R.
Thus i, (xy) = wa((€X)y) 2 ua(x) and y,(Xy) = 74 ((eX)y) < 7. (X), ie, A is an
intuitionistic fuzzy right ideal of R. Hence A is an intuitionistic fuzzy ideal of R by the
Lemma 2.9. Converse is true by the Lemma 2.18.
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Lemma 2.21: Every intuitionistic fuzzy left ( resp. right, two-sided) ideal of an LA-ring R
is an intuitionistic fuzzy bi-ideal of R.

Proof: Suppose that A = (u,,y7,) is an intuitionistic fuzzy right ideal of R and
X,¥,Z € R. Thus

pa(O9)2) = a(xy) = g, (x) @A g, (9)2) = pa ((2Y)X) = 14 (2y) 2 p1a (2),

this implies that ,, ((xy)z) > u, (X) A 1, (2). Similarly, we have y, (xy)z) < ¥, (X) vy (2).
Therefore A is an intuitionistic fuzzy bi-ideal of R.

The converse is not true in general, giving an example:

Using Example 2.19, A = (u,,7,) Is an intuitionistic fuzzy bi-ideal of R, but not an

intuitionistic fuzzy right ideal of R, as

pa(dl) = u, 3 =0
u,(4) =0.7.
= 1, (41) 2 p, (4).
and y,(41) = y,(3) = 0.7.
7a(4) =0,

= 7441 £ 7, (4).
Lemma 2.22: Every intuitionistic fuzzy bi-ideal of an LA-ring R is an intuitionistic fuzzy
generalized bi-ideal of R.

Proof: Obvious.
Lemma 2.23: Every intuitionistic fuzzy left ( resp. right, two-sided) ideal of an LA-ring R

IS an intuitionistic fuzzy quasi-ideal of R.
Proof: Assume that A=(u,,y,) is an intuitionistic fuzzy left ideal of R. Now

fyoRARou, c Rou, c u, aNd y, cRURoy, D Roy, 2 y,. SO A is an intuitionistic

fuzzy quasi-ideal of R.
Lemma 2.24: Let R be an LA-ring with left identity e, such that (xe)R = xR for all

X € R. Then every intuitionistic fuzzy quasi-ideal of R is an intuitionistic fuzzy bi-ideal of
R.

Proof: Let A =(u,,y,) bean intuitionistic fuzzy quasi-ideal of R and Ao A < A by the
Proposition 2.20. Now

(ReR)op, = Rop,
(taoR)oR = (1, oR)o(eoR)

= (upo€)o(RoR) c (upo€)oR = p, oR.
= (poR)op, c ppoRNRou, < py.

(tpoR)op,
and (u, oR)ou,

<
-

Similarly, (y , cR)oy, 2 7. °RURoy, 2 y,. Hence A is an intuitionistic fuzzy bi-ideal
of R.
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3 REGULAR LA-RINGS

An LA-ring R is called a regular if for every x € R, there exists an element a € R
such that x = (xa)x. In this section, we characterize regular LA-rings by the properties of
intuitionistic fuzzy left ( right, quasi-, bi-, generalized bi-) ideals.

Lemma 3.1: Every intuitionistic fuzzy right ideal of a regular LA-ring R is an intuitionistic
fuzzy ideal of R.
Proof: Suppose that A=(u,,y,) Is an intuitionistic fuzzy right ideal of R. Let X,y eR, this

implies that there exists an element a € R, such that x = (xa)x. Thus

£ (Xy) = a((xa)X)y) = pn ((YX)(x2)) 2 2, (YX) = 25 (Y)
and

7a(xy) =74 (x@)X)y) = 7 ((yX)(x@)) < 74 (yX) <74 (Y).

Hence A isan intuitionistic fuzzy ideal of R.

Lemma 3.2: Let A= (u,,7,) be an IFS of a regular LA-ring R. Then A is an
intuitionistic fuzzy ideal of R if and only if A is an intuitionistic fuzzy interior ideal of R.
Proof: Consider that A = (u,,y,) is an intuitionistic fuzzy interior ideal of R. Let
X, ¥ € R, then there exists an element a € R, such that x = (xa)x. Thus

£a(Xy) = 2 ((x2)X)Y) = pa ((yX)(X@)) 2 24 (X)
and

7a () = 72 (x@)x)y) = 7, (y)(x@)) < 7, (%),

i.e., A is an intuitionistic fuzzy right ideal of R. So A is an intuitionistic fuzzy ideal of R
by the Lemma 3.1. Converse is true by the Lemma 2.18.

Remark 3.3: The concept of intuitionistic fuzzy ( interior, two-sided) ideals coincides with
the same concept in regular LA-rings.

Proposition 3.4: Let R be a regular LA-ring. Then (A°cR)n(RoA)=A for every

intuitionistic fuzzy right ideal A of R.
Proof: Suppose that A = («,,,) Is an intuitionistic fuzzy right ideal of R. This implies that

(AoR)n(RoA) < A because every intuitionistic fuzzy right ideal of R is an intuitionistic
fuzzy quasi-ideal of R by the Lemma 2.23. Let x € R, this implies that there exists an
element a € R, such that x = (xa)x. Thus

(i oRO) = v 5o AnTaiua (@) ARb )}

Uy(X)ARMX) >, (X)AL = 1, (X)
/\Xzzh: ab, {Vinzl{VA(ai)VR(bi)}}

7a(X@)VR(X) <y, (X)v0 =y, (X)
= Ac AR

\%

and (7, °R)(X)

IN
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Similarly, we have A ¢ Ro A, i.e.,, Ac (AoR)n(RoA). Hence (AcR)n(RoA) = A
Lemma 3.5: Let R be a regular LA-ring. Then DoL=DnL for every intuitionistic fuzzy
right ideal D and every intuitionistic fuzzy left ideal L of R.

Proof: Since DoL < DL, for every intuitionistic fuzzy right ideal D =(u,,7,) and every

intuitionistic fuzzy left ideal L = (x, ,y, ) of R bythe Lemma 2.14. Let x € R, this means
that there exists an element a € R suchthat x = (xa)x. Thus

(o ou )X) = VX:Z_n: ab, {/\in:l{:uD(ai )/\:uL(bi )}}

v

o XAy Ap (X)) 2wy () Ap (X) = (up O )(X)
and (7o 7)) = A, g0 AV o (@) vy b}

IN

yoXa)vy (X) <y (X)vy (X)) = (o vy ).

Therefore DoL = DN L.

Lemma 3.6: Let R be an LA-ring with left identity e. Then Ra is the smallest left ideal of
R containing a.

Proof: Let X,y € Ra and r € R. This implies that x =r,a and y =r,a, where

r,,r, € R. Now
X—y=ra-r,a=(r,—-r,)aeRa
and rx = r(r,a) = (er)(r,a) = ((r,a)r)e = ((r,a)(er))e
((r,e)(an)e = (e(ar))(r.e) = (ar)(r,e)

= ((r,e)r)a € Ra.

Since a = ea € Ra. Thus Ra is a left ideal of R containing a. Let | be another left ideal of
R containing a. Since ra € I, where ra € Ra, i.e.,, Ra < |. Hence Ra is the smallest

left ideal of R containing a.

Lemma 3.7: Let R be an LA-ring with left identity e. Then aR is a left ideal of R.

Proof: Straight forward.

Proposition 3.8: Let R be an LA-ring with left identity e. Then ar URa is the smallest right
ideal of R containing a.

Proof: Let x,y € aRURa, this means that X,y € aR or Ra. Since aR and Ra both are left

ideals of R, so x—y e aR and Ra, ie, X-y € aRuRa. We have to show that
(aQRuURa)R < (aRuURa). Now

(aARuRa)R = (aR)Ru(Ra)R = (RR)aw (Ra)(eR)
c Rau(Re)(@R) = RauR(aR)
= Rauva(RR) c RauvaR = aRuURa.
= (@ARURa)R ¢ aRuURa.
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Since a € Ra, i.e,, a € aRURa. Let | be another right ideal of R containing a. Since
aR e IRc | and Ra = (RR)a = (aR)R € (IRIR c IR c I, i.e., aRuURa < |. Therefore

aR U Ra IS the smallest right ideal of R containing a.
Theorem 3.9: Let R be an LA-ring with left identity e, such that (xe)R = xR for all

X € R. Then the following conditions are equivalent.

(1) R isaregular.

(2) DNL = DoL for every intuitionistic fuzzy right ideal D and every intuitionistic
fuzzy leftideal L of R.

(3) C = (CoR)oC for every intuitionistic fuzzy quasi-ideal C of R.

Proof: Suppose that (1) holds and ¢ = (u.,,.) be an intuitionistic fuzzy quasi-ideal of R.
Then (CoR)oC < C, because every intuitionistic fuzzy quasi-ideal of R is an
intuitionistic fuzzy bi-ideal of R by the Lemma 2.24. Let X e R, this implies that there
exists an element a of R such that x = (xa)x. Thus

(e oR)opc )(X) Va:zﬁz ab, {/\inzl{(ﬂc OR)(ai )/\ﬂc (b| )}}

> (pc o R)(X@) A g (X)
= Vi g e (PO)AR@)FA e 0
2 pe ()AR@) A pc (X) = pe (X).

= pe < (4 oR)opc.

Similarly, we have y. 2 (¢ °R)ey., i, C = (CoR)oC. Hence (1) implies (3)
Assume that (3) holds. Let D be an intuitionistic fuzzy right ideal and L be an intuitionistic

fuzzy left ideal of R. This means that D and L be intuitionistic fuzzy quasi-ideals of R by
the Lemma 2.23, s0 DL be also an intuitionistic fuzzy quasi-ideal of R. Then by our
assumption, DNL = (DNL)oR)o(DNL) < (DoR)oL < DolL, i.e., DnL < DoL. Since
DoL c DAL Therefore DoL = DAL, ie, (3)= (2). Suppose that (2) is true and

a € R. Then Ra isa left ideal of R containing a by the Lemma 3.7 and aR URa isa
right ideal of R containing a by the Proposition 3.8. This implies that y., is an intuitionistic

fuzzy left ideal and y ,; . IS @n intuitionistic fuzzy right ideal of R, by the Theorem 2.3.
Then by our supposition

Xarora M XrRa = XarURa © XRar ie., Z(aRuRa)mRa =I(aRuRa)Ra

by the Theorem 2.2. Thus (aRwRa) "Ra =(aRuw Ra)Ra. Since ae (aRuURa)NRa, i.e,
a € (aARuURa)Ra, so a € (aR)(Ra)u (Ra)(Ra). This implies that

a € (aR)(Ra) or a € (Ra)(Ra).
If a € (aR)(Ra), then
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a = (ax)(ya) = ((ya)x)a = (((ey)a)x)a = (((ay)e)x)a = ((xe)(ay))a = (a((xe)y))a for any
X,y € R

If ae(Ra)Ra), then (Ra)(Ra) = ((Re)a)(Ra) = ((ae)R)(Ra) = (aR)(Ra), i.e.,
a e (aR)(Ra). So a isaregular, i.e., R isaregular. Hence (2) = (1)

Theorem 3.10: Let R be an LA-ring with left identity e, such that (xe)R = xR for all
X € R. Then the following conditions are equivalent.

(1) R isaregular.

(2) A= (A°R)o A forevery intuitionistic fuzzy quasi-ideal A of R.

(3) B = (BoR)oB forevery intuitionistic fuzzy bi-ideal B of R.

(4) C = (CoR)oC for every intuitionistic fuzzy generalized bi-ideal C of R.

Proof: (1) = (4), is obvious. Since (4) = (3), every intuitionistic fuzzy bi-ideal of R is an
intuitionistic fuzzy generalized bi-ideal of R by the Lemma 2.22. Since (3) = (2), every
intuitionistic fuzzy quasi-ideal of R is an intuitionistic fuzzy bi-ideal of R by the Lemma
15. (2) = (1), by the Theorem 3.9.

Theorem 3.11: Let R be an LA-ring with left identity e, such that (xe)R = xR for all
x € R. Then the following conditions are equivalent.

(1) R isaregular.

(2) ANl = (Aeol)o A for every intuitionistic fuzzy quasi-ideal A and every intuitionistic
fuzzy ideal 1 of R.

(3) BNl = (Bol)oB for every intuitionistic fuzzy bi-ideal B and every intuitionistic
fuzzy ideal | of R.

(4) Cnl =(Col)oC for every intuitionistic fuzzy generalized bi-idea C and every
intuitionistic fuzzy ideal |1 of R.

Proof: Assume that (1) holds. Let C = (., 7. ) be an intuitionistic fuzzy generalized bi-
ideal and 1 =(u,,7,) be an intuitionistic fuzzy ideal of R. Now
(Col)oC < (Rel)oR c IoR c | and (Col)oC < (CoR)oC c C, ie.,
(Col)oC = CnI. Let x € R, this means that there exists an element a € R such that
X = (xa)x. Now xa = ((xa)x)a = (ax)(xa) = x((ax)a). Thus

(e op)opc)X) = VX:Z-n: ab, {/\inzl{(,uc oM, )(ai)/\ﬂc (bl)}}

Y

(#1c o py )(x@) A g (X)
Vst g i le (P)Ap (@A ue 09

pe (X) A py ((@x)a) A g (X)
pe () Apy (X) = (se Ny )(X).
= peNpy < (Heop)ouc.

vV IV

Similarly, we have 7. Uy, 2 (7¢ °7,)erc- Hence Cnl = (Co1)oC, e, (1) = (4).
It is clear that (4) = (3) and (3) = (2). Suppose that (2) is true. Then
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ANR = (AoR)o A, where R itself is an intuitionistic fuzzy two-sided ideal of R. So
A = (AoR)o A, because every intuitionistic fuzzy two-sided ideal of R is an intuitionisitc
fuzzy quasi-ideal of R. Hence R is a regular by the Theorem 3.9, i.e., (2) = (1)

Theorem 3.12: Let R be an LA-ring with left identity e, such that (xe)R = xR for all
X € R. Then the following conditions are equivalent.

(1) R isaregular.

(2) AnD < DoA for every intuitionistic fuzzy quasi-ideal A and every intuitionistic
fuzzy rightideal D of R.

(3) BND < DoB for every intuitionistic fuzzy bi-ideal B and every intuitionistic fuzzy
rightideal D of R.

(4) CAD < DoC for every intuitionistic fuzzy generalized bi-ideal C and every
intuitionistic fuzzy right ideal D of R.

Proof: (1)= (4), is obvious. It is clear that (4) = (3) and (3) = (2). Suppose that (2)
holds, this implies that DNnA=AnDc DoA, where A is an intuitionistic fuzzy left ideal of
R. Since Do-Ac DnA ie, DnA=DoA Hence R is a regular by the Theorem 3.9,

ie, (2)= @)

4 IINTRA-REGULAR LA-RINGS

An LA-ring An LA-ring R is called an intra-regular if for every x € R, there exist
elements a;,b; € R such that x =y (a,x?)b,. In this section, we characterize intra-
regular LA-rings by the properties of intuitionistic fuzzy left (right, quasi-, bi-, generalized
bi-) ideals.

Lemma 4.1: Every intuitionistic fuzzy left ( right) ideal of an intra-regular LA-ring R is an

intuitionistic fuzzy ideal of R.
Proof: Suppose that A = (x,,y,) is an intuitionistic fuzzy right ideal of R. Let X,y € R,

this implies that there exist elements a,,b, € R, suchthat x = ¥"_,(a,x?)b;. Thus

pa(y) = w,((@x*)0;)y) = p, ((Yb;)(@;x?))
2 pa(yby) 2 pa(y)

and 7, (xy) = 7, (@ x*)b;)y) = 7, ((yb )@ x*))
S ya(yb) < yay)

Hence A is an intuitionistic fuzzy ideal of R.

Proposition 4.2: Let A be an IFS of an intra-regular LA-ring R with left identity e. Then
A is an intuitionistic fuzzy ideal of R if and only if A is an intuitionistic fuzzy interior ideal
of R.

Proof: Suppose that A = («,,y,) isan intuitionistic fuzzy interior ideal of R. Let X,y € R,

this implies that there exist elements a,,b, € R, suchthat x = ¥"_ (a,x*)b;. Thus
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Ha(xy) = u, (@ x°)b;)y) = s, ((yb )@ x*))
= w1, ((yb;)(@; (xx))) = a2, ((yb; )(x(a; x)))
= 1, (y¥)(0; (@; X)) 2 2, (X).
Similarly, we have y , (xy) < 7, (x), i.e.,, A is an intuitionistic fuzzy right ideal of R. Hence

A is an intuitionistic fuzzy ideal of R by the Lemma 4.1. Converse is true by the Lemma
2.18.
Remark 4.3: The concept of intuitionistic fuzzy ( interior, two-sided) ideals coincides in

intra-regular LA-rings with left identity.
Lemma 4.4: Let R be an intra-regular LA-ring with left identity e. Then DNL < LoD

for every intuitionistic fuzzy left ideal L and every intuitionistic fuzzy right ideal D of R.
Proof: Let L = (u,,y,) be an intuitionistic fuzzy left ideal and D = (up,7,) be an
intuitionistic fuzzy right ideal of R. Let X € R, this means that there exist elements such that

a,,b, e Rsuchthat x = ¥"_,(a,x*)b;. Now

X = (aixz)bi = (ai (XX))bi = (X(aix))bi
= (x(@,)(eb,) = (xe)((@,)b;) = (a, x)((xe)b, ).
Thus

(p opp)(X) = _{/\in:l{/uL(pi)/\:uD(qi)}}

Vx:Zi":lpiq.
s @ X) A g ((ED,) = g1 () A gt (X)
fo (X)Ap (%) = (1p N )(X)

Mo e, i (e vre @)

re@iX)vyp ((xe)b;) <y (X)vyp(X)

Yo () vy (X) = (o vy )X).
= DnL c LoD.

v

and (7, o7 )(X)

IN

Theorem 4.5: Let R be an LA-ring with left identity e, such that (xe)R = xR for all
X € R. Then the following conditions are equivalent.

(1) R isanintra-regular.

(2) DAL < LoD for every intuitionistic fuzzy left ideal L and every intuitionistic fuzzy
rightideal D of R.

Proof: (1)= (2) is true by the Lemma 4.4. Suppose that (2) holds. Let a € R, then
Ra isaleftideal of R containing a by the Lemma 3.6 and aruURa is a right ideal of R
containing a by the Proposition 3.8. So y, is an intuitionistic fuzzy left ideal and y

is an intuitionistic fuzzy right ideal of R, by the Theorem 1.3. By our supposition

aR U Ra

Xarora Y XRa © XRa © XarURar e, Z(aRuRa)mRa - Z(Ra)(aRuRa)
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by the Theorem 1.2. Thus (aRuURa)nRac Ra(aRuRa). Since ae(aRuURa)nRa, i.e.,
ae Ra(aRuURa)=(Ra)(aR) U (Ra)(Ra). This implies that a € (Ra)(aR) or a e (Ra)(Ra). If
a € (Ra)(aR), then

(Ra)(aR) = (Ra)((ea)(RR)) = (Ra)((RR)(ae))
= (Ra)(((ae)R)R) = (Ra)((aR)R)
= (Ra)((RR)a) = (Ra)(Ra) = ((Ra)a)R
= ((Ra)(ea))R = ((Re)(aa))R = (Ra*)R.

So ae(Ra?)R. If ae(Ra)(Ra), then obvious a € (Ra?)R. This implies that a is an intra-
regular. Hence R is an intra-regular, i.e., (2) = (1).

Theorem 4.6: Let R be an LA-ring with left identity e, such that (xe)R = xR for all
X € R. Then the following conditions are equivalent.

(1) R isan intra-regular.

(2) ANl = (Aol)o A for every intuitionistic fuzzy quasi-ideal A and every intuitionistic
fuzzy ideal | of R.

(3) BNl =(Bol)oB for every intuitionistic fuzzy bi-ideal B and every intuitionistic
fuzzy ideal | of R.

(4) Cnl =(Col)oC for every intuitionistic fuzzy generalized bi-ideal C and every
intuitionistic fuzzy ideal | of R.

Proof: Suppose that (1) holds. Let ¢ = (x., . ) be an intuitionistic fuzzy generalized bi-ideal
and 1 =(u,,7,) be an intuitionistic  fuzzy ideal of R.  Now
(Col)oC = (Rol)oR c IoR c | and (Col)oC < (CoR)oC < C, thus
(Col)oC = CnI. Let x € R, this implies that there exist elements a,,b, € R such that

x =" (a;x?)b,. Now
X = (a,x*)b, = (a,(xx))b, = (x(a,x))b = (b, (a, X))x.
b, (a;x) = b, (a;((a;x*)b;)) = b, ((a;x*)(a;b;)) = b, ((a;x*)c,)
(@, x?)(b,c;) =(a,x*)d, = (a,x?)(ed,) = (d,e)(x*a,)
m, (x?a,) = x*(m,a,) = (xx)l, = (I,x)x = (I, x)(ex)

(xe)(xl,) = x((xe)l, ).

Thus
(e op)one)0) = v oo Anatle o )P A e (@)}

\%

(pc omy )b (@ X)) A pc(X)
Vb.(aix)=z,": o, {/\in:l{/uc (mi)/\/ul (ni )}}/\,Uc (x)

\%

He () Ay ((xe)5 ) A pee (X)
e YA (X) = (pe Opy )(X).
= pe Ny S (e opy)opuc.

v
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Similarly, we have y. Uy, 2 (yc oy, )oyc. Hence Cnl = (Col)oC, ie. (1) = (4) It
is clear that (4) = (3) and (3) = (2). Assume that (2) is true. Let A be an intuitionistic fuzzy
right ideal and | be an intuitionistic fuzzy two-sided ideal of R. Since every intuitionistic
fuzzy right ideal of R is an intuitionistic fuzzy quasi-ideal of R by the Lemma 2.23, so A
IS an intuitionistic  fuzzy  quasi-ideal  of R. By our  assumption
ANl = (Aol)oA c (Rol)oAc 1oA ie, Anl c loA Hence R is an intra-regular
by the Theorem 4.5, i.e., (2) = (1)

Theorem 4.7: Let R be an LA-ring with left identity e, such that (xe)R = xR for all
X € R. Then the following conditions are equivalent.

(1) R isan intra-regular.
(2) AnLcLoA forevery intuitionistic fuzzy quasi-ideal A and every intuitionistic fuzzy
leftideal L of R.

(3) BNL < LoB for every intuitionistic fuzzy bi-ideal B and every intuitionistic fuzzy
leftideal L of R.

(4) CAL c LoC for every intuitionistic fuzzy generalized bi-ideal C and every
intuitionistic fuzzy left ideal L of R.

Proof: Assume that (1) holds. Let C =(uc.y.) be an intuitionistic fuzzy generalized bi-ideal

and L = (u,_,y, ) be an intuitionistic fuzzy left ideal of R. Let x e R, this means that there

exist elements a,,b, eR such that x=X" (a,x*)b,. Now
(b; (a;x))x. Thus

x = (a; (xx))b; = (x(a; x))b;
Vx:Z?: biq, {/\inzl{:uL(pi )/\,uC (ql)}}

po(bi@ix)Ape (X) 2y (X) A g (X)
= s () A (9 = (e O )X,
= He MM S Hy °Hc-

(g opc)(x) =

\

Similarly, we have y. Uy, 2 7, °oyc. Hence CnL < LoC, ie., (1) = (4) It is clear
that (4) = (3) and (3) = (2). Suppose that (2) holds. Let A be an intuitionistic fuzzy right

ideal and L be an intuitionistic fuzzy left ideal of R. Since every intuitionistic fuzzy right
ideal of R is an intuitionistic fuzzy quasi-ideal of R, this implies that A is an intuitionistic

fuzzy quasi-ideal of R. By our supposition ,AnLc Lo A Thus R is an intra-regular by the
Theorem 4.5, i.e., (2) = (1).

5 CONCLUSION

Our ambition is to inspire the study and maturity of non associative algebraic structure
(LA-ring). The objective is to explain original methodological developments on ordered LA-
rings, which will be very helpful for upcoming theory of algebraic structure. The ideal of
fuzzy set to the characterizations of LA-rings are captivating a great attention of algebraist.
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The aim of this paper is to investigate, the study of (regular, intra-regular) LA-rings by using
of fuzzy left (right, interior, quasi-, bi-, generalized bi-) ideals.
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Summary. In this paper we will present the global dynamic and the Julia set of a quartic
second order difference equation with nonnegative parameters and the initial conditions are
arbitrary nonnegative real numbers.

1 INTRODUCTION

In general, polynomial difference equations and polynomial maps in the plane have been
studied in both the real and complex domains (see [8, 9]). First results on quadratic
polynomial difference equation have been obtained in [1, 2] but these results gave us only a
part of the basins of attraction of equilibrium points and period-two solutions. In [4], the
general second order difference equation is completely investigated and described the regions
of initial conditions in the first quadrant for which all solutions tend to equilibrium points,
period-two solutions, or the point at infinity, except for the case of infinitely many period-two
solutions. In [3], case of infinitely many period-two solutions is completely investigated. Our
results are based on the theorems which hold for monotone difference equations. Our
principal tool is the theory of monotone maps, and in particular cooperative maps, which
guarantee the existence and uniqueness of the stable and unstable invariant manifolds for the
fixed points and periodic points (see [5]). Consider the difference equation

Xn+1 = f(xn'xn—l);n = 0'1' (1)

where f is a continuous and increasing function in both variables. The following result has
been obtained in [1]:

Theorem 1 Let I € R and let f € C[I x1,I] be a function which increases in both
variables. Then for every solution of Eq. (1) the sub sequences {x,,}neo aNd {X2p41}me—_1 Of
even and odd terms of the solution do exactly one of the following:

(i) Eventually they are both monotonically increasing.
(i1) Eventually they are both monotonically decreasing.

(iii) One of them is monotonically increasing and the other is monotonically decreasing

2010 Mathematics Subject Classification: 39A05, 39A10, 39A23
Keywords and Phrases: Basin of Attraction, Period-two solutions, Julia set, Difference equation, stable and
unstable manifold, invariant manifolds
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As a consequence of Theorem 1 every bounded solution of Eq. (1) approaches either an
equilibrium solution or period-two solution and every unbounded solution is asymptotic to
the point at infinity in a monotonic way. Thus, the major problem in dynamics of Eq. (1) is
the problem of determining the basins of attraction of three different types of attractors: the
equilibrium solutions, period-two solution(s) and the point(s) at infinity. The following result
can be proved by using the techniques of proof of Theorem 11 in [5].

Theorem 2 Consider Eqg. (1) where f is increasing function in its arguments and assume
that there is no minimal period-two solution. Assume that E; (x4, y;) and E,(x,, y,) are two
consecutive equilibrium points in North-East ordering that satisfy

(X1, Y1) <ne (x2,¥2)
and that E; is a local attractor and E, is a saddle point or a non-hyperbolic point with second
characteristic root in interval (—1,1), with the neighborhoods where f is strictly increasing.
Then the basin of attraction B(E;) of E; is the region below the global stable manifold
W*S(E,). More precisely

B(E) ={(x,y): 3y y <y, (x,3) € W3 (ER)}

The basin of attraction B(E;) = WS(E,) is exactly the global stable manifold of E,. The
global stable manifold extends to the boundary of the domain of Eq. (1). If there exists a
period-two solution, then the end points of the global stable manifold are exactly the period
two solution.

Now, the theorems that are applied in [5] provided the two continuous curves W*(E,)
(sta-ble manifold) i W*(E,) (unstable manifold), both passing through the point E, (x5, y,)
from Theorem 2, such that W*(E,) is a graph of decreasing function and W*(E,) is a graph
of an increasing function. The curve WS (E,) splits the first quadrant of initial conditions into
two disjoint regions, but we do not know the explicit form of the curve W*(E,). In this paper
we investigate the following difference equation

Xps1 = AX3Xp_q + bx2x2_; + bxpx3_ +axi_i + cx2x,_q +dx,x2_; + 2)
texd_ i +expxy_g +exi i+ fx,_,mn=01,..

We expose the explicit form of the curve that separates the first quadrant into two basins of
attraction of a locally stable equilibrium point and of the point at infinity. One of the major
problems in the dynamics of polynomial maps is determining the basin of attraction of the
point at infinity and in particular the boundary of the that basin known as the Julia set. We
precisely determined the Julia set of Eq. (2) and we obtained the global dynamics in the
interior of the Julia set, which includes all the points for which solutions are not asymptotic to
the point at infinity. It turned out that the Julia set for Eq. (2) is the union of the stable
manifolds of some saddle equilibrium points, nonhyperbolic equilibrium points or period-two
points. We first list some results needed for the proofs of our theorems. The main result for
studying local stability of equilibrium is linearized stability theorem (see Theorem 1.1 in [7]).

Theorem 3 (linearized stability): Consider the difference equation
Xn+1 = [, Xp—1);n = 0,1, ... 3)
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and let x be an equilibrium point of difference equation (3). Letp = %and q= @

denote the partial derivatives of f(u, v) evaluated at equilibrium x. Let A; and A, be roots of
quadratic equation A2 — pA — q = 0.

a) If |A;] < 1and|1,| <1, then the equilibrium x is locally asymptotically stable
(sink).

b) If |A;] > 1 or|4,| < 1, then the equilibrium X is unstable.

) Ml <land|i| <1 |p|l<1-—q<2.Equilibrium X is a sink.

d) |4l >1and |1, >1 < |q| > 1and |p| < |1 —q|.Equilibrium X is a repeller.
e) |4l >1and|A,]| <1 & |p| > |1—ql. Equilibrium X is a saddle point.

f) |Ml=1lor|| =1 |p|=|1-q|orq=—1and |p| < 2. Equilibrium x is
called a non-hyperbolic point.

The next theorem (Theorem 1.4.1. in [6]) is a very useful tool in establishing bounds for the
solutions of nonlinear equations in terms of the solutions of equations with known behaviour.

Theorem 4 Let | be an interval of real numbers, let k be a positive integer, and let
F:1*¥*1 - [ | be a function which is increasing in all its arguments. Assume that {x,}o__,,
Vtne_x and {z,},-_i are sequences of real numbers such that

Xne1 < F(xp, ooy Xp_i),m=0,1, ...

Yn+1 = F(yn' "'ﬂyn—k)'n = 0'1'

Zny1 = F(zy, o, Zn_),n=10,1, ...
and

Xn < Vn < Zy, forall —k<n<0.

Then
Xn < Vn < Zy, foralln > 0.

The next well-known theorem gives us the number of positive zeros of a polynomial P(x).
Theorem 5 Let P(x) = agx? + a;xP1 + -+ a,xP» where a;, i =0,1,...,n are real
numbers and 0 < b, < b; < -+ < by, are integers. The number of positive zeros of P(x) = 0,

counting multiplicities, is either equal to v(P) or less than that by an even number, where
v(P) denotes the number of sign changes in the sequence ay, a4, ..., a,.
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2 MAIN RESULTS

By using the Theorem 3, we obtained the following result on local stability of the zero
equilibrium of Eq. (2):

Proposition 1 The zero equilibrium of Eq. (2) is one of the following:
a) locally asymptotically stable if f < 1,

b) non-hyperbolic and locally stable if f = 1,

C) unstableiff > 1.

Set f(x,y) = ax3y + bx?y? + bxy® + ay* + cx?y + dxy? + cy3 + exy + ey? + fy and
let p = af;’;’x) and g = of (’;’x) denote the partial derivatives of f(x,y) evaluated at the

equilibrium x. The linearized equation at the positive equilibrium X is

Zn+1 = PZp + qZp-1,
p=3(a+b)x3+ (2c + d)x? + ex,
p =5(a+ b)x3 + (4c + 2d)x? + 3ex + f.

Now, in view of Theorem 3 we obtain the following results on local stability of the positive
equilibrium of Eq. (2):

Proposition 2 The positive equilibrium of Eq. (2) is one of the following:

a) locally asymptotically stable if p + q < 1,

b) non-hyperbolic and locally stable if p + q = 1,

c) unstableif p + q > 1,

d) saddle pointif p > |q — 1],

e) repellerif 1—q<p <q-— 1

Theorem 6 If f > 1 then every solution {x,,} of Eq. (2) satisfieslim,,_,, x,, = .

Proof. If {x,,} isasolution of Eq. (2) then {x,,} satisfies the inequality
Xns1 = fxn_1,m=0,1, ...

which in view of the result on difference inequalities, see Theorem 4, implies that x,, >
yn, 1 = 1 where {x,,} is a solution of the initial value problem

VYni1fVn-1, V-1 =%_1and y, = xo n = 0,1, ...
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Consequently, xq,x_; > 0 thenyy, y_; > 0,y,, = 0 for all n, and

Xn = Yn = Al\/?n + /12(—\/7)11,11 = 1,2,

where 44,4, € R such that y,, > 0 for all n, which implies lim,,_,, x,, = .

Theorem 7 Consider the difference equation (2) in the first quadrant of initial conditions,
wherea > 0,b,c,d,e,f = 0 and 2e + f < 1. Then Eq. (2) has a zero equilibrium and a
unique positive equilibrium x,. The line ax 3 + bx%y + bxy? + ay® + cx? + dxy +
cy? + ex + ey + f = 1 isthe Julia set and separates the first quadrant into two regions:
the region below the line is the basin of attraction of point E,(0, 0) the region above the line
is the basin of attraction of the point at infinity and every point on the line except E, (x4, x4)
is a period-two solution of Eq.(2)

Proof. The equilibrium points of Eq. (2) are the solutions of equation
2(a+ b)x* +(2c +d)x® + 2ex? + fx = x
that is equivalent to
QRa+b)x> + Qc+d)x> +2ex + f—1Dx =0 (4)

Since the number of sign changes in the sequence 2 (a + b),2c + d,2e,f— 1 is one,
then by applying Theorem 5 implies Eq. (4) has two equilibria: zero equilibrium and unique
positive equilibrium x,. Since f > 0and f < 1, then by applying Proposition (1) the zero
equilibrium is locally asymptotically stable. Denote by h(x;,y) = ax3y + bx?y? +
bxy® + ay* + cx?y + dxy? + cy® + exy + ey? + fy and let p and q denote the
partial derivatives of function h(x,y) at point E,. By straightforward calculation we obtain
that the following hold:

p+q=@B(a+b)x>+ (2c+ d)x?+ex) + (5(a+ b)x> + (4c + 2d)x% + 3ex + f)
=8(a+ b)x% + (6¢c +3d)x? + dex + f
=2x(B(a+b)x*> + 2c+d)x +e)+ (2(a + b)x3 + (2c + d)x? + 2ex + f)
=2x(B(a+b)x*+ 2c+d)x +e)+1> 1.
qg—p=(5>a+b)x®+ (4c + 2d)x% + 3ex + f) — (3(a + b)x3 + (2¢ + d)x? + eX)
=QRa+b)x*+QRc+d)x*+2ex+f—-1)+1=1.
Hence, by applying Proposition (2) the positive equilibrium is an unstable non-hyperbolic
point. Period-two solution u, v satisfies the system
u = (av?® + buv? + bu?v + au® + cv? + duv + cu? + ev+ eu + flu
v = (au® + bu?v + buv? + av® + cu? + duv + cv? + eu + ev + f)v.

Obviously, the point (0,0) is solution of the system above, but it is not period two solution.
Hence, it has to be v > 0 which implies

au® + bu?v + buv? + av® + cu? + duv + cv? + eu + ev + f = 1.
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Therefore every point of the set
{(x,y) : ax® + bx?y + bxy? +ay® +cx? +dxy+cy*> +ex+ey+f = 1}
is a period-two solution of Eq. (2) except point E.. Now, we have to show that line

g (x,y) = ax® + bx%y + bxy? + ay® + cx? + dxy + cy? + ex + ey
+f=1

is a graph of the decreasing function in the first quadrant. Let for some x > 0 there are y;
andy, (0 < y; < y,) suchthatg(x,y;) = g(x,y,) = 1. As g(x,y) is increasing in both
variables then

1=g0(y) <glxy,) =1,

which is impossible. Thus the curve g(x,y) = 1 is the graph of function in the first quadrant.
Further over g(x,y) = 1 then

dg  0g
—+—y' =0.
6x+6yy

By applying the fact that is g(x,y) is increasing in both variables we obtain y’ < 0 in the first
quadrant. Hence, g(x,y) =1 is the graph of the decreasing function in the first quadrant.
Let{x,} be asolution of Eq. (2) for initial condition (x,, x_,) which lies below the line

ax® + bx%y + bxy? +ay® +cx? +dxy+cy? +ex+ey+f = 1.
Then
g(xo, x_1) = axg + bxdx_q + bxox2; + ax3; + cxf + dxgx_, + cx2, + ex,
+ex_;+f<1,

Xn+1 = g(xn: Xn—1)Xn-1,
and

x1 = g(xg, X_1)X_1 < X_y,

X, = g(x1,%0)x0 < g(x_1,%0)%0 = g (X0, Xx_1) X0 < Xo.

Thus (x,,x;) and (x,,x_;) are two points in North-East ordering (x;,x;) <pe (X0,%-1)
which means that the point (x,, x;) is also below the line g(x,y) =1 and also holds

g(xz'xl) < 1
Similarly, we find
x3 = g(x2,x1)% < X_q,
x4 = g(x3,%2)% < g(x1,x2)x5 = g(x3,x1) %, < X3
Continuing on this way we get
(0:0) Sne Sne (x4,x3) Sne (xz'x1) Sne (xO'x—l)

which implies that both sub sequences {x,,,} and {x,,+,} are monotonically decreasing and
bounded below by 0. Since below the line g(x,y) = 1 there are no period-two solutions it
must be x,,, — 0 and x,,,., — 0. On the other hand, if we consider solution {x,,} of Eq.(2)
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for initial condition (x,, x_,) which lies above the line g(x,y) =1 then g(x,,x_;) > 1 and
by applying the method shown above we obtain the following condition:

(x—1,xo) <ne (xpxz) <ne (X3,X4) <ne -

Therefore, both sub sequences {x,,} and {x,,,1} are monotonically increasing, hence
Xon — 00 and x,,41 = 0 aSn — oo,

The next figure is visual illustration of Theorem 7 obtained by using Mathematica 9.0, with
the boundaries of the basins of attraction obtained by using the software package Dynamica

[6].

Figure 1. lllustration of Theorem 7
a=03,b=1,¢c=05d=1,e=04andf=0.25

In view of Theorem 4 which implies results on difference inequalities we get the
following:

Proposition 3 Consider the difference equation of type

Xps1 = Ax3x,_1 + Bx2x2_ + Cxpx>_ + Dxp_ + Ex2xp_q + Fx,x2_; + (5)

+Gx3_1 + Hxpxp g + Ix2_; + Jxp_q,

where the given parameters satisfy conditions 4,B,C,D,E,F,G,H,I > 0and 0 <] < 1.
Then the global stable manifold of the positive equilibrium is between two lines

pr:min{A,D} (x® + y3) + min{B, C} (x*y + xy?) + min{E, G} (x? + y?) (6)

+min{H,I}(x+y)+Fxy+] =1.
and
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py:max{A,D} (x3 + y3) + max{B, C} (x*y + xy?) + max{E,G} (x? + y?) (7

+max{H,I}(x+y)+Fxy+]=1.

Proof. Since the number of sign changes in the sequenceA + B + C + D,E + F +
G,H + I,] — 1is one, then by applying Theorem 5 implies Eq. (5) has two equilibria: zero
equilibrium and unique positive equilibrium x,. Since /] < 1 the zero equilibrium is always
locally asymptotically stable thus the positive equilibrium must be unstable equilibrium point.
The theorems applied in [5] provided the following global behavior. More precisely, if the
positive equilibrium is a saddle point or a non-hyperbolic point then there exists a global
stable manifold which contains point E, (X, x); where x is the positive equilibrium. In this
case global behavior of Eq. (5) is described by Theorem 9 in [4]. If the positive equilibrium is
a repeller then there exists a period-two solution and we obtain that the period-two solution is
a saddle point and there are two global stable manifolds which contain points P, (u, v) and
P, (v,u) whre (u, v) is unique period-two solution of Eq.(5). In this case the global behavior
of Eq. (5) is described by Theorem 10 in [4]. Although the Theorems 9 and 10 in [4] have
been applied on a polynomial second order difference equation they are special cases of
general Theorems in [5] applied on function f, where f is increasing function in its arguments.

So, the global dynamics of Eg. (5) is exactly the same as the global dynamics of equations
described by Theorems 9 and 10 in [4]. Furthermore

Xpi1 = Ax3x,_1 + Bx2x2_ + Cxpx>_ + Dxp_ + Ex2xp_q + Fx,x2_; +
+Gx3_ + Hxpxpy g +Ix2_1 + x4
> (min{4, D} (x3 + x3_1) + min{B, C} (x2x,_1 + X Xx2_1))Xn_1 +
+(min{E, G}(x2 + x2_,) + min{H,I}(x,, + xp_1) + FxpXpn_1 + J)Xpn_1,
and
Xpe1 = Ax3xy_1 + Bx2x?_; + Cxpx3_ + DX}y + Ex2xp_q + Fxpx2_, +
+Gx3_ 4+ Hxpxy_q + Ix%_; + Jxp_1
< (max{A4, D}(x3 + x3_;) + max(xZx,_1 + xpx2_1))xp_1 +
+(max{E, G}(x2 + x2_,) + max{H,1}(x, + Xp_1) + FxpXp_1 + J)Xp_1.
for all n, by applying Theorem 4 for solution {x,} of Eq. (5) the following inequality holds
Yn S Xn < Zp,

for all n, where {y,} is a solution of the difference equation
Yne1 = (min{4, D} (v + yi_1) + min{B, C} (V3¥n-1 + Yn¥r-1))%n-1 (8)
+(min{E, G} (7% + yi_1) + min{H, I} On + Yn-1) + F¥p¥n_1 + )%n_1,
and {z,,} is a solution of the difference equation

Zn+1 = (max{A, D} (z3 + zj_,) + max{B, C} (23 zy_1 + ZnZj_1))Xn—1 9)
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+ (max{E,G} (z2 + z2_)) + max{H,1} (z, + zp_1) + FzpnZy_1 + )Xp_1.

Since Eq. (8) and Eq. (9) satisfy all conditions of Theorem 7 this implies that the statement

of Proposition 3 holds.

3

CONCLUSION

In this paper we restrict our attention to certain polynomial quartic second order difference

equation Eq. (2). It is important to mention that we have accurately determined the Julia set of
Eqg. (2) and the basins of attractions for the zero equilibrium and the positive equilibrium
point. In general, all theoretical concepts which are very useful in proving the results of
global attractivity of equilibrium points and period-two solutions only give us existence of
global stable manifold(s) whose computation leads to very uncomfortable calculus.
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Summary. The work considers application of Runge-Kutta Discontinuous Galerkin method for
solution of Godunov-Romenskii type hyperbolic model for hyperelastic medium. The medium
is considered inhomogeneous with piecewise uniform distributed properties. To describe
evolution of medium Godunov-Romenskii model is used supplemented with transport equation
that describes evolution of properties distribution. The numerical approach is based on
application of Runge-Kutta Discontinuous Galerkin method with Godunov type fluxes both for
conservative and non-conservative terms. We describe mathematical model and corresponding
numerical algorithm briefly. Results of numerical simulations are presented.

1 INTRODUCTION

The present paper is devoted to numerical study of Runge-Kutta Discontinuous Galerkin
(RK/DG) method of high order of accuracy for solution of first order hyperbolic system of
equations of hyperelasticity.The model describes dynamics of continuous media (deformation
and strain fields, velocity, temperature and entropy) in Eulerian reference frame. The model
was originally proposed[1] by S.Godunov and E.Romenskii. Recently there has been a
significant increase in interest in such type of the models since it is assumed that in some cases
they are more suitable (comparably to traditional models based on arbitrary
Lagrangian-Eulerian description) to simulation of physical phenomena involving extremely
large deformations of the media[2, 3]. Such type of problems are often arise in numerical
simulation of shock wave phenomena in solids induced by rapid mechanical, thermal or
radiation loads[24, 25].

Currently, a number of papers is devoted to numerical solution of hyperelasticity model[4,
5]. However, the most of them considers WENO-based approaches[6, 7]. In present work
Runge-Kutta Discontinuous Galerkin method[8] is considered. The general motivation for such
a choice is its universality and possibility of generalization to higher-order equations, that may
occur in the multiphase problems. The second reason is to estimate efficiency of the RK/DG
method when simulating Godunov-Romenskii model for particular cases of more simple (gas
and fluid dynamics) and more complex (inhomogenious hyperelastic medium) settings. Both
issues can be considered as a preliminary tests for further development of RK/DG numerical
techniques for complex multiphase and multicomponent models developed in, e.g.,
Baer-Nunziato framework[9].

The main features of present paper are:

2010 Mathematics Subject Classification: 74H05, 65K 05, 65Q10
Key words and Phrases: Runge-Kutta discontinuous Galerkin methods, hyperelasticity
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o first order hyperbolic hyperelastic model is considered as a unified framework to
describe solid/liquid/gaseous media;

e heterogeneous elastic medium case which assumes piecewise uniform distribution of
medium properties is considered .

The structure of the paper is as follows. The basic Godunov-Romenskii hyperelastic model
is described at the beginning of the section 2. In the subsection 2.1 its simple generalization to
the case of piecewise homogeneous case is considered. Section 3 is devoted to the description
of the RK/DG numerical algorithm for both conservative and non-conservative hyperbolic
equations. In section 4 the implementation detalis and results of numerical experiments are
presented.

2 MATHEMATICAL MODEL

To describe dynamics of the continuous hyperelastic medium in the Euler reference frame
the Godunov-Romenskii model[10] is used. The corresponding system of equations is
hyperbolic and consists of conservation law of momentum (1), dynamic equations for distortion
tensor components (2) and conservation law of energy (3):

d(pu)

p +V-(pu®u-T)=0, 1)
a(gtF)+V-(pF®u—pu®FT)=—u®V-(pF), (2)
a(gtE)+V-(puE—u®T):O. (3)

Here T is Cauchy stress tensor, E = U+|u[* /2 — total energy, U= U(F,S) — internal
energy. The primary variables are components of distortion tensor F =V, x (x and X are

Euler and Lagrange coordinates of medium points, respectively), velocity u and entropy S .
Symbol “® ” denotes the tensor product. The medium density p is defined as

p = p, | det(F), (4)

where p, = p,(X) denotes the density of undeformed medium. The combination of equations
(2) and (4) recovers the continuity equation:

op
L4V (pu)=0.
& TV (pu)

This equation can be used instead of one of the equations in (2) for the distortion tensor
components.
System (1)-(3) has to be closed by the specific internal energy (equation of state, EOS) in its

canonical form, U = U(F,S). To provide the frame indifference of internal energy it must be
expressed in terms of some symmetric strain tensor G [10, 5]:
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U=U(F,S)=U(G,S). (5)

Here and further U,U,U",... denote functional dependencies of the same variable on

particular set of arguments.
A number of strain tensors[10, 11] can be used in (5). In the present work the Finger tensor

G=FF" is considered[4]. In this case the Cauchy stress tensor T is expressed by
Murnaghan formula[10]:

ou
T=22pG.—. (6)
P25

Since U is a function of Finger tensor components it can be expressed, due to objectivity
arguments, as a function of its invariants 1, ;:

U=U"(I,1,,1,,8), @)
I, =tr(G), 1, = |tr(G) ~tr(G?) |/2,1, = det(G).

The internal energy U can be considered as the sum of two terms. The first one, U", is

“hydrodynamical” part that depends only on bulk deformation and the second one, U™,
describes dependency on shear deformation:

Ur=u"(1,,S)+ U™ (I,1,,1,,S). (8)
Hereafter the isotropic hyperelastic EOS[4] is used:
K " 2
u"(1,,8) = 20:2 (157 =1)" +¢,T)1;% (exp[S /¢, ]-1), 9)
U™ (1, 1,,15) = B 12 (17131, )/ 2. (10)

Here K, =cJ —(4/3)b; is the squared bulk sound velocity, c, is sound velocity, b, is
shear elastic wave velocity, B, =b’, c, is the volumetric heat capacity, T, is reference
temperature, «, S, y are constant parameters.

The considered model can describe both solids (oU" /ol ,, = 0) and liquids/gases (
ou*/aol,, =0,0U" /oly = 0). Inthe latter case the system of equations (1)-(3) can be reduced

to classical gas dynamics equations with only bulk deformation accounted. That can be done by
replacing the equations for distortion tensor components (2) with mass conservation law.

2.1 Piecewise homogeneous model

Consider now spatial domain € occupied by piecewise homogeneous medium. The latter
means that parameters of EOS (9), (10) are different in different subdomains (phases) of Q.
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Let Q,, k=1,N, where N, is number of phases, be such subdomains,

Q=] k=L N,.Letg =g (X) be characteristic functions of ©, :

1L XeQ,

0, Xz0,. k=1,N,; ;@(X):l. (11)

¢ (X) :{

Set of EOS parameters specific for subdomain ©, is defined as a“ ={a, 8,7,K,....},

k=1,N, . The EOS in that case has the form U, = U, (G,S;a® ) in domain ©, . Then the
distribution of medium property in the Lagrangian reference frame is defined as

() = Y., X), (12)

During deformation of the medium, the values of characteristic functions ¢, = ¢, (x,t) in
Eulerian reference frame satisfy the following equation:

%+u% =0, (13)
ot OX

where u(x,t) is velocity defined as a function of Eulerian coordinates. Equation (13) should
be supplemented by appropriate initial conditions.

Further we do not use characteristic functions ¢, but rather their “smoothed” version. The
smoothed zone width is a parameter of the model and is resolved by the computational mesh
used in simulations. Equation (13) is nonconservative and is solved together with
hyperelasticity model equations (1)-(3).

Considered above inhomogeneous model assumes that only one EOS is used to describe
behavior of all phases, — that s, it is not “real” multiphase model. However, it has a number of
features of multiphase models: e.g., it consists of two groups of equations (conservative and
nonconservative)[12, 9]. In present work this model is considered as the simplest one to test and
verify algorithmic techniques for numerical solution of more complicated models.

3 NUMERICAL ALGORITHMS

The considered class of problems is described by the hyperbolic system of equations of the
first order. The total number of equations is large (13 equations of hyperelastic model plus N,

equations for ¢, ), and its solution has a rich wave structure. The system consists of
conservative and nonconservative equations. Its possible generalizations include spatial
operators of higher order (for example, when considering surface tension). This motivates the
following requirements for numerical methods:

e The method must be capable for calculations with high approximation accuracy.

e It has to provide possibility to construct numerical approximations of the hyperbolic

operators as well as of diffusion ones.
e It can be applied in conservative and nonconservative settings.
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e |t should provide unified framework when considering both theoretical and software
implementation issues.
We consider RK/DG as a candidate for such a framework. Further we briefly describe it for
both conservative and nonconservative cases.

Conservative case. Consider one-dimensional conservation law in spatial domain
Q=[0,L]cR:

Eﬂg(x,t)+6F (g(x,t))zo 14
ot ox ’

where g(x,t) is conserved quantity and F (g) is corresponding physical flux.

Let {a),}:g be a partition of Q into computational cells, and &, =[X_y,. X2 ]:1, i, N
We shall denote by \/ (€2) the space of elements of L” () whose restrictionto «; belongs
to a vector space P* (a)i ) of polynomials of degree k :

VA :{v:v|mlePk(a)i);],, i, N}.
Define the elements of Pk(a)i) by linearly independent orthogonal set of Legendre
polynomials {l//i(l)}::: and replace exact solution g(x,t) in e, by its approximation
k
0y (X,t) |a,| = ZWi(I) (X) gi(l) (t)v (15)
1=0
In order to obtain the semidiscrete equation for function g, (x,t) we multiply equation (14)
by test function v, €\, integrate over @, and apply Green’s formula:

20 e 3 JF (0 (10w, (08T =0, (1

a ecow; ¢

J%“ (x)dx + _[F (s (x1))

In equation (16) physical flux F (g, (x,t)) is replaced by numerical flux F (g, (x,t)) in
surface integral. In one-dimensional case one can obtain:
Z _[F Vi dI" = Fi+l/2Vh (Xi++1/2 ) - Fi—llzvh (Xi_—llz )

ee@a}l e

Here F..,, isnumerical flux at x e de,.

A

Fiae = F (g:ﬂ/z’ gi;1/2)1

where g, and g, are left and right hand side limiting values of g, at xedw, .

Different numerical fluxes for hyperbolic hyperelastic models are known (including HLLC,
HLL, etc.)[4]. We consider here only two options:
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1. Lax-Friedrichs flux:

F = 2P (002)+F (02) |- 222 (072 — i)

2 C2At
2. Rusanov flux:
FAi::SZ = 1 F (gi+i1/2)+F (gi;llz) _EA(git_rl/Z _gi;1/2)’
2 2
here
A= A(Qﬁuz, gi;uz) = max(| Az ] Az |),
where A%, ., A, — eigenvalues of Jacobian matrices J(0;.,) and J(9.,,) .

J(g)=0oF (9)/ag.

Considering test functions in the form v, (x) :{ (')}::Z the following system of ordinal

differential equation is obtained for vector of coefficients § = {gi(" }::z ;

— = M(9). (17)

For time discretization of (17) a strong stability preserving TVD/RK3 method[8] is used.
The appropriate limiting procedure (see below) is applied at each Runge—Kutta stage.

Nonconservative case. Let us describe now the RK/DG method applied to the nonconservative
equation (13) in spatial domain Q =[0,L]c R.

For (13) the traditional approach can not be applied in the same way as it was done
previously for conservative case. The main cause is the difficulty of the definition of the

solution g(x,t) in terms of distributions. The correct formulation of the Riemann problem
and corresponding generalized Hugoniot conditions can not be set in traditional way. The
constructive solution to this problem is provided by DLM (DalMaso—LeFloch—Murat)
theoretical framework[13].

Consider the discontinuous function

g(x) =9, +H(x-xy)9,,

where H =H(x) is Heaviside function, x, is the discontinuity coordinate,
9, = g(xd iO) are the right and left-hand solution limits, respectively. For this case the
expression
G

a(x,g)a?(, (18)
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where function a(x,g) has the discontinuity at the same point x,, can not be defined

correctly as distirbution[14] and the special treatment is needed as developed in DLM theory.
To proceed, replace g by its smooth regularization g, :

d» X< Xy —&,
X=X, +&
gg (X): ®(#]! Xd — &, X” Xd +¢&,
d,, X>Xd+€,

where & >0, mapping ®:[0,1]+—[g,,q,] is Liepshitz continuous and is called path[13].
Now define non-conservative product (18) as

g . g
a(x,g)— = lima(x,g.)—=,
(x9)2) = lima(xg,) >

In such a way at € > 0 the product (18) can be defined as bounded Borel measure,
converging to (18) in * -weak topology:

8(D(r) @)y,

a(g) = —Co(x-x,), C= ja(qa( ) (19)

where &(x) is Dirac delta-function.
Consider again spatial domain Q =[0,L] < R with given partition {a),}:g Define the
space of boundary points I' = {x:XGaa)i},i =1,N . Introduce the piecewise polynomials

space \/“ as was done previously. Multiply (13) by test function v, € \/* and integrate it over
Q taking (19) into account. This leads to the following semidiscrete equation for g, € \(*:

j—vhdx+ Zja (x, gh vhdx+z<vh> ng;( )a(®(z))dz =0,

we o xel’ 0

where (v, )= (v; +v,'1)/2. Borel measure (19) depends on the choice of the path @ . In the

present work the linear path ®(7)=(g, —g,)z+g, is chosen[13]. Further one can proceed as
in the conservative setting.

Limiting procedure. For considered method the numerical solution will not be monotonic in
case of discontinuous solution. To avoid non-physical oscillations in numerical solution an
artificial dissipation has to be introduced. It can be done in various ways, among which methods
based on geometric limiting, explicit introduction of additional dissipative terms and
algorithms based on high-pass filtering component of the solution are known [15]. In [16]
method for monotonizing the solution by explicitly introducing von Neumann-Richtmeier type
artificial viscosity is described. The most popular technique is to use geometrical and
moment-based limiters such as maximum preserving limiter[17], minmod limiter[8], or
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Krivodonova limiter[18]. In the present work we use maximum preserving limiter for
concentration function in nonconservative transport equation (13) and Krivodonova moment
limiter for hyperelastic model (1)-(3).

4 NUMERICAL RESULTS

The described algorithm was implemented as program code using C++ language. The
feature of software implementation is usage thermodynamical potential with its natural
variables as EOS. For appropriate medium properties calculation the automatic differentiation
technique is used (STAN[19]). Thermodynamical parameters (stress tensor, acoustic tensor,
temperature, entropy, etc) are obtained directly from thermodynamical potential without
numerical approximation of its derivatives. The developed program also uses libraries
BOOST[20] and EIGEN[21].

In present section the numerical results for Godunov-Romenskii model are given for
homogeneous and heterogeneous medium testcases. The well-known model tests for solid and
gaseous phases are considered. In the examples below, initial value problems are solved in a
computational domain Q =[0,1] cm. The position of the discontinuity in the initial data is

x=0.5 cm.

4.1 Homogeneous case

Gas dynamics. As mentioned above, Godunov-Romenskii model can describe gas flow
assuming that EOS is chosen in a proper way. This approach is used here to solve the
well-known Sod shock tube problem[22], adapted for hyperelastic model setting. Complete

hyperelastic model with 13 equations for variables (uk,Fij,S) is considered instead Euler

ideal gas dynamics system with 5 equations[23].
Mesh step is 0.001 cm. Time step is 0.01 sec. The piecewise polynomials inside each cell
are up to third order. As it is mentioned above, EOS consists of only hydrodynamical term (9)

U=U"(1,,S)=cT,1;”(exp[S /¢, ]-1).

with p, =1.0g/cm® being initial density, ¢, =1.0-10°kJ/(gK) — heat capacity,
T, =100K — reference temperature, b, =0.0km/s — shear wave speed and y =04 —
constant parameters.

Distortion tensor coefficients and entropy values are chosen in such a way that they

correspond to the parameters of the Sod problem for Euler equations. The initial state
corresponds to Riemann problem with two constant states:

0, 100 g
u={o™ F=|0 1 0| S =4010°"2,
S gK

0 00 1
0), 8 00 )
u=[0|*M F={0 1 0| s =17.10°%
S gK

0 00 1
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where indices “I” and “r” denotes left and right states, respectively.
Figure 1 shows various state dimensionless profiles at time t = 0.6 sec. The results are fully
identical to gas dynamics ones[23].

1.0
¥
N
0.8 i
M u
0.6 Ul
0.4 } \
0.2 } \
0.0 j k
00 02 04 06 08 10
X, cm

Figure 1: Dimensionless density (o), velocity (u) and internal energy (U ) profiles atatime t=0.6s.
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Figure 2: Density p (up) and velocities u, Vv, w (down) distributions for finite volume (left) and RK/DG
(right) methods at time 0.5 us.

Nonlinear hyperelasticity. This test is from [4] with nondiagonal distortion tensor. The
RK/DG and finite volume methods are considered. Mesh step is 0.002 cm. Time step is 0.005
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4 s. Piecewise polynomials in each cell are considered up to third order. The initial state is
given by:

0), 098 0 0 g
u =|05 Tm F=|002 1 01| § =107,
1 0 0 1 J
0, 10 0 .
u={o ™ F=lo 1 01| s =0~
S gK
0 00 1

The material is assumed to be copper with EOS parameters defined in [4]: p, = 8.9 glem®,
c, =4.6 km/s, ¢, =3.9-10*kJ/(g-K), T, =300 K, b, =2.1km/s, & =1.0, #=3.0, ¥ =2.0.
Results are shown in Figure 2 at time 0.5 s in the comparison with finite volume method

results. RK/DG method has better resolution of waves. The results are fully identical to the
published ones[4].

4.2 Heterogeneous case

In this testcase mesh step is h =5-10"* cm and time step is 0.005 #s. The polynomials

inside each cell are considered up to third order.
Consider the heterogeneous medium model described in subsection 2.1. Homogeneous

domains correspond to €, =(0,1/2] and Q, =(1/2,1). The smoothed characteristic
functions for Q, arechosenas ¢ =1-4,,

0, xe(0,1/2-¢)
¢ = 11 x—1 —isin x x—l , xe[l/2-61/2+¢]
2 2¢ 2) 2rx £ 2
1, xe(l/2+e¢,1),
where & =10h. Initial conditions are given by[4]:
2 ‘ 1 0 0 "
u=| 0| F=| 001 095 002 s,:o—}J(,
01) ° 0015 0 09
0 ‘ 1 0 0 ‘
u=|-003X" E=|0015 095 0| s =0
S gK
-0.01 -001 0 0.9

Left material EOS parameters: p, = 8.93 g/lcm®, ¢, = 4.6 km/s, ¢, =3.9:10* kl/(g-K),
T, =300K, b, =2.1km/s, @ =1.0, #=3.0, y =2.0.
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Figure 3: Denstiy ( o) distribution at t= 0.5 s (left) and x -t diagram (right).
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Figure 4: Velocity (u) distribution at t= 0.5 s (left) and x -t diagram (right).
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Figure 5: Stress tensor component (o, ) distribution at t= 0.5 us (left) and x - t diagram (right).

Right material EOS parameters: p, = 8.93 glem® ¢, = 6.22 km/s, ¢, =9.0-10* kJ/(g-K),
T, =300 K, b, =3.16 km/s, o =1.0, B =3.577, y =2.088.
Solution at time t= 0.5 s is shown in Figures 3-5. Interphase boundary is moving from

left to right. Left figures correspond to variables profiles at given time, right ones are
corresponding X -t diagrams.
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In Figure 3 the density profile and corresponding X -t diagram is shown attime t= 0.5us.
In Figures 4 and 5 velocity u and stress tensor component o, and corresponding X-t
diagrams are shown.

5 CONCLUSION

The paper discusses the application of the RK/DG method for solving problems of
hyperelasticity in an inhomogeneous medium. Both models, the homogeneous and
heterogeneous one, admitting piecewise-constant distribution of medium properties, are
investigated. As a result of a series of calculations, it was shown that the Godunov-Romenskii
hyperelastic model can be practically applied to solve gas dynamics problems, when the
internal energy of a medium depends only on its bulk deformations and entropy. The
application of the RK/DG method demonstrates sharp resolution of wavefronts, comparable to
the use of methods of the WENO type.
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Summary. The technique of Monte Carlo modeling of radiation-induced electric currents in
heterogeneous finely dispersed medium with direct consideration of their microstructure is
worked out. The main attention is paid to developing the method of the construction of a
geometric model of the polydisperse structures. The method based on random tracing
algorithm is intended for implementation on heterogeneous computing clusters with using the
graphical processors and the CUDA parallelization of calculations. The geometric model
includes a detecting system for statistical evaluation of the desired physical quantities (electric
current density). A computational experiment was performed to study the basic regularities of
generation of electrical currents arising in polydispersed mfterial being under X-radiation.
The results of the experiment showed the irradiation of the object under study produces
electric currents with a sharply inhomogeneous spatial structure. Inhomogeneities occur near
the boundary surfaces between the binder and inclusions.

1 INTRODUCTION

Heterogeneous materials of finely dispersed structures are widely used in mechanical
engineering, heat power engineering, rocket, aviation, chemical and other industries. This is
because these materials provide the required strength, thermal, hydraulic, technological
properties and can operate at high temperatures and pressures. Such materials are used, for
instance, in protection of structures from intensive energy flows [1], creation of solid
propellants [2, 3].

Investigation of radiation-induced electrical effects in heterogeneous finely dispersed
media is very actual for researching the protective and functional properties of such media
being under radiation [4-9]. Heterogeneous dispersed structures are the materials having huge
number of inner boundaries between homogeneous components. The presence of these
boundaries leads to generation of electrical phenomenon due to the lack of electronic
equilibrium near them [10-12].

Mathematical modeling of radiation-induced electrical effects in finely dispersed media
involves the development of radiation transport simulation algorithms as well as the
construction of a geometric model of a substance with a direct resolution of its microstructure.

The transport of radiation in heterogeneous materials of complex geometric structure is
cascade process and characterized by the fact that the particle pathways are comparable with
the size of the inhomogeneities of the medium. In this situation, a detailed simulation of each
collision of radiation particles with atoms of the medium is required [13]. Statistical

2010 Mathematics Subject Classification: 97M50, 97N50, 93A30.
Key words and Phrases: Finely dispersed medium, Radiation induced current, Monte Carlo simulation.
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algorithms of radiation cascade transport modelling are worked out considering the features of
radiation transport in finely dispersed media [14, 15].

The main attention in this work is paid to the construction of a geometrical model of a
dispersed structure. The model includes the detector (registration) system for statistical
estimation of the electrical current in an irradiated object.

Various algorithms can be used to construct a geometric model of the material (placement
of microstructure particles with specified geometric properties inside the sample). The most
popular of these is the algorithm of Lubachevsky-Stillinger [16-18]. The algorithm simulates
the process of mechanical compression of a set of solid particles. There are other techniques
for construction of geometrical model of materials in question [19, 20].

These algorithms are poorly parallelized on GPUs due to their complex internal logic and
therefore cannot be integrated into common code designed for heterogeneous computing
clusters (HCC).

A method of creating the geometrical model of the irradiated object based on ray-tracing
algorithm [21] is worked out in this work. The method has almost unlimited scalability and is
easily implemented on the graphics subsystem of the HCC.

The developed code for supercomputer simulation of radiation-induced electric currents in
heterogeneous dispersed materials with direct consideration of their microstructure is
implemented on heterogeneous computing clusters.

The results of a computational experiment to calculate the current density in a fragment of
finely dispersed material show that electric currents with a sharply inhomogeneous spatial
structure are formed during irradiation of the object under study. Inhomogeneities occur near
the boundary surfaces between the binder and inclusions.

2 GEOMETRICAL MODEL OF THE FINELY DISPERSED STRUCTURES

Base characteristics of the dispersed medium are the size of suspended particles in
dispersed systems and dispersity (relative volume fraction of suspended particles of every
type). It is assumed in this paper that all particles of given type are of the same size.

The geometric model also includes a model of the detector system for the statistical
evaluation of the required physical quantities (electrical current). The detector system
intended for the statistical estimation of functionals on the space of solutions of the transport
equation includes a set of “detectors”, spheres of a specified size and location within which
the events of the interaction of the radiation quanta and the secondary particles with the
material are recorded.

The detectors must be isolated from each other (should not intersect) and the entire volume
of the detector should be inside the given matter (in the context of the considered media, they
should not “capture” the boundaries between homogeneous components).

It can consider the model of the dispersed matter with the detectors as a polydisperse
medium consisting of some types of solid nonoverlapping objects (inclusions): suspended
particles and detectors. However, several detectors may be inside a single particle.

Let some object be a polydisperse medium consisting of a binder and N types of suspended
spherical particles of radius r, (n=1,...,N).

The developed algorithm for creating a geometric model has the following structure.

Initially, the placement of inclusions of the 1% type is constructed.

1. The coordinates (Xmin, Ymin, Zmin) @Nd (Xmax, Ymax» Zmax) OF the object are determined,;
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2. M =(Zax = Ziin )" (Yoax = Youin )/ 7212, beams are drawn from a random point on the
plane x=Xnin, along the X-axis; My”ﬂ:(z -Z

max min ) (Xmax - Xmin )/ﬂ.rnzzl beams are
drawn from a random point on the plane y=Yn, along the Y-axis and
M7 = (Yo = Yoin ) (X imax = X min )/ﬂrnz:1 beams are drawn from a random point on the
plane z=Z, along the Z-axis;
3. The intersection points of the beams with boundary surfaces of homogeneous parts of
the object are calculated (fig. 1).

4. A random point (center of a particle of 1% type) on every interval between two
consecutive intersection points (segments 1-2, 3-4 and 5-6 in fig. 1) is played.

max

Fig. 1. Scheme of particle placement algorithm Fig. 2. Scheme of particle excluding

The next stage of the algorithm is to filter (exclude) particles according to the following

criteria.

- The particles should not intersect the boundary surfaces of the homogeneous parts of
the object (if intersection takes place, particle is excluded from corresponding set);

- The particles must be isolated from each other.

Elimination of mutual intersections of detectors is carried out by using the following

method.

- Itis built a graph on the set of constructed points (centers of the inclusions). The nodes
of the graph are the centers of the particles. The edges of the graph are constructed
between two nodes for which the distance between the centers of the particles is less
than 2r_, +S,_, (Sh=1 is special value that restricts the minimum distance between the

particles);
- The node of the graph having the maximum number of edges is defined. It is excluded
from the graph (fig. 2).
Last step is repeated until there are no edges left in the graph.
The algorithm is repeated with additional beams if a number of inclusions is less then
requiered.
The set of detectors is constructed after the geometrical model is built with inclusions of all
types. The developed algorithm is used for the construction of the detector set but there is one
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exception. Some of the detectors may be located entirely inside the inclusions to estimate the
desired value in suspended particles.

A fragment of geometrical model consisting of epoxy binder, metal or dielectric inclusions
(blue spheres) and a set of detectors (magenta spheres) is shown in fig. 3 (the image is
enlarged for clarity).

Fig. 3. A fragment of geometrical model constructed by use of developed algorithm
All inclusions are closed, but appear cropped due to image magnification.

3 MODELING OF THE RADIATION TRANSPORT

The complicated process of particle transport through the matter can be represented by a
sequence of elementary processes of the interaction between the particle and the atoms of
matter (particle trajectory). These processes include the scattering, braking or disappearance
of the particle due to absorption or escape from the considered system (from the object). This
representation is convenient for modelling the radiation transport by the Monte-Carlo method.

The transport of the particles accompanied by the birth of secondary particles in cascade
processes of the interaction of the radiation with matter is described by a system of integral
equations.

Q=Q +[k(x,x)Q(x)dx' =Q +KQ. 1)

Here x=(r,Q,E), where r,Q,E are coordinates, direction of motion and energy,
respectively; Q(x) is the density of collisions and Ql(x) is the density of the first collisions;

k =(x, x') is the kernel of the integral operator and has the meaning of probability density of
X" — X transition.
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Equation (1) is true for every type of particles of cascade. The previous generation particle
flux is the next generation particle source.

The objective of the radiation transport theory is to compute the readings of detector
located in the field of radiation. The desired (measured) values are presented as the readings
of some detector and are written as functional on the space of the transport equation solutions.
We consider such registering facilities (detectors) whose readings are equal to the sum of the
contributions of some particle’s collisions in a sensitive volume of the detector (additive
detectors). To evaluate the desired measured value by the Monte Carlo method, the random
trajectories of the particles are simulated (fig. 4).

binder
\/\Tc’to; £
" inclusion “1
Detector %
Fig. 4. Particle trajectory Fig. 5 A fragment of dispersed material

The contributions of these trajectories to the detector’s measurable value are summed up.
The particle trajectory construction is performed according to the chosen physical model of
the interaction between the radiation and matter.

Trajectories are simulated using the individual computational algorithms for each type of
particle considering their physical properties [13].

The developed algorithm is described in detail in [15].

4 RESULTS OF THE COMPUTATIONAL EXPERIMENT

This section presents the results of computational experiments on simulation of radiation-
induced electric currents in heterogeneous materials of finely dispersed structure.

A fragment of dispersed structure (fig. 5) is considered for researching the basic features of
the current generation process in an object being under radiation. The cubic fragment of 0.003
cm size consists of binder (epoxy resin, density is about 1 g/cm®) and one spherical inclusion
(ammonium perchlorate, NH4CIO,, density is about 2 g/cm®) of 0.002 cm diameter. The
studied fragment is irradiated by photons of 20 KeV energy in the direction of the Z axis.

4.1 The main regularities of the generation of radiation-induced effects

The distribution of fields of radiation-induced effects (heating, charge effects, electric
currents) is determined mainly by the number of electrons born and their penetrating power.
The first value is proportional to the macroscopic cross section of the interaction of photons
with matter, and the second is proportional to the braking path of electrons. The dependence
of these values on the energy of the radiation particles is shown in fig. 6, 7.

These figures show that in inclusion, the macroscopic cross-section of the interaction of
photons significantly (up to two orders of magnitude) exceeds this value for the binder.
Therefore, much more electrons are born in the inclusion than in the binder. The penetrating

69



M.E. Zhukovskiy, M.B. Markov, R.V. Uskov and L.V. Kuznetsova

power (braking distance) of electrons, on the contrary, is noticeably greater in the binder.

3
18210

T T T T
——epoxy resine
——ammonium perchlorate 15

102

epoxy resine
——ammonium perchlorate

3
braking path, cm

macroscopic cross section , 1/cm
s
>

o122 4 16 18 20 2 2 X% 2 D o 1z 14 16 18 20 22 24 2 2 %
energy, KeV energy, KeV

Fig. 6. Microscopic cross sections Fig. 7. Braking paths

The generation of electric currents in a substance being under gamma-or x-ray radiation is
caused by the fluxes of photo and Compton electrons generated as a result of the photo-
electron cascade processes in the material under study.

Current components for which there is no electronic equilibrium, that is, electron flows
along the direction of this current component and in the opposite direction do not compensate
for each other, will be different from zero at a given spatial point. The photon flux propagates
along the z axis in the computational experiment under consideration, so the transverse (X, y)
components of the current will obviously be negligible in a homogeneous medium.

The electron braking distance does not exceed 4 microns, and the number of collisions
reaches tens and hundreds in the studied fragment of heterogeneous material. Therefore, at the
periphery of the fragment (at 2-4 microns from the inclusion boundaries) in the binder, the
absence of transverse current components should be expected.

binder
-
\L/
2 \\,\ b/, / O,
&
\«}0 ~ ’
o " . -
¥ ™~ inclusion =—>

— -
), \Q‘
VAN

Fig. 8. Electron fluxes from and into the inclusion

Another situation is realized near the interface of two media with different physical
properties (density, cross sections, braking paths) on spatial scales of the order of the electron
path. The concentration of electrons born in the inclusion is much greater than in the binder.
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In addition, electrons emitted from the inclusion into the binder have a much greater
penetrating power than electrons moving in the opposite direction (fig. 8).

Therefore, uncompensated electron fluxes arise near the boundaries of two media and the
direction of the electron fluxes is from the inclusion into the binder. This direction is due to
the predominance of electron emission from inclusion in the binder over emission in the
opposite direction [23].

4.2 Results of the modeling of radiation-induced electrical current

The fig. 9-12 below show the spatial distributions of the amplitude of the transverse
components J, and J, of the current in the irradiated fragment. These figures show the
amplitudes of the electric current density in CGSE units per 1 photon/cm?.

The fig. 9, 10 show graphs of the transverse components along straight lines {z=0.0015
cm, y=0.0015 cm} and {z=0.0015 cm, x=0.0015 cm} respectively. Dotted lines mark the
boundaries of the inclusion.

Jx, CGSE

[ EN o
=)
S

Jy, CGSE
o - [

0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3
X, cm <1073 y, cm 10°

Fig. 9. The transverse component Jy Fig. 10. The transverse component J,

The transverse components of the current are negligible along the longitudinal axis
{x=0.0015 cm, y=0.0015 cm} passing through the "poles" of the inclusion.

Spatial distributions of the transverse components Jy and J, in the plane z=0.0015 cm are
shown in Fig. 11, 12 in the form of the surfaces.
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Fig. 11. 2D image of the component Jy Fig. 12. 2D image of the component J,
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In General, these figures demonstrate the expected symmetry of the distribution of the
transverse components of the current relative to the corresponding coordinate axes.

4
47x10

Jz, x=0.0015cm x10%
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0 05 1 15 2 25 3 4
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Fig. 13. J, component along the longitudinal axis . .
{x=0.0015 cm, y=0.0015 cm} Fig. 14. 2D image of the component J,

Fig. 13, 14 show the spatial distributions of the longitudinal (along the direction of the
photon flow) component of the current J,. The component J, in the plane x=0.0015cm is
shown in Fig. 14 in the form of the surface.

The component J, reaches the maximum value at the boundary of the two media because
the electron emission from the inclusion into the binder is much more intense than in the
opposite direction (fig. 8). The background longitudinal component of the current is generated
at the periphery of the binder (at a distance from the boundary surfaces exceeding the braking

path of the electron). Its value is significantly less than one of the inclusion-binder
boundaries.
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Fig. 15. J, Fig. 16. J=J,+Jy+J,
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Vector field of the current in the binder near the boundary surface inclusion-binder is
depicted in fig. 15 (J;) and fig. 16 (J=Jx+Jy+J,).

These figures demonstrate the expected asymmetry of the electric current distribution with
respect to the z=const plane passing through the center of the inclusion.

5 CONCLUSION

The technology of supercomputer simulation of radiation-induced electric currents in
heterogeneous dispersed materials with direct consideration of their microstructure is
developed. The main attention is paid to the creation of an algorithm for constructing a
geometric model of a polydisperse medium, which is intended for implementation on
heterogeneous computing clusters. The geometric model includes a detecting system for
statistical evaluation of the desired physical quantities (electric current density).

The results of a computational experiment to calculate the current density in a fragment of
finely dispersed material show that electric currents with a sharply inhomogeneous spatial
structure are formed during irradiation of the object under study. Inhomogeneities occur near
the boundary surfaces between the binder and inclusions. The generation of a current at the
boundaries between two media is caused by the predominance of electron emission from the
inclusion (a material with a large macroscopic cross-section of photons) in the binder (a
material with a greater penetration of electrons) over the emission in the opposite direction
(Fig. 8). Only the longitudinal component of the current (along the direction of the photon
flow) is present in the binder at more than the length of the braking distance from the outer
surface of the inclusion. Its value is much smaller than the amplitude of the current near the
binder-inclusion boundary.
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Summary. INMOST is a software platform for the development of parallel numerical models
on general polyhedral grids. In this paper we present the INMOST platform as the powerful
tool for numerical modelling. The place of INMOST platform among other modern
widespread libraries and numerical modelling packages is shown. A brief overview of tools
that help in implementation of each stage of mathematical modelling is presented. Examples
of INMOST application demonstrate appealing features of INMOST-based numerical
modelling.

1 INTRODUCTION

The amount of software for unstructured mesh generation, numerical modelling and
graphic visualization is huge. Along with the development of modern parallel computer
systems, there is a need to use parallel algorithms with distributed mesh data. All these
applications undoubtedly have a common set of needs for representing and manipulating
distributed unstructured meshes. However, a large number of mesh representations are in use
in the computational community each tailored to a specific application. Therefore, to gain
widespread acceptance it is important to have a full mesh framework which allows
applications to operate with all types of mesh data including the general polyhedral grids. At
the same time, the infrastructure should be lightweight and efficient to have sufficient utilities
for real-world numerical modelling applications. In addition, such an infrastructure should
provide an opportunity for convenient assembling of systems of linear and nonlinear
equations, their solving, as well as analysis and visualization of obtained solutions.

INMOST is a software platform for the development of parallel numerical models on
general polyhedral grids [1, 2, 7, 9]. In this paper we present the INMOST platform as the
powerful tool for numerical modelling. The examples of INMOST application demonstrate
appealing features of INMOST-based numerical modelling.

In fact, the INMOST software platform does not include ready-made numerical models or
even ready-made discretization schemes (such as finite volumes and finite elements).
INMOST is just a software “platform” on the basis of which scientific researchers or
developers of industrial codes can build their general-purpose grids distributed across
processors, apply their discretization schemes and perform calculations for their numerical
models. The presented examples of INMOST application demonstrate appealing features of
INMOST-based numerical modelling. However, in view of the above reasoning, in this paper
there is no direct comparison with the results of calculations using other packages.

2010 Mathematics Subject Classification: 86-08, 97N80, 65M50, 65N22, 65Y05.
Key words and Phrases: INMOST, Numerical Modelling, Computational Fluid Dynamics.
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It is worth noting that at present there is a development (see, for example, [6]) presenting
the extension of parallel platform INMOST using the Ani3D package [16], which allows the
construction of adapted tetrahedral meshes along with the use of a large number of finite
element discretizations (see INMOST Ani_Inmost examples [6]).

The present paper is organized as follows. Section 2 contains a brief description of
INMOST platform functionality and shows the place of INMOST among other modern
widespread libraries and numerical modelling packages. A detailed review of specific
approaches to construction of numerical models is given in Section 3. In Section 4 we present
several INMOST-based numerical models and their computational performance. The
conclusion summarize the research.

2 INMOST SOFTWARE PLATFORM

The main purpose of INMOST platform is to provide to the user all the necessary tools for
development and exploration of various numerical models. This involves wide functionality,
I.e. operations for general distributed mesh data, convenient interface for assembling and
solving systems of nonlinear and linear equations, with built-in or plugged-in linear algebra
packages. INMOST software platform was developed to meet the following criteria:

— wide functionality;

— efficiency;

— reliability;

— universality;

— ease of use;

— portability;

— open source code.

At present, it is very difficult to find software packages that satisfy all of the above
requirements. There are many alternative solutions, such as the FMDB library (Flexible
distributed Mesh DataBase) [36], the MOAB library (Mesh-Oriented datABase) [37], the
MSTK library (MeSh ToolKit) [38], the STK library (Sierra ToolKit) [39], Salome package
[40], OpenFOAM package (Open Source Field Operation And Manipulation CFD ToolBox)
[41] and others that do not fully meet the stated criteria. EXisting solutions do not always have
easy portability between different platforms (Windows, Linux), existing implementations are
not always reliable, it is impossible (in some packages) or difficult to implement user's
discretization schemes. However most of publicly available packages are the best choice for
the solution of a particular problem. For instance, packages ParMETIS [42] and Zoltan [43]
distribute and redistribute a general mesh and graph data across processors, while libraries
PETSc [21] and Trilinos [22] solve distributed systems of linear equations.

These considerations motivated a group from INM RAS to develop a comprehensive set of
software tools that provides the necessary functional capabilities and allow the use of
ParMETIS, Zoltan, PETSc, and Trilinos packages. These tools form the INMOST (Integrated
Numerical Modelling and Object-oriented Supercomputing Technologies) software
platform [9].

The main modules of the platform are:

— mesh operations module (INMOST Mesh);

— mesh data balancing module (INMOST Partitioner);
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— automatic differentiation module (INMOST Automatizator);

— module for assembling and solving linear systems (INMOST Solver).

In the near future, visualization (INMOST DrawGrid) and parameter optimization tools
(INMOST TTSP (Tool for Tuning Solver Parameters), INMOST OptimizerSolve example)
will also be added as separate modules.

The main objective of INMOST is to support data structure and distributed mesh
operations (INMOST Mesh) demanded by grid generators and numerical implementations of
physical models. Consistent computational grids may contain cells with arbitrary numbers of
faces, each face may be formed by an arbitrary number of edges. Thus, INMOST supports
polyhedral cells of arbitrary configuration.

The grid balancing module (INMOST Partitioner) is responsible for automatic and
efficient distribution of a computational grid among processors. External ParMETIS and
Zoltan partitioners can be exploited as well as internal parallel paritioner based on K-means
clustering. Upon grid distribution, the user can determine ghost cells along the interfaces of
mesh subdomains where data of neighboring processors are synchronized. The number of
layers of ghost cells is defined by the user who can also assign ghost cells explicitly. The last
option is useful for complex discretization stencils. Importantly, the MPI exchange library is
hidden from the user and compilation of the sequential single-processor version of INMOST
is easy.

The automatic differentiation module (INMOST Automatizator) is developed to help in
implementation of nonlinear numerical models, automatic generation and assembling of
Jacobian matrices and nonlinear residuals appearing in Newton type linearizations. This
module simplifies discretizations of new mathematical models.

The module (INMOST Solver) for assembling and solving systems of linear equations has
the following appealing features:

— convenient and efficient assembling of a linear system matrix via addressing by the

global row and column indices (INMOST MatSolve example);

— variety of built-in linear solvers based on threshould incomplete triangular
factorizations as well as linear solvers from external packages, such as PETSc and
Trilinos;

— the user can switch between linear solvers independently of the matrix assembling
procedure.

3 NUMERICAL MODELLING STAGES AND ASSOCIATED TECHNOLOGIES

Numerical modelling is used both in academic and industrial purposes. The design of a
numerical model consists of the following stages:

— Physical model,

— Mathematical model;

— Discretization;

— Solution methods;

— Computer program;

Post-processing and analysis of the results.

Phy3|cal model. Understanding of underlying physical phenomena is crucial: advection,

diffusion, reaction or decay processes; heat or density transfer; elasticity or rheology effects,
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etc. Chosen physics implies a list of primary physical quantities to be measured and/or
simulated: pressure, velocity, concentration, temperature, probabilities, etc.

Mathematical model is represented by a system of differential or integral equations
describing the chosen phenomena and involving the chosen physical quantities. Often,
formulation of boundary and initial conditions is required. Apart of problem formulation,
analysis of solution existence and uniqueness is important. In some cases the analysis is not
available though this does not inhibit the numerical solution.

Mathematical description involves governing equations and domain geometry. For
academic models in parallelepipedal domains it is sufficient to specify the length-width-
height parameters only. In more realistic cases the domain geometry can be presented as a set
of unions or intersections of primitives: spheres, cylinders, cones, half spaces, parallelepipeds,
etc. The most complex geometries for industrial applications can be constructed with one of
the following tools: AutoCAD [10], 3DS Max [11], Sketchup [12], OpenCascade [13], etc.

Discretization of a mathematical model includes discretization of the domain and the
equations. Discretization of the domain implies generation of a computational mesh. A priori
or runtime local mesh refinement near solution gradients crucially affects the solution
accuracy. Accurate approximation of domain boundaries is also important. A lot of mesh
generation and refinement tools (commercial or open source) are available: Tetgen [14],
GMSH [15], ANI3D [16], INMOST OctreeCutcell [9], etc.

The type of the computational grid correlates with the method for discretization of
differential equations: finite differences (FD) imply structured grids, finite elements (FE)
imply tetrahedral or hexahedral meshes, while finite volumes (FV) fit to general polyhedral
meshes.

Discretization results in a system of linear or nonlinear algebraic equations. The total
number of equations is proportional to the number of mesh elements (cells, faces, edges,
nodes) and ranges from thousands to billions.

Solution methods. For the solution of systems of nonlinear algebraic equations, the
following approaches can be used: Newton method, Picard method, line search method, trust
interval method and others. Examples of nonlinear solver packages are: SUNDIALS [17],
Trilinos NOX [18]. Automatic differentiation capabilities of INMOST allow for easy
assembly and solution of the nonlinear system with the Newton method.

The solution of a nonlinear system is based on its linearization which results in a large
system of sparse linear equations. For solution of the system the following methods are
applicable: direct factorization, Krylov's iterative methods with different preconditioners such
as incomplete factorization, algebraic multigrid methods, domain decomposition methods,
etc. A variety of advanced software packages can be used for this purpose: SuperLU [19],
MUMPS [20], PETSc [21], Trilinos [22], Hypre [23], ILUPACK [24], INMOST Solve [9],
etc.

Computer program. To design the computer program and connect the required software
packages, one exploits computer languages C, C++, Fortran, Python, etc. To utilize
parallelism of modern computers including various accelerators, one may use computer
libraries and languages: OpenMP [25], MPI [26], OpenCL [27], CUDA [28], etc. In some
cases the number of computer languages within a numerical model may reach 4 or 5.

For computer program debugging the following tools are available: gdb [29], valgrind [30],
drmemory [31], etc.

Post-processing and analysis of results. Computation of required metrics, plotting of
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graphs and diagrams, generation of pictures and videos facilitate analysis of the computed
results. Useful visualization tools are ParaView [32], Vislt [33], General Mesh Viewer [34],
gnuplot [35], INMOST DrawGrid [9], etc.

4 INMOST-BASED NUMERICAL MODELS

In this section we review several applications of INMOST platform in numerical
modelling.

4.1 Incompressible fluid flow

We first consider the incompressible fluid flow. The problem is described by the Navier—
Stokes equations:

ou .

— +div(puu’ = uVu+pl)=0,
P (puu’ —uvu+ pl) 0
div(u)=0.

Here u={u,v,w}" is the unknown fluid flow velocity, p is the unknown pressure, o is the

constant density and # is the dynamic viscosity. The system of Navier-Stokes equations is
augmented by the boundary conditions. On the boundary we can impose no-slip or slip
condition, Maxwell-Navier friction, do-nothing condition, condition for the normal stress
(fixed pressure).

Figure 1. FV solutions: flow over the backward step (top-left), flow in the lid-driven cavity (top-right),
flow in a channel with obstacles (bottom).

Figure 2. Decomposition of a computational domain for 92 processors
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Both the momentum and the continuity equations are discretized by the finite volume
method. The unknowns are collocated at the cell centers. To avoid checkerboard patterns in
the discrete pressure due to the Ladyzhenskaya—-Babushka-Brezzi instability, we stabilize the
discretization by eigen-splitting of the part of the flux that corresponds to the pressure and the
incompressibility condition, by analogy with the approach [44]. The FV system is nonlinear
due to the convective term and the numerical scheme is stable even for large time steps.

In Figure1l (top row of pictures) visualization of the flow for the solutions to two
benchmark problems are shown: the steady flow over the backward step and the steady flow
in the lid-driven cavity. In the bottom picture of Figure 1 we present the unsteady flow in a
channel with cylindrical obstacles in the case of high Reynolds number (Re~1000). Figure 1
demonstrates physically adequate absolute velocity solution for a relatively small number of
cells using finite volume discretization scheme. The presented examples make the full use of
the INMOST programming platform, i.e. they exploit the general mesh data structure, the
sparse matrix structure and automatic differentiation for the Jacobian system assembly and
built-in sparse parallel linear solvers. Thanks to INMOST the flow model may be run in
parallel. Decomposition of a computational mesh in a channel for 92 processors is
demonstrated in Figure 2. The solution times of steady Pousielle flow problem for 36 and 92
MPI processes were 2.51 and 1.25 seconds, respectively, which implies feasible parallel
efficiency.

The presented incompressible fluid flow model was complemented with the blood
coagulation model [7] using INMOST multiphysics extension. This extension is currently
under active development. It allows to couple the flow model with a reaction-advection-
diffusion model triggering coagulation into a joint nonlinear system which is solved on each
time step.

4.2 Free surface fluid flow

We solve numerically the problem of fluid flow with a free surface on dynamically adapted
octree grids. The problem is guided by the coupled solution of the system of incompressible
Navier-Stokes equations and the level set equation:

ou .

—+d T —uvu+pl)=pgVz,

pat |v(puu uvu p) pgVz
div(u)=0,

o0 ()
E"‘le((ﬂU) = 0,

Vo =1,

where u={u,v,w}' and p are unknown velocity and pressure, o is the density, # is the

dynamic viscosity, 9 is the gravitational constant. In this problem the velocity is staggered on
cell faces and the pressure is collocated at cell centers. The Navier-Stokes equations are
augmented with the boundary conditions listed in Section 4.1. The unknown level-set
function ¢, satisfying the Neumann boundary condition, is passively advected with fluid and
reinitialized by the solution of the Eikonal equation. The level-set function is prescribed at
mesh nodes, its sign separates the domain into two parts: the fluid domain and the empty
domain, see Figure 3 (left). The boundary condition at the interface accounts the surface
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tension:

T
—ﬂ%h-kpn:mcn. 3

Here o is the surface tension coefficient, x is the surface curvature computed from the level-
set function, n is the surface normal. More implementation details can be found in [45] and
references therein. Figure 3 (right) shows the surface tension induced water crown as a splash
from falling drops into a pool filled with the fluid.

Currently, the numerical model relies on the sparse matrix structure, automatic
differentiation and linear solvers from INMOST tackling the diffusion problem and pressure
projection problem. However, the octree mesh data structure of the model is not based on
INMOST tools limiting parallelization of the model to OpenMP technology. The parallel
general mesh adaptivity functionality is already developed [8, 46], and the transition of the
code to the INMOST mesh data structure is underway.

Figure 3. Computational domain (left) and the computed water crown (right)

4.3 Oil and gas modelling

The flow of the mixture of fluids subject to the Darcy law is used for simulation of primary
or secondary oil and gas recovery from a heterogeneous anisotropic fractured reservoir. The
black oil model equations for unknown pressure and saturations are [50]:

ap, 08, .
p‘gt = —dIV(J.WK(Vp—prVz))=qW,

ap‘é%—div(/loK (Vp—-VPe, —pogVZ)) =q,,

(4)
p,0(RS,+S,)
ot

—div(igoK (Vp-VPc, —posz)) =q,-

- diV()ug K (Vp —~VPc, - pgsz))

Here K is the permeability of the rock, R is the gas solubility, & is the porosity, p is the

density dependent on pressure, 4= pk, / 1 are phase mobilities dependent on pressure and
saturations for water, oil and gas, g are sources and sinks representing the wells guided by the
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Peaceman formula [49]. The no-flow boundary condition is imposed on all the boundaries.
Various FV discretization methods for the Darcy problem may be used for the numerical
solution of system (4) [51]. In Figure 4 (left) we present an example of water saturation field
in a reservoir with complex geology defined through a general mesh adapted to geological
structures. In Figure 4 (right) we demonstrate water saturation in a network of fractures.

Figure 4. Water saturation field and general mesh in a reservoir (left); water saturation in a fracture
network (right)

The numerical model uses the mesh data structure, sparse matrix structure, automatic
differentiation and linear solvers from INMOST.

4.4 Mechanics of deformable bodies

The model describes the elastic deformation of bodies from heterogeneous anisotropic
material. The model is given by the elasticity equations @ =C:(Vu+(Vu)")/2, div(s)=0.
Here u={u,v,w}' is the displacement field, o is the 3x3 stress tensor, C is the 4-th rank
material stiffness tensor, “:” is the contraction operator. The system is augmented by Diriclet,
Neumann or roller type boundary conditions.

L .
.
.

Figure 5. Stress components under load (left), stress magnitude under twisting (middle), and

bending (right)

The numerical implementation is based on the FV method described in [47]. Figure 5
demonstrates the application of the model to benchmark problems: three components of stress
in perforated infinite strip under load (left), magnitude of stress in a beam under twisting
(middle) and bending (right) on structured and unstructured grids.

82



I.N. Konshin, K.M. Terekhov, and Yu.V. Vassilevski

The numerical model uses the mesh data strucutre, sparse matrix structure, automatic
differentiation and linear solvers from INMOST.

4.5 Poromechanics

The last example describes a solid body saturated with the fluid. The model is used for
analysis of land subsidence and Earth fissuring due to water pumping into or out of the
ground, as well as bed failure under constructions. It couples the solid mechanics problem
(Section 4.4) with the fluid filtration problem guided by the Darcy problem (Section 4.3), the
interaction between solid and fluid being described by Biot coupling terms [52]. For the
single phase flow with unknowns u, v, w, and p it reads as:

T ()

Here p is the fluid pressure, u={u,v,w}' is the displacement of solid, S is the material

compliance tensor, inverse of the stiffness tensor, p is the density, B is the Biot coefficient
tensor, M is the Biot modulus, 1/M is the specific storage coefficient. The boundary
conditions are similar to those discussed in Sections 4.3 and 4.4.

Figure 6. Computational mesh and the pressure field for poromechanics problem

Figure 6 demonstrates the pressure field for the poromechanics problem due to oil recovery
from the Norne oil field, the elastic properties are synthetic. The grid is unstructured with
faults, the system (5) is discretized by the FVV method [48].

The numerical model uses the mesh data structure, sparse matrix structure, automatic
differentiation and linear solvers from INMOST.
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CONCLUSION

The present paper presents the INMOST platform as a powerful tool for numerical
modelling. INMOST provide a wide functionality of operations for general distributed mesh
data, convenient interface for assembling and solving systems of linear and nonlinear
equations, as well as analysis and visualization of obtained solutions. The description of the
most important modules of INMOST is given. An overview of numerical modelling stages
along with the tools that help in their implementation is presented. The place of INMOST
platform among other modern widespread libraries and numerical modelling packages is
shown.

For a specific application in numerical modeling, it may turn out to be the most optimal
choice of a special grid generator, as well as the sampling method for this type of grid. This is
the main reason that these modules are not included in the INMOST software platform. For
the same reason, it is difficult to make a full comparison of INMOST with other popular
numerical modelling packages, which mainly use the simplest semi-regular types of grids,
allowing the direct use of certain types of discretization, for example, two-point finite-volume
ones. Conversely, INMOST software platform focuses on support for operation with general
type grids. Despite this, the presented examples of INMOST application demonstrate
appealing features of INMOST-based numerical modelling. Especially, this includes a wide
range of its application for solving problems from gas hydrodynamics and problems with a
free surface to problems of mechanics of a solid and deformable bodies, as well as problems
of subsurface flow, including problems of poromechanics.
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Summary. The velocity of the solid/liquid interface (SLI) vy plays an important role in the
processes of crystallization and melting. It is one of the fundamental concepts of materials
science. Based on the analysis of kinetic models of melting/crystallization with diffusion and
collisional-thermal constraints, a modification of the transition state theory is performed.
Using two interaction potentials (KIHS and SW), molecular dynamics modeling of Si
melting/crystallization under deep overheating/undercooling was performed. From comparing
the simulation results with the data of the modified kinetic model, we constructed the
response function of interface oy in the region of the maximum allowable values of
superheating/undercooling of Si. The temperature dependence of the velocity of the
solid/liquid interface v, is diffusion-limited and is described by the same equation in the
entire temperature range.

1 INTRODUCTION

Melting of solid body and liquid solidification are among the widely used and actively
studied [1] phenomena. Two mechanisms of melting/crystallization of solids/liquids are
known: heterogeneous (surface or frontal) and homogeneous (volume). In the first case, in the
framework of classical thermodynamics [2], melting of solids and solidification of liquids
belong to the first-order phase transformations that occur at a certain (equilibrium)
temperature Ty, which corresponds to the equality of the Gibbs free energies of the solid and
liquid states. The phenomena of heterogeneous melting and solidification are always non-
uniform. They correspond to the motion of a continuous medium with a strong discontinuity
surface, on which the mechanical, thermodynamic, thermophysical, and optical characteristics
of a substance abruptly change.

The velocity vy (AT) = vy (Ts) of the solid/liquid interface (SLI) is the function of the
deviation AT=T,, — T, from the equilibrium melting temperature T, and is called the response
function of the interface to overheating or undercooling, respectively, of the solid/liquid
phase. The interface velocity v,(T,,) is a fundamental quantity that describes crystallization
and melting processes and plays a fundamental role in materials science [3-5].

A significant part of the dynamics of melting and crystal growth from the melt is
determined by the heat transfer from the moving interface. However, there are limiting
circumstances in which the growth rate is regulated not only by the macroscopic heat flux.
One of such circumstances is the emergence of fast phase transitions of the first kind, which
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Key words and Phrases: Interface problems; diffusion-limited aggregation, Atomistic modeling, Dynamic and
nonequilibrium phase transitions, Silicon.
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are typical to the action of concentrated energy fluxes on materials. These processes have
their own specifics [6]. Fast phase transitions are accompanied by the appearance of
metastable, strongly superheated/undercooled states. Reaching the maximum permissible
values of overheating/undercooling [7,8] leads to a number of interface instabilities.

Initially, experimental and theoretical studies were carried out more intensively in the field
of crystallization/solidification of melts [9-11]. Along with the fundamental aspects [12], this
is due to a large number of technological applications related to the production of metal
glasses [13, 14] amorphous semiconductors [15], nanomaterials [16], etc.

However, the widespread use in the last two decades of ultrashort pulsed (pico- and
femtosecond) laser irradiation on various materials causes increased interest in fast first-order
phase transitions. An analysis of the processes caused by pulsed laser irradiation leads to the
consideration of a number of important fundamental problems, which, at high heating rates,
include the features of homogeneous and heterogeneous melting/solidification and
evaporation mechanisms and the associated extreme overheating and supercooling of matter.
An understanding of the melting/solidification processes is also of great interest for the
applied problems of photonics [17], ultrafast laser microprocessing of materials [18, 19],
generation of nanoparticles and nanostructures [20,21], etc.

Homogeneous melting/crystallization mechanisms are characterized by the nucleation of a
new phase (liquid/crystal) in a certain volume of respectively superheated crystal and
undercooled melt and will not be considered in this paper.

In the theoretical studies of the mobility of the solid/liquid interface and the kinetics of
crystal and melt growth associated with it, kinetic models [10, 22—-24] and atomistic modeling
[25-28] are widely used. In most works, the studies of the temperature dependence of the
stationary velocity oy(T,), as before, are carried out mainly in the temperature range of
crystallization. Nevertheless, none of the models discussed describes the solidification process
in the entire range of undercooling: from the minimum near the melting point Ty, to the
maximum in the region of amorphization (glass transition). In addition, the important question
remains open about the possibility of using the analyzed kinetic models to determine the
temperature dependence of the solid/liquid interface velocity for the melting process in the
entire overheating region: from the minimum near the melting point T, to the maximum in the
spinodal region.

The main tool for studying the kinetic rate of melting/crystallization in the region of the
maximum allowable values of superheating/supercooling is atomistic modeling, the results of
which are compared with the data of kinetic models. An acceptable match is achieved by
introducing appropriate correction parameters in the model [25 - 30].

The main goal of the work is to construct a modified kinetic model with diffusion
constraint that describes the mobility of the solid/liquid interface in a wide temperature range,
including the region of maximum permissible values of superheat/supercooling. As the
studied material, crystalline silicon (Si) was chosen, for which a series of MD calculations of
the temperature dependence of the stationary melting/crystallization rate o.(T,) were
performed. MD results are compared with the data obtained from the modified kinetic model.

2 KINETICS THEORY OF THE SOLID/LIQUID INTERFACE

Of the many solid/liquid interface kinetics theories that display various crystal growth
mechanisms, two of the most commonly used and cited directions can be distinguished. The
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first is described by original Wilson — Frenkel (WF) growth models [31, 32], in which the
interface velocity is associated with the diffusion of atoms in the liquid phase. This theory is
often called the transition state theory, since it assumes that melting or solidification occurs
through some intermediate or transition state. In this theory, a diffusion limitation mechanism
is used to control the speed of the crystallization-melting front. This mechanism is based on
the assumption that atoms (molecules) must overcome the diffusion barrier upon transition
from a liquid to a solid phase [31, 32]. The transition is accompanied by a significant
restructuring of the interface. The rate of the crystallization process was assumed to be
proportional to the diffusion coefficient, which is usually presented in the form of the

Arrhenius equation
Q
D =D, exp — 1
o p( kBTSJ (1)

where Q is the activation energy for the diffusive motion in liquid, kg is the Boltzmann
constant, kgT is the average thermal energy of one atom, Dy is the prefactor, controlling the
rate of the process.

In the final form, the velocity of the meting/crystallization front vs(AT) = v (T with the
diffusive limitation is formulated as [33]:

o(T, )= a}‘; D{l—exp(— kAf ﬂ =CW z{l—exp(— kL$ ?TH (2)

st B'm 's¢

2
where C"* =;2f , a is the interatomic distance, 1 is the mean free path of atoms for this

process usually assumed being proportional to the lattice constant, a: 4 < a, f is the efficiency
coefficient (a constant of the order of unity, f <1), characterizing the fraction of collisions of
liquid atoms with the solid leading to crystallization. The values of , f, Do, Q do not have a
strict definition and are difficult to measure. Moreover, they depend on the crystallographic
orientation of the interface.

The second direction is based on the kinetic model originally proposed by Broughton,
Gilmer and Jackson (BGJ) [34] as an improvement on the earlier model (WF). The BGJ
model uses, as a limitation, the frequency of thermal collisions of atoms with an interphase
boundary [35]. A modification of the transition state theory [31, 32] was motivated by the
results of MD modeling with the Lenard — Jones interatomic potential [36], which showed
that the growth of crystals of monatomic systems may not in all cases be limited by diffusion.
In particular, far from the melting temperature in the region of very low temperatures,
diffusion tends to zero, while, according to the simulation results, the SLI speed is still finite.
On this basis, a conclusion was formulated on the unacceptability of the model with a
diffusion restriction for crystallization in the entire temperature range.

The BGJ model [34] was based on the hypothesis formulated earlier that solidification of
monatomic metals is limited only by the frequency of collisions of the melt atoms with the
crystal surface [35]. Following this hypothesis, an assumption was made that the Kkinetic
model with the collision-thermal restriction mechanism best fits the obtained simulation
results. According to this limiting mechanism, the maximum crystallization rate is controlled
by the average thermal velocity of the atoms in the melt. The result of such reasoning was the
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replacement by the authors of the BGJ model [34] of the diffusion term in (2) with the
average thermal velocity of atoms v; = ./3k,T,, /m.

a L AT 3k, T L AT
Uy, (Tsz): N fo Ur{l_exl{_ K .rF Tj} = Cagg, an o [1_9)([:{_ K _"II TI| (3)
glm lo glm lso

a.. . , - : :
where Cyg; = N f, is a dimensionless coefficient, m is the atomic mass.

However, in later works [25, 29, 33], atomistic modeling showed that in the range of
values close to the melting temperature, the crystallization process can be displayed with
acceptable accuracy by the Kkinetic models with the diffusion (2) and collision-thermal
constraints (3), as well as models of the density functional theory [24, 37].

A much smaller number of works is devoted to analysis of the possibility of using the
analyzed kinetic models (2), (3) to determine the speed of movement of the solid/liquid
interface o,(Ts) with acceptable agreement in the temperature region not only of
crystallization, but also of melting with strong overheating of the solid phase.

In one of the first works [29], the results of molecular dynamics simulation were presented,
in which the stationary rate of the silicon crystallization/melting interface was determined as a
function of temperature in the conditions of strong undercooling/superheating. Particle
interaction in the atomistic model was determined by the Stillinger — Weber potential [38].
The simulation results were compared with the data of the kinetic model with diffusion
constraint (2). The model was adjusted to the simulation results by selecting the C"*
parameter. An analysis of the results showed that the transition state theory provides a
reasonable qualitative description of heterogeneous crystallization and melting of silicon in
the temperature range 0.64 T, < T, < 1.18T,. Close to the melting temperature, good
agreement with experimental data was observed. In the region of deep undercooling, there
was a strong discrepancy between the results of atomistic modeling and the crystallization rate
data obtained from equation (2).

Similar studies using the kinetic model with the collision-thermal constraint mechanism (3)
for metals were performed in [23, 26, 28, 30]. In an early work [30], the results of comparing
the molecular dynamics simulation of crystallization and melting of sodium with the data of
the kinetic model (3) in the temperature range 0.2 T, < Ty < 1.26 T, are presented. The
comparison of the temperature dependence of the stationary velocity of motion solid/liquid
interface vy/(Ts,) showed that the kinetic model data are in good agreement with the results of
atomistic modeling in the entire crystallization region. However, an agreement was not
obtained for the melting branch. A similar agreement was obtained with high accuracy for the
model with a frequency-thermal limitation (3) in [23, 26, 28] for atomistic modeling with
EAM potentials for aluminum (Al), copper (Cu), and iron (Fe) in the following temperature
ranges:

Al: 03 Tyn<Te<1.26Tym; Cu: 061 Tn<T<12Tn, Fe: 0.6:Tm<Ty<1.15Tpy.

Nevertheless, the important question remains unanswered to date: which of the kinetic
models and in which temperature range can be used to determine the stationary SLI motion
velocity in the processes of metal melting/crystallization at high supercooling/overheating.
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This problem is also crucial when using the continuum models describing the heterogeneous
mechanisms of melting and crystallization.

3 MOLECULAR DYNAMICS STUDY

The molecular dynamics method was used to simulate the process of heterogeneous
melting/crystallization of silicon under conditions when the melting/crystallization front
propagates over the superheated/undercooled phase. Two series of numerical experiments
were performed for two selected interaction potentials: KIHS [39] and Stillinger-Weber (SW)
[38].

The calculated area of 5.5x5.5x42.3 nm in the form of a parallelepiped was filled with
64,000 particles interacting by means of the corresponding potential. In all three spatial
directions, periodic boundary conditions are imposed on the boundaries of the computational
domain. The particles form a layered structure containing two phases in contact: crystalline
and liquid. The crystalline phase is formed by a diamond-like cubic lattice. The orientation of
the lattice cells is such that the crystallographic direction [100] coincides with the large edge
of the parallelepiped of the computational domain, and the melting/crystallization fronts
propagate in this direction. At the initial stage, to study the melting process, the liquid phase
occupies approximately 20% of the volume of the computational domain, and 80% in the
study the crystallization process.

Using a thermostat in the entire calculation area, a fixed temperature value is set and
maintained during the entire numerical experiment. At the same time, a constant value of
external pressure is held by the barostat. The entire computational domain is divided into 30
layers of equal thickness along the long edge of the parallelepiped. Separately, in each layer,
the thermostat controls the local temperature and keeps it equal to the target one. Thus, the
inverse effect on the local temperature of the absorption/release of the latent heat of fusion L,
at the melting/crystallization fronts is leveled out.

As a result, the process of heterogeneous melting/crystallization quickly goes to the
stationary mode, and the change in the amount of the new phase occurs almost linearly.

The integration of the equations of motion was carried out with a time step of 1 fs.
Depending on the values of overheating/supercooling, from 400 thousand to 1 million steps
were required to obtain each value of the melting/crystallization rate.

The values of the target temperature of the calculation region in each series were selected
from the range of approximately —40% ... + 30% of the equilibrium melting temperature. An
exit to the right outside the specified temperature range ended in failure, due to the beginning
of the volume nucleation process, in which the solid / liquid interface became unstable. On the
left outside this range, the crystallization process did not occur, the liquid “froze”, and an
amorphous phase formed.

The control of the order parameter made it possible to automatically track the positions of
the melting/crystallization fronts and to calculate the speed of their motion.

The discrete set of solid/liquid interface speed values thus obtained are presented in Table
1 and with markers on the curves in Figs. 1, 2. Subsequently, they were used to construct the
analytical dependences v.(T,,) for each of the considered interaction potentials of model
silicon.
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KIHS

Ty 1007.4 | 1175.4 | 1343.7 | 1428 | 1512 | 1595.8 | 1680 | 1844.9 | 2009.2 | 2171.9
st -0.04 | -0.41 -8 -13.7 -14 -10.03 0 30 81.75 | 160.22
SW

Ty 839.5 | 1007.5 | 1175.6 | 1344.2 | 1512 | 1680 | 1845.2 | 2010 2174 2256
Oyt -0.07 -1.5 -745 | -179 | -154 0 27.7 775 141.8 177

Table 1. The values of velocity v,/(T,), obtained from MD calculations.

4 MODIFIED KINETIC MODEL

In the theory of the transition state of Jackson and Chalmers [40], it is assumed that
crystallization and melting proceed through an indefinite transition state, which is
characterized by the presence of processes with two rates: one describes the melting rate Rs_.,,
and another - solidification rate R,_,s. The difference of these two gives the velocity of the
solid/liquid interface:

Ugp = R R(Z—)S (4)

The intermediate state (intermediate phase) through which direct and reverse transitions
take place has some Gibbs energy G . The driving force of these transitions is the difference
between the Gibbs energy G~ and the one of the corresponding phase Gs, G, being in the
Arrhenius exponent:

s—0

Roe = 2, &XP[- (G ~G,) /KT]
(%)
Riss = 2, &XP[- (G ~G,)/KT]
Here k is the Boltzmann constant, 7 is the temperature, ys, y, are the proportionality

coefficients, which in classical theory are assumed to be equal to each other ys =y, = x.
Then the velocity is written as:

vy =¥ exp{_ (G kerZ ) :|{exp|: (GskerZ) :| . 1} (6)

The energy barrier in front of the curly bracket in the exponent can be interpreted as the
activation energy of the process that limits the rate of melting/crystallization. In the Wilson-
Frenkel phenomenological theory, this limiting process is associated with the diffusion of
atoms in the liquid delivering the atoms to the crystallization front:

vy =zexp[— %}{exp{%}l} 7)

After performing thermodynamic transformations of the Gibbs energy difference between
the solid and liquid phases, the final expression is obtained. It is the main conclusion of the
transition state theory as applied to melting/crystallization processes with diffusion constraint:

g (Tg,) = zexp{— %Hexp{@} —1} (8
s/'m

sl
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Here Ty, is the equilibrium melting temperature, T, is the temperature of the melting front,
L is the latent heat of melting at the melting temperature Ty,

The equation (8) showed an acceptable coincidence of the rate in the crystallization and
melting region in a small vicinity of the equilibrium temperature T, with the results of
molecular dynamics modeling (MDM) and experimental data. However, in a wide
temperature range in which the melting/crystallization processes can proceed with the
maximum allowable values of superheating/undercooling, an acceptable agreement could not
be obtained, since the kinetics of melting/crystallization far from the temperature T, differs
significantly from the kinetics in the vicinity of Tp,.

To overcome this difficulty, it is necessary to modify the Wilson-Frenkel kinetic model
with diffusion constraint (8). The proposed modification is based on the assumption that the
processes of direct and reverse transitions (5) in the transition state are asymmetric. The
simplest form of asymmetry can be represented as the absence of equality of proportionality
coefficients ys # x., and the relation y./y, as a functional dependence on the temperature

f(Ts). Considering the relation y./y, , the expression for the velocity (6) can be written as:

G -G G, -G
usz=z/exp{——( - f’}{—ﬁz exp[—( - ”}—1} (©)
Or, repeating the above discussion,
Q Xs Lm(Ts/ _Tm)
: =y, exp ——— R Zexp M —M2 -1 10
vy (Ter) = 2, p{ T, H [ P KT, T (10)

To determine the functional dependence y./y, = f(T,) we use the following
considerations. The relation y./y, is generally different from unity. But in the state of

equilibrium, when Ty, = T, and G5 = Gy, the expression in the curly brackets in (9), (10) must
be equal to zero. This means that functional dependence y./x, = f(T,) should in

equilibrium take a value equal to unity.
As such a dependence satisfying the condition y,/y, =1, one can use the ratio

As _ GXP{QM}, (11)
X Ty

where « is a dimensionless coefficient.
In view of expression (11), the modified model with diffusion constraint takes the final

form:
L T,-T
v, (Ty,) =D, exp[— k?—séHepr kTr:é + aJ séTm m } _1} , (12)

where Dy = y, is a dimensional constant.
The modified equation (12) contains 3 constants Dy, Q, «, the values of which were
determined from a comparison with MD results. To do this, we used a procedure containing
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the least squares criterion o [41], which minimizes the deviation of the values of equation
(12) with the selected parameters from the MD results. The values of the calculated
parameters Dy, Q, «, as well as the least squares criterion o for each of the interaction
potentials are shown in Table 2.

Interaction
potential Do . [m/s] Q. [eV] o S, [m/s]
KIHS 83460.42 0.9241 —1.1308 2.30
SW 22816.30 0.7220 —0.8994 1.76

Table 2. The values of the calculated parameters Dy, Q, &, and the least squares criterion o for
each of the interaction potentials.

The equilibrium temperatures Tm and latent heat of melting L, corresponding to the
potentials KIHS [39] and SW [38] are taken from [42, 43] and are shown in Table 3.

Interaction potential Tm [K] L, [kd/mole]
KIHS [42,43] 1680 35
SW [42,43] 1680 32
Reference data [44] 1688 45,3

Table 3. Equilibrium values of temperature T,, and latent heat L.

5 DISCUSSION OF THE RESULTS

Figs. 1a, b, present the results of the molecular dynamics simulation, in which the
stationary rate of the Si crystallization/melting interface was determined as a function of
temperature in the conditions of strong undercooling/superheating. The interaction of particles
in the atomistic model was determined by the potentials of SW [38] and KIHS [39]. The
simulation results were compared with the data of the modified kinetic model with diffusion
constraint (12). The approximation of the model to the simulation results was carried out by
selecting 3 parameters Dy, Q, a. In the deep undercooling region, the modified kinetic model
(12) showed that the data on crystallization rate obtained from the equation (12) is almost
completely identical to the results of atomistic modeling for both potentials. Thus, the
introduction into the theory of the transition state of a functional temperature dependence of
direct and reverse transitions makes it possible to eliminate the main drawback of the Wilson-
Frenkel model, which shows that in the region of very low temperatures, diffusion tends to
zero faster than modeling data indicating that the velocity solid/liquid interface is still finite.

In particular, far from the melting temperature in the region of very low temperatures,
diffusion tends to zero, while, according to the simulation data, the SLI speed is still finite.

An analysis of the results showed that the modified theory of the transition state gives a
reasonable qualitative description of heterogeneous crystallization and melting of silicon in
the temperature range 0.596T, < T, < 1.28T, for the KIHS potential and
0.49T,, < T, < 1.35T, for the SW potential.
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Fig.1. Temperature dependence of the melting/crystallization front for silicon: MD modeling and
approximation. KIHS potential (a), SW potential (b).

In the vicinity of the melting temperature T, a smooth change in the temperature
dependence of the velocity, determined from the simulation, is observed without breaking the
slope when passing through the melting point for both potentials.

At the same time, the calculation results demonstrate a pronounced asymmetry of the curve
vs¢(Ts) relative to the melting point T,, i.e. between undercooling and overheating. The
velocity profiles approach large unercooling and large superheating in different ways, since
the solidification kinetics far from the melting temperature differs significantly from the
melting Kinetics in a very superheated state. The crystal growth rates in the melt are largely
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determined by the structural order parameter, which measures the local degree of crystallinity.
When crystals grow, each atom on the interface must go to a specific place in the lattice. As
the melt grows, the crystal melts and turns into a liquid without any structural limitations for
atoms passing from the interface to the melt. Thus, structurally, it is easier for a crystal to
transform into a liquid than to melt into a crystal. These structural differences in the processes
lead to the asymmetry observed in the crystal/melt growth rate. The structural factor also has
a great influence on the velocity profiles when approaching severe overheating and
undercooling. Near the limiting superheating, the metastability state reaches its maximum and
upon further heating, the crystal becomes unstable due to homogeneous nucleation, which
leads to the disappearance of the solid/liquid interface. With large undercoolings, the mobility
of the melt decreases significantly, reducing the value of the interface velocity.

6 CONCLUSION

1. A modification of the transition state theory for melting/crystallization processes is
proposed using the Wilson-Frenkel kinetic model as an example. The modification consists in
replacing the constant coefficients in the rate of direct and reverse transitions with a
functional dependence on the temperature of the solid/liquid interface T,,.

2. Atomistic modeling of Si melting / crystallization processes under the conditions of deep
overheating/undercooling was performed using two interaction potentials KIHS and SW.

3. From comparing the simulation results with the data of the modified kinetic model, the
interface response function is constructed in the region of the maximum allowable values of
superheating/undercooling in Si. The crystallization part of the interface response function, as
well as the second part of the interface response function for melting, are diffusion-limited
and are described by the same equation over the entire temperature range.

4. The temperature dependence of the speed of the solid/liquid interface determined from
the simulation results using both interaction potentials shows a clear asymmetry with respect
to the melting point Ty, This is explained by the strong difference between the solidification
kinetics in a highly undercooled state and the melting Kinetics in a very superheated state.

5 The change in the temperature dependence of the velocity vy (T,,) upon passing through
the melting point Ty, occurs smoothly without a kink of the slope.
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Summary. The paper considers a computational algorithm for solution of surface PDEs
defined on the evolving surfaces. The basis of the algorithm is a finite element version of the
closest point projection method. The method is applied to the Reynold’s lubrication equation
which governs fluid flow in thin fractures. The closest point approach is used for description of
fracture mid-surface evolution and for construction of the embedding equation. We describe
algorithmic details of the proposed approach as well as a number of numerical experiments
which demonstrates robustness of the method.

1 INTRODUCTION

Currently, hydraulic fracturing (HF) is one of the most widely used methods of oil and gas
reservoir stimulation. The essence of the technology is an injection of special fluid into
reservoir in order to create an artificial fracture of considerable area (length ~100 m, height
~10 m, average opening ~5-10 mm). The fracture is filled with a proppant — calibrated
artificial or natural sand-like granular material. The result of HF procedure is an artificial flow
channel connected to the production or injection well with large inflow area and high
permeability. This provides a significant increase in inflow of reservoir fluid to the well.
Engineering aspects of technology are considered, for example, in [1].

Mathematical description of the hydraulic fracture evolution during its development comes
down to solution of complex coupled problem which includes (among other groups of
equations) flow equations of (usually non-Newtonian) for fluid in the evolving fracture.

A number of models for HF evolution are known. Most general of them (see, e.g., [2])
assume that:

e fracture mid-surface is an arbitrary sufficiently smooth surface with boundary;

e at a fixed point of the mid-surface its opening is defined by reaction of the
surrounding medium and pressure in the fracture;

e during the hydraulic fracturing procedure, the fracture evolves, and the exact way of
this evolution is not known in advance (in other words, the fracture mid-surface is a
part of the solution of complete problem);

o the fracture mid-surface is not flat — fracture can switch direction of propagation
locally; the direction of its propagation may be different at different points on its
front.

Note that common approaches to solve the problem of fracture propagation in an elastic
medium are based on boundary integral equations. In this case it turns possible to solve both

2010 Mathematics Subject Classification: 74H05, 65K05, 74H35
Keywords and Phrases: Closest point projection method, Finite element method, hydraulic fracturing, Reynold’s
lubricantion layer equations
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fracture flow equations and elasticity equations in the surrounding medium using single surface
computational mesh defined on the fracture mid-surface. This simplifies overall algorithm for
the complete problem. In the case when the medium is, for example, heterogeneous, these
methods cannot be applied — and the mesh-based methods like, e.g. finite element method are
more preferable. In that case an additional computational mesh has to be introduced for solution
of surface PDE. The same situation arises when realistic fluid flow models in reservoir has to be
considered, see, e.g. [3].

Another approach is to use the so called embedding methods when surface PDE is solved
using the same spatial mesh as a problem in the surrounding medium. A number of such
methods are known. In the works [4, 5, 6, 7, 8] an original method was proposed for solving
surface PDEs based on surface representation using closet point projection operator. The
essence of the method is that closest point projection operator is used to extend surface PDE
into the surrounding space to obtain the so called embedding PDE. Further, this embedding
PDE is approximated by a suitable difference method on a mesh which, generally, is not
consistent with surface geometry. As a solution to the original problem on the surface, the trace
of 3D embedding equation is considered. At the same time, the closet point projection operator
is used to approximate Dirichlet (or Neumann) boundary conditions defined on the boundary of
both the original surface and the three-dimensional domain, where embedding PDE is solved.

In this paper, we consider the finite element version of the closet point projection method to
solve Reynold’s lubrication equations which governs fluid flow inside evolving fracture.

In contrast to the works cited above, the finite element method is used a basic approximation
scheme. More detailed description of the algorithm as well as numerical examples are presented
in [19, 20].

2 CLOSEST POINT PROJECTION METHOD

This section briefly describes the main ideas of the closest point projection method for
numerical solution of surface PDEs. The method was proposed and developed in [4, 5, 8, 6, 7].
It uses implicit representation of the surface and is based on the extension of surface PDE into
the space. To construct such extension the closest point projection operator is used rather then
commonly used level set method.

In this section, for simplicity, we consider model boundary value problem for a parabolic
equation with Laplace—Beltrami operator (see, for example, [21]) defined on a curved surface
F  with boundary:

(Zt—u -A-Uu=0, (1)

complemented by the initial and boundary condition of the desired type.
We assume that the surface F is entirely located inside the spatial domain Q c R®.
Suppose that for an arbitrary point x € Q, a point X, is the nearest to x point on the

surface F |

X, = argmin, . Py —xP,
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where P-P is the Euclidean norm in R®. The point X s called the closest point projection
of the point x onto the surface F , and the corresponding operator will be denoted by P,

Xe = PX.
The operator P is vector-valued: it maps spatial domain Q to the surface F , considered

as a subset of Q c R®.
If the sign distance function d_ (x) can be specified for the surface F (for example, if F

is oriented surface without boundary), then the following representaion for the operator P is
valid:

P(x) =x—d. (X)Vd. (x), d(x)=Px—-PxP.

Just like the sign distance function (or a pair of such functions in the case of a surface with

boundary), the projector P uniquely defines surface F ,
F ={xeQ: x=Pxj.

However, the closest point projection approach is more general: it allows one to describe
geometry of surface with boundary, non-orientable manifolds or manifolds of codimension
greater than one (i.e. curves and points which are codimension 2 and 3 objects in 3d case — as
well as union of objects of different codimension).

Using projector P, itis easy to construct an extension of an arbitrary function defined on the

surface to the spatial domain Q : for an arbitrary function u defined on a surface, its
continuation E[u] in Q is defined as

E[u](x) = u(Px), xeQ.

In both cases, the operator E is a projector in the sense that E*> = I , where 1 is the identity
operator. Note that:

e for an arbitrary function in Q which is constant along the direction normal to F ,
(VW) =V (ule);
e for an arbitrary vector field in € tangent to the surface F |,
(V-a)le = Ve -(al ).
Then, due to the properties of the projector P and the extension operator E:
VE[u](x) = Vu(Px) = V_u.

Since the E[u](x) is constant along directions normal to the surface, the vector field
VE[u](x) istangentto F . Hence,

V-[VE[Ul(X)]=V:[Vu(Px)] =V, -V_.u.

Similar extensions can be constructed for more complex elliptic operators defined in the
surface, see [9].
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Thus, the original equation (1) can be extended to the spatial domain Q to define the so
called embedding equation. Further, the embedding equation is approximated by a suitable
difference method on a three-dimensional mesh introduced in Q and, generally, inconsistent
with the surface geometry. Solution of the original problem on the surface can restored as a
trace of the solution of 3D problem on the surface. A rigorous justification for the constructions
described above is presented in [9]. Details of the method are given in the papers cited above.

Following the described approach the embedding equation which corresponds to (1) reads:

‘Zt_“w.(VE[u]):E[f], XeQ, . 2

The trace of the solution of this equation on F s the solution of the equation (1).

Regarding domain Q, it is assumed that (i) it is small in the sense that the closest point
projection of an arbitrary point from Q is well defined and (ii) the domain  includes the
surface F , Q o F , and the distances from the boundary points of Q to surface are positive.
In other words, all points on the surface are interior points of the domain.

If the surface F is a surface without boundary, the value of the solution u(t,x) of the

embedding PDE (2) at the points lying on the surface F will coincide with the solution of the
original surface PDE (1) (in this case oF =& and the problem (1) is the Cauchy problem).
Otherwise it is required to provide embedding PDE (2) with boundary conditions defined in a
suitable way. This can be done in different ways. In [8] a convenient way to adress this issue in
the discrete setting. In the context of the finite element method the corresponding questions
were adressed in [10].

3 PROBLEM STATEMENT
This section presents the mathematical formulation of the problem. In subsequent section
with consider a flow model itself and geometrical model for fracture mid-surface evolution.

3.1 Flow model in fracture

Consider a one-sided surface F with boundary oF immersed into three-dimensional
space R®. Let F =F U4aF, where an open domain F is an internal part of the surface,
oF — its boundary. In some cases, we will identify the notation F and F . We assume that
F and its boundary have the required smoothness.

The surface F is assumed to be immersed into spatial domain Q. Let for each point
x € Q aclosest point projector P onto F s uniquelly defined (see section 2). Depending on
the location of the point, its projection onto F  belongs to either F or oF . This allows us to

represent Q asaunion Q=Q_. UQ, , where

Q. ={xeQ:PxeF} Q, ={xeQ:PxedF}
The boundary 0Q. of the Q_ can be represented as

00, =T, UT,., T, =0Q. ndQ, T, =oQ, \T,.
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In the case of evolving fracture geometry, the constructions above are generally the same,
except that the computational domain now depends on time. That is, the problem is solved in

the domain F =F =F (t), where t is the time, Q=Q, =Q(t), Q. =Q, =Q (1), etc.
Additionally, we assume that for all moments of time, all previously considered time-dependent
domains, as well as the mid-surface of the fracture are located inside some spatial and

time-independent domain Q. Let us note that the dependency of the mid-surface F on time
cannot to be an arbitrary. Corresponding clarifications will be given below.
The Reynold’s lubrication equation of fluid flow in fracture has the form:

opw . 1
L +div] -——pW'Vp |=f , xeF, 3
p ( " pj m X€F 3)
where p is the fluid density; w=w(X) — fracture opening, X € F — point of the fracture
mid-surface F ; v — fluid viscosity, p= p(X) — its pressure, f_ — mass rate of external
sources.
We assume that the fluid density linearly depends on pressure, i.e.
p=poll+c (p—py)l

where p, and p, are reference values of density and pressure, c, is compressibility of the

fluid.
The equation (3) is supplemented with initial and boundary condition of the form

p(X’t = 0) = pini (X), p |a|: = pOF '
Further, we assume that the opening w is always positive,
wW=w(x)..w, >0, xeF UJF.

In the simplest case we can assume that fracture opening W does not depend on pressure. In
a more realistic setting, opening is a function of pressure. This relationship reflects the fact that
the fracture is located inside an elastic medium that deforms when the pressure in the fracture
changes. In this paper it is assumed that this dependency is linear, i.e.

W(x) =W (x; p(x)), W (X; p) = Wi (X) (14, [P(X) = Prr]), 4)
where w.

ot (X) is fracture opening at reference pressure p., c, is coefficient describing
“compressibility” of fracture (more precisely, the medium containing the fracture).

w

3.2. Model for surface evolution

Evolution of the surface F, in the formulation (3) can not be an arbitrary. This section

presents relevant assumptions, both of the fundamental and technical character. They reflect the
specifics of the problem under consideration, namely, the fact that F, is the mid-surface of an

evolving fracture.
Let the problem (3) be solved on the time interval t<[0,T] and for t..t, condition

F, <F, holds. In other words, a family of surfaces corresponding to smaller times, is
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contained inside a surface corresponding to any larger time. Or, which is the same, the surface
may evolve only due to the movement of its boundary.
We assume that:

e at any time te[0,T] the surface F, is entirely located inside some spatial

time-independent domain Q ;
e the evolution of the surface F is “smooth”, i.e., at any time the surface can be

smoothly and one-to-one mapped onto, for example, a unit disk in R?. In particular,
during its evolution F should not have self-intersections, and so on.
In this case, the family of surfaces {F,,t..0} can be represented as a union of the “initial”

surface F =F, and the “trace” of the movement of the surface boundary, i.e.
F, ={F, uy(@)o, t’, t},

where F =F, isthesurfaceat t=0, y(t)=dF,.

Thus, the evolution of the surface is determined by the motion of its boundary ¥(t). In the
following we assume that at every moment of time, on the curve y(t) the velocity vector field
V=V(x,t) , xey(t) is defined which governs fracture evolution. Movement of the
(Lagrangian) point of the boundary is described by the equation

‘;—f V(D). X|o=X, € 7(0). ©)

We assume that V = V(X,t) (i) is smooth function of point X € y(t) for t€[0,T] and (ii)
is a smooth function of time for each fixed (Lagrangian) point on the boundary.

Such a model of surface evolution corresponds to the problem of fracture dynamics. In this
case the direction of surface evolution is known only at the points of its boundary (fracture
front) and is determined by the appropriate fracture criteria (see e.g. [11, 12]).

Note that in a number of cases (in particular, for the purposes of theoretical analysis) it is
convenient to assume that the velocity field Vv(X,t), x e oF, isatraceon oF, of some smooth
vector field V =V(x,t) without singular points which is defined in the domain Q containing
the family of surfaces F, atall instants of time t €[0,T]. The natural requirement for the field
V =V(x,t) is that that it is tangent to surfaces F. for all £ <t (in other words, it does not

change already formed fracture mid-surface). Under a suitable choice, the field V generates a
smooth and one-to-one mapping of the surface F =F, onto the surface F, forany te (0,T].

4 COMPUTATIONAL ALGORITHM

4.1. Formal time approximations
We write the problem (3) in the operator form as
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Op(u) O = .
ot +A(w(u)u)=f, xeF, (6a)

Ule =9, xedF,,

with initial condition
u(x,t =0) =uy(x), xekF,.

Let the problem (6a) be solved for t €[0,T]. We divide interval [0, T]it into intervals (time
steps) At, so that

0=t, <At<...<nAt=t <..NAt=t, =T.

According to section 3.2 at time point t the solution u, =u(t,) is defined in the domain

F., =F,, moreover, F, cF,_,.

th

Semi-discrete (in time) approximation of the problem (6a) on the interval [t ,t ,] can be
defined as

¢(un+l) B E[(D(Un )] +A(W(U ),U ) = f

At n+1? X € F

(6b)

n+l*

Here E[] is the continuation operator that maps functions, defined in F_ to functions
defined in F_,,. For the problem to be well-posed, the continuation operator must satisfy

certain smoothness and boundedness properties. In terms of Sobolev spaces, such properties of
the continuation operator are formulated in [13].
In this paper, a rigorous theoretical justification of the proposed method used is not given,
but it can be expected that the conditions necessary for its correctness are satisfied since:
e for smooth domains with smooth boundary natural smoothness properties of the
solution coincide with those ones for the case of planar domains (subsets of R?).
Moreover, the surface F, for all t can be mapped smoothly to the

two-dimensional domain F, c R? (and even to a time-independent canonical
domain, for example, a disk of a given radius)
e the vector field V that governs mid-surface evolution (see section 3.2) defines a
smooth mapping F =F, onto F,.
We also note the following. In the works [13] and [14] the continuation operator is not used
explicitly. Instead, an implicit way to prolongate solution from domain Q, to the domain
Q. ., isused. Technically it is implemented by adding to the weak statement of the problem an

additional penalty-type bilinear form. As a result, the required smoothness of the discrete
extension is a consequence of the modified variational statement of the problem. This method is
called “ghost penalty stabilization”. It can directly be used to solve the problem considered in
this paper.
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Below we use an algorithm, that assumes explicit definition of continuation E[u] of the
solution u. Namely, the solution defined in the region F is extended to the domain F , as
a constant in the direction normal to the boundary of the domain F_ .

Alternatively, a continuation approach typical for the X-FEM method can be used (see, for
example [15, 16]). Essentially it consist of two steps:

1. First, the vector field v defined at the boundary oF, is extended into tubular

neighborhood of oF, (or the entire three-dimensional domain containing the

surface);
2. Second, the extended velocity field is used to extend solution from the domain F,

into an “extended’’” domain F__, by solving appropriate Hamilton-Jacoby type

equation.
At each time step, the problem (6b) is solved on the surface F ;. A number of methods can

be applied to do it, including variational version of the closest point projection method (see

[10]).

In what follows, we assume that during its evolution, the surface F, (and surfaces F,

n+1

n:O,_N) are always located inside spatial domain Q . To proceed with spatial
approximations, we assume that the finite element mesh T, is introduced in Q. This mesh is

used to build spatial approximations of the problem (6b) for n = 1N,

At each moment in time, a three-dimensional domain Q! is associated with the surface F_
in which solution to the problem (6b) will be approximated by the closest point projection
method. Geometrically ] can be constructed as a set of finite elements w e T, , all nodes of
which are distant from the surface F_ by a distance not exceeding the value of the given
parameter ¢, which is a multiple of the step of the computational mesh. Everywhere in the
domain QE we will assume that closest point projector P, (the index “n’’ indicates the

number of time step) is well defined.
Afterwords to solve the problem in the domain Q

used directly.
The sketch of the computational algorithm is as follows:

1. Initialize surface F =F,, velocity field V(X) defined at X € OF ; initial condition

U,(x), XeF .

Set domain Q and the computational mesh T, init.

Set n=0, t=0.

4. Compute discrete approximations of the closest point projector Poh to the
surface F,..

5. For n=1,N:

a) Set n:=n+1,
b) Define mid-surface boundary evolution velocity v.

algorithms from [17, 10, 20] can be

n+1?

w N
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c) Setup mesh domain Q' as a correct subset of the finite elements in T, .

d) Based on the given field v and the mesh projector P:_l determine discrete
domain Q! and the corresponding closest point projector P". see [18].

e) Compute the extention Eu,_, of the solution from the domain Q) to the
domain Q.

f) Assemble and solve a finite-dimensional approximation of the problem (6b).
g) Go to step 5a.
6. Terminate algorithm.

Note that during the operation of the algorithm, the surface is specified directly only at its
first initialization step. In the further steps, only the evolution over time of the projector P,T IS

computed. The image of this projector is an approximation of the surface; Its geometric
characteristics, if necessary, can be calculated according to the algorithms described in [18].

To solve discrete non-linear problem at step (5f) of the algorithm, fixed point iterations are
used.

As applied to time-implicit approximations of the problem (3) this algorithm, describing
transition from the current state {p, o,w} at the time t to the state {p, o, W} at the time
t+ At has the following form:

1. For i=0 set p, =p.
2. Compute W, as

W, (X) =W 0), £, (X) = p(B; (X))

3. Compute p,,, as solution of the equation:

1 A . 1 . 3.
E(P( Pi )W,y — pW) + dIV(—EpM\NileM] = f. (7)
4. Check iterations stopping criteria. If the required accuracy is not achieved, set
i:=i+1 and go to step 2. If the required accuracy is achieved, set
{ f),,b,W} = {ﬁm’p( ﬁiﬂ)’w(ﬁiﬂ)}

It is assumed that the solution is obtained with the required accuracy, if the uniform norm of

pressure increment is less then the given threshold value &, :

4.2 Spatial approximations with closest point projection method

n+1

pin+l _ pi_]_

<gier' 8
. f (8)

00

To simplify notations let us write down equation (7) as
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iM(u—U)+V~(A(X)Vu):f, xeF. 9)
Following [8] consider continuation of the equation (9) to the spatial domain Q_ :
AitM(u—U)+V-(E[A](x)VE[u]) =E[f], xeF. (10)

The trace of the solution of the embedded equation (10) on F is the solution of the
equation (9).
Boundary conditions for the embedding equation (10) on I',. (see section 2) can be

constructed as an extension of the surface boundary conditions of the original problem (3)
defined at oF :

ulr_ = E[ule1=E[g], (12)
or, which is the same,

u(x) = g(Px) = g(x,), xel,, X, =PxedF.

C|

Note that the values of the solution of (10) on T, are completely defined as an extension of

u from interior points of the surface F . For this reason, the boundary conditions for (10) are
not defined on this part of the boundary.
Let us briefly describe now the spatial approximations. Let T, = T, (Q2) be a partition of Q

into finite elements (tetrahedrons) «),

that is, domain itself and its boundary are approximated exactly. Let N be a set of
triangulation nodes, equipped with simplest continuous piecewise linear basis functions
@ =@ (X), 1€ N . The finite-dimensional space V, (Q2) V() can be defined as

Vi () = span ¢, (X)- (12)
Recall that the boundary I' of the domain Q is approximated by the computational mesh
exactly. Let N =N, UN,., N, and N be sets of nodes inside domain Q and on its

boundary I, respectively. Then elements of the space V, =V, (Q2) have the form

Vi (X) = z Vi (X)-
ieNQuNF

To proceed we construct discrete approximation P, of the closest point projection operator
P first. The details are covered in [18]) and are not considered here. Let x;, be a mesh node in
Q,, X =P,X; be its projection, o, be a finite element such that X" € .. Discrete extension
operator defines the value of the (extended) function in the node x; as u,(P,X;). This value
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can be computes using linear interpolation over the values u,, k € @, of u, over nodes w,.

ext

As a result, the value of u,” can be defined as

ext

Uy =Ezuy,
where E, isa square matrix which nonzero rows are of the form

Eh (i,[kl, kza k31 k4]) = [51(@)’52 (a)i)!§3(wi)754(a)i )]

Here & () are barycentric coordinates of the point P(x;) inside finite element wo.

Provided with discrete extension operator, the finite element approximations to (10) (in a
case of homogeneous Neumann boundary conditions) reads:

0, —u
h h =AEu, +Ef,,

M,

where M, is the mass matrix, u, =u,(t) isa vector of degrees of freedom of the solution at
time t=t,; Q, =u,(t+At) is vector of degrees of freedom of the solution at time
t=t , =t+At, f is the right side of the finite-dimensional problem, A — its stiffness
matrix,

[Mh]ij :_[M¢|¢j dQ, [Ah]ij = IE[A]Q 'V¢j dQ, [f] = Jf¢| dQ, i,jeN.

The resulting system of linear algebraic equations has the form:
(M, —AtB, )0, = AtE,f, + M, u,.

As it is shown in [7], the constructed finite-dimensional problem can be unstable since
matrix B = AE may have eigenvalues with both positive or negative real part. The same work
suggests modification that eliminates this effect. The solution is to modify B, according to

B, = diagA, + (A, —diagA, )E,.

The same modification is used in this work.

A number of approaches can be used to account for boundary conditions in the discrete
setting. In this paper, we use the simplest one: the values of the solution in the nodes of the
computational mesh, which are projected onto the surface boundary, are assigned according to
the given boundary values. Technically, this is done in a standard way, by modification of the
appropriate rows of the system of equations above.

The described algorithm is applied at each step of the fixed point iterations to solve the
equation (7).

5 SIMULATION RESULTS

5.1 Geometric constructions

This section provides an illustrations to the basic geometrical constructions needed for
application of the closest point projection method (see section 2) using simple example.
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Generally, an algorithmic steps used in closest point projection method are as follows. First,
the spatial domain Q is defined. The somain contains surface F with boundary oF such
that F =F UoF < Q. We consider here the stationary case, i.e., the fracture mid-surface is

assumed to be fixed in time and space. Therefore, in this section domains Q and Q are
treated equally.
Hereafter in this work the domain Q is asumed to be cube-shaped with an edge of the

length 1. In this domain a tetrahedral mesh is introduced which is constructed as follows: (i) a
uniform mesh of N, xN xN, smaller cubes in Q is introduced; (ii) each small cube is
further divided into five tetrahedra. Those tetrahedrons forms a computational mesh in Q. In
the following it is always assumed N, =N, =N, =N. The mesh step size is defined as
h =1/N . Note that it is not assumed a-priory that the surface F and the constructed mesh are
consistent (i.e., the surface F is not represented as a union of the mesh faces).

The constructed meshed domain Q" is not used in the calculations directly, but is used to
build a mesh Q'; , iIn which solutions to the extended (prolongated) equation is to be found.

In accordance with the approach under consideration, the problem (surface PDE) is solved in
the meshed domain Q! , which is the “submesh” of the Q" so that the distance (in the sense

of closest point projection) from all nodes of the mesh in Q! to the surface does not exceed a
given value ¢. In all calculations below this value is selected as § = N h, where N, =4.

Further in this section, the domains Q and Q" (as well as Q! and Q. ) are identified and

the superscript “h” is dropped, if it does not lead to any misunderstanding.

For the example discussed in this section the surface F has the form of a flat disk of the
diameter L =1.Thedisk is located in the plane Oxy and is centered at the origin. Domain Q
containing the disk is a cube with edge length 1 =1.5.

On each edge of the cube Q, a N =31 nodes are defined. Thus, the characteristic mesh
step sizeis h =0.05.

According to the closest point projection method an equation defined on the surface F is
extended and solved in the spatial domain Q. < Q. The region Q. consists of tetrahedrons
from Q with nodes located at the distance of 6 =0.2 or smaller from F . So, the
“thickness” of the domain Q. equalsto 20 =0.4 (~ 8grid nodes) and its largest diameter is
1.4 (=~ 28 grid nodes).

The nodes of Q. are shown on figure 1 (on the left plot). It also shows a section of the
domain Q by the plane passing through the center of the disk F . The mesh with red edges
shows the surface F , red spheres denote nodes located in the domain Q. (“cloud”). In the
same figure (on the right plot) the vectors connecting the mesh nodes x with their projections
P(X) onto F are shown. The color of each vector corresponds to its length.

Figure 2 shows the sections of the computational domain by the coordinate planes Oxy and
Oyz . Red spheres indicate mesh nodes located in Q. which projections belong to the boudary
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oF of the surface. On the same plots the white spheres are nodes in €. , which projections
are internal points of the surface F . Blue lines indicate the volumetric mesh defined in Q.

5.2 Fluid flow in fracture with fixed mid-surface

Here we consider the case when the geometry of the fracture does not change in time and
fracture opening is pressure dependent. The statement of the problem in this case has the form
of (3).

Fracture opening, as a function of pressure, is defined by (4), where reference opening
W, (X) corresponds to the surface of bi-axial ellipsoid with axes I, and L,, I, = L,. Here
l, is equal to maximum value of fracture opening, see below.

Let x, be the center of the fracture, X, = P(X) —projection of apoint x onto the fracture

mid-surface, d is a distance from the center of the fracture to the projection of the point onto
the fracture,

d =d(x) =Px, —x, P,

where P-P is the Euclidean normin R*. Then the reference opening as a function of the point
at the fracture mid-surface is expressed as

v =1 Jlu 13)
ref 0 Lg .

As it was mentioned above, Reynold’s lubrication equation (3) is degenerate as opening
vanishes at the fracture front (mid-surface boundary). To avoid this situation, we set
L, = (1+¢&)L where L is actual radius of the disk-shaped fracture. Here ¢= I, = L isa
small parameter.

At the initial state, the pressure is constant over the fracture mid-surface and is equal to p,
(reference pressure value). Accordingly, the initial opening distribution equals to the reference
one.

Boundary conditions at the fracture front read:

X=X
paF:paF(X):po(l"'?/ Lcj’ XeF,

with 7 = 0.1 being a parameter, X being projection of the point x onto the axis OX.

As before, the computational domain is a cube with edge | =30 m. The mesh step size
h=1 m. The equation is solved in the domain . consisting of tetrahedrons, all nodes of

which are distant from the fracture mid-surface no further then 6 =2 m. Time step is
At=05-10" s.

The radius of the fracture is equal to L =10 m. The fracture is a subset in the plane Oxy
and is centered at the origin. The maximum fracture opening 1, =1 cm.
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Figure 1:(a) - section of the domain €, surface (red mesh) and mesh nodes in Q. (red markers).
(b) - projection vectors of the nodes inside domain Q. on F .
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Figure 2: Projections of the mesh nodes onto the surface (white spheres) and onto its boundary (red
speres). The blue lines are edges of computational mesh. (a) - top view, (b) - side view.

In the center of the fracture, inside disk Q. of the radius R = h a constant pressure is set
being equal to 1.1p, .
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Accuracy parameter in (8) issetto &, =1.0-10° and the maximum number of iterations is

No> =10.

iter

Physical parameters of the fluid in fracture are as follows: kinematic viscosity
v=1.10"° Pa - s, reference pressure p, =300 bar, reference opening I, =1 cm,

compressibility ¢, =4.16-107° Pa™, density p, =1000 kg/m®. Parameters of the equation

(4) are Cw :1/ pO’ pref = pO'
Pressure distribution and fracture opening for the computed solution for different moments

of time are shown on figure 3.

...

p, Pa

2.7e+07 2.9e+7 3e+7 3.1e+7 3.3e+07

- c—

w, m

3.7e-03 0.006 0.008 1.1e-02

— D —

Figure 3: Pressure (on the top) and fracture opening (on the bottom) distribution at time t = At (a, d),
t =34t (b, e), t = 54t (c, f).
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p, Pa
3.1e+07 3.15e+7 3.2e+7 3.25e+7 3.3e+07
|

Figure 4: Pressure distribution at time ¢ = 4¢ (a, d), t = 34¢ (b, €), t = 54¢ (¢, f). Top: top view, bottom:
side view.
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| I

— U —
e. f.

d.
w, m
1.0e-02 0.0102 0.0104 0.0106 0.0108 1.1e-02
—— b
Figure 5: Pressure (top) and fracture opening (bottom) distribution at time ¢ = 4¢ (a, d), t = 64¢ (b, €), t =
124t (c, ).
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The presented simulation results show that to achive the required accuracy using fixed-point
iteration method requires no more than 10 iterations for each time layer. As expected, the
number of iterations significantly decreased with time.

Next, we consider the case of fracture with fixed geometry but of the complex shape. The
statement of the problem is the same in general.

At the initial moment of time, the pressure is constant over the middle surface of the fracture
and is equal to p, (reference pressure value). The opening is constant as a function of the

mid-surface point and is equal to 1, (reference value of the opening). Dependency of the
opening on the pressure is given by (4) with w., (x) = I, = const.

The computational domain is a cube with edge length | =50 m, mesh step sizeis h=1 m.
The equation is solved in the domain Q_ , consisting of tetrahedrons, all nodes of which are
distant from the fracture no further than 6 =2 m. Time step size is At =0.00024 s.

Accuracy parameter in fixed point iterations stopping criteria is equal to &, =1.0-107°, the

maximum number of iterations is setto N> =3,

iter

Physical parameters of the fluid are as followos: kinematic viscosity v =1-10" Pa-s,
reference pressure value p, =300 bar, reference opening I, =1 cm, compressibility
C =1.10° Pa?, density £, =1000 kg/m®. Parameters in equation (4) are c, =1/ p, .
pref = pO'

The fracture mid-surface is part of the paraboloid of the height 3 m and radius of lower
section 4 m. At the top of the paraboloid, in the disk Qp of the radius R =h, where h is
characteristic grid step, constant pressure equal to 1.1p, is set over time. The simulation
results are presented on figure 4.

5.3 Fluid flow in evolving fracture

In this section a case of fluid flow in evolving fracture is considered.
We assume that fracture opening depends on pressure in accordance with the equation (4).
Evolution of the fracture is driven by axially symmetric velocity field v given by

v(X,t) :vm&, X € OF,.
Px-x,P

m

As it can be seen, fracture evolution occurs in the plane Oxy. The velocity field is defined
. anda constant (i.e., independent of the moment of time
and point of space) velocity v, . For timeinterval At the point x of the fracture front moves
according to

by the point of the “growth center” X

— X(t) —Xn
X(t + At) = X(t) + Ath M
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It is assumed that domain Q is sufficiently large and contains fracture mid-surface at each
moment of time during fracture evolution. Domain Q_ , where the problem is actually solved,

evolves according to fracture evolution.
The computational domain is a cube with edge | =50 m. Accordingly, the mesh step size is

h=1 m. The equation is solved in the domain Q;, consisting of tetrahedrons, all nodes of

which are distant from the fracture not further than & =2 m. Timestepissetto At=0.5-10"
S.

The radius of the fracture at the initial moment of time L =10 m, the fracture belongs to
plane Oxy and is centered at the origin. The fracture growth velocity v_ is chosen so that

v.At =0.5 m. The reference opening is assumed to be constant over fracture surface,
W, (X) = const.

The physical parameters are as follows: kinematic viscosity of the fluid v =1004-107°Pa-s,
reference pressure value p, =300 bar, fluid compressibility ¢, = 4.16-10™" Pa®, density
p, =1000 kg / m®. The reference value of the opening is w,, =10 mm. Parameters of the
equation (4) are ¢, =1/ p,, P = Po-

In the center of the fracture, in the disk Q. of the radius R =h, with h being the
characteristic mesh step size, a constant in time pressure equal to 1.1p, is defined. At the
initial time, the pressure in the fracture is equal p, .

Accuracy parameter in fixed point iterations stopping criteria is equal to &, =1.0-10°°.

The maximum number of iterations is N =10.

The simulation results are presented in the figure 5.

6 CONCLUSION

The present work is devoted to the numerical study of the finite element version of the
closest point projection method applied to the numerical solution of the Reynol’d lubrication
equations which describes fluid flow in fractures. Both stationary and evolving fractures are
considered. The key idea of the approach is to apply closest point projection method to describe
surface evolution and to construct embedding PDE. The fracture mid-surface evolution is
described entirely in terms of discrete closest point projection operator without use of any other
representation of the fracture. A number of test problems are considered, for stationary and
evolving fractures. Numerical experiments demonstrated has demonstrated robustness and
efficiency of the overall approach.
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Summary. An analytical function of pressure on specific volume and internal energy is de-
veloped for niobium. This function allows one to adequately describe the thermodynamic prop-
erties of this metal in a wide range of densities and pressures. A comparison of the calculated
shock adiabat with experimental data at high dynamic pressures is made. The equation of state
proposed for niobium can be used to model physical phenomena at high energy densities.

1 INTRODUCTION

The problem of a thermodynamic description of the properties of matter is of interest for
both fundamental and applied investigations [1]. For the analysis and numerical simulation of
physical processes at high energy densities, equations of state (EOSs) for materials are needed
over the entire range of parameters that are realized in these processes [2]. For example, at high
velocity impact [3—5], under the action of intense laser [6—8] and particle beams [9, 10], at an
electrical explosion of conductors [11, 12], this range continues from normal conditions up to

extremely high pressures and specific internal energies.
Niobium is a refractory material, has a low thermal neutron capture cross section. In partic-

ular, the EOS for this metal is required when modeling the operating modes of some nodes at
nuclear power plants.

In this work, the EOS for niobium is proposed in the form of an analytic function of pressure
on specific volume and internal energy. In this form, the EOS can be used in hydrodynamic
simulations of adiabatic processes. To illustrate the quality of the EOS, the calculated shock
adiabat of niobium is compared with experimental data at high pressures.

2 EOS MODEL

The model is formulated in the framework of the quasi-harmonic approximation. The general
form of the EOS [13] is as follows:

Pv.E) = Pv) + B v, 0

2010 Mathematics Subject Classification: 74A15, 74J40, 76105, 80A10, 82D35.
Key words and phrases: equation of state, analytic function, niobium, high pressure, high energy density.
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where P is the pressure; V is the specific volume, V = 1/p; p is the density; E is the specific
internal energy; E. is the specific internal energy at zero temperature, 7 = 0; P is the corre-
sponding pressure at 7 = 0: P, = —dE./dV.

The coefficient I is the ratio of thermal pressure to thermal energy density: V[P — P;]/[E —
E.]. Its dependence on volume and internal energy is chosen as follows:

(V) =%

PV E) = S E — R (V)

; 2)

where 6 =V /V; Vj is the specific volume under normal conditions, E = Ep and P = Py; % is
the Griineisen coefficient y = V(dP/JE)y at the case of T = 0; % is the value of the Griineisen
coefficient at the case of high thermal energies, E — E. > E, 023 E,isa parameter.

The coefficient ) is represented by the volume function

2 2
o: +In” oy
V)y=2/3+ —2/3 L , 3
where the value of . corresponds to the normal volume Vj; 6, and o, are parameters.
The cold energy is represented by a polynomial
BoVoe (00 ol
awvziﬁﬁ(i-i)+&w. )
m—n \ m n

Here, 6. = Vi /V; Vo and By, are the specific volume and the bulk modulus at 7 =0 and P = 0;
Equb = BocVoe/(mn); m and n are parameters.

3 EOS FOR NIOBIUM

Under normal pressure, the solid phase of niobium has a body-centered cubic (bcc) structure;
it melts at 7 = 2740 K [14]. At quasi-hydrostatic compression at room temperature, niobium
was studied up to 134 GPa [15]; no transformations of the bcc phase were observed.

At shock compression, niobium was studied up to 180 GPa with traditional explosive sys-
tems [16—19]. Pressure up to 400 GPa in niobium was recorded in experiments with special
explosive systems [17].

Figures 1-3 display the results of the calculation of the principal Hugoniot curve of nio-
bium over entire range of measured shock and particle velocities, pressures and compression
ratios [16—19]. The shock adiabat of the material is calculated using the energy conservation
law at the shock front [20],

E=Eo+ 3 (Rt P)(Vo—V), ©
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Up, km/s

Figure 1: The principal Hugoniot adiabat of niobium: curve corresponds to the present calculations; markers—
experimental data (I1—{16]; [2—[17]; I3—{ 18]; 14— 19]).
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Figure 2: The principal Hugoniot adiabat of niobium: the notation is similar to figure 1.
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Figure 3: The cold curve (F;) and the principal Hugoniot adiabat (H) of niobium: curves correspond to the present
calculations; marker designations are similar to those used in figure 1.

along with the EOS (1)—(4). The velocities of the shock front (Us) and particles behind it (Up)
are calculated with the use of the mass and momentum conservation laws [20]:

Us=Vor/(P—Py)/(Vo—V), (6)
Up =/ (P—P))(Vo—V). (7

Comparison of the calculated adiabat with experimental data [16—19] is illustrated in fig-
ures 1-3. One can see that the EOS (1)—(4) adequately describes thermodynamic properties of
niobium in the region studied in shock waves.

The coefficients of the EOS (1)—(4) for niobium are as follows: V; = 0.11646 cm3/g, Vo =
0.116 cm’/g, Bo. = 174.449 GPa, m = 0.66, n = 0.68, 6, = 0.9, 6, = 1.2, Jp. = 1.6, % = 0.45
and E, =60 kJ/g.

4 CONCLUSIONS

Thus, EOS for niobium is developed, which is consistent with data from experiments with
shock waves at high pressures. The EOS has a form suitable for use in the numerical simulation
of adiabatic processes in a wide range of densities and internal energies.
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Summary. This paper discusses the problem of describing thermodynamic properties of a
substance at high temperatures and pressures on the basis of the fundamental equation of state
(FEoS). This FEoS has the following characteristics: it transforms into the virial equation of
state in the region of low densities; it is converted into the Berestov equation in the vicinity
of the critical point. FEoS testing has been carried out on known thermodynamic properties
of argon and has allowed establishing its workspace: by the pressure up to 1000 MPa; by the
temperature from the temperature of the triple point to 1200 K. It has been shown that our FEoS
can qualitatively correctly describe the thermal surface of argon up to 17000 K. A comparison
of FEoS has been made with some well-known equations of state. When developing FEoS of
argon, we have used elements of the similarity theory, which has allowed reducing the number
of individual parameters of this FEoS.

1 INTRODUCTION

We investigate a problem of describing the thermophysical properties of substances in a
wide range of temperatures and pressures including the critical region. The problem attracts the
attention of many researchers [1-24]. In particular, this problem is actual when studying the
behavior of substances:

e in the range of highly developed density fluctuations near the critical point;
e at high temperatures and high pressures.

To describe the properties of pure substances at high pressures and high temperatures, the
authors of [25-32] have developed a number of fundamental equations of state (FEoS). When
describing the liquid behavior in the vicinity of the critical point, we have used previously a
number of approaches and developed some equations of state (EoS):

2010 Mathematics Subject Classification: 80A05, 8OA10, 80M50.
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e scaling EoSs and crossover EoSs in a parametric form and with (the density, the temper-
ature variables) [1,2,10,12,16,24];

e FEoS of the virial type [3,6,9,17];
e FEoS [14] based on requirements of the scaling theory (ST) for the critical region [33];

e FEoS [4,5,7,8,11,15,18-20,22,23] converted into a Widom EoS and valid in the vicinity
of the critical point.

We have analyzed approaches [1-12,14-20,22-24] and have got the following results. Scal-
ing EoSs [1,2,16,24] and crossover EoSs [10, 12] meet the requirements of ST [33], but they
have a narrow work area limited by temperatures 7 (0.97, < T < 2T, [12], here T, is the critical
temperature), and, therefore, can not be used when modeling thermodynamic properties of a
substance in the range of high temperatures and high pressures.

One of the disadvantages of the crossover EoS [12] is the need to use different critical tem-
peratures: one 7, to calculate the pressure (p) and another 7. to calculate the isochoric heat
capacity (Cy). FEoS [3,6,9, 17] do not meet the requirements of ST. Therefore, these EFoSs
do not describe the sound velocity (w), Cy, the isobar heat capacity (C), and isothermal com-
pressibility factor (K) in the critical region with acceptably small uncertainties. At the same
time, these EFoSs describe the equilibrium properties of argon in the regular part of the ther-
modynamic surface with low uncertainties. For example, FEoS of argon is proposed [9] in this
form. The workspace of FEoS FEoS [9] is (limited by pressures 0 < p < 1000 MPa, by tem-
peratures 83 < 7" < 700 K) and can be successfully used when predicting thermal properties at
high temperatures.

Bezverhiy et al [14] has developed FEoS, which takes into account the feature presence of
Cy(T,p) as a known function in the critical region, here p is the density. Our analysis shows
that EFoS [14] reproduces power laws of ST qualitatively incorrectly. For example, the critical
isotherm [14] follows Ap < (Ap)*. It should be Ap o< Ap|Ap|5_l [33], here Ap = (p— pc)/Pes
Ap = (p —pc)/Pe; pe is the critical pressure; p, is the critical density; § is the critical index of
the critical isotherm.

Empirical FeoSs are proposed in [5,7,8, 11]. They qualitatively correctly reproduce all of ST
power laws when describing properties in the vicinity of the critical point.

On the basis of the phenomenological theory of the critical point [34], the authors of [4,
15, 18-20, 22, 23] developed FEoS which is not inferior to scaling EoS and crossover EoS
when describing the asymptotic vicinity of the critical point. We mark that FEoSs [4,5,7, 8,
11,15, 18-20, 22, 23] do not satisfy the theory of extended scaling [2]. Indeed, the function,
Cy(T,p.) [4,5,7,8,11,14,15,18-20,22,23], follows Cy ~ At~ * + Ct. It is shown in [2] that
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Cy(T,p.) should be Cy ~ At~%* + Bt~ %" 4-Ct, here T = (T — T.)/T,; o and A are the critical
indexes. In addition, our analysis shows that FEoSs [4,5,7, 8, 11, 14, 15, 18-20, 22, 23] are
inferior to FEoS [9] when describing properties at high temperature region. For example, there
are a discrepancy between p values calculated by EFoS [9] and p values calculated by [20] at
17000 K these deviations exceed 50%.

In this paper on the basis of the approach [35], we plan to develop a FEoS that meets the
following requirements:

e satisfies ST requirements [33] and does not inferior to EoSs [10, 12] when describing
properties in the critical region;

e simulates the thermal surface of argon at temperatures up to 17000 K and by pressures
up to 12 GPa;

e can be converted into the Berestov equation [2] in the critical region.

2 STRUCTURE OF FEOS
By analogy with [4, 15,18-20,22,23], this FEoS has the following structure:

F(p7T):Freg(p7T)+Fnreg(paT)7 (D

where F(p,T) is the Helmholtz free energy; Freg(p,T) is a regular function; Fyreo(p,7) is an
irregular component of the Helmholtz free energy:

Fareg(p,T) = RT.$(0,1) (|Ap|5+‘ao(x) + |Ap|5“+%al(x)), )

where ¢ (,7) is the regular function; R is the gas constant; @ = p/p.; x = T/|Ap|]/ﬁ is the
scaling variable; r = T /T,; B is the critical index.

We notice: there is a principal difference of our FEoS from FEoS [4, 15, 18-20,22,23]. We
have included an additional component in Fyeo(p, 7). There is a special scale function, a; (x),
in this additional component recommended in [35]. This principal modernization has allowed
us to improve a FEoS structure and to meet the requirements [2].

The scaling functions ag(x) and a; (x) are calculated based on the following:

e anew representation of the scaling hypothesis [34,35];
e the Benedek hypothesis [36];

e the Berestov equation [2].
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i j=0 j=1 j=2

0 0 0 2.727 031 612 1447

1 0 0 —2.180917 085 2935

2 0 0 2.018 179285 6405

3 0 —1.651 807 350 2083 1.951 547138476

4 0 3.2350970279452 5.861967 8664433

5 0 0.203 261 164 281 07 —2.078 078 708 984

6 —0.283 648 592 739 017 —1.850 670 154 3516 —2.801 735 606 0172
—0.031 673 399 139 638 2.497 843 489 6566 9.620211 455 1673
—0.117 319511 789 66 —1.164 995 874 2581 —3.476 213 158 3227

9 0.41319373079189 2.810166 0152324 —0.811288 614 251 57

10 — 0.765 606 737 657 49 —2.801 124973 5011 0.766 664 260 646 57

11 — 0.650491 354 2378 —2.592 742 798 4863 0.450 684 903 397 98

12 1.808 588 644 5017 5.578 734 268 4796 —0.239 259 405 790 52

13 —1.042 305 956 028 —2.485 069 647 1961 —1.024 947 033 0846

14 —0.813 944971 192 75 —2.392997 971 8019 0.759 164 862 584 33

15 1.328057 607 1621 3119 794 125 8801 0

16 —0.486 803 106 500 06  —0.933 985 969 4002 —0.221 489 078 823 57

17 —0.243 474 625 433 64  —0.585 625 628 796 48 0.091451137589177

18  0.327 530 667 992 16 0.660 860 378 937 56 0

19 —0.154 068 046 320 52 —0.286 546 955 475 54 —0.008 667 473 663 7731

20 0.039124 504337479 0.068 175553922501 0.001 865 695 143 8862

21 —0.005 346 887 409 843 —0.008 772 962 958 1014 0

22 0.000310067 18005802  0.000 478 732 897 948 04 ~ —2.5448089017224 x 107>

Table 1: Coefficients C; ; of FEoS (1).

These functions are written the following form:

2—o Y

_ uok)flxo 2-0a 2« upxg y
W) = =5 (=g [0+ 0 —e(0+ @) |+ o+ o) G, O
_ ”1k7/2x(2)706JFA 2—at+A 2—a+A MIX(Y)M y+A
) = =5 [0+ 9) £+ 02| + = (p+93)"  +uiC,

“)
where ep =x1/x; a1 =2—a)(1—a);n=yy—1); = (y+A)(y+A—-1); o =2—a+

A)(1—a+A); @ = x/x0; ¢ =xi/x0,i € {1.2.3}: 62 = (y—2B)/[y(1—2B)): k= (1> — 1) /o)
y is the critical index; x, ug and u; are the individual parameters; Z. = p./(Rp.T;) x 10°; Cy
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i j=3 j=4 j=5

0  4.4822485747539 2.332 643 0552399 1.8084657728776

1 —3.225 639 106 0006 —1.048 810 609 669 —0.932 531 831 73191

2 —3.143 085 800 7921 —7.416 650 230 6154 —4.156 240 517 2991

3 7.6516533027528 6.8055769267176 3.9404591009914

4 6.1186676232535 4.7373818378476 0.741441 13878428

5 —8.029 797760 4914 6 —8.232 510077 0624 —2.172 672 507 2028
—0.081 651 952 400 293 1.488 772709 3593 0.930 235 432 967 88

7 8.3881567003335 2.510 816288 7711 —0.130 873 463 355 37

8 —4.059017 137 1799 —1.089 247218 7001 0

9 —0.103 759 991 449 93 —0.277 754 425 60302 0

10 1.129529996 898 0.093168 194589 203 0

11 —0.543 765 088 527 54 0.1513360277963 0

12 0.008 645 103 248 2461 —0.082484913633882 0

13 0.0018217794283432 0.012151299 548948 0

Table 2: Coefficients C; ; of FEoS (1).

and C; are the constant coefficients which value is found from the equations

(8 + 1)aolg=—1 +%0a10‘¢__1 —0, (5)
A X0
5+1+B al|(p:—l+ﬁa1‘(p:—1 =0. 6)

We have selected the regular component (1) in the form [19]:

Freg(p,T) = F°(p,T) +RT @y + RT @(Z, — 0.2)y6 + RT ®D3(y4 — ys)

2 20 o
+RT o7 [D] (w—3) +D2((D2 — 20))] +RTw Z Z (Cz}jT]JApl)a (7)
i=0 j=0

where Fo(p, T) is the ideal gas component of F(p,T); t1 = T./T — 1; functions y,, y4, y¢ have
the following form: y, = —7.7/6 +2.9/6Ap — 1.1/6Ap? +0.05Ap>, y4 = 5 — 4Ap +3Ap? —
2AP3 +Ap*, yo =4 —3Ap +2Ap2 —Ap3 4+ Ap°.

We have calculated @1, ¢2, @3 values according to the method detailed in [15]. It let us got
¢ =2.80722347, ¢, = 14.4717304, @3 = 5.73246825.
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i j=6 j=1 j=8

0 1.9420563200621 3.245246 493 1065 —8.239 406 700 9885

1 —1.034 640 564 3285 —0.970 15956031712  —0.011 163 693 637 208
2 —0.944 139 567 2871 0.298 85960268675  0.039252086979538
3 1.204 1159466534 0 0

4 —0.327 499 512 264 19 0 0

i i=9 j=10 j=11

0 —18.746 448 404 883 51.077 633 966 366 68.64532945291

1 0.541 072550799 12 0 0

2 —0.178 044 619 880 26 0 0

i ji=12 Jj=13 j=14

0 —182.047 371 3271 —144.870 071 874 34 383.406 155478 06

i j=15 j=16 j=17

0 174.01764151555 —472.418 838 330 36 —110.347 173 018 13

i j=18 j=19 Jj=20

0 314.552 869 844 35 28.506239 206 301 —87.384 487 306 415

Table 3: Coefficients C; ; of FEoS (1).

We have chosen the crossover function in accordance with the recommendations [7]:

9 (0,1) = do(@)91 (1),

where m € N.

bo(0) = [(1-0)" - 1]2,

¢1(t) =1/1%, (8)

We have tested FEoS (1) with components (2)—(4) and (7) on the example describing the
equilibrium properties of argon [37-54].

3 FEOS OF ARGON

Select the ideally-gas component of argon F(T, p) according to the recommendations of [9]:

FO(p,T) =RT(ln®+a)+a3 ' —1.5Int),

where ! = 58.31666243 and a9 = 524.94651164.

129

(€))



S. V. Rykov, V. A. Rykov, I. V. Kudryavtseva, E. E. Ustyuzhanin and A. V. Sverdlov

D, bar 1 2 3 4 5 e—( o 7 o 8
1000000 H A 9 o 10 O11 e 12 + 13 X 14 15 =16}
M—* - o
10000 g ———
B8 - | /

1000 — ?//

100 W

10

0.1

0 0.4 0.8 1.2 p, glem’

Figure 1: Isotherms, the liquid—gas coexistence curve and the melting line of argon. Isotherms
calculated using FEoS (1): 1—critical isotherm; 2—300 K; 3—573.15 K; 4—1223.15 K; 5—2300 K;
6—17 000 K. Experimental data: 7—150.65 K [42]; 8—300 K [3]; 11—2300 K [3]. Tabulated data: 9

—573.15 K [43]; 10—1223.15 K [43]; 12—17 000 K [9]; 13—tabulated data on the density at the
saturation line [9]; 14—experimental data on the density of a saturated liquid and saturated vapor [49];

15—data on the density at the saturation line calculated by FEoS (1); 16—data on the density at the
melting line [9].

We have calculated expressions for compressibility Z on the basis of FEoS (1) with compo-
nents (2)—(4) and (7):
Z(p,T) = 14+y10% +y,0 + D3 (y30* +y40 — ys0* — yo0) + (ys0* +y60) (Z. — 0.2)
22 20

+o Z Z C,'J'leApi_l (iw—l—Ap) +DioT (2(0 — 3) +D2(D2T1(3(D — 4)
i=0 j=0

+2,0|Ap|° 91(1)t (9o (@)sign(Ap)ho(x) + 9o (@)|Aplao(x))
+Z:0/ap|* B oy (1)t (9o(@)sign(Ap)h (x) +¢'o(@)|Aplar (x)), (10)

where ypi—1 =¥, (®) (i € {1,2,3}); hy(x) are scale functions of chemical potential [27]:

X

hol) = (54 ao(x) ~ &

d'o(), hl(x):<5+1+%>a1(x)—%a'1(x). (11)
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Figure 2: Relative deviations 6 p = (pexp — peal)/Pexp100% corresponded to pcal values calculated with the help
of FEoS (1) and FEoS [9] in the metastable states of argon: (pexp, Pexp, Texp) data are taken from [45] over

isochoric lines 1231.9, 1210.9, 1180.2, 1165.6, 1140.9, 1099.8, 1050.8 and 1010.7 kg/m3; 1—pcal values
calculated with the help of FEoS (1); 2—pcal values calculated with the help of FEoS [9]. On each of the

isochors, two experimental points corresponding to large values of the pressure are located in the single-phase
range, the rest of experimental points are located in the metastable range.

w, n/s
200
180
160
140
120

100
350 400 450 500 550 600 650 p, kg/m’

Figure 3: Argon sound speed at 150.8 K isotherm: 1—experimental data [46]; 2—calculation by FEoS (1); 3—
calculation by FEoS [9].

Coefficients and parameters of FEoS (1) with components (2)—(4) and (7), (8) were deter-
mined on the basis of an array of experimental data [37-54] among them: 7, = 150.66 K,
pe = 4.8634 MPa, p. = 535.1 kg/m>, R = 0.208 13332 J/(gK), upZ. = 4.54936419, u,Z. =
0.0524296231552, o = 0.11, B = 0.3255, y=1.239, 6 = 4.806, A=0.51, m =3, D; =
0.52854169554602, D, = 0.87466821897252, D3 = —7.9131735557194 x 1073 and xo =
0.31122037639966. The values of coefficients C; ; are presented in tables 1, 2 and 3.
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Figure 4: Relative deviations 6CV = (CV,exp —CV,cal)/ CV,expl00%; pcal: CV,cal corresponded to values
calculated with the help of (1) in the single phase range; CV ,exp corresponded to data [48] over isochoric line

473.6 kg/m3; 1—Cy calculated with the help of FEoS (1); Cy calculated with the help of FEoS [9].

op, % ol
1 % m2
0.5 o] 23
e X - X4

0 X
‘ L X5
_0.5 06
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1.5 -8
4.3 4.4 4.5 4.6 4.7 4.8 p, MPa

Figure 5: Relative divergence values of density § p = (Pexp —Pcalc)/Pexpl00% calculated as per the equations
pre-sented in this study as compared with the experimental data [44]. Isothermal lines: 1—148.007 K; 2—149.006
K; 3—149.598 K; 4—149.983 K; 5—150.372 K; 6—150.52 K; 7—150.579 K; 8—150.621 K.

Based on compressibility Z (10), we have calculated the thermal surface of argon (figure 1).
As one can see, FEoS (1) transmits the thermal surface of argon in the temperature range from
the saturation line and the melting line to 2300 K and it can be extrapolated by temperature up
to 17000 K and by pressure up to 12 GPa. FEoS (1) describes the experimental (p, p,T)-data
in the metastable range [45], experimental data about Cy [48] and about the speed of sound
w [46] in the vicinity of the critical point with less uncertainty than FEoS NIST [9] (figures 2,
3 and 4). Note that when searching for the coefficients of FEoS (1), experimental data [45,46]
were not used. The FEoS (1) represents experimental (p, p,T)-data [44] within the range of
the experimental error (figure 5). Experimental data on Cy [48,50] are transmitted within the
experimental error (figure 6) in a wide range of state parameters including the vicinity of the
critical point.
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Figure 6: Behavior of the isochoric heat capacity of argon in a single-phase region: 1—experimental points [48]

over the isochor of 531 kg/m3; 2—experimental points [50] over the isochor 530 kg/m3; 3—Cy calculated with
a help of the FEoS (1) over isochor 530.5 kg/m3.

4 CONCLUSIONS

On the basis of a new representation of the scaling hypothesis [34, 35] and the Berestov
equation [2], FEoS (1) was developed. This FEoS primarily works satisfactorily in a wide range
of pressures and temperatures including the critical range and the range of high temperatures
and pressures. FEoS (1) with components (2)—(4) and (7) has the properties of the virial series in
the regular part of the thermodynamic surface as well as the properties of the Berestov equation
in the critical range.

Argon FEoS (1) can be used to calculate the equilibrium properties in various technology
processes. We have analyzed properties calculated with the help of FEoS (1) in the vicinity of
the critical point. Our values significantly exceeds the accuracy of the data generated with the
help of known FeoSs and known crossover EoSs [6,9,12,17].

The proposed method of constructing FEoS can be recommended for developing EoSs of
substances, which have reliable experimental data, for example, it carbon dioxide and sulfur
hexafluoride.

Calculated values of properties from the FEoS (1) to verify computer code are 7 = 400 K,
p = 1000 kg/m>, p(T,p) = 168974.25 kPa, Cy (T, p) = 0.3920699 J/(g K).

Acknowledgments: The paper is based on the proceedings of the XXXIV International Con-
ference on Interaction of Intense Energy Fluxes with Matter, Elbrus, the Kabardino-Balkar Re-
public of the Russian Federation, March 1 to 6, 2019.
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Summary. Copper is a noble metal and has unique properties, due to which it is widely used
in scientific research, industrial production and, more recently, in the problems of
biomedicine. Using the molecular dynamics method, a series of calculations was performed to
determine the lattice thermophysical properties of copper in a wide temperature range of
300K < T < 5800K. In the calculations, special attention is paid to the melting-crystallization
and near-critical regions, in which cardinal changes in the thermophysical properties of the
substance occur. The temperature dependences of the specific heat Cp(T), thermal
conductivity x(7), and density p(7) were among the studied characteristics of the phonon
subsystem of Cu. Molecular - dynamic modeling was carried out using the potential of the
embedded atom method (EAM). A comparison of the results with the results of experiments
and alternative calculations showed a good agreement. The obtained calculation results were
approximated by polynomials of low degrees..

1 INTRODUCTION

Copper, a noble metal, occupies an important place among metals in importance and
prevalence in many branches of scientific research and innovative technological applications
[1-5]. Such a relatively new, rapidly developing direction is the production of metal-based
nanomaterials, including copper, which attracts general attention by its wide applicability [5-
8]. Due to its unique properties, copper nanoparticles have gained the possibility of being
used primarily in problems of theranostics and nanomedicine [1-3, 5]. One of the rapidly
developing methods for the production of nanomaterials is pulsed laser ablation of metals
(PLA) [5-9]. The increasing possibilities of using PLA in the production of nanoparticles
make this direction attractive for basic research, the main tool of which is mathematical
modeling. Continuous, atomistic, and combined models are used for the mathematical
description of fast and highly nonequilibrium processes induced by ultrashort laser pulses in
the metal targets [9-15]. For continuum and combined models, the properties of the substance
are input parameters. Therefore, one of the most important problems of mathematical
modeling is the need to determine for each of the subsystems the thermophysical, optical, and
thermodynamic characteristics in a wide temperature range - from room temperature Ty = 300
K to critical Te;.

The most important thermophysical properties characterizing heat transfer in metals are
density p(T), specific heat Cp(T) and thermal conductivity «(T).

2010 Mathematics Subject Classification: 82-08, 82D35, 82B27.
Key words and Phrases: Molecular Dynamics Simulation, Near-Critical Region, Copper, EAM potential.
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The specific heat of metals at the temperature T> 300 K is mainly determined by the lattice
vibrations. The contribution of the electronic subsystem to the specific heat is noticeable only
at a low temperature T <10 K [16].

Unlike specific heat, the contribution of the electronic component to the thermal
conductivity of copper is significant. According to [17], the contribution of the electronic
component to the total thermal conductivity is = 95%. Since in metals the main part of the
heat flux is carried by conduction electrons, it was believed that lattice thermal conductivity
does not play a significant role. Therefore, it was not necessary to separate the total thermal
conductivity into electronic and phonon components.

The interest in quantifying the thermophysical characteristics of the phonon subsystem of
metals was stimulated primarily by the need for a deeper understanding of the mechanisms of
thermal transfer during nonequilibrium energy transfer in a number of applications, for
example, [18, 19].

Due to the limited possibilities of instrumental measurement of the thermophysical
characteristics of the material under study at high temperatures (T> Tn, where Ty is the
melting temperature), computational approaches become relevant.

Significant progress, first of all, in the development of (numerical) atomic modeling
methods (and computational algorithms) allows one to determine the thermophysical
characteristics (phonon specific heat, phonon thermal conductivity, etc.) in a wide
temperature range for most metals [20-30] and semiconductors [24, 25 , 31-34] with a
sufficient degree of accuracy.

The aim of this work is to obtain lattice thermophysical characteristics (p(T), Cp(T), x(T))
of copper in a wide temperature range To < T < T, using the molecular dynamics method with
the EAM potential [21].

2 METHODS AND APPROACHES

The determination of the thermophysical properties of the phonon subsystem of copper in
this work is based on the atomistic approach. Atomistic models rely on the molecular
dynamics (MD) method. The MD method is based on a model representation of a polyatomic
molecular system in which all atoms are represented by material points, and the motion is
described in the classical case by Newton’s equations. Because of this, atomistic models are a
system of differential equations, the integration of which requires knowledge of the
coordinates and velocities of all particles at the initial time t = 0. The resulting ODE system is
solved using the Verlet finite-difference scheme [35].

When using atomistic models to study various properties of substances, the most important
role is played by the choice of interaction potentials between particles, since the reliability of
the results obtained directly depends on it. In molecular dynamics modeling of the properties
of metals, the empirical and semi-empirical potentials of the “embedded atom method”
(EAM) are mainly used as the interparticle interaction potentials [22, 23]. Since pair and
collective interactions are taken into account in the EAM potentials, the potential energy of
the metal is the sum of the embedding potential of the ith atom, which depends on the
effective electron density in the region where the center of the atom and the pair potential are
located. However, the EAM potentials do not take into account the phonon-electron
interaction, which is their drawback. The disadvantages of these potentials include a large
number of fitting parameters included in them (up to two dozen). When choosing the potential
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for atomistic modeling, careful testing of the potential used is necessary, since not all the
EAM potentials used allow a good description of both the crystalline and liquid phases of the
metal. In this work, we used the EAM potential for copper developed and tested in [21].

Of all the thermophysical properties, the determination of phonon thermal conductivity in
the framework of classical molecular dynamics occupies a special place, being a complex
problem.

The direct method (DM) was chosen as an approach for determining the temperature
dependence of the phonon thermal conductivity of copper using molecular dynamics (MD).
This method is the most simple and economical from a computational point of view.

The direct method (DM) [24-26] is one of the most common methods for calculating
thermal conductivity. DM is a nonequilibrium method of molecular dynamics (NEMD); it is
based on applying a temperature gradient to the modeling cell, for which it received its name
"heat source - sink™. Due to this, the direct method is similar to the experimental situation.
One of the advantages of DM is the saving of computing resources, which is very important,
sometimes determining the choosing of the modeling method. For example, as noted in [24],
for the direct method, the simulation time of 1 ns is sufficient to obtain a smooth temperature
profile, and the value of x converges with an accuracy of = 10%. The method demonstrates
the finite-size effects, which are its drawback. These effects arise if the mean free path of
phonons is comparable to the size of the simulation cell. In this regard, the necessary size of
the computational domain to achieve a completely convergent value of x may be beyond the
reach of atomistic modeling and it becomes necessary to impose a restriction on the smallest
length of the computational domain. In this connection, the thermal conductivity of copper
can be obtained by the direct method from modeling systems of different sizes and
extrapolating the results to a system of an infinite size.

Along with classical molecular dynamics, the ab-initio approach is also used to determine
the phonon thermal conductivity [17, 36]. The ab initio methods have appeared recently and
are considered the most promising. They do not require specifying the interparticle potential
and can be applied to any material. However, ab-initio methods have limitations associated
with an increase in computational costs with an increase in model size. The use of these
methods in the calculation of phonon thermal conductivity allows one to take into account the
influence of both phonon-phonon (p-p) and phonon-electron (p-e) interactions, which can
significantly increase the reliability of the results. However, the number of calculations of the
phonon thermal conductivity of metals and, in particular, copper [17, 36], is currently
relatively small. As a rule, all calculations are limited to the solid-state phase in the
temperature range T ~ (300 - 1000) K. There are no systematic results of experimental-
theoretical studies of the properties of liquid metals in a wide temperature range (from the
beginning of melting to the critical region).

The wide temperature range 300K < T < 5800K, in which the thermophysical properties of
copper are determined in this work, covers the first-order phase transition (melting-
crystallization) and the near-critical region in which drastic changes in the thermophysical
properties of the substance occur. Therefore, calculations of the properties of copper in this
range cannot be carried out without knowledge of such important characteristics as the
melting temperature T, and critical parameters: temperature T, density pc, pressure Pg;.

The equilibrium melting temperature used in the calculations was obtained from molecular
dynamics calculations in [27] with the EAM potential [21], which is also used in this work, by
the two-phase method [28]. We used a system with an ensemble of particles of 8000 atoms.
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The obtained value is T, = 1330 K, slightly lower than the reference (T, = 1356 K) [37] and
experimental value (T, = 1357.7 K) [38] and deviates from these values by 1.9% and 2.06%,
respectively. The error is quite acceptable for modeling. In this work, the following values of
the critical parameters of copper were taken: T = 6550 K, per = 1.895 g / cm3, Pgr = 0.16
GPa, obtained in [30] using the liquid — vapor coexistence curve.

The specific heat and thermal conductivity of the phonon subsystem, as well as the copper
density characterizing heat transfer, were simulated in the temperature range 300 < T < 5800
K using the well-known LAMMPS application package (large-scale atomic-molecular
massively parallel simulator) [39]. It implements many paired and multiparticle potentials, the
ability to save atomic configurations in a text file, as well as built-in thermostats and
barostats. The velocity and pressure for the ensemble of particles were controlled using the
thermostat and barostat of Berendsen [40].

3 MODELING RESULTS

For convenience of further use, the calculation results are approximated by polynomials of
the degree of m:

P (x) =Zm:akxk, (1)
k=0

where a are the polynomial coefficients.
The approximation error was calculated by the least squares criterion [41]:

n
A(Pm(tj)’ yj)=\/(1/n+1)_Zo(Pm(t,-)— y,—)2 — min, )
J:
where y; are the values of the variable from the results of calculations for t; (j=0,...,n).

3.1 Calculation of specific heat and density of copper

The traditional way to determine the thermophysical properties of metals is experiment.
For copper, the experimental values of density [42—44] and heat capacity in the solid [45,46]
and liquid [46, 47] phases are known. The experimental approach has limitations, primarily
for the temperature range. The copper density was obtained experimentally [42] in a wide
temperature range of 300 K < T < 5000 K, and the heat capacity of the liquid phase was
obtained up to 2000K [46]. A scatter of values is also observed in various experiments, which
was noted in [44].

However, when simulating the laser ablation processes, the modeling enters the higher
temperature region, including the region of the critical point, so the known data becomes
insufficient. In addition, for working with mathematical models, it is relevant to obtain
temperature dependences in a wide range of parameters.

The temperature dependences of the density p(T) and specific heat Cy(T) of copper were
determined from a series of molecular dynamics calculations within the framework of one
computational experiment.

We used a cubic computational region of 30x30x%30 unit cells containing an fcc crystal of
108,000 particles (fluctuations that are too large arise with smaller sizes). Periodic boundary
conditions were set. The relaxation procedure preceding the simulation was carried out at a
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temperature of 300 K and zero pressure. After that, the slow heating of the sample with a
constant rate of approximately 0.5 K/ps continued to a temperature of 6000 K. During MD
calculations, the temperature dependences were recorded: density p(T) and enthalpy H(T).
The experiment was carried out at a constant zero pressure P = 0.

3.1.1 Density of copper

As a result of MD calculations in the range 300K <T<5620K, the temperature dependence
of the density of copper p(T) was obtained, which, after additional statistical processing, is
shown in Figure 1. The markers in this figure show the experimental data [42]. The vertical
dashed lines indicate the melting temperature Ty, [27] and the critical temperature T, [30] of
copper. Figure 1 shows the changes in the density of copper at the equilibrium melting
temperature (T, = 1330K). The density of the copper melt is lower than the density of the
crystal at the same temperature Ty, i.e. copper melts with decreasing density, similar to what
was observed in experiments [42, 43]. At the equilibrium melting temperature Ty, the density
changes abruptly. The density difference between the solid and liquid phases in the
calculations is 5.2%, and in the experiment [42] - 4.4%, which shows a fairly good agreement
between the results.

p(T), [g/em’]

1 — — , . , . . 3
1 2 3 4 5 6 7
T, 10° [K]

-

Fig. 1. The temperature dependence of the density of copper. The markers show the
experimental data [42].

It is also noticeable that the density decreases to p(T) = 8 g/cm® upon overheating of the
solid phase in the temperature range Ty, < T < 1.2T,, (green dashed line in Figure 1). In the
liquid phase, with increasing temperature T > T, the copper density decreases. The results
obtained show good agreement with the experimental results [42]. At T~ 3000 K, the density
value in this work is p(T) = 6.678 g/cm?®, in the experiment - p(T) = 6.675 g/cm® the values
differ by 0.04%. At T ~ 5000 K in this work, p(T) = 4.956 g/cm®, in the experiment - p(T) =
5.03 glcm3, the difference is 1.49%. At T = 5620 K, a temperature close to the critical
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temperature T¢, = 6550 K [30], the density p(T) = 4.207 g/cm® was obtained. In Fig. 1, the
dashed line shows the continuation of the function p(T), which extrapolates the density of
copper to the critical point. At Te; = 6550 K, the density per =~ 1.895 g/cm® was obtained in
[30].

The results obtained in the calculations are more convenient to use as an analytical
dependence of the form (1). For solid and liquid phases, dependences of the third degree are
obtained

P(T): Q + al(T —To)+ a, (T —To )2 + a3(T —To )3

For the solid phase, (300 K <T <Ty), To = 300 K, for the liquid phase, (Tm < T < 5620K),
To = Tm. The values of the coefficients ax and the approximation errors by the least squares
criterion (2) are presented in table 1.

k Solid Liquid

ag 8,81 7.89

a, -4.28x10™ -7.96x10™
a, -6.12x10® 8.69x107
as 27710 -2,383x10™
A(P(xj), yj) 0.001 0.014

Table 1. The coefficients ax of the function, which approximates the calculation results
of the copper density p(T) in g/cm®.

3.1.2 Specific heat of copper

The temperature dependence of the specific heat of the lattice Cp(T) in the temperature
range 300 K < T <5800 K at constant pressure P in this work was determined from the
enthalpy H(T) obtained during the computational MD experiment considered above. The

values of H(T) were approximated for the liquid and solid phases by polynomials H (T) (1).
The temperature dependence of the specific heat Cy(T) for each phase was determined by
differentiating the corresponding dependence H(T):

Cp(T){EJP (3)

oT

Fig. 2. shows the temperature dependence of the specific heat of copper Cy(T) according to
the results of calculations of the present work, the markers show the reference and
experimental results [37, 38]. The vertical dashed lines indicate the melting temperature Ty,
and the critical temperature T, of copper. The region of the solid — liquid phase transition,
with zooming, is shown in the inset of Fig. 2. It is seen that at the equilibrium melting
temperature Ty, an insignificant jump by about ~ 3.128% occurs, an abrupt decrease in the
heat capacity of copper. According to the experiment [38], this value is ~ 1.529%. On the
inset of fig. 2 one can clearly see an increase in the specific heat to Cy(T) = 39 J-molK*
upon overheating of the solid phase in the temperature range T, < T < 1.2T,, (green dashed
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line in Figure 2). With increasing temperature Tp, <T < 2.63Tp, in the liquid phase, the specific
heat is almost constant and amounts to Cp(T) = 31.0 J-mol™-K™, which is 8% less than Co(T)
~ 33.84 [38]. At the temperature T > 4000 K, the specific heat of copper increases. At T =
5800 K, its value is Cy(T) = 47.698 J-mol™-K™. In the near-critical region in Fig. 2, the dashed
line shows the extrapolation of the temperature dependence of the specific heat to the critical
point.

(o))
o
J

40, .
. Tm.- l,'§
55 1 :g 35 ' ,lll
e = 30— ;
A Il O
< 451 25
© 12 13 T11;?)3 [K?b 16
£ 404 ' '
O” 35-
] oA RARARASA
30 -
o [1]
25 - Tm % [2] Ter
| | | J | Y | X I E |
0 1 2 3 4 5 6 7

T, 10° [K]

Fig.2. The temperature dependence of the specific heat Cp (T) of copper according to the calculation
results (solid line). Markers: (1), (2) - experimental results [37, 38].

For the use in further calculations, the results obtained are more convenient to use in the
form of an analytical dependence of the form (1). For the solid and liquid phases, the results
were approximated by power dependences of the 4th degree:

Co(T)=ag+ay (T -Ty)+a,(T ~To)? +a5(T —Tp)® +a,(T -Ty)*,

where To = 300 K for the solid phase (300 K <T <Ty), To = T, for the liquid phase (T, <T <
5800K). The values of coefficients ax and approximation error according to the least squares
criterion (2) are shown in the Table 2.
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k Solid Liquid
a 24.27 31.0018
a; 1.23x10% 3.28x10°
a, -2.05%107 -2.91x10°
as 1,53x10°® 7.06x10™°
a, -2.88x107% -4.68x107"°
A(P(xj)1 yj) 0.021 0.038

Table 2. The values of coefficients ay for the function, which approximates the calculation
results of specific heat of copper Cp(T) J-mol™-K™

3.2 Calculation of thermal conductivity of copper

To determine the thermal conductivity of the phonon subsystem of copper, a series of
calculations was carried out based on molecular dynamics modeling. The phonon thermal
conductivity was determined using the direct method (DM) [24.25].

When using DM, the heat source and sink areas are created in the modeling domain to
apply a constant heat flux along the direction of interest.

At each time step, a fixed amount of heat dQy was deposited in the heating region, and the
same amount was taken from the sink region. The heat flux W was calculated as

W = dQ/(SNdt)/2, (4)

where dQ = NxdtxdQy is the total deposited energy, 6Qy is the energy deposited during one
timestep, N is the number of timesteps, dt is the size of the timestep, S is the domain cross-
section. The timestep size was chosen depending on the temperature, from 3fs at 300K to 1fs
at 2000K and above. The division by 2 is used due to periodic boundary conditions, i.e. heat
flux goes in two directions. Then, the resulting temperature gradient is calculated, and the
thermal conductivity coefficient x,; was determined from the known heat flux by the Fourier
law [16]
oT
W = -« o ()

where W is the heat flux, x is the coordinate in the direction of the flux.

The difficulty in applying the direct method to solids lies in the fact that the size of the
modeling region should be much larger than the mean free path of phonons in a substance.
For a crystal, this is difficult to do, because requires a very large size of the computational
domain and, accordingly, a very large number of atoms. Therefore, when calculating with a
small number of atoms, the thermal conductivity coefficient is dependent on the length of the
region due to phonon scattering at the boundary. To limit the size of the simulation region, a
scaling procedure is used, in which the thermal conductivity is determined for several lengths
of the simulation region L, (n is the number of unit cells in the computational domain) along
the x direction. Then, the inverse dependence of the thermal conductivity 1/x4 IS constructed
with respect to the reciprocal of the length of the simulation region, 1/L,, and the thermal
conductivity is determined by extrapolating the data 1/L, — 0 [24-26].
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To determine the thermal conductivity of copper, the simulation domain in the form of a
parallelepiped was considered. The initial sizes of the region were 10x10x20 unit cells (lattice
constant 0.361 nm), corresponding to 8000 particles. Periodic boundary conditions were set
along the three axes. As the interaction potential, the EAM potential is used [21]. The particle
velocities were set as random variables with a Maxwell distribution corresponding to a double
temperature of 600 K. Then the sample was equilibrated at 300 K using a thermostat and
barostat.

The sample was divided along the x axis into the number of cells corresponding to the
number of particles. At each step, a certain amount of heat is deposited in the first interval,
and the same amount of heat is taken from the middle of the sample, where the drain is
located. After some time (for small samples 5 ns, for large 10 ns), a stationary equilibrium is
established. The temperature difference is calculated at 0.8 of the entire length between the
heat source and the sink over the last 0.5 ns and averaged.

3.2.1 Modeling results of thermal conductivity

To calculate the thermal conductivity from the Fourier law (5), it is necessary to determine
the value of the heat flux W (4) from the spatial temperature distribution obtained from the
MD modeling. Figure 3 shows the time-averaged spatial temperature profile for an average
temperature of 300 K. In a small region (~ 6 nm) in the immediate vicinity of the source, a
very strong nonlinear temperature profile is observed. The same strong nonlinear temperature
profile is also observed near the sink in the middle of the computational domain. In the
intermediate region, the behavior of the temperature profile is close to a linear dependence.
The intermediate region in Fig. 3 is indicated by dashed lines. In this interval between the heat
source and sink, the temperature gradient was measured. The presence of the heat source and
heat sink, the use of periodic boundary conditions creates a current in two opposite directions.

400 | Heat source : T =300 K 0,4+ T = 300K
360 T
< 0,3
¥ 320 £
- 2
280 < 029
2401 .'./
: ¢ ¥ Heat sink 0.1
200 J ’ ! " I’ y ) J T T T T T T
. S A B 0,000 0007 0014 0021 0,028 0,035
X, [nm] -
1/L, nm
Fig. 3. Spatial temperature profile at one moment in Fig. 4. The dependence of the reciprocal of the
time. The dashed lines indicate the interval in which  thermal conductivity on the reciprocal of the size of
the temperature gradient was measured. the region for the temperature T = 300K.

To overcome the effects of the finite size, in accordance with the scaling procedure, the
heat flux was determined by a series of calculations for various sizes of the computational

145



M.M. Demin, O.N. Koroleva, A.A. Aleksashkina, V.l. Mazhukin.

domain. The number of computational regions and their sizes depended on the temperature
for which the thermal conductivity was calculated. The lower the temperature, the more areas
were selected. For the range 300K < T < 900K, the calculations were carried out for 8 regions
of different sizes L. 20, 40, 80, 160, 240 320, 480, 560 unit cells corresponding to the
number of particles. For the range 1200K < T < 2000K, 3 calculations were performed for the
sizes of the L, region: 80, 160, 240 cells, and for T > 4000K, only one calculation was
performed for the size of the region L, = 80 cells (for larger size, the results were the same).
The cross section of the region was constant: S =10 x 10 cells. The heat flux was determined
from the temperature difference between the heating and heat sink areas, for which the
instantaneous temperature difference was averaged over the entire calculation time after
establishing a stationary distribution. To increase the accuracy of the calculations, the
temperature difference was calculated not over the entire interval between the source and the
sink, but in its central part, 0.8 of the total length.After a series of calculations, for each
temperature from the range 300K <T <5700K, the scaling procedure was performed and
thermal conductivity was calculated. Let us consider the scaling procedure using the example
of calculating the thermal conductivity of copper for 300 K. Figure 4 shows the dependence
of the reciprocal of the thermal conductivity on the reciprocal of the size of the region for a
temperature of 300 K. The results of the calculations on the graph are shown by black lines
with markers.

Five values of the inverse thermal conductivity corresponding to the longest lengths of the
computational domain were approximated by a linear dependence (1)

L (x)=0.086+6.13x , (6)

Kiat

where x = 1/L,. The approximation error, according the least squares criterion (2) was 4 =
0.972. At x = 1/L, = 0 from the dependence (6) one can obtain the inverse value of thermal
conductivity 1/ki;x = 0.086, from which the thermal conductivity of copper was obtained
k1at(T=300K) = 11.627 W/mK. It corresponds to the infinite value of L. Fig.4 shows the linear
dependence (6) as a red line with markers.

The results of calculation of the thermal conductivity of copper are presented in Fig. 5. The
vertical dashed lines indicate the melting temperature Ty, and the critical temperature T, of
copper. At the temperature of 300 K, according to the above calculations, the phonon thermal
conductivity is xia = 11.627 W/mK. With increasing temperature, the thermal conductivity of
copper decreases. The region of the solid — liquid phase transition is shown in enlarged form
in the inset of Fig. 5. It is seen that at the equilibrium melting temperature Ty, = 1330 K, the
value of thermal conductivity decreases stepwise. In the solid phase, the thermal conductivity
IS kot = 1.55 W/mK, and in the liquid phase at the same temperature the thermal conductivity
IS kgt = 1.29 W/mK. The difference in thermal conductivity between solid and liquid phases is
16.77%. The calculation was carried out up to the temperature T = 5700 K, at which the
thermal conductivity is ks = 0.647 W/mK. Such a change in the phonon thermal conductivity
with increasing temperature does not contradict the ideas about the behavior of the phonon
thermal conductivity of metals. In the near-critical region in Fig. 5. the dashed line shows the
extrapolation of the temperature dependence of thermal conductivity to the critical point.

A comparison with alternative ab-inito calculations in the range 300K<T <1000K made by
the Generalized Gradient Approximation (GGA) method in [36] showed good agreement. At
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low temperatures (300K < T < 600K), the largest difference with [36] is 4x ~ 14% at 300K.
With increasing temperature, the difference in results becomes smaller. At T = 600 K, the
difference is 4x ~ 4%, and at T = 1000 K, 4x ~ 2% - the results almost completely match. In
the temperature range T > 1000K, there is no data for comparison. In general, such
comparison results suggest that the selected method and potential describe the model with
good accuracy and are applicable for further studies.
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Fig. 5. Temperature dependence of the phonon thermal conductivity of copper. Markers [1] show the
results of calculations from [36]. The fragment shows an abrupt decrease in thermal conductivity at the
solid — liquid phase transition.

For the use in further calculations, the results obtained are more convenient to write as an
analytical dependence of the form (1). For the solid phase, the results were approximated by a
polynomial dependence of the 4th degree, for the liquid phase by a polynomial of the 3rd
degree

Kiat,sol (T)=ap+a(T —Tp)+a,(T —To)? +as(T —T)> +a,(T -Ty)*,
Kiat lig (T): Q + al(T _To)"‘ a,(T -T 0)2 +ag(T -T o)3
where To = 300 K for the solid phase (300 K <T <Tp), To = T, for the liquid phase (T <T <

5700K). The values of the coefficients ax and approximation errors according to the least
squares criterion (2) are shown in the Table 3.
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k solid liquid
a 11.627 1.29
a; -4.2781x10° -5.01x10™
a, 9.2403x107 1.31x107
as -9.6577x10® -1.2x10"
a 3.686x10™
A(P(x;),Y;) 1.201x107™ 0.021

Table 3. The values of the coefficients ax of the function, which approximates the calculation
results of the thermal conductivity of copper xja(T), W-m™-K™

4 CONCLUSION

The temperature dependences were obtained for the thermophysical characteristics of
copper: phonon thermal conductivity, heat capacity and density using molecular dynamics
simulation with the EAM potential [21]. The wide temperature range 300K < T < 5800K, in
which the thermophysical properties of copper were determined in this work, covers the first-
order phase transition (melting-crystallization) and the near-critical region in which drastic
changes in the thermophysical properties of the substance occur. The calculation results were
approximated by polynomials of low degrees.

The temperature dependences of the density p(T) and specific heat Cy(T) of copper were
determined from a series of molecular dynamics calculations within the framework of one
computational experiment.

The temperature dependence of the density of copper p(7) was obtained in the range
300K<T <5620K. At the melting point, the density is calculated for two states of matter: solid
and liquid. Based on the simulation results, the temperature range of the overheating of the
solid phase T, <T <1.2T,, and the density values in this range were obtained. The results
obtained show good agreement with the experimental results [42].

The temperature dependence of the specific heat of copper C,(T) was obtained in the range
300K <T <5800K. In the region of the solid — liquid phase transition at an equilibrium melting
temperature T, a small stepwise decrease in the heat capacity of copper occurs, amounting to
~ 3.128% (according to the experiment [38], ~ 1.529%). In the temperature range of the
overheating of the solid phase T,,<T<1.2Ty, the specific heat was obtained. In the temperature
range Tm <T <2.63Tp, in the liquid phase, the specific heat is constant and amounts to Cp(T) =
31.0 J'mol™K™, which is 8% less than in [38]. At temperatures above 4000 K, the heat
capacity of copper increases and at T = 5800 K its value is Cy(T) = 47.698 Jmol™K™. The
results obtained show good agreement with the experimental results [37, 38].

Based on a series of calculations by the direct method using molecular dynamics
simulation, the temperature dependence of the phonon thermal conductivity of copper was
obtained in the temperature range 300 <T <5700 K. The EAM potential [21] was used in the
simulation. In the region of the solid — liquid phase transition, at the equilibrium melting
temperature T, = 1330 K, the value of thermal conductivity decreases stepwise. The
difference in thermal conductivity between solid and liquid phases is 16.77%. Comparison
with alternative ab-inito calculations in the range 300K < T <1000K made by the Generalized
Gradient Approximation (GGA) method in [36] showed good agreement.
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In general, such comparison results suggest that the selected interparticle interaction
potential and calculation methods for copper of the phonon specific heat, phonon thermal
conductivity, and density show good accuracy and can be used for further studies.
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Abstract. This paper provides a comparative study and performance analysis of
different rasterization algorithms and approaches. Unlike many other papers, we don’t
focus on rasterization itself, but investigate complete graphics pipeline with 3D transfor-
mations, Z-buffer, perspective correction and texturing that, on the one hand, allow us
to implement a useful subset of OpenGL functionality and, on the other hand, consider
various bottlenecks in the graphics pipeline and how different approaches manage them.
Our ultimate goal is to find a scalable rasterizer technique that on the one hand effectively
uses current CPUs and on the other hand is accelerating with the extensive development
of hardware. We explore the capabilities of scan-line and half-space algorithms raster-
ization, investigate different memory layout for frame buffer data, study the possibility
of instruction-level and thread-level parallelism to be applied. We also study relative
efficiency of different CPU architectures (in-order CPUs vs out-of-order CPUs) for the
graphics pipeline implementation and tested our solution with x64, ARMv7 and ARMv8&
instruction sets. We were able to propose an approach that could outperform highly op-
timized OpenSWR rasterizer for small triangles. Finally, we conclude that despite a huge
background high-performance software rasterization still has a lot of interesting topics for
future research.
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1 INTRODUCTION

Modern hardware-accelerated graphics pipeline consists of dozen stages and has great
flexibility [1]. However, it is not always possible to rely on existing graphics hardware
for various reasons. At first, various embedded applications do not have dedicated graph-
ics processors and thus forced to use software implementation. Second, a huge amount
of popular Linux distributives uses open-source graphics drivers with partial or com-
plete software implementation of rasterization (Mesa OpenGL). Particular applications
use specific hardware anyway [2, 3]. In such cases, software implementation should be
able to provide real-time rendering sacrificing graphics quality for the sake of correctness
or clarity of the displayed information. In such situations programmable functionality of
OpenGL shaders, for example, can be excluded or restricted.

At the same time, processors are greately evolved over the past decades and therefore
software rasterization methods that were relevant a couple of decades ago may not be
the best ones for today. This gives rise to a fundamental contradiction in the design of
the rasterizer: it is necessary to pay attention to efficient loading of hardware units of a
modern CPU when we come to its peak performance, but on the other hand we don’t
want to depend too much on any particular hardware. At last, software rasterization is
still remaining a widespread challenge in graphics community and thus, have a scientific
interest to study within itself.

1.1 Need for software rasterization

Today, almost all rendering techniques have become GPU based. Software solutions,
however, do not lose their relevance. For example, Linux uses widely open-source software
graphics drivers (Mesa OpenGL [4]). GPU driver installation is not always easy and even
not possible on some Linux systems (running, for example, on a custom CPU development
board which is quite common for embedded systems). Microsoft also has its own software
rasterizer in DirectX10 and DirectX11 called “WARP”. WARP rasterizer scales well into
multiple threads, and in some cases is known to be faster than low-end GPUs [5]. Besides,
software graphics pipilene is more flexible and can directly use system memory. Thus it is
useful in scientific visualization of large data sets [6, 7]. At last, the recent development of
CPUs sets a new round in software rendering research since many applications for which
it was previously impossible to achieve high speed pure in software are enabled now.

1.2 Graphics pipeline

Before moving on, we would like to shortly describe a subset of graphics pipeline that
we took for our research and point out why this subset is important and challenging to
accelerate on CPU. Useful graphics pipeline requires at least 5 stages:

1. vertex processing;
2. primitive assembly;

3. triangle rasterization;
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4. pixel processing;

5. alpha blending.

Both first and second stages are quite simple, especially if we don’t have to consider
triangle clipping. Vertex processing consists of multiplying points by a matrix and is
implemented trivially. Primitive assembly consists of the formation of triangles by indices
of its vertices and thus, is mostly trivial. Also, these stages are rarely a bottleneck due
to vertices and triangles amount is considerably less than pixel amount.

Vvertices

uniform state 1-: indices
: 20 30 123
S5e _, 6° {3,2,4},
* {4,2,7},
vertex shader
- work queue work queue
triangle assembly B
A Work! work! | A
A Work! Worl! A
rasterizer A Work! Work! A
A Work! Work! A
fragment shader ‘ Work! Work! A
o J \_ J
A n\
i : \ e
VA B .' \ \
alpha blending ol ,’ \
frame buffer ~ thread 2 thread 3... thread N

Fig. 1. Graphics pipeline forming producer-consumer scheme where some threads (0 and 1) push triangles
(or some other portion of work) to queue and other threads process pixels and behave like consumers
taking work from the queue.

However, the following 3 stages are not so simple. It becomes especially noticeable for
multi-core implementation where triangle rasterization became a sort of work distribution
for pixel processing forming a producer-consumer scheme (fig 1). Alpha blending should
be mentioned separately due to it assumes fixed order for processing of pixels for different
triangles. The situation is complicated by the fact that not all rasterization algorithms
and not all methods of efficient pixel processing (using instruction level parallelizm for
example) can be easily used together. This happens due to algorithms have different
optimal data structure layout and different access patterns to frame-buffer data. When
performance is a goal, these problems became essential. Programmable functionality of
OpenGL shaders, on the other side, can be excluded from consideration without loss
of generality due to it influences mostly on the pixel processing computation complex-
ity. Thus, we can model its influence if consider heavy pixel processing cases (heavy in
comparison to vertex processing and triangle assembly, for example).
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1.3 Scientific problems

With the extensively developed graphics hardware last decades many research topics
in the area of real-time software rendering became abandoned. At the same time CPUs
have evolved significantly:

1. deep out-of-order pipelines, speculative execution, SIMD and various CPU architec-
tures;

2. multi-level caches and tremendous gap between memory and processor speed;
3. true multi-core systems, the number of cores increases significantly;

4. The “relaxed memory model” have appeared and efficient sharing of the cache by
many threads has become non-trivial task, especially when increasing number of
cores.

Thus, many algorithms and optimizations that were populular 20 years ago (the dawn
of graphics hardware development) mostly useless and even performance-harmful for mod-
ern CPUs. The goal of our work is to explore different techniques together (considering
the influence of all factors upon each other) and find the most practical and scalable
approach for software implementation of OpenGL graphics pipeline on modern multicore
CPUs which is, in our opinion, is not solved.

2 HIGH PERFORMANCE SOFTWARE RASTERIZATION TECHNIQUES

2.1 Triangle rasterization basics

Before considering triangle rasterization algorithms, we should note that in the existing
graphics pipelines (for example OpenGL, DirectX or Vulkan) there is a certain agreement
about drawing triangles. A pixel is considered as overlapped by a two-dimensional triangle
if its center lies inside the triangle. Thus, the pixel-triangle overlap test is called a
“coverage test” (fig. 2).

4

|

Fig. 2. Standard agreement about covered pixels. A pixel is considered as overlapped by two-dimensional
triangle if its center lies inside the triangle.

Probably the most well known scanline algorithm [8] sudbidives a triangle into 2
adjacent triangles with horizontal edges. Then it is proposed in some way to move along
the edges of the triangle and paint the area between the edges line by line. A straitforward
way is to move along edges using finite differences (equations 1 and 2) [9].
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We will refer to this algorithm “scanline”. Despite the simple idea, we should pay
attention to the fact that the algorithm has certain problems:

e The known algorithms for moving along edges (Brezenham [10], Fujimoto [11], or
algorithm with finite differences discussed above) do not allow us to say whether
the edge pixel is covered by a triangle or not. This means that such a rasterization
algorithm itself does not comply with the agreement adopted in OpenGL. For its
correct implementation it is necessary to add a pixel-triangle overlap test (so-called
“coverage test”, fig. 2).

e The algorithm should be additionally limited to a rectangle (built around a triangle),
because scanline uses division by the difference between the coordinates of 2 vertices,
which under certain conditions became a small number (though zero, as a rule, is
excluded by a separate condition that the triangle does not degenerate into a line).
This leads to the fact that the offset in y by 1 pixel gives a huge offset in x, which
can even go beyond the limits of the screen. The reason for this problem is that
according to the OpenGL standard, the coordinates of the triangle’s vertices when
moving to screen space should be floating point numbers (or at least, have 4-bits
subpixel precision [12]). They can not be just integer pixel coordinates. Therefore,
strictly speaking, the Bresenham algorithm cannot be used to move along edges.

2.2 Related Work

An improved scanline implementation can be found in [13]. It moves along the longest
edge, drawing lines between edges. In comparison to the prevoius naive scanline ap-
proach, this algorithm is simpler for CPU due to it has less branches and special cases
and it doesn’t have a near zero division problem because it doesn’t use finite differences.
However, it does not eliminates the need for the coverage test and the original version
does not implement it. We will refer to this algorithm as “scanline(fast)” and will test
its original implementation without coverage test. Such algorithm would be equivalent to
the classic version using Bresenham for movement along the edges.

In [14] half-space rasterization was proposed. This paper introduces the concept of
edge-function (equations 3-6) which was later adopted as a kind of standard agreement
for “coverage test” that we discussed before. This method is based on the fact that a line
in 2D subdivides the space (plane) into two half-spaces (half-planes). If we substitute the
coordinates of the center of the pixel P into the equation of a line, we can obtain the sign
distance to this line (equation 3). The edge-function is a special case of well known cross
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Fig. 3. Half-space algorithm idea

product and it allows calculating the signed distance from pixel center (x, %) to some edge
— (a, B,7; equations 4-6). If all signed distances are greater than zero, the point lies
inside the triangle (fig. 3).

E(A,B,P)=(Px—Ax)(By— Ay) — (Py— Ay)(B.x — Ax) (3)

E.(z,y)=FE(A,B,P) = (v—Ax)(By—Ay)—(y—Ay)(B.x — A.x); (4)
Eg(z,y) = E(B,C,P) = (v — B.x)(Cy—B.y)—(y— B.y)(C.x — B.x); (5)
E. (x,y)=E(C,A,P) = (z—Cux)(Ay—Cy)—(y—Cy)(Azx—C.ux). (6)

The most useful property of the edge-function is that it can be evaluated incremen-
tally when rasterizer moves along pixels (figure 4) [14]. Besides, baricentric coordinates
(u,v,w) also can be evaluated directly from edge-function by multiplying its value with
inverse triangle double area which is also evaluated with the edge-function (equations
7-9).

E( ).
wP) = E(A,B,C) @)

E(B,C,P).
") = F@a oy ®)
w(P)=1—u(P)—v(P) = ggi: g”g; (9)

The most significant advantage of half-space rasterizer is extremely simple kernel of the
algorithm, especially in comparison with scanline approach. No more difficult to fill the
rectangle (fig. 4). This property allows branch prediction mechanisms working efficiently
and this is also the reason for the popularity of hardware solutions. The disadvantage
of half-space approach (in comparison to scanline for example) is the presence of idle
iterations since inside the bounding rectangle; there can be a rather large area which
is not covered by a triangle. However, this disadvantage is easily fixed by a serpentine
traversal algorithm [14] or Blocked based version of half-space rasterization [15].
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1: for y in range minY .. maxY do

2 Cx1 := Cyl;

3 Cx2 := Cy2;

4: Cx3 := Cy3;

ot for x in range minX .. maxX do

6: if Cz1 >0 and Cz2 >0 and Cxz3 > 0 then
7 u = Cx1*TriArealnv;

8 v = Cx2*TriArealnv;

9: framebuffer[x,y] := DrawPixel(u, v, 1-u-v);
10: end if;

11: Cx1 := Cx1 - Dy12;

12: Cx2 := Cx2 - Dy23;

13: Cx3 := Cx3 - Dy31;

14: end for;

15: Cyl := Cyl + Dx12;
16: Cy2 := Cy2 + Dx23;
17: Cy3 := Cy3 + Dx31,
18: end for;

Fig. 4. Half-space rasterization kernel. C'zx and Cyx* variables store edge-functions for line and colum
respectively. TriArealnv = 1/E(A, B, C) is a constant inverse triangle double area. A triplet of (u,v,1—
u — v) represents baricentric coordinates of a pixel center.

Blocked based half-space method was also suggested in [14] but well-developed
much later in [15]. The main idea of blocked version is that if we perform coverage test
check (via evaluating edge-function) for 4 corner points of a pixel block (4x4 or 8x8 for
example) and all tests have passed then the block is covered by triangle and we can
fill/process all internal pixels in parallel (for example using SIMD instructions). Several
blocked versions of half-space rasterizer were proposed and tested in [15]. The most com-
plex version (called “Block-based Bisector Half-Space Rasterization”) processes triangle
in such a way that it minimizes checks for empty blocks due to a quick cut of empty space
from inside triangle bounding box. The advantages of “bisector” algorithm appear only
on extremely large triangles and simple fill modes (without texture for example) because
incremental edge-function evaluation is quite cheap in comparison to pixel processing for
a fully-covered or even partially-covered block. At the same time average amount of
blocks for most of triangles is usually just a little: 4-8 blocks. As a result complication
of the algorithm leads to poor performance due to branch misprediction simultaneously
with winning of empty blocks tend to zero. We will refer to the blocked version of half-
space rasterizer as “blocked half-space”. The main advantage of blocked version (over
previous half-space approach) is the possibility of parallel processing of pixels via SIMD
instructions. Besides, blocked half-space algorithm processes empty space faster. The
disadvantage of blocked version appears with small triangles — not all calculations that
were performed for 4x4 tile (for example) are useful.

2.2.1 Floating point vs fixed point

When choosing between a floating point and a fixed point, two cases should be distin-
guished: (1) rasterization algorithm itself and (2) pixel operations. When speaking about
rasterization — current graphics hardware uses “28.4” or “15.8” (or other) fixed point
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format with 4 or 8 bit subpixel precision [12, 1, 16] and there is simply no any reason
for using floating point to process the triangle in the rasterization algorithm. This is so
because a fixed point has deterministic behavior and is not subject to rounding errors;
therefore, it’s not even about speed, but rather about correctness. Both half-space and
scanline approaches are known to be implemented in fixed point well [17, 18].

Fig. 5. PlayStationl (right) didn’t have correct texture mapping due to absence of floating point for
pixel operations [19].

While speaking about pixel processing — it depends on the hardware. Early versions
of gaming consoles didn’t have floating point support [20] so they had visible problems
with texture mapping and Z-buffer (fig. 5). There are still processors without a floating
point and SIMD support (or its performance may be not enough), therefore, fixed-point
can be an option [18]. Also, if we do not need rendering in three dimensions, we can get
by with a fixed point. Otherwise, we believe that for pixel operations it’s better to use
floating point in conjuction with SIMD. Here are our reasons:

1. Rendering in 3D is difficult to be correct without a floating point (fig. 5).

2. SIMD and floating point can be used together. If SIMD instructions are enabled,
there should be no need in complex and chip-expensive Out Of Order execution
mechanisms to speed-up floating point operations. Blocked based half-space always
has a lot of independent work (at leats 16 operations for 4x4 pixel block), so coarse-
grained instruction parallelism [21] can be used. GPUs actively use this idea sending
commands to the pipeline from different micro-threads [22]. This is why they are
so good at floating point operations and have high memory bandwidth. Thus, even
straitforward implementation of SIMD floating point should work well.

3. Almost all CPUs have different register sets for integer and floating point numbers.
Using both (we must use integer registers for fixed point rasterization anyway) will
increase the effective number of processor registers and in this case reduce register
pressure.

4. A CPU may not have SIMD for integers (for example, SSE1 doesn’t have them).
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5. Half precision reduces architectural state by a half and thus more pixels can be
processed in parallel or we may use less transistors for the CPU or, at least, reduce
necessary memory bandwidth. Processors with half precision support for neural
networks are currently becoming popular (for example late ARM and Intel CPUs).

Thus in our experiments we used fixed point for triangle rasterization algorithms and
SIMD floating point operations for pixel processing.

2.2.2 Multi-threaded implementations

Multithreaded implementation of a graphics pipeline is a challenging task. Figure 1
shows it in general. An unknown number of triangles of arbitrary size is fed to the input
of the graphics pipeline in general (so it is hard to say in advance exactly at which stage of
the pipeline there will be the bottleneck). Non uniform work distrubution is easy arising
here. Triangles could significantly overlap each other. Moreover, if alpha blending is
enabled, a certain order of pixel processing for triangles must be preserved: if the triangle
A was filed into the graphics pipeline before the triangle B, then A must be drawn before
B and its pixels must be processed before the pixels of the triangle B. Otherwise, we will
get an incorrect image.

One of the first papers about software rasterization on modern CPUs is [23]. In this
paper, SSE instructions and multithreading capabilities were exploited. Binned imple-
mentations of rasterizer was used (which is known as a “sort-middle” approach [1]). In
this paper, screen is subdivided into large bins/tiles (in size of 64x64, 128x128 or 256x256
pixels). Once all primitives are binned, threads switch over to tiles for rasterization and
fragment processing work. Thus, in this paper, for each bin there is its own queue of
triangles, which is first completely filled with all the threads, and then all the queues are
emptied in parallel. One tile is processed at a time by only one stream. The blocked
version of half-space rasterization was used with 8x8 block size for SIMD processing of
pixels. An advantage of sort-middle approach from [23] is the correct alpha blend support
by default due to each bin is processed in a single thread. The disadvantage is a limited
parallelization capability due to different bins could have significantly different numbers
of triangles and thus some bins will hang for a while in a single thread when all the oth-
ers bins/threads have already finished. A performance growth demonstrated in [23] was
measured on a quite heavy pixel operations (which reduces the described disadvantage)
with shadow mapping, and even in this case was not perfect. Authors of [24] simply split
screen in 4 parts and [25] also didn’t introduce any new technique.

In [18] disadvantages of sort-middle approach was also noted and a solution was pro-
posed that is parallelized almost perfectly — render different frames completely in different
threads. This idea is similar to Nvidia SLI and AMD Cross-Fire GPU solutions [26]. The
reason for such successful results is that this work bypasses the Amdahl law, making se-
quential calculations parallel via pipelining. Unfortunately, it has at least 2 drawbacks.
First, this method of parallelization does not reduce the latency of rendered information.
It makes the animation smoother, but the user sees the information on the screen with
such a delay as if the whole rendering has occurred in a single thread. In automotive and
avionics applications, for example, such disadvantage became serious, because a person
in critical situation may wrong react to displayed information due to a time lag. Second,
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a processor memory bus has limited bandwidth and thus SLI-method has a physical lim-
itation on parallelizability on a single device (so, Nvidia and AMD use it for multi-GPU
setup) due to each thread accesses its’ own frame buffer and the total amount of memory
moved along the bus increases with the number of threads.

Unlike previously discussed papers, an older work GRAMPS [27] uses the approach
which is known as “sort-last”[1]. This approach parallelizes individual operations on
pixels or groups of pixels, and unlike sort-middle does not require screen to be split into
bins. Thus, different triangles can be processed by different threads. The main focus
of [27] was done on prototyping and simulating graphics hardware. So, there was no
information about efficiency of this approach for software implementation on practice.

2.2.3 Hardware solutions: sort-middle vs sort-last

Modern graphics hardware has a tremendous amount of parallellism inside. However,
before fragments/pixels finally got to the frame-buffer they have to be sorted in some way
to form a correct image. This becomes especially important if alpha blending is used.
Current graphics hardware can be divided into 2 large classes based on what stage of the
graphics pipeline this sorting takes place: sort-middle and sort-last [1].

Desktop GPUs have a high memory bandwidth and uses sort-last approach imple-
menting the ordering of fragments inside Render Output Unit (“ROP”) hardware units.
Same units are known to be used for atomic operations in GPGPU, so, ROPs are useful
units anyway. Mobile GPUs are aimed more at energy efficiency than at performance
and use a sort-middle method (except Nvidia Tegra). This approach is more energy ef-
ficient because it allows performing fewer operations to DRAM keeping a small piece of
framebuffer (for example 64x64) in the on-chip memory (cache). The disadvantage of
sort-middle approach for GPUs is lower performance with a large number of triangles due
to vertex shader and triangle set up executes several times (thus multiplying the cost of
geometry stages with the number of tiles).

2.2.4 Software rasterization on GPUs

First succesfull software GPU implementation “in compute” (i.e. without using ded-
icated rasteriszation units) was proposed in [12]. This implementation was a three-level
(bin-raster, coarse-raster, fine-raster) and used sort-middle on desktop GPUs. More ad-
vanced approach was suggested in [28] which reduces memory transactions in comparison
to [12]. Due to efficient usage of shared memory and the extremely high computing power
of the GPU, good results were obtained in both papers described above. Combined with a
heavy pixel shader software rasterizations may have almost the same speed than hardware
implementation but it may have higher flexibility.

Larabee [29] uses 4x4 blocked half-space with 16-wide vector instructions and the
algorithm was recursive: each triangle evaluates 16 blocks of pixels at a time to figure
out which blocks are even touched by the triangle, then descended into each block that’s
at least partially covered, evaluating 16 smaller blocks within it, continuing to descend
recursively until we had identified all the pixels inside the triangle [16]. Thread paralellizm
used sort-middle approach.
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2.3 PERFORMANCE EXPERIMENTS AND ANALYSIS

We tested various methods on the fixed set of scenes. However, the purpose of our
experiments was to select successful methods for a wide range of scenes. Therefore one of
the most important criteria for an objective study is the correct choice of test scenes.

2.3.1 Test scenes

Our test scenes are presented at fig. 6 and 7. We chose these scenes so that the
bottlenecks are presented in different parts of the graphics pipeline. Here is the description
of these scenes and their rasterization modes/states:

1. T1: 18 triangles, color interpolation with perspective correction and Z-buffer;

2. T2: 8K triangles, color interpolation without perspective correction (2D mode);
3. T3: 92 triangles, texture with bilinear fetch, perspective correction and Z-buffer;
4. T4: 4K triangles, same rasterizer state than a previous one;

5. T5: 37K triangles, same rasterizer state than a previous one;

6. T6: 131K triangles. same rasterizer state, lighting was baked in the texture.

T1 scene is simple in all stages: geometry, rasterization and pixel processing. T2 scene
is simple in pixel and geometry processing, but more complex for rasterizer itself due to it
draws 8K small triangles. T3 scene is complex in pixel processing but simple at geometry
and rasterization stages. T4 (4K triangles) and T5 (36K triangles) scenes are more or
less balanced. T6 scene contains 131K triangles and is positioned as a complex scene for
all stages. T6 scene has baked lighting. Therefore, having a small number of test scenes,
we are able to study different bottlenecks in graphics pipeline ignoring irrelevant details
of a complete OpenGL implementation in the same time.

2.3.2 Investigated and proposed techniques

Thus, we have implemented minimal but useful graphics pipeline subset. Such things
as attribute interpolation, perspective correction and depth buffer during triangle ras-
terization are implied. Pixel processing includes texture mapping with bilinear filtering.
However, we don’t evaluate differentials (dFdx/dFdy [30]) for texture coordinates and
avoid using MIP levels. For each OpenGL state we have implemented code generator
using C++ templates for pixel processing excluding unnecessary code explicitly.
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Scene T1 Scene T2

Scene T4 Scene TH Scene T6

Fig. 6. Our test scenes rendered in solid mode to demonstrate their actual appearence.

Scene T1 Scene T2

Scene T4 Scene TH Scene T6

Fig. 7. Our test scenes rendered in wire frame to demonstrate triangles.
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Thus, our pixel processing code doesn’t have any branches except a depth test. For
experiments we used three states/filing modes: (1) 2D color interpolation without texture
(T2 scene); (2) 3D color interpolation with perspective correction and depth test (scene
T1), and (3) 3D mode with texture mapping (other scenes), perspective correction, depth
test and bilinear texture fetch.

Using compiler explorer [31], we have estimated that the first mode consists of ap-
proximately 68 instructions per pixel and the second takes 290 instructions (though each
instruction processes line of 4 or 8 pixels for blocked half-space algorithm) for x64 CPU
architecture (table 6). It may seem that having 68 instructions for just interpolating
colors is too much. This is partly true; here we can see the disadvantage of the blocked
half-space algorithm: it must evaluate half-space distances and baricentrics for all pixels
in block while the iterative half-space evaluates them incrementally. On the other hand,
texture mapping introduces significant amount of computation making this disadvantage
irrelevant.

Rasterization algorithm: scan-line vs half-space. Our first experiment was about
comparison of existing rasterizations algorithms on a single core (table 1). We used SSE
processor instructions to accelerate computations where possible. For scan-line and half-
space columns we vectorized the calculations by coordinates and image channels (we call
such approach “ssel” in table 2). For blocked half-space we used pixel vectorization
(i.e. single command processes a bunch of pixels; we call this approach “simd(sse4)”
and “simd(avx8)” depending on instruction length). Rasterization algorithms themselves
were implemented in a fixed point. We further studied optimal tile size (which is related
to vector length) in our experiments (table 2).

| scene | half-space | blocked half-space | scan-line | scan-line (fast) | fill_color |

T1 286 FPS 294 FPS 158 FPS 400 FPS 625 FPS
T2 | 650 FPS 417 FPS 83 FPS 117 FPS 667 FPS
T3 68 FPS 91 FPS 61 FPS 73 FPS 500 FPS
T4 76 FPS 87 FPS 48 FPS 53 FPS 400 FPS
T5 57 FPS 51 FPS 35 FPS 46 FPS 250 FPS
T6 50 FPS 40 FPS 19 FPS 22 FPS 116 FPS

Table 1: Time for different rasterization algorithms. Each implementation was accelerated with SSE
instructions. All numbers (FPS, Frames Per Second) are measured for single thread and 1024x1024
resolution. The higher is better. The last column fill_color is a tiled half-space algorithm filling all pixels
with white color (like memset). We consider the performance of this case as the best possible one and
compare the rest with respect to it. For this experiment we have used Intel Core i7 (3770, 3.4Ghz) CPU.

Experimental results show that the scan-line approach does have an advantage over
half-space on large triangles and simple filling modes if a coverage test is removed (table 1,
first row, scene T1). However, this advantage is easily eliminated by increasing block size
in blocked half-space algorithm (table 2, fist row, avx8 column): blocked half-space gives

164



V.A. Frolov, V.A. Galaktionov, B.Kh. Barladyan

448 FPS versus 400 FPS (this comparison, though is not quite correct since the numbers
in tables 1 and 2 were measured on different processors, but we can rely on it because Xeon
with a lower frequency in a single thread is usually slower than the Core-i7) for scan-line
(fast). In all other cases, half-space and blocked half-space show absolute advantage over
scan-line approach.

Comparing half-space and blocked half-space approaches we can say that blocked half-
space algorithm is usually better (table 1). The exceptions are scenes T2 and T6 where
common half-space algorithms substantially defeated the vectorized version. This result
is explained quite simply: T2 and T6 scenes contain a lot of small triangles which result
in a large amount of partially-covered blocks for a block based rasterizer.

| scene | pure_cpp | simd (ssel) | simd (sse4) | simd (avx8) | fill_color (sse4) |

T1 | 147 FPS | 297 FPS 427 FPS 448 FPS 588 FPS
T2 | 108 FPS | 204 FPS 102 FPS 96 FPS 137 FPS
T3 35 FPS 61 FPS 83 FPS 92 FPS 500 FPS
T4 35 FPS 65 FPS 74 FPS 62 FPS 323 FPS
TH 26 FPS 44 FPS 42 FPS 33 FPS 119 FPS
T6 17 FPS 36 FPS 16 FPS 13 FPS 30 FPS

Table 2: Frames per second for different acceleration techniques for half-space (pure_cpp and ssel) and
tiled half-space (simd(sse4), simd(avx8)) rasterizers. All numbers are measured for single thread and
1024x1024 resolution. The higher is better. The last column fill_color (sse4) is a tiled half-space algorithm
filling all pixels with white color (like memset). We consider the performance of this case as the best
possible one. For this experiment we have used Intel Xeon (5-2690 v4 2,6Ghz) CPU.

Combined approach. Such a result encourages us to combine ssel and sse4 imple-
mentations: if a block is fully-covered, we used vectorized pixel processing; if a block is
partially-covered we render its pixels subsequently using vectorization by coordinates or
color channels (table 3, column “ssel+sse4”). It can be seen from table 3 that combined
approach is good in average, but was not the best in all cases. We explain this by saying
that blocked half-space implementation (and combined algorithm as follows) is much more
complicated for branch prediction and speculative execution mechanisms. So, combined
approach can be further improved: for triangles with small area use simple half space
(ssel) and for other — cobmined (ssel+sse4) algorithms. This approach allowed us to fix
performance for scenes with a large number of small triangles (T2 and T6).

Threads: sort-middle vs sort-last. As can be obvious from the previous work, most
existing implementations use straitforward sort-middle approach subdividing image into
bins. This approach supposes that pixel work dominates over geometry and rasterization
itself. We also began with sort-middle approach but we have found that adding bins is
in itself introducing essential overhead (table 4, second column). This happens due to
essential duplicating of triangles that overlapped several bins and it becomes noticeable on
geometrically-heavy scenes (T2, T5 and T6). Then we decided to try a different approach.
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Having 4x4 blocked half-space algorithm, we decided to use spin-locks for 4x4 tile and
thus implemented sort-last. We used std::atomic_flag [32] for spin-lock implementation.

The sort-last, in general (if we do not take into account the locks), should scale better
due to it processes separate triangles in parallel. An additional advantage of this algorithm
is locality and cache efficiency for triangles data: rasterized triangles are formed on the
top the stack (or triangle queue) memory and they are in the cache.

If go further, sort-last could be optimized in such a way that it reads data directly
from user input pointers, rasterizes triangles and immediately discards them (thus turning
into a memory-compact and cache-effitient way). However, we did not do this because
OpenGL has tremendous amount of ways for input user data layout.

| scene | pure_cpp | simd (ssel) | simd (sse4) | simd (ssel+ssed) | fill_color (sse4) |

T1 | 147 FPS | 297 FPS 427 FPS 430 FPS 588 FPS
T2 | 108 FPS | 204 FPS 102 FPS 197 FPS 137 FPS
T3 35 FPS 61 FPS 83 FPS 84 FPS 500 FPS
T4 35 FPS 65 FPS 74 FPS 79 FPS 323 FPS
T5 26 FPS 44 FPS 42 FPS 46 FPS 119 FPS
T6 17 FPS 36 FPS 16 FPS 31 FPS 30 FPS

Table 3: Comparison of suggested combined implementation (ssed-+ssel). All numbers are measured for
single thread and 1024x1024 resolution. The higher is better. The last column fill_color (sse4) is a tiled
half-space algorithm filling all pixels with white color (like memset). We consider the performance of this
case as the best possible one. For this experiment we have used Intel Xeon (5-2690 v4 2,6Ghz) CPU.

Although, the sort-last can be implemented in different ways, we used the simplest
approach: a thread performs lock of 4x4 tile, processes pixels and then immediately
unlocks the tile. For parallel processing of triangles we used a lock-free concurrent queue
[33]. Some threads act as producers and push triangles into queue (1 or 2), while the others
act as consumers, taking out triangles from the queue and performing rasterization. We
did not limit the size of the queue, although we believe that for better cache efficiency it
is worth doing, switching producer threads to consuming triangles when a limit has been
exceeded.

Fig. 8 shows our experiment results. The sort-middle approach, as expected, was
better for pixel-heavy scenes. However, for cases where pixel work was not enough, sort-
last approach has won. The exception is T6 scene. This result seemed strange for us,
especially in combination with the fact that sort-last has shown almost linear scaling on
T2 scene. Nevertheless, this result may be explained. Scene T2 consists of 8K small
random triangles (which bounding boxes overlap only slightly) where each next triangle
is located at random position on the screen. Scene T6 consists of successive triangle strips
and also triangle bounding boxes overlap much more. We were able to achieve a slight
performance increase (15-20%) by increasing the pulling portion size for the consumer up
to 4 triangles (this reduces conflicts of threads if they process a single trip). However,
threads that handle different strips still conflict much. Moreover, T6 scene is heavier for
pixel processing than T2, so sort-middle has won here.
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Fig. 8. Multithreading experiment. X axis — number of threads. Intel Xeon (5-2690 v4 2,6Ghz, 14

cores) CPU.
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At last, we should make a note that in our comparison, a sort-last approach used pitch-
linear buffer, and the sort-middle used a binned/tiled one. After comparing these two
methods (pitch-linear vs tiled) in next subsection we can state that a sort-last approach
can be even more efficient if it uses a tiled frame-buffer.

Framebuffer layout: pitch-linear vs tiled. Our next experiment was targeted to
investigate memory subsystem efficiency when access frame buffer data. We assumed
that frame buffer (and also depth buffer) access can be a bottelneck due to these buffers a
priori can not be fit into the cache. Thus, some tiled frame buffer layout might be helpful
because of less cache misses when accessing different rows (fig. 9).

We have investigated 4 different implementations (table 4):

1. pitch-linear frame and depth buffers layout. Default layout of 2d image by rows.

2. pitch-linear + binning overhead. This implementation has the same memory layout
as a prevous one. However, it has bins for different 64x64 tiles and thus triangles
that overlap several tiles should be duplicated. This implementation will show use
binning overhead.

3. big tiles (64x64), i.e. bins. For this layout we split screen into 64x64 bins. For each
bin inside we used pitch-linear layout.

4. Two-level tiling. At the first level, we split screen into 64x64 bins. At the second
level we split each bin into 16x16 tiles thus making address linear inside the whole
tile. Such layout will also allow wide vectors (for example, AVX512) being used for
the whole 4x4 tile.

| scene | pitch-linear | pitch-linear + bins | bins (64x64) | bins (64x64) + tiles (16x16) |

T1 340 FPS 345 FPS 444 FPS 476 FPS
T2 113 FPS 103 FPS 147 FPS 145 FPS
T3 98 FPS 99 FPS 161 FPS 169 FPS
T4 99 FPS 82 FPS 132 FPS 141 FPS
T5 85 FPS 46 FPS 82 FPS 91 FPS
T6 40 FPS 20 FPS 33 FPS 34 FPS

Table 4: Comparison of pitch-linear and tiled frame buffer layouts. The higher is better. Blocked half-
space algorithm was used (4x4). For this experiment we have used single thread and Intel Xeon (5-2690 v4
2,6Ghz) CPU. First column shows a default pitch-linear framebuffer layout. Second column demonstrates
overhead we got from binned approach by itself: some triangles are duplicated due to they overlap several
bins. Third column shows performance for binned approach and the last one — for two-level bins (64x64)
+ small tiles (4x4) approach.

Thus, memory layout has an extremely large impact on performance and tiled layout
sould be definitely used.
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Fig. 9. Different framebuffer layout illustration. On this image, a bin size is shown to be 8x8, however
on practice it was 64x64. Default pitch-linear is shown at top left image. Binned/tiled — top right.
Two level (64x64 bins + 4x4 tiles) layout is shown at bottom left and Morton code layout [34] is shown
at bottom right. With algorithmic point of view, the last one has better 2D locality [34]. However,
Morton code evaluation is expensive and will also complicate half-space distances evaluation. At the
same time, we would like to guarantee that all pixels in line have a subsequent addresses. This allow us
reading/writing line of pixels with the single instruction and easily change length of instruction to test
both SSE (for 4x4 tiles) and AVX (for 8x8 tiles).

CPU architecture: In Order vs Out Of Order. Our last experiment was aimed
to study efficiency of different processor architectures for software graphics pipeline and
rasterization. A trade off between performance and other CPU characteristics (such as
energy efficiency, heat dissipation and cost) is essential for embedded systems. It is
well known that the most significant performance gained on modern CPUs gives super
scalar Out Of Order execution pipeline. This mechanism, at the same time, is the most
expensive one. Our assumption is that with a large number of vector operations and
independent instruction flow, software graphics pipeline should work well even on an in-
order processor. Another reason we make this comparison is that in-order processors
are more easily implementing precise exceptions which are important for safety-critical
applications.

Since our blocked half-space algorithm is implemented via platform-independent light-
weight vector library, we could easily port it to ARM. Unfortunalely our SSE1 imple-
mentation is heavily platform dependent (though, various options are exists [35]), so in
this experiment we tested only pixel vectorization (blocked half-space algorithm). Using
compiler explorer [31], we have counted instructions for different arhitectures and pixel
processing modes (table 6). This information would allow us to more accurately evaluate
how well the pipeline was loaded by the arithmetic instructions.

For this test we have selected several CPUs (table 7). First two processors (A83T
and Cortex Ab3) are 2-way super scalar in-order machines. The i.MX6 (Cortex A9) has
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| scene | pitch-linear | bins (64x64) | bins (64x64) + tiles (16x16) |

T1 340 FPS 444 FPS 476 FPS
T2 113 FPS 167 FPS 164 FPS
T3 98 FPS 161 FPS 169 FPS
T4 99 FPS 150 FPS 155 FPS
T5 85 FPS 102 FPS 114 FPS
T6 40 FPS 60 FPS 63 FPS

Table 5: Comparison of pitch-linear and tiled frame buffer layouts without binning overhead. The
higher is better. Half-space block (4x4) algorithm was used. For this experiment we have used single
thread and Intel Xeon (5-2690 v4 2,6Ghz) CPU. First column shows a default pitch-linear framebuffer
layout. Second column shows performance for binned approach and the last one — for two-level bins
(64x64) + small tiles (4x4) approach.

2-way super scalar out of order pipeline. The Core-i5 2410M (Sandy Bridge) has 4-way
super scalar out of order pipeline. In addition to a wider pipeline, Sandy Bridge has many
floating point ALUs, so it can execute 16 single precision floating point operations per
clock (4 SIMD instructions per clock, each of 4 floats).

| CPU arch/mode | Colored2D | Colored3D | Textured3D |

x86/x64 68 100 290
ARMvT 79 110 500
ARMvS 60 86 250

Table 6: Comparison of instruction count per pixel for different rasterization states and CPU architec-
tures. GCC compiler. 4x4 tiles were used. Colored2D includes color interpolation only. Colored3D —
color interpolation with the perspective correction and a depth test. Textured3D adds bilinear texture
fetch and perspective correction of texture coordinates to the previous mode. We have observed a signif-
icant increase in the number of instructions for ARMv7 and Textured3D mode due to spilling registers
to memory. We used GCC 5.4.0 for both ARM cases.

We further introduce a special metric (equation 10, fig. 10) to compare in-order vs
out of order from measured frames per second (table 7). We do this because in our ex-
periments we used different CPUs with different architectures, manufacturing technology
(for example 14 and 28 nm) and frequency. Our reason is straitforward: we don’t want to
compare the absolute performance values for different processors like table 7 does. Instead
of that, we would like to approximately match instructions per clock for different CPUs to
know whether out of order gives a benefit for our problem or not. Thus, if for a some CPU
we have more instructions than for the other, we do not consider this a disadvantage for
our comparison and we also do not want to take into account any inefficiencies introduced
by the compiler. For this reason, the instruction count is in the numerator. At the same
time frequency should be in denominator to bring all measures to a single frequency.
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| scene | A83T(ARMv7) | Cort.AB3(ARMvS) | i.MX6 (ARMv7) | Core-i5 (x86/x64) |

pure_cpp | SIMD | purecpp | SIMD | pure_cpp | SIMD | pure_cpp | SIMD
T1 16,7 17,5 26.3 35,9 13.9 19.2 96 191
T2 17,9 21,2 33,2 19,0 14,1 6,6 79 7
T3 5,8 6,5 7,4 14,5 4.5 6,3 27 67
T4 6,0 6,2 8,0 12,2 4.8 5,1 28 55
TH 4.5 4.6 6,1 7,0 3,7 3,0 22 33
T6 2.8 2.2 3.6 2.7 41 1,3 14 13

Table 7: Performance of a single-pixel (pure_cpp) and vectorized (SIMD) versions. Frames Per Second
(FPS). Single thread, 1024x1024 and offscreen rendering. Binned frame-buffer (64x64 pixels) is used.
A83T and Cortex A53 are in order machines; i.MX6 and Core-i5 are out of order ones. For this test we
have used a laptop version of Core-i5 CPU (2410M, 2.3 GHz).

FPS x Instructions

Ef ficiency = Frequency

Relative Efficiency

W A83T

5000 I8 CortexAS53
4000 M Core-i5
3000 i.MX6
2000
1000 d
0
T1 T2 T3 T4 T5 T6

Fig. 10. Relative CPUs efficiency (equation 10). This efficiency could be thought as a relative instruction
per clock (IPC). All histogram columns were obtained from SIMD columns of table 7.

Fig. 10 shows that the out of order (OOQO) execution mechanism in itself gives only
a very little benefit in average (compare A83T over i.MX6 — they both have 2-way
execution pipeline, but i.MX6 have OOO and the A83T don’t have it). The loss of the
i.MX6 on T2 and T6 scenes can be easily explained — this is a result of expensive pipeline
flush for the out of order CPU due to large amount of branch misprediction and complex
code path in the blocked half-space algorithm; we rendered partially covered blocks with
common (not vectorized) C++ code and therefore branch misprediction forces the CPU to
flush pipeline and start executing another piece of code. Core-i5 has speculative execution
mechanism and thus amortizes this problem. At the same time, in-order machine with
greater amount of registers (ARMv8) shown better IPC (fig 10). Therefore, more registers
combined with better code density for ARMv8 in Cortex A53 shown much better absolute
performance than OOO execution added to ARMv7 in i. MX6 CPU (table 7).
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2.3.3 Comparison with other implementations

We have compared our implementation to Mesa on A83T (ARMv7) and Mesa-OpenSWR
on Intel Core-i7 CPUs (x86/x64). For Core-i7 we used high performance OpenSWR [6]
implementation on Windows 7 and for A83T we used default Mesa 10.5.4 software ras-
terizer on Ubuntu Linux 16.04.6 LTS (xenial), BPI-M3 dev-board [36]. All comparisons
were done in 1024x1024 resolution for windows and in 1024x640 for Linux on BPI-M3
due to maximum resolution limitation; please also note that this time (table 8) we have

to include frame buffer display time into the comparison and therefore our numbers for
A83T CPU in tables 8 and 7 are slightly differ.

Sen/CPU A83T(ARMVT), 1 and 4 threads Core-i7, 4 threads

Sen/OGL | Mesa (1 thread) [ Ours (1 thread) | Ours, 4 threads | OpenSWR | Ours
T1 5.6 FPS 7.0 FPS 16.5 FPS 400 FPS | 240 FPS
T2 4.2 FPS 5.7 FPS 15.0 FPS 136 FPS | 150 FPS
T3 1.0 FPS 6.7 FPS 14.8 FPS 270 FPS | 210 FPS
T4 0.77 FPS 7.5 FPS 8.2 FPS 220 FPS | 101 FPS
TH 0.45 FPS 5.0 FPS 6.1 FPS 110 FPS 63 FPS
T6 0.26 FPS 3.3 FPS 4.8 FPS 33 FPS 40 FPS

Table 8: Comparison of our implementation to Mesa and OpenSWR, OpenGL implementations. In this
comparison, we used several optimizations altogether (such as tiled frame buffer and multithreading).

On x86/x64 our implementation [37] could not beat OpenSWR on pixel-heavy scenes
(table 8). However, we were faster on T2 and T6 scenes where our combined approach
(ssed+ssel, section 2.3.2) has shown its advantage. Our code was designed to quickly test
the maximum number of different rendering techniques. So, considering that OpenSWR
is made by Intel for the x86/x64 architecture only (and it simply can not run on the
others), it would be naive to expect excellence from our experimental implementation for
all cases. We believe that OpenSWR, generates better vectorized code (processing a half
of 4x4 tile with a single AVX instruction, for example). Also OpenSWR could proceed
better with multithreading due to our experiments revealed problems for both studied
methods (sort-middle and sort-last).

On the other hand, with the same software implementation, we can significantly out-
performs default Mesa rasterizer on ARM which was the only avaliable software solution
for BPI-M3 board during our work with it; according to our information there is no work-
ing graphics driver for Ubuntu Linux on BPI boards and therefore the whole rendering
is performed actually in the software. Many other developent boards suffer the same
problem on practice (along with patent issues [38]).

3 CONCLUSIONS

In this article we investigated various high performance graphics rasterization algo-
rithms and techniques to be accelerated on different modern processor architectures. Prac-
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tical and scalable solutions for software implementation of OpenGL graphics pipeline on
modern multicore CPUs were elaborated.

The experimental results demonstrated unexpected results — even on fairly simple test
scenes popular methods (sort-middle and blocked half space) substantially lost to rarely
used ones (sort-last and simple half space). Relying on these results, a combined approach
(blocked half-space + half-space) accelerated with SIMD instructions was introduced that
have beaten extremely optimized OpenSWR implementation for 2 scenes. At the same
time our implementation outperform default Mesa rasterizer on ARM CPUs an order of
magnitude, which demonstrates the relevance of this area of research. We also offered a
special metric for benchmarking relative Instructions Per Clock (IPC) for different CPUs
without special tools, and this metric shows relatively low efficiency of the out of order
mechanism itself for pixel processing. The more particular conclusions are shown further:

1. Half-space rasterization methods are absolutely better than scanline ones;

2. SIMD pixel processing for blocked half-space rasterizer gives essential benefit, but
has limitations:

(a) small triangles degrade performance, so the combined approach should be used;

(b) wide vectors on architectures with low amount of vector registers may not
have benefit due to high register pressure, increased number of instructions
and spilling intermediate results to memory (table 7).

3. Even in such a computationally intensive task as pixel processing during rasteriza-
tion (where the ratio of computational instructions to memory operations is greater
than 100:1), memory access is still a seriously performance limit. Tiled frame buffer
and depth buffers layouts increase performance up to 60%;

4. Despite our multithreading implementation is far from perfect (we don’t have linear
acceleration for most cases), we believe that the sort-last approach is more perspec-
tive, although it is non trivial.

5. For the considered problem out of order (OOO) machines have essential benefit if
the OOO machine has significantly larger maximum instructions per clock than an
in order one. It is more essential to have larger maximum thoroughput of floating
point instructions (i.e. have for floating point ALUs).

When we first started our work, we were sure that it would be more technical and that
all the research that could be done in this area had already been done due to the popularity
of GPUs today. However, on practice, everything turned out to be differently. We could
not find a single optimal approach for the implementation of software rasterization and
graphics pipeline. Moreover, we found that with the advent of GPUs, researchers mostly
ignore real-time software rendering. At the same time, processors were actively developing,
so we believe that this field is the fertile ground for the future performance research.
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KuroueBsblie ciioBa: HeskcTteHCcuBHAs knHeTHKa Tcayummca, TpaBUTALIMOHHBIA KpUTepuid JIKuH-
ca, JOIUIAHETHOE ra30BO€ 00JIaK0, YEPHOTEIBHOE U3ITydEHHUE.

AnHoTanus. B HacTosiee BpemMsi HEOKCTCHCHBHAS CTAaTHCTHYECKash MeXaHuka Tcarmuca yc-
MEITHO MPUMEHSIETCSI K KOCMUYECKAM CHUCTEMaM C JTaJJbHUM CHUJIOBBIM B3aUMOJCHCTBHEM, KOTO-
poe | ABISIETCS MPUYUHON MX aHOMAJIBHOCTH (CTaTaTUCTUYECKOW U TEPMOIMHAMUYECKON HEal-
JUTUBHOCTH). V3BECTHO, YTO I'paBUTALIMOHHASI HEYCTOWYMBOCTH SBJIAETCSA (DyHIaMEHTaIbHBIM
nporeccoM ¢pparMeHTaIi TPaBUTUPYIOIIETO JOIUIAaHETHOro obiaka. B koHeuHOM cyere, UMEH-
HO OHa BBI3bIBAaeT (OPMUPOBAHNE YCTOMUUBBIX aCTPOPU3NUECKUX OOBEKTOB, TAKMX KaK 3BE3/IbI,
TYMaHHOCTH, JOIJIaHETHbIE MbIJIEBBIE CTYLICHUS, aKKPELIMOHHBIE TUCKU U T. 1. [Ipu aTom B ciy-
yae HOPMAaJIbHBIX 3Be3]] OOJIBLIYIO POJIb UTPAET JaBJICHUE U3IIydyeHHUS Kak (akTop UX THApOCTa-
TUYECKOTO PaBHOBECHSI.

B nmannoii paboTte Ha OCHOBE KMHETHKH Tcaminca paccMOTpeHa MpobjiemMa rpaBUTAIMOHHOMN
HeycToiunBocTy JKUHCA JUIsl MPOTSHDKEHHOTO CaMOTPAaBUTHPYIOLIETO IUIa3MEHHOro o0aka, 3a-
MOJIHABILIETO BCE MPOCTPAHCTBO MPOTO-COJHEYHOW CHUCTEMBI, C Y4ETOM BIIUSHUSI HEIKCTEHCHB-
HOCTH CpPEJIbl, BPAILLEHUSI 1 MAarHUTHOTO TOJISI HA KPUTHUYECKYIO JJIUHY BOJIHBI BO3MYILECHUS, Be-
nymed Kk HeyctronunBoctu. OO000MmEHHBIE KPUTEPUHU TPABUTAIMOHHON HEycTOMUMBOCTH J[KUH-
ca HaiJIeHbl U3 COOTBETCTBYIOLIUX TUCIEPCUOHHBIX COOTHOILIEHHH, MOJTYYeHHBIX KaK JJs He-
TPAJIBHOI'O BEIIECTBA, COCTOSILEr0 U3 CMECH COBEPLICHHOTO (]-ra3a M YepHOTEIbHOIO M3Jyde-

HHA, TaK 1 AJIA I1J1a3MBI. OHpe,Z[eJ'ICHLI Q)YHKHHOHaHLHLIe 3aBUCUMOCTH KPUTHYCCKOI'O 3HAUCHUA
JJIMHBI BO3MYHlaIOHleﬁ BOJIHBI OT 3HTpOl'IPII>iHOFO HHACKCA I[e(bOpMaHI/II/I (., pasMEpHOCTHU IIPO-

CTpaHCTBa CKOpOCTCﬁ Dwu K03(1)(1)I/ILII/IGHT3 B , XapaKTCPU3YIOUICIo OO0 HU3JTYUYCHHS B IMOJIHOM

JaBJICHHUHU CHUCTCMBI. OTHn CBO6OI[HLI€ mapaMeTpbl JOJDKHBI 3a/1aBaTbCA B KAXKIOM KOHKPCTHOM
CJIydac U3 CTaTUCTUYCCKUX HJIN DKCICPUMCHTAJIbHBIX NAHHBIX. HOK@B&HO, 4YTO U paaruallMOHHOC
JaBJICHHC CTa6I/IJII/I3I/IpyeT BCIICCTBO HEOKCTCHCHUBHBIX JOIINIAHCTHBIX 0071aKOB. I[JISI Bpaliaro-
IIeHcsl HaMarHU4eHHOM IJ1a3MBbl KpUTCpun HGYCTOﬁqHBOCTH Z[)I(I/IHCa MOHH(bHHHPYIOTCH CHIIOH
Kopnonmca W MArtuTHBIM ITOJICEM TOJIBKO B MOIICPCUYHOM PEIKUME PACHIPOCTPAHCHHA BOJIH BO3-
MYIICHU. HOJ'Iy‘leHHLIe 31€Ch PE3YyJIbTAThl IOMOT'YT, I10 MHCHUIO aBTOpPA, JIYUIIC ITOHATH HECKO-
TOPBIC aCTpOCI)I/BI/I‘{eCKI/IC HpO6J’ICMLI, CBA3aHHBIC, B YAaCTHOCTHU, C MOACIIMPOBAHUCM IIPOLICCCOB
O6p330BaHI/I${ 3BC3/1 M OK30IIJIAaHCT U3 3BC3IHBIX TYMaHHOCTeﬁ.
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Summary. At the present time, non-extensive statistical mechanics of Tsallis is successfully ap-
plied to space systems with long-range force interaction, which is the reason for their anomaly
(statistical and thermodynamic non-extensity). It is known that gravitational instability is a fun-
damental process of fragmentation of gravitating cosmic matter. It causes the formation of stable
astrophysical objects, such as stars, nebulae, pre-planetary dust condensations, accretion disks,
etc. Wherein, in the case of normal stars, the radiation pressure as a factor in their hydrostatic
equilibrium plays an important role.

It is on the basis of statistical mechanics of Tsallis that the paper considers the problem of
Jeans gravitational instability for an extended self-gravitating plasma cloud that fills the entire
space of the proto-solar system, taking into account the influence of medium nonextension, rota-
tion, and magnetic field on the critical wavelength of the perturbation leading to instability. The
generalized criteria for Jeans' gravitational instability are found from the corresponding disper-
sion relations obtained both for a neutral substance consisting of a mixture of perfect ¢-gas and

blackbody radiation, and for plasma. The functional dependences of the critical value of length
of the perturbing wave on the entropy strain index ¢, the dimension of the velocity space D,

and the coefficient B, characterizing the fraction of radiation in the total pressure of the system

are determined. These free parameters should be specified in each case from statistical or exper-
imental data. It was shown that radiation pressure stabilizes the matter of non-extensive pre-
planet clouds. For a rotating magnetized plasma, the Jeans instability criteria are modified by the
Coriolis force and magnetic field only in the transverse mode of propagation of perturbation
waves. The results obtained here will help, according to the author, a better understanding of
some astrophysical problems related, in particular, to modeling the processes of formation of
stars and exoplanets from stellar nebulae.
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BBEJEHHUE

Kak Teneps crano moHsATHO, CTaTUCTHYECKasi MexaHuka bonbimana—'n60ca u kiaccuueckas cra-
TUCTHYECKAs TCPMOJMHAMUKA HE SIBJISIFOTCS BIIOJHE YHUBEPCAJIBLHBIMU TEOPHSIMHU, TOCKOJIBKY OHHU
UMCIOT OIpaHMYCHHBIC 00JIACTH MPUMEHUMOCTH. DTO CBSI3aHO, B YAaCTHOCTH, C TEM, YTO B OCHOBE
9TOM CTATHCTUKH JISKUT THIIOTE3a MOJCKYISIPHOIO Xaoca. A 3T0, B CBOKO OYepellb, O3HAYAET, YTO
0001 BBIAEIEHHBIH 00beM IPUOOpETaeT MO MCTEUEHHHM BPEMEHHU HACTOJBKO XOpPOIIO pPa3BUTYIO
Xa0THYECKYIO CTPYKTYPY, YTO pu [ —> 00ero To4kM MOryT pacrojarathCsi B IPOU3BOJIBHOM Y4acTh
¢dazoBoro mpoctpancTBa. Takum oOpa3oM, (a3oBoe MPOCTPAHCTBO B KIACCHUYECKOW CTATUCTHKE HE
COJICPIKUT 3aMpPEIICHHBIX COCTOSHHUI U 001a1aeT 0OOBIYHBIMKE CBOWCTBAMH HETPEPHIBHOCTH, TIIAIKO-
CTH, €BKIUAOBOCTH. [Ipy 3TOM cTOXacTHMUECKUI MpOolecC MMEET MAPKOBCKUI XapaKTep, a TUroTe3a
NepeMeIIMBaHusI, JOMOIIHEHHAS MPEINOIOKEHHEM 0 OECKOHEYHOM YHCJIe CTETNEeHEH CBOOObI, MPH-
BOJIUT, B KOHEYHOM CYETE, K KAHOHMYECKOMY (IKCIIOHEHIMATLHOMY) PaCIpeIeICHHUIO BEPOSTHOCTH
cocrossaui bonmpiimana—I'm66ca, U3 KOTOPOTro cieAyeT CBOWCTBO aAIUTUBHOCTH IKCTCHCUBHBIX TEP-
MOJMTHAMUYECKUX MMEPEMEHHbBIX, TAKUX KaK BHYTPEHHSSI SJHEPrusi, SHTPOIHUS U T.II., @ B Cllydae KHHE-
THUYECKON TEOPHUH - K MAKCBEIUIOBCKOMY PacIpeIeICHUI0 CKOPOCTEH.

Bwmecte ¢ TeM, B pH3HKE U B APYIHX €CTECTBEHHBIX HAYKaxX, UCIOJIb3YIOIIMX METOIbI CTATUCTHYC-
CKOM MEXaHWKH, U3BECTHbI MHOI'OYHMCJICHHBIC MPUMEPhl aHOMAIBHBIX CUCTEM C JAJILHUM CHJIOBBIM
B3aMMOJICHCTBUEM, (PpaKTAbHBIM XapakTepoM (a30BOro MPOCTPAHCTBA M 3HAYUTEILHBIMH KOppE-
JSIUSIMA MEKIY OTACTBbHBIMU UX YacTsiMu. CJI0XKHAas MPOCTPAHCTBECHHO-BPEMEHHAsI CTPYKTypa Io-
JOOHBIX CHCTEM TPUBOIUT K HAPYIICHUIO TPUHIMIA aJIATUBHOCTH JJISl TAKUX BAKHEHIIIUX TEPMO-
JMHAMUYECKUX BEJIMYMH, KaK SHTPOIHUS WM BHYTPEHHSAA dHEprus. MoaearpoBaHue BOIIOUH I10-
TOOHBIX CHCTEM, 00JIQIAIONINX MPOU3BOIBHEIM (ha30BBIM MIPOCTPAHCTBOM, BO3MOKHO, B YaCTHOCTH,
B paMKax TaK Ha3bIBAEMOM HEIKCTECHCHBHOM CTAaTUCTHYECKOM MEXaHWKHM Tcaumca, BaKHBIM IIpe-
MMYIIECTBOM KOTOPOHW SIBIISICTCS ACHMOTOTHYECKHH CTENEHHOH 3aKOH pPacHpeieieHHs BEpOATHO-
CTEM.

B nacrosmiee BpeMsi Teopuu pa3HOOOPa3HBIX HEIKCTEHCHBHBIX CHCTEM Pa3BHBAIOTCS B YCKOPEH-
HOM TeMIle, TIPH KOTOPOM MOSBISIOTCS HOBBIE HJIEH, MO3BOJIAIONINE TIy0OXKe MOHATh MX MPHPOIY,
BO3MOXKHOCTU M OorpanuyeHus. Kaxmas Takas Teopus MMeeT IIUPOKUI CHEKTP BaKHBIX MPHIIOXKE-
HUH, CB3aHHBIX ¢ (PU3UKON CTATUCTHYECKHX CHUCTEM, BEPOSITHOCTHBIE CBOMCTBA KOTOPHIX ONHCHIBA-
I0TCS1 He THOOCOBBIMU (M HE TayCCOBBIMH), a CTETIEHHBIMHU paclipeliefieHHsIMUA. B gactHOCTH, HEdKC-
TEHCHBHAsI CTATUCTHYECKAs MEXaHUKa YCHEITHO MPUMEHSIETCS K KOCMUYECKHM CUCTEMaM C JIalbHUM
CHJIOBBIM B3aWMO/ICHCTBUEM, KOTOPOE U SBIISICTCA NPUYMHON UX aHOMAJIBHOCTU (CTATaTUCTUYECK OU
Y TEPMOMHAMUYECKON HEIKCTEHCUBHOCTH).

Kak u3BecTHO, Npu HEYCTONYHMBOCTH HEPABHOBECHBIX CUCTEM (B YaCTHOCTH, Pa3JIMYHBIX acT-
POPU3NYECKUX Ta30MbLIEBbIX 00BEKTOB) BO3HUKAET JUHAMHUYECKUN XaocC, YTO JIEIaeT BO3MOXK-
HBIM 00pa3oBaHue 0oJiee CIIOKHBIX YIOPSAOUYEHHBIX (B 00IIeM ciiydae (hpakTalbHbBIX) CTPYKTYP.
Bo3HukHOBeHHE (PpaKTanbHBIX CTPYKTYpP MOATBEPKAACTCS JUII MHOTHX acTpO(PU3NUYECKUX CHC-
TEM, B YAaCTHOCTH, Yy 3B€3], MEK3BE3THBIX MOJEKYJISPHBIX O0JAKOB, aKKPEIIMOHHBIX JOTJIaHEeT-
HBIX TUCKOB U T.1. [Ipu ydere cCUIBHOTO TPaBUTALIMOHHOTO TOJISI B MOJIEJNIAX SBOJIOIUH MMOA00-
HBIX AHOMAJIBHBIX CTPYKTYP BO3HUKAIOT NPUHUMUITMAIBHBIE TPYAHOCTH, IOCKOJIbKY JUISl HUX Tpa-
JUIUOHHBIE Ta30JMHAMUYECKUE U TEPMOJMHAMHUYECKUE METO]Ibl ONMCAHUS 4acTO HEermpuemIe-
MblI. [Ipeoonenne 3TUX TpyaHOCTEH TpeOyeT HOBOTO MOAX0/a K PEIICHUIO YBOIOIMOHHBIX 3a-
a4 B KOCMOTOHMH. OJUH U3 BO3MOXKHBIX MOJX0J0B K MOJEIHUPOBAHUIO SBOJIIOLIMN KOCMOTOHU-
YECKUX CUCTEM MOXKET ObITh OCHOBAH Ha METOJIaX HEOKCTEHCUBHOM CTaTUCTHUECKONH MEXaHUKU
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Tcammca”, kak pa3 ¥ npeJHa3HAaYeHHOW JUIsl ONMCAHMSI 3BOJIIOLUY Ta30IbUIEBBIX CPEXl C Jallb-
HUM (CHJIBHBIM) T'PaBUTAIIMOHHBIM BO3JICHCTBHEM, KOTOPOE U SIBISACTCS MPUYUHON MX aHOMaJb-
HOCTH (CM., Hampumep, [1-16]). BaxkHbIM OTiMYMEM HEIKCTCHCUBHOW CTaTHCTHKH Tcamiica oT
KJ1laccuueckou cratuctuku bonmpiiMana—I'nb0ca siBisgeTCS HAIMYKWE aCUMITOTUYECKOTO CTETCH-
HOT'O 3aKOHA pacHpelesIeHUs] BEpOSTHOCTEH (MOSIBJIAIOIIETOCS MPU MAaKCUMM3alUM IapaMeTpu-
4ecKoi sHTponuu Tcamimca), KOTOPBI HE 3aBUCHT OT IKCIIOHEHIMAIBHOTO IMOBEIEHHs, 00Y-
CIIOBJIEHHOTO pacnpeneneHueM ['nboca. Tem He MeHee, OCHOBaHHasl Ha MapaMeTPUUYECKON SH-
TPOTIMU HEIKCTEHCHUBHAsI CTAaTHCTHKA Tcajuirca mpencTaBiisieT co0oil Bc€ ke 00oOIeHue, a He
anpTepHaTUBY cTatucTtuke bonbiiMana—I'100ca, MOCKOJIbKY OHa pacnpocTpaHsieT 00iacTh IpH-
MEHUMOCTH KJIACCUYECKOM CTaTUCTHUUECKON TEOPUH Ha HEAKCTEHCUBHBIE CUCTEMBI TOJIBKO MTyTEM
paciupeHuss MaTeMaTuyeckoi (popMbl MX FHTPONUIHOTO (QYHKIMOHATIA.

CaMorpaBuTupytomiasi cpefia CTaHOBUTCS T'PaBUTAI{MOHHO-HEYCTONUNBOM, €CJIM BOSHUKIIINE B
HEeH CKOJIb YTOJTHO MaJible BO3MYILIEHHS IUIOTHOCTU HEOTPAaHUYEHHO PAacTyT CO BPEMEHEM BCIIE-
CTBHUE TATOTEHUS U PaBHOBECHE HApYIIAeTCs, €CJIM COOTBETCTBYIOIINE UIMHBI BOJIH MPEBBIIAIOT
ONPENIETICHHOE 3HAa4eHHe. B 4acTHOCTH, C HKMHCOBCKOM T'PAaBUTALMOHHON HEYCTOMYMBOCTBIO
CBSI3aH MpoLEcC (parMeHTallud CaMOTPaBUTHPYIOIIET0 OKOJIO3BE3AHOTO oOsaka. MiIMeHHO oHa
BBI3BIBAET, B KOHEYHOM cyeTe, 00pa30oBaHHE M HBOJIIOLMIO aCTPOPUINYECKUX OOBEKTOB, TAKHUX
KaK aKKpPEIMOHHBIE JIUCKH, OTUTAHETHBIC TBUICBBIC CTYIIECHHS, IUTAHSTe3UMAITH | T. 1. (cM., [18-
24]). TlpoGieme rpaBUTAIMOHHON HEYCTOWYNBOCTH KOCMHUYECKHX OOBEKTOB B MOCIEIAHEE BPEMS
MOCBSIICHO OO0JIBIIOE YUCIIO MyOIMKALMMA, CPeId KOTOPHIX MOXKHO BBIJEIUTH CIIEAYIONIUE MTy0-
nukaruu [25-50]. Bo Bcex aTmx paboTax pacCMOTPEHBI Pa3IMYHbBIC acIEeKThl JPKUHCOBCKOM He-
YCTOWYMBOCTH CAMOTPAaBUTUPYIOIIMX Ta30BbIX Cpell KaKk B paMKax KJIaCCHYECKUX YpaBHEHUU
HaBre—Ctokca m MIJl-ypaBHeHU, TaKk W Ha OCHOBE OECCTOJIKHOBUTEIHHOTO YpaBHEHUS
BosbiMana npu HAIMYKMK TPAaBUTALMOHHBIX TIOJIE U ypaBHeHus [lyaccona.

Bwmecte ¢ Tem B paborax [6,7,9,10,12,14-16] Oblar pa3BUTHI TEPMOJANHAMHYECKUI U Ta30/11-
HaMUYeCKUil (Ha OCHOBE MOIU(PHUIIMPOBAHHOTO KHHETUYECKOTO YpPAaBHEHHUS C HHTErpajoM
cTonkHOoBeHuil B (opme bxarnarapa—I'pocca—Kpyka) moaxo/sl, HO3BOJISIONIUE MOAECTUPOBATH
ABOJIIOIMI0 KOCMOTOHMYECKUX CHCTEM B pamKkax gopmanu3ma AeGopMUPOBAHHOM CTaTUCTHYe-
ckoit mexanuku Tcamnca. C yueToM NMOJYy4EeHHBIX B HUX Pe3y/IbTaTOB B MPEACTABICHHON padoTe
BBIIIOJTHEHO B paMKaX HEIKCTCHCHBHOW KMHETHKH Tcaumca pacCMOTpeHHE BIHSHUS paJvalid Ha
IpaBUTAIIMOHHYIO HeycToHuMBOCTh JXKMHCA UIsl JOIJIAHETHOTO BPAILAIOLIETOCs IIa3MEHHOIO
obOnaka (TouyHee ero IKBAaTOPUAIBHOW YacTH, B KOTOPOW IMPAKTHYSCKH BCE W3ITYYCHHE SBILSICTCS
JUTHHHOBOJTHOBBIM, TIOCKOJIBKY OHO YK€ YCIeJIO IMPONTH Yepe3 MHOTOKPATHOE IOTJIONIeHUE U Tepe-
U3JTyYCHUE YacTHIaMu cpefbl). VIMEHHO B 3TOH 00IacTH BO3MOXKHO CYIIECTBOBAHHUE JIOKAIBLHOTO
TEePMOANHAMUYECKOrO PABHOBECHS, MPH KOTOPOM TEMIIEpPAaTypa YacTHIl MPAKTUYECKH COBIAIAET C
TEeMITepaTypOi YepHOro Tela.

I) O63opaM I/ICCJICI[OBaHI/Iﬁ B paMKax HEPKCTEHCHBHOM CcTaTHCTHKHU Tcaiumca ITOCBAIICHBI MHOI'OYMCJIICHHBIC
JKypHaJbHBIE CTaThbH, COOpPHHKH W MoHorpadmu. Kpome 5TOro, mMeercss MOCTOSHHO OOHOBIISIOIIASICS ITOJNHAS
6ubmorpadust (Nonextensive statistical mechanics and thermodynamics: Bibliography/
http://tsallis.cat.cbpf.br/biblio.htm), koTopast Ha cerogusHMI neHb coctout m3 Gomee 5600 ceputok [17].
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1. MCXOJIHBIE YPABHEHUA (- TMAPOAMHAMMUKA

PaccmoTpuM jmanee ra3000pasHyl0 JUHAMHUYCCKYIO HEIKCTCHCHBHYIO CHCTEMY C HOPMHPO-
BaHHBIM pacnpenencarem dactur f(r,C,t) B reomerprueckom mpocTpaHcTBe I U B IPOCTpPaH-

CTBE CKOpOCTell C ¢ pazmepHocThio D . [Ipemiaraemoe Tcawircom 0000IEHHE CTATHCTHYECKOM
MeXxaHuKH (B ciaydae cratuctuku Kypamo—Tcamiuca) jiydiine BCero OMMUChIBACTCS CICAYIOIIUMHE
naBymsi akcuomamu [4,6,]:

Axkcuoma 1. DyHKIMOHAT SHTPOIHH, CBSI3aHHBII C HOPMHUPOBAHHBIM pACHPEICICHUEM
¢byuxuun BepositHocteit f(z,t) pasen

Sq[f]:%jdz{f(z)—[f(z)]q}, 1)

rae ( — mapameTp AepopMainuu — YUClo, CBA3aHHOE ¢ (paKTabHON pa3MEpHOCTHIO, a AJis He-
OKCTEHCHBHBIX CHCTEM, SBIIAIOIIEECS MepOit ux HeaxauTuBHOCTH [3]; Z = (r,C) — smeMeHT 00BE-
Ma asooro npocrpanctsa; dz=drd"c, e D — pasMepHOCTb MPOCTPAHCTBA CKOPOCTEii; Kg
— nocTosinHas bonbsiMana.

AkcuoMa 2. DKCIEPUMEHTAIBHO HM3MEpPSeMOe 3HAYeHHUE JTI000H MaKPOCKOMHYECKON BeEJH-
YUHBI (.A>q (TepMOIMHAMUYECKON XapaKTEPUCTUKH (] -CUCTEMBI) 3a/1aETCSI COOTHOLLIEHUEM

(Ayg = [dzA(r, D[ f(2)]", )

rae A(r,t) — cooTBeTCTBYyIOMIAss MUKPOCKOITMUECKAs BEIMYMHA.
BaxHo moxuepkHyTh, 4T 3HTporHs Sy(A U B) IByX HE3aBUCHMBIX CHCTEM HE SIBIAETCA afl-

JUTHBHOM TEPMOJIUHAMHYCCKON TIepeMeHHO# mpu ( # 1, mockonbky [3]
S (AUB) =Sy (A) +S,(B) +kH(1-)S,(A) S, (A).

HeCMOTpﬂ Ha 9TO O6CTO$IT€J'IBCTBO, B JIUTEPATYpEC OBLIIO IMOKa3aHO, 4YTO CyHIECCTBYCT 3HA4YH-
TENBLHOE KOJIMYECTBO OOBIYHBIX CTATHCTUYECKUX U TEPMOJUHAMHUYCCKUX CBOI>'ICTB, KOTOpBIC (-
HWHBApUAaHTHEBI, T. €. CIpPaBCIJIMBbLI JIA JIF00OT0 g. K HHUM, B 4aCTHOCTH, OTHOCATCA CBOMCTBO
BBIITYKJIOCTH SHTPOIUH, CTPYKTYpa PABHOBCECHBIX KAHOHHWYCCKHUX chaM6J’IeI71, HCaAJUTHUBHAaA

TEpPMOIMHAMHKKA, CTPYKTYpa npeodpazoBanus Jlexanapa u maoroe apyroe (cm. [17].

OcHoBHbIe onpe/eenus. DHTponus Tcamnuca Bied€T 3a coboil He TOIbKO 0000IIeHne CTa-
TUCTHYECKOW (DU3UKU M TEPMOJUHAMHKH, HO ¥ 0000IICHNE (PU3NUECKOW KUHETUKH U THIPOIU-
Hamuku [12,51,52]. TIpocreiimieit MaKpOCKOMMUYECKON BETMYMHOM SIBISIETCS (] -IJIOTHOCTh YHCIIA

YacCTHL, KOTOpasd OIpeaAcIdCTCsa COOTHOLICHUEM
g
ng(r.t)=[[f(2)]"d"c. (3)

Torzma MaccoBast (| -IIOTHOCTB paBHa Pg(r,t) = mng(r,t) . [lockosbKy YacTHIa, ABUKYIIAACS CO

CKOPOCTBIO C, 00JIaaeT UMITyJbCOM MC, TO BhIpakKeHUE
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Ug(r,t) = [me[ f(2)]"dPc/pqy(r,t) (4)
oTpeneNnseT THAPOINHAMUYECKYIO CKOPOCTh dlIeMeHTa 00béMa. Bennunna
_ 2
gq(rY) =pg' [ 2lc—ug|" [f(2)]%d°c (5)
SBJIIETCS Y/I€NbHOW BHYTPEHHEH (]-3Heprueil (Ha eIMHUILy Macchl) HEIKCTEHCUBHOM CHCTEMBI.
[Toroxn
Ry(r.0) =mj (c-ug)(c - u) [ F (2)]%d°c, (6)
2
To(r)=3mflc—ug[ (c-ug)[F(2)]%d°c ©)

MIPEJICTaBISIOT COO0M COOTBETCTBEHHO TEH30p JaBJICHUN M MOTOK Teruia. [ mapocraruyeckoe (-
JIaBJICHUE OMpeeNsieTcs KakK
2
_1p.-7_1 _ gD
pa(r.) =3P =imflc—ug [f(2)]"d"c, (8)

rac Z - e)II/IHI/I'-IHI)II\/’I TEH30pP BTOPOT'O paHra. B YaCTHOCTH, €CJIM CABUTOBBIC HAIIPSKCHUS PABHBI

HYIII0, @ HOPMAJIbHBIE HAPSDKEHUS. PABHBI MEXK Ty CO00H, T0 Py = Py L .

Cucrema ypaBHeHH#l (] THAPOMEXaHMKHU. B pamMkax HEIKCTEHCMBHOM CTaTUCTUYECKOU Me-

xanuku Tcammca B padortax [12,51] ObL1O0 MPOBEACHO METOJOM MOMEHTOB KOHCTPYMPOBAHHE
TUAPOIMHAMUYECKUX U KBa3UTUAPOJMHAMUYECKUX YpaBHEHUN HAa OCHOBE MOIU(PHUIIMPOBAHHOTO
KUHETHUYECKOTO YpaBHEHHUS Bonbimana’) ¢ HWHTErpajioM CTOJIKHOBeHUH B (opme bxarnara-
pa—I'pocca— Kpyka):

[fren] -] f “”(r,c,t)]q

T

(%+c-V+.’F{1-Vc][f(r,c,t)]q:— 9)

3necy V. =iyolocy +iyolocy +i,0l0c,; Fy(r,t)=Ff/m—grad ¥,(r,t) — ne 3aBucsmas or

CKOPOCTH BHEIIHSA CUJIa (CHJIa TSDKECTH) OTHECEHHAs K euHuIe Maccesl; T — cuia HerpaBuranu-
OHHOT'O MIPOUCXOXKICHUS (Hampumep, AIEKTPOMArHUTHAs cuiia Jlopenna);

Wq(r,t)= —GJ. |L,[ f(z',1)]9dz’ — rpaBuTalMOHHBII MOTEHIHAN, YAOBJIETBOPSIOMIMUI ypaB-
r—r

nenuto Ilyaccona AW (r) = 4ntmf 9%d°c; G — rpaBuTanMOHHAsA MOCTOSHHAA, T — IIOJIOKH-

TEJbHBIA MapaMeTp, KOTOPIM MHTEPIPETUPYETCS KaK XapaKTepHOE BpeMs pelakcaluu Mpous-
BOJIbHOM (yHKIMU pactipenenchus f K 0600MIEHHOMY JIOKaIbHO- MaKCBEITIOBCKOMY paciipe-

ACICHUIO (BCJ'H/I‘-II/IHa T COBIAAACT IIO MOPALKY BCIWYHUHBI CO CPECAHUM BPEMCHCM CBO6OI[HOF0

i) B nutupyemoii pabore KHWHETHYECKas Teopws OblTa OCHOBaHAa Ha OIEpaTope CTOIKHOBeHW# bxaTHare-
pa—T'pocca—Kpyka (BGK), xoTopsiii 0b11 0000IIEH 151 TPOU3BOIBHOTO 3HAYCHHUS TapaMeTpa (.
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npoOera JacTHIl B cucreMe). PaBHOBECHOE pacmpesiesieHue £ (r,c), B cirywyae korma q>1, on-

penensercs ciaenyomuieii popmyinoi (cm., Hanpumep, [10])

pr2)Yd m(cu,)’ 1/(1-q)
Pgy_m 1-(1-q)———

fO(r,c)=4c

, (10)
(L-a)°"?1(%)

9 _D

rae Cyp = ;o T(x) = Igo t*Leldt - amma-dyHKIHS.

B pesynbTare ObUIH MOTYYEHBI CIEIYIOIUE MOMEHTHBIE YPaBHEHUS (]- TUAPOIUHAMUKH, KO-
TOpBIE ABJIAIOTCS 00OOIIEHNEM HA MPOU3BOJIBHOE 3HAueHUE mapamerpa ( OOBIYHBIX THAPOAHU-
HaMH4ueckux ypaBHeHuii HaBre—CroKkca:

op

_q+v.(pquq):0, (11)
ot

A(pqUq)

$+v.<'pq +pququq)=an—qu\|fq : (12)

8(png) .

T+v-{‘7q+pnguq}+7>q :Vu, =0. (13)

Vpasuenus (11)-(13) He sBisieTcss B 00IIeM ciydyae 3aMKHYTBIMH, TTOCKOJIBKY OTCYTCTBYET
HEOoOXomMMas CBs3b (ONPEENSIONME COOTHOIIEHHS) IOTOKOBbIX BenuuuH (Py n J) u cka-

JIAPHBIX XaPAKTEPUCTHK TEYEHUS (Pg, Uq U Tg). OTa CBA3L MOKET ObITh Hali/IeHA C TIOMOIIBIO

pelIeH s MOJCITFHOTO KHHETHYECKOTO ypaBHeHHs (9) MeToioM Yenmmena—HCKOTa IPU KCIIOJIb-
30BaHUM OOIIET0 aCHMIITOTHYECKOTO Pa3sIocKeHUs (YHKIMU pacrpeaeieHus no yuciy Kaynce-
Ha. DTOT METO/A OBLI MCIOJIB30BaH, B YaCTHOCTH, B pabore [51]; B pe3y/abTrare ObLIN HaiICHBI
OTIPENIeTISAIONINE COOTHOIECHHUS, 3amMmbIKatomue cucremy (11)-(13). B ciydae npubnmkeHus Hylie-

BOTO IOpsAJIKA, Korja pachpeaeincHue f = i (T.e. sBiseTCS OOOOMIEHHBIM JIOKAJIBHO-

MaKCBEJIOBCKUM pactpezencaueM (10)), Obuto mokasaHo, 4To TEH30p HampsikeHus 7y cBo-

JUTCS K IIApOBOMY TE€H30PY ’Pq(o) = pyZ , a notok temna Jg = 0. Ilpu 5TOM BHYTpEHHSS SHEP-

T Sq U THAPOCTATUYCCKOC IaBJICHHUC pq OIIPEACIIAOTCA COOTHOICHUAMUA

DkgTy oyT-L
8= [1+(1—q3)J , (14)

quBTq 2
— - = . 15
P mil+@1-q)2] b Patq (19)
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3aMeTHM, YTO TMOCKOJBKY ONpEACICHUE TeMIIEpaTypbl B (| -KuHeTuke Tcamca 10CTaTOuHO
MPOM3BOJIBHO (OHO 3aBHUCHUT OT JOBOJBHO MPOU3BOJBHOTO ONPEICICHUS TEMIIEPATYPhI C TOYKH
3peHust MHOkUTeNel Jlarpanxka (cm., Hanpumep, [10]), To nanee BenuunHa Tq UHTEPIPETHPYET-

cs Kak 00OONIEHHAs TeMIiepaTypa CII0KHOW HEaIMTUBHON CUCTeMbl. ECTECTBEHHO, 4TO 3Ta
TeMIeparypa, B KOpHE OTJIMYAETCS OT a0COJIIOTHOM TEPMOIUHAMUYECKOW TeMmIepaTypsl | , Xa-
paKkTepU3yIOIIe HHTCHCUBHOCTh Xa0THU3aIUH (T.€. OECIIOPSIOUHOTO IBMKEHHUS) YACTHUI] CUCTE-

MBI. 3aMETUM, YTO €CIIH OIpeNeTuTh GopMynoi Ty =T / [l+ (q-1) %] addekTuBHyIO TEemIe-

paTypy (-CHCTEMBI, TO [Jis BEIMMUHBI &, TOJYIMM COOTHOWIEHHE £q = DKTey /2m >0 (cosma-

naromee pu  —1 u D=3 c ompeneneHrneM BHYTPEHHEH SHEPrHH B CTaTUCTHKE boibIMa-

Ha—['100ca), KOTOpOE COOTBETCTBYET PAaBHOMY PACIPEICICHUIO SHEPTHU HJCAIBHOTO Ta3a Io
cTeneHsaM cBoOo sl 11 Beex (. Eciu coxpaHuTh 0ObIYHBIE MPEACTABICHUS TEMIIEPATYPBI U AJIS

0000IEHHON TemmepaTypsl T, TO TOT/Ia HEPABEHCTBO &q >0 HaxmambiBacT XKECTKOE OTPaHH-

YeHKEe Ha BEJIMUYHMHY MmapaMeTpa JaeopManiu (: B 9TOM Cllydae SHTPOMUWHBIN HHIEKC yIOBIIE-
TBOpsieT HepaBeHCTBY 1< (<1+2/D.

B nipubankeHnn nepBoro nopsijika ONpeAensoure YpaBHEHUs Ul TOToKa Temna Jy U TeH-

30pa BA3KuX Hanpsikennit Ty =Py — pgZ umeroT BUL

To(rt)=-1qVT, (16)
T 2
T (r,t) =p, (Vu+(Vu) —EIV-UJ, 17)
k kgT
rue kq =1 5Pq 1+D/2 Hg=TPg=T Pa"s — COOTBETCTBEHHO KO3(-

m 1+(1-q)(1+D/2)

(bl/H_[I/IeHTI)I TEIIOIIPOBOAHOCTH U C,Z[BHFOBOﬁ BA3KOCTH.

2. 3BAMKHYTASI CACTEMA YPABHEHU# (-TUAPOJAUHAMUKHA
AJI1 JOIIVIAHETHOI'O OBJIAKA C PABHOBECHBIM U3JIYYEHUEM

B sBosronmu MHOTUX acTpo(u3ndeckux 00bEKTOB OOJIBIIYIO POJIb UTPACT JIABJICHUE U3JTyde-
HUS, KaK (aKTop UX THIPOCTATUYECKOTO paBHOBECHs. BriepBbie aHaiM3 HEYCTOMYMBOCTH B aK-
KPEIMOHHBIX JJUCKaX OTHOCHTEIBHO OCECUMMETPHYHBIX BO3MYIICHHI C YUETOM JIABJICHUS U3ITY-
yeHusi ObuT TipoBesieH B pabdore Illakypsr u CronsieBa [30]. B mocienyromux paboTax paccmar-
PHUBAJIKCH OOIIME MOTUTPONHbIC Moen [31], yIUTHIBAIKCH HEOCECUMMETPHYHBIC BO3M YIIICHHUS
[53], 3BykoBBIC M AnHITMKINYECKUE Koyebanus [24,54] u 1.1

Hwke MBI MCMOJIb3yeM TPUBEIACHHYIO BBIIIE CHCTEMY YPaBHEHUH (|- THAPOTUHAMUKH IS

MOJCIUPOBAHUS HeYCTOﬁqHBOCTH OKOJOCOJTHCYHOTI'O JOIINIAaHECTHOI'O o0Omnaka (TOHCTOFO ,ZLI/ICKa),
BCIIECTBO KOTOPOI'O COCTOUT M3 CMECH C (]-Traza u I{épHOTe.]'ILHOFO HU30TPOITHOTO U3JTYUCHUS TTPU
TEMIICpAType T, paciIpoCTpaHAOIICTOCA IO BCEM HAIIPABJICHUSAM. Byz[eM npeamnojararb, 4To
JOIINTIaHCTHOC 00J1aKO ONTHYECKH TOJICTOC U pacnpeacacHUC IMmoJrsl N3JIyYCHUA OJIU3KO K paBHO-
BCCHOMY. HOI[‘-IepKHéM TAaKXC, 4TO 00JI1aK0 B 3HAYUTEIHLHOMU MEpe 06.]'[8.I[3.€T oceBoit CUMMCTPU-
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€M, 4TO SIBJIICTCS CJICJACTBUEM €ro BpallleHUs BOKPYT LIEHTpaJIbHOU 3Be3/bl. Jlanee Oynem Takxke
npeanosaraTb, 4To OO0JAKO- CaMOTPABHTHPYIOIIEE, IS KOTOPOTO BEPTHKAJIbHAsl CTPYKTypa
(BHOOJb OCH BpallleHUs) ONpeaesiseTcs OaJlaHCOM CUJI IaBJIEHUS U FPABUTALIMK CaMOI0 U CKa.

B ciyuae mpeneOpexeHHs THIPOAMHAMHUYECKUMH JTUCCHIIATUBHBIMH IIPOIECCAMU M Harpe-
BOM KOCMHYECKOTO BEIIECTBA, 00YCIOBICHHBIM AUCCUTIAIMEH U MPOLECCAMU MOHHM3ALUU U BO3-
OyXIeHHs, MCXOTHAsi CHCTeMa (]-ypaBHEHH, COCTOSIIAs M3 aHaloTa ypaBHEHHH Jiiepa u

ypaBuenus [lyaccona, mmeer Big"” (cm., mHarmpumep, [10]):

op

—+V-(pu)=0, 18
a1 (pu) (18)
du__lup_vy, (19)
dt p

Ay =41Gp, (20)
d—gz—EV-u+d—Q. (21)
dt p dt

rae cootHomennem dA/dt=0A/dt+(u-V)A onpenensercst monHas MpOU3BOAHAS CTPYK-

TypHO#t Benmumnel A(r,t) mo Bpemenu. 3mech
P(r,t) = Py + Prg = Pq +aT /3, (22)

E(rt) =g+, =gq+al*/p (23)

rad —

— COOTBECTCTBCHHO ITOJIHOE JABJICHHUE U ITOJIHAA BHYTPCHHSASA DOHEPTUA (Ha CANHULY MaCCBI) CMECH
UIeaJbHOTO (-Ta3a W 4épHOTENBHOrO m3nydenus; pdQ /dt = —V-JQ; JQ — CyYMMAapHbIA BEK-
TOP TEIUIOBOTO TMOTOKA, YYUTHIBAIOIINI B MPUHIIAIIE BCE TEPMOJIUHAMHYECKH OOpaTUMBIE TIPO-
HECChl, KOTOpPbhI€C MOI'YT YHOCHUTb TCILUIO M3 3J3JIEMCHTAa Cpe€Iabl IIpU €ro ABHKXCHHMH,
D kgT (r,1)
2+(1-q)D m

gq(rt)=cyT(r,t)= — BHYTPEHHSIS Heprus (Ha eIMHHUILy MacChl raso-

“ o 4 .
BOHU COCTaBJIAOLICH AOINNIAHCTHOI'O I[I/ICKa); €rad = aT /p — OHEPTHUA U3JIYUCHUS YCPpHOT'O TClIa,

;&T(r,t)p(r,t):gpsq — Tra3oBoe
2+(1-qg)D m D

JaBJICHHUC B HEPKCTCHCUBHOM ,HHCKOBOﬁ CHUCTCMC (aHaJ'IOF 3aKOHA COCTOSIHMS B KMHETHUYECKOUH

HaxoJAIIAsACs B CIUHMIIC MAacChl; pq(l’,t):

4
TEOPHH UJICAbHBIX Ia30B); T — abCOIIOTHas TeMIeparypa; P, =al /3 — 1ydeBoe DaBlICHHE;

i
) 3nmeck n manee wMHIACKC “(” y psaAa THAPOTUHAMHYECKHX M TEPMOJMHAMUYECKUX MEPEMEHHBIX MBI Oymem
OITYCKATh.
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r',t
a — nocrosiHHas u3nydeHus Credana—bonbumana; y(r,t)=—G .[VMdr’ — IpaBUTALUOH-
r—r
HBIW TIOTEHIINAI, SIBJISIONIMICS pemenneM ypaBHeHus [lyaccona (8) (mHTerpan 3aech 6epercs mo
BceMy 00bEMY V, 3aHMMaeMOMY JOIUIAaHETHBIM 00iakoM); G — TpaBHTAllMOHHAS MTOCTOSIHHAS,
D kg

:m— — yJenbHasg U30XOpHAs TEIUIOEMKOCTh a30BOM COCTABIISIOLIECH CMECH.
+(1-qg)D m

Cyg

OnpenenuM TakkKe TOKa3aTellb aauadaTbl Ta30BOr0 BEIIECTBA JUCKA, KaK OTHOILEHHE
Yq =7Ygas =Cpq/Cvq- TOTMA Vg =7Vgas=2—-Q+2/D, 7y;=(2+D)/D.

VYpaBHeHHe /17151 TOJIHOM BHYTpEeHHEN sHepruu cMmecu (21) ynoOHo nepenucarb, UCHIOB3Ys
ypaBHeHHWe  HepaspbiBHOCTH  (18), B ¢dopme mepBoro Havama  TEPMOJAMHAMUKH
dQ/dt=d&/dt+Pdv/dt, kotopoe ocraércsi cripaBeUIMBLIM M JIJIsi HEOKCTEHCHBHBIX CHCTEM

[10, 11], wnu B Buge ToxkaecTBa ['uboOca

TdS/dt=do/dt=dE/dt+Pdv/dt, (24)

BeIpakarorero ckopocts dS/dt usmenenus surpormu S (Ha €IMHMILY MACChl) JUCKOBOTO Be-

[IeCTBA WM W3IIy4EHHs IIPH JBMKEHHH DJIEMEHTA CpEAbl BJOJbL €ro TpaekTopud  (371€ecCh
v(r,t) =1/p — ynensHbIiH 00BEM).

N303HTpOonnUeckne U3MeHEHUs B cpele, coAep:xamieii (-ra3 u paguanuio. /lanee mbl Oy-

JIeM paccMaTpUBaTh TaKHE JBIM)KEHHS KOCMHUYECKOTO BEIeCTBa (HAXOMAIIErocsi B COCTOSIHUU
UJeanbHOTO (]-Ta3a) U YEPHOTENBHOTO HM3IYYEHUs, A KOTOPBIX SHTPOMHUS KaKI0M YacCTHIIbI

Cpelbl OCTAeTCs B IIEPBOM NPUOIMKEHUU MOCTOSHHON Ha MPOTSHKEHUU BCETO IYTU YaCTHIBI, T.€.
dS/dt=0S/ot+u-VS =0. IHonoOusie oOpaTMble ¥ aanabaTHYECKHUE IBUKEHHS SBJISIOTCS

M303HTpONMYEeCKUMHU. [ HUX SHepreTHueckoe ypaBHeHue (21) CBOAUTCS K ypaBHEHHIO
pdE/Mdt+PV-u=0, (25)

BBIpAXKAIOLIEMY TOT (DaKT, UTO CKOPOCTh U3MEHEHUS MOJTHON BHYTPEHHEH SHEPruul JBUXKYIIET O-
csl dJIeMEHTa cpefibl paBHAa paboTe MO CKATHIO 3TOTO AJIEMEHTA, COBEPILIAEMON OKpyXaromiei
CpeIou.

Bmecrte ¢ Tem, mis actpodusmueckux Ienei 4acTo yAOOHO HCIOJIb30BaTh Apyrue (Gpopmbl
ypaBHeHust (25) (KOTOpble BIepBble ObLTH BbIBeACHBI JDpmuHrronoM [55] u Yanapacexkxapom
[20]. Otu dopmbl cripaBeTHBbI, KOTa jJaBieHHe P W BHYTPEHHIOIO 3HEprui0 £ MOXHO BbI-
YHUCIUTh U3 COOTBETCTBYIOLINX YPAaBHEHUN COCTOSHHS KaK (DYHKIUH OT yneabHOro oonéma V u
Temreparypbl T (wix 3HTpornuu S) B 3aBUCHMOCTH OT HCCIeayeMoro mpouecca. Jlust «men-
JIEHHOTOY» TpOoIlecca, XapaKTepru3yeMoTro BpeMEeHeM, MHOTO OOJIBIIIMM BpEMEHH TeIJIonepeaadH,
mo0ble BO3MYILIEHUsT TPOdUiIs TeMrepaTypsl OyAyT ycmeBaTh penakcupoBaTh. ClieZoBaTenbHO,
3TOT HPOIECC MOXKHO pacCMaTpPHBaTh Kak M30TepMHuecKuii, npu kotopom P =P(v,Ty)=P(v).

«ELICTpHﬁ» nponece (HO CpaBHCHHIO C ITPOHCCCOM TennonepeHoca) MOXXHO CUUTATh a,Z[I/Ia6aTI/I—
YCCKUM B CHIJIy HCXBATKHM BPCEMCHHU [JId oOMEHA TeIIoM ABYX COCCOHUX oOmacreii:
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S=38y=constu P=P(v,5) =P(v).

W3 sHeprerudeckoro ypaBHeHUs (25) Ul KBa3UCTaTHYECKOTO IIPOIEcca CIEAYeT

o€ o€ v Cvq
— | dT+| — | dv+Pdv=—|12 +———pg (AT +(4 + Pg)av. 26
(GT )V (av )T T Prad o qu pq} ( Prad pq) ( )

CJICI[OBaTeJH)HO, AJI1 U303HTPOIINYCCKUX W3MCHCHHUI NMEeM

[12 Prad +Ll qud INT +(4paq + pq)d Inv=0. (27)
Yq_

Beeném Teneps anmabaTuueckue nokasaTean cMecu Beniectsa u uznydenus I,y u I'3 co-

OTHOIIICHUAMMAU
d d
—InP=I;y—Inp, 28
dt 1dt p (28)
d d r,-1d
—InT=(T2-1)—Inp=—2==1InP, 29
dt Ta=Dgne r, dt (29)

KOTOpble MOTYT OBITh HCIOJIb30BaHbI BMECTO SHepreTudeckoro ypasHeHus (25). C yuérom
YpaBHEHHUS COCTOSIHUS «HJIeaIbHOTO (| -ra3za» (15) MoHO 3amucarh

dP:d(prad +pq):(4prad + pq)dlnT_pqd Inv. (30)
CrnenoBatenbHO, (28) eCTh HE YTO HHOE, KaK
4 _
prad+pqd.|.+{rl(prad+pq) pq}dv:o. (31)
T Vv
N3 (27)u (31) cnenyet, uto
12ppyg + (Yq _1)71 Pq _ 4Prag + Pg (32)
4Prag + Pq I'1(Prad + Pg) — Pyq

Beeniém Teneph B paccMOTpeHue BeNuuuny = Pgas / P — k03 unment, xapakrepusyromuii

JIOJIIO BELIECTBA B IIOJIHOM JABJICHUM CHCTeMbI'). [IpH HCIIOIb30BAHUI STOTO TIAPAMETPa, COOT-
HoteHue (32) MOKHO TMepenucarb B BUJIE:

) Ha ocobyto BaxHOCTb oTHOIIeHUs (1—[) st TeOpUH 3BE3HON CTPYKTYpPHI BIEPBbIE YKa3ajl DJUTMHITOH.

B M3BECTHOM OTPBIBKE U3 €T0 KHUIU «BHYTpEHHEE CTPOEHHE 3B€31» DIUHITOH CBA3BIBAI HTO OTHOIICHHE C «SIB-
nenueM 3Be3zbD» («happening of the starsy).
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(4-3B)*(v4 1)
B+12(yq -D(-P)’

I =B+ (vq-1=1-q+2/D). (33)

MoO>KHO JIerKO IMOoKa3aTb, YTO MMCIOT MECTO CIICAYIOIIUE COOTHOIICHH A
@, (-1
2 = o A4 o !
B+30-PIN  3rq-DA-P@E+H)

e mB g T-n)  @-3)e-D)
4=3 Iz B+12(y,—1)(1-P)

r3=

Ecin Prag < Pg, TO BCe 0000IIEHHbIE MOKa3aTeny aquadatsl I'j st « (-rasa + usinydeHne»
COBIA/IAIOT C MOKa3aTejaeM aauadaTsl YUCTOro (]-rasa (yq =2/D+2- q) , @ KOTJla IPUCYTCTBY-

€T OJIHO JIMIIb U3JTy4eHHe abCOMOTHO Y€PHOTO Tena ( Pg K Prag ), TO OHU paBHbI 4 /3. Takum
o0Opa3oMm, Uil CMECH «UAealbHOTO (]-Ta3a» U paauanuu oO0OOIIeHHbIE MOKa3aTenu aanadaTsl

IPUHUMAIOT IPOMEKYTOYHbIE 3HAYEHHUS OT 4/3 10 7V .

3. IDKUHCKOBCKASI TPABUTAIIMOHHASI HEYCTOMYNUBOCTH
B HESKCTEHCUBHOM KUHETUYECKOM TEOPUH

PaccmotpuM cHaudana mpocTeuInyro 3a1aqy BOSHUKHOBEHHSI HEYCTOMUYHNBOCTH B OECKOHEYHOM
noKosencs chepudecku OTHOPOIHOW ra3oBoW cpeme. HamoMHHMM, 9TO NMpU pacCMOTpPEHUU
rpaBUTallMOHHON HeycToumBoctH [Ix. JDKMHC paccmaTpuBall OJHOPOJHOE COCTOSTHUE
CaMOTPaBUTHPYIOLIEH Cpelbl B COCTOSIHMM IMOKOS, YUTO HE COBCEM KOPPEKTHO, TaK KaK TaKoe
COCTOSIHUE HE SBJISIETCS COCTOSHHEM paBHOBecHus. TeM He MeHee, €ro BBIBOJ KPUTEpHS
HEYCTOMYMBOCTH MOKHO paccMaTpuBaTh Kak IepBOe MpHOIMKEHHe, KOTopoe B Hamboiee
MPOCTBIX CIIy4asiX JaeT TMpaBWIbHBIA MOPSIAOK HIDKHEH KPUTHUECKOW [UIMHBI BOJIHBI
BO3MYIIEHHUs, BEAYIIETO K HEYCTOMUUBOCTH (CM., Hanpumep, [22,24].

JluneapuzoBaHHble OCHOBHbIE nuddepennnanbupie ypaBHeHus (18)-(21) mms ciydast yucto
paanasbHOTO chEepUYECKH CUMMETPUYHOTO ABMKEHHUS C YYETOM JIOMYIICHHM, YTO HEBO3MYIIEH-
HOE COCTOsIHHE sIBJsieTcs: paBHOBecHBIM (U =U, +U’, U, =0) u 4ro ypaBuenue Ilyaccona (20)

MOYXHO TNPHMEHHUTH JIHIIb K BO3MYLICHUSAM IUIOTHOCTH (ycnoBue W, =0 Ha3bpIBalOT WHOTIA
«moteHHrnaecTBoM» JIxunca [18,19], umeror Bu:

a_pl+ap_0u:0

ot or ’ 34

M_2T P N 35
ot p,or pior or (35)
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d(P d(p

—|—|=T,, —| =1, 36
dt[PoJ l'odt(pj 0
OV _ 4rGyp (37)
oz P

371ech U janee UHIEKC « 0)» OTHOCUTCS K HEBO3MYILEHHBIM BEJTMUMHAM.
VYpaBHenue (36) TpuBHAIbHO MHTErpUpyeTcs. BpiOupas MOCTOSHHYIO MHTETPUPOBAHUS TaK,
uro6b1 P’ =0 npu p’ =0, momyanm

PTR) = I P py - (38)

JloTyCTHM Teneph, 9TO XapaKTepHas JJIMHA, CBA3aHHAs C MPOCTPAHCTBEHHBIMH N3MEHEHHUSIMHU
BenmnunH Py n p,, BelMKa MO CPaBHEHMIO C IPYTUMH XapaKTEPHBIMH JUTMHAMH 3319 (3TO TaK
Ha3bIBaeMoe MPHUOIMKEHNE KOPOTKOBOJHOBOM aKyCTHUKH), T.€. MOKHO INpeHeOpeub MPOU3BOI-
HeIMH OF, / Or m Op, / Or . [lpn 3THX NOMOJHHUTENBHBIX YIIPOIIAIONINX MPEANOI0KEHHIX ypaB-

HEHHe Hepa3pPhIBHOCTH, UMITYIbCA M YHEPTHH JIETKO 00BEINHUTS B OJHO ypaBHEHHUE JUIs anada-
THYeCKOH 3ByKOBOI1 BOMHbI" [56]

62 ’ 62 ’ ,
at@ V2 aﬁ —4nGpyp’ = 0. (39)

3nech BO3MYIIeHHasl Ipou3BOHas AaBieHus OP'/Or Bolpaxkaercs, corjacHo (38), yepe3 BO3-
MyILIEHHYIO POM3BOHYIO TLioTHOCTH Op'/OF B BUme OP'/or =(Iy,P, / py)op'/ or =vi op'l er,

rIe

1
P |p 4-38,1|2
Vsq = 1Hl,op_o :{ pq_o {1"'(1"3,0_1) B By :|} =
0 0 0

N

1 kBT{H (4-3B0)" (v~ 1) } (40)

Tl G=Dor m | B2 +12B, (v~ D(L—B,)

— aguabaTuyeckas (MM JIAIIacoBa) CKOPOCTh 3ByKa B HEIKCTEHCUBHOM pagHallMOHHON THIPO-
nuHamuke. [Ipu Hanucanuu (40) yuTeHo, 4TO

&: pq,O + prad,O :i pq,o _ 1 1 kBTO _ 1 1 kBTO

=— =— (42
Po Po Bo Po Bo(vg—HD22 m By 1+(1-0g)D2 m

Vv, . o
) OTMCTI/IM, YTO IIPU U3YUCHUNU BOSMYHICHHBIX COCTOSHHUU CAMOTPABUTHPYIOIIETO0 KOCMHUYECKOIO BEIIECTBA
YJacCTO MPUXOJUTCA UMETH €10 C Pa3HOBUAHOCTBIO 3BYKOBBIX BOJIH.
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B uwactHOM ciydae, korna =1 u D=3, umeem Y, =5/3 (KIaccHUECKHUH HICaTbHBIN OHO-

aTomHbIii ra3). Toraa u3s (40) cienyer, 4yTo

vz Koy |g, 204-360° ||* (40"
1 m 3B0(8_7Bo)

Ecnu nsnmydenne Takxe OTCYTCTBYET, TO (Vg;)p 4 =Viasq = s [7iksTy /M — anmabarnmaeckas
CKOPOCTb 3ByKa B H/ICAJIFHOM rase.
B cnyuae xorna #1 (npeanbHbIN (] -ra3), a u3iydeHne orcyrctByer (3, =1), Oyaem nmersb

1 1

2 2 — 2 o

(Ve )y = KsTo Yq _ ksT, 2—-9+2/D . (40™)
Hre m (y,~1)D m (1-qg)D/2+1

Vpasuenue (39) sBisleTCS JIMHEHHBIM U OJHOPOIHBIM YPABHEHUEM B YaCTHBIX MTPOM3BO JHBIX,
CIIEIOBATENBHO, K HEMY MIPUMEHHM METOJ HOPMAIbHBIX Kosebanuii (Metox mox). Perras ypas-
Henust (39) Uit BO3MYIIEHHOH TIOTHOCTH B BHIE P’ ~ EXP(—i ot +1Kr), onuceiBaromnemM BOJIHBI
C YIJOBOW YacTOTOW , BOJHOBBIM BekTopoM K B HampaBieHuu I " W IMHOM BONHBI

Ar =2n/ K, momydum cienyroiiee TUCIIEPCHOHHOE YpaBHEHHUE TSl OCTyIIeH BOJTHBI

r,.— -
of k2 Pao tq, Do =Pofy  41-B, +4nGp, =0, (42)
Po 4-3B, Bo

KOTOpOe€ ¢ yueToM cooTHomeHu# (40) u (41) mpuHUMAET «CTaHIAPTHBIN BHU]I
2 2,,2 *
o =KV, —4nGp,. (42)

3neck aguabaTuyeckas CKOPOCTb 3ByKa Vg o onpenensercs Gopmynoi (40).

o 2 o
Z[J'Iﬂ YCTOMYHUBEIX BOJIH € HaCTOTaMH ® HMEEM > 0 , TOraa KaKk HCyCTOMYUBOCTb COOTBET-

2 o o o o
CTBYCT YCJIOBHIO < 0 . DOt ABa KJjiacCa pasgca€T cilydan HEUTPAJIbHOM YCTOMYHMBOCTH

2 o o
o =0 , YTO COOTBETCTBYCT MOJAaM C KPUTHYCCKOU MIIMHOU BOJIHBI BO3MYILICHUA

hep =211 K, K =, IV

2 _
2 = s Qo =4nGp,. (43)
U3 ypaBuenus (42) ciemyer, uro rpanmdHoe 3Hadenue K=K, pasgenser ycroitumBbie
(k>k,,) u neycroiuussie (K <K, ) myabcamuu miotHoctw. [Ipu Manbix K (IUTHHHBIE BOJIHBI)

ImyJibCallun 6y,HYT pacTt CO BpECMCHEM U MOABJISACTCA HECTaOMIIBHOCTD I[)KI/IHCB., a KOpPOTKOBOJI-

") Crnenyer 3amMeruTh, YTO JIMHEAPU3OBAHHOE YpPABHEHHE MMITy/bca TpebyeT, 4ToObl ckopocTh U Oblla
mapajienbHa BOMHOBOMY Bekropy +K [56]. CriemoBarenbHO, CKOPOCTH HACTHI[ JKHUAKOCTH, CBSI3@8HHBIE C
anMadaTHYECKUMH 3ByKOBBIMH BOJTHAMH, MTAPAJICITEHBI HAIPABICHUIO PACIIPOCTPAHEHUS BOJH.
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HOBBI€ MyJIbCAIIMU TUIOTHOCTH (O0JbInKe K, Masible JUTMHBI BOJIH) KOJIEOIIOTCS, T.€. pacipocTpa-
HAXOTCA B BUJIC 3BYKOBLIX BOJIH.
Taxum 006pa3oM, KpUTHUECKast JJIMHA BOJHBI BO3MYILICHUS

1
- 2mvs, _ /nvgq _J2mk Ty | 1 . (4-3B,)° 2 (44)
¢ @ Gpo mGpoD Yq_l Bg +lZBO(’Yq_1)(1_ Bo)

SIBIISIETCS Pa3MEPOM MENIbYAMIIINX «KaIellb) PacCMaTpUBAEMON «(ppaKTaIbHOI» Ta30BOM cpeibl

C U3Jy4eHHEM, KOTOPbIE MOTYT yJIEp>KUBAaThCsl BMECTE COOCTBEHHBIM I'DaBUTAL[MOHHBIM MPUTSI-
xeHueMm. CrnenoBareabHo, MOIU(GUIIMPOBAHHBIA B paMKaX HEAKCTEHCUBHOW KMHETUYECKOU Teo-
puM KpuTepuil HeycTounBocTy JKMHCA A1 cMecH (]-raza ¥ YepHOTEIbHOH paauanuu Oyaer

BBITJIS/IETH CIEAYIONIMM 00pa3oM: JUTHHA HEYCTOHYMBOM BOJIHBI BOSMYIIEHHS A, JOJDKHA YIIOB-

JIETBOPSATH HEPABEHCTBY

1
[ 4-3B,)*(y,~1 2
My 2 e = Ve, To_ kT, 2 14— ( Bo) (v~ 1) . (45)
Gp, mGp, (Yq_ 1D Bot 1230(%_1)(1_60)
B TpaauimonHo# nutepatype IIUHY
> 1
174 2
A = | =(v1 “kBToj | (46)
Gp, mG p,

COOTBETCTBYIOIIYIO pa3Mepy 00JacTH CKaTHsl CaMOTPAaBUTHUPYIOLIETO HJCalbHOTO rasa, Ha3bl-
BaroT juuHoM [kuaca. C yuerom (45) xputepuit HeycToMYnMBOCTH J[PKMHCA B HEOKCTEHCUBHOM
KMHETHUKE MOKET ObITh IIEpEIrcaH B BUE:

PP I S T O o 9 7 VR | GO
hy Vs |n (DD B +12B0(v~1(A-Bo)

1
_ 201 _ 2
_ 1 2/D 14— (4-3B,)°1-g+2/D) _= (45"
v, A-=q+2/D)|  B:+12B,(1-q+2/D)(L-B,) K
Ortcroza crenyer:
1. Ecmu q=1(npu stom v, =1+2/D), T0 dpakrop
1
_ 2 2
El{l(u _(4-3,)2/0 H >1, (47)
11 Bo +24B,(1-B,) /D
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CrnenoBarenbHO, KpUTHUYECKAsl JUIMHA BOJHBI BO3MYILEHHMS A, B pacCMaTpUBacMOM Ciydae
0OJIbIIE JUKUHCOBCKOM JUIMHBI BOJIHBI A, , T.€. Ol1arojapsi JaBJICHUIO H3JIy4eHUs 00IauHas cpeaa

CTaOMIIM3UPYETCS, TPUYEM PABEHCTBO COOTBETCTBYET NPEACTHHON YCTOWIHBOCTH.
2. Ecm q #1, HO m3nydenue otcyrcTByet B, =1, To daktop

1
2

, 0 1+2/D. 48
oy 1-q+2/D <OQ<iF (“48)

B 3TOM cnyyae kpuTepuil TpaBUTALIMOHHON HEYCTOMYMBOCTH 3aBUCUT OT YHMCIICHHBIX 3HaAYe-
HUN MHJEKCa SHTPONUNHON Jedopmanuu (| ¥ pa3MEpHOCTH IMPOCTpaHcTBa ckopocTe D . [lpu
3TOM BO3MOXKHA CUTYyallUs, IPU KOTOPO TPaBUTALMOHHO -yCTOMUNBOE (Ha OCHOBE KJIACCUYECKON
cratuctuku bonbimana—I'n66ca) obiako rasza, OyleT HEyCTOMYHMBBIM COTJIACHO HEIKCTEHCHUB-
Hoi cratuctiku Tcammuca [14,15].

Casi3aHHas ¢ A, KpUTHYECKas Macca (Macca, coJeprKamascsi BHyTpH chepsl THaMeTpoM A, )

OonpeACIIACTCA COOTHOIICHHUEM
My =(rn/6) pokzr = MJ B, (49)

rIe

/2

3
Y,k To

50
= (50)

My =(r16)peh; = (n/6)p,

— kputudeckass macca JlxuHca. Bosmymenust ¢ maccoir M, , nmpeBbIMIAIONIEH KPUTHUECKYIO
maccy Joxkunca M, (2 >1) moryr pactu, popMupys IrpaBUTaIlHOHHO-OIPAHUYCHHBIC CTPYKTY-
PBI, B TO BpeMsl KaK BO3MYIIEHHs ¢ Maccoil M, MeHble M He pacTyT u BelyT ce0s Kak aKy-

CTHYCCKHUC BOJIHBI. HpI/I OTOM IJId CaMOTI'paBUTHPYIOINHUX HEOKCTCHCHBHBLIX CPEA C U3ITYYCHHEM
KPUTHYCCKUEC 3HAYCHUA TJIWHBI BOJIHBI M MAacCChl IBHO 3aBHUCAT OT 3HTp0HHﬁHOFO HHACKCA q,

pPa3MEpHOCTH MPOCTPAHCTBA CKOPOCTEH D M Kod(duimeHTa 3, KOTOpbIE, SBISASICH CBOOOJHBIMU

napaMeTpamMu, JOJLKHBI OIIPEACTIATHCA B KAKAOM KOHKPCTHOM CIIydac SMIIMPUYCCKUM ITYTEM U3
OKCIICPUMCHTAJIbHBIX JTaHHBIX. 9TO MO3BOJISET IIpH UCCIICAOBAaHHUH HGYCTOﬁqHBOCTH caMoIrpaBu-
TUPYHOIIHUX KOCMHUYCCKUX 00BEKTOB B paMKax HEDKCTEHCUBHOM CTaTUCTHKHU 00Jiee 000CHOBAHO
MOJICIHUPOBATh PCAJIBHO CKIIAAbIBAIONIYIOCSA CUTYalHIO.

3aMeTI/IM, YTO AajibHEeuIee pa3BUTHUEC NPCAJIOKECHHOTO 3ACCh MOAX0Aa MOKET OBITH CBSI3aHO C
Y4€TOM BJIMAHHA HA JPKUHCOBCKYHO HGYCTOﬁQHBOCTL BpallCHUA CpCIAbl, MArHUTHOTO II0JIA, BA3-
KOCTHU U APYTUX JUCCUIIATUBHBIX S(I)(I)GKTOB.
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4. TPABUTAIIMOHHASI HEYCTOMYNUBOCTD BPAIIIAIOIIETOCSI
IJIASMEHHOI'O OBJIAKA C YEPHOTEJIbHBIM U3JIYYEHUEM

[TockoJbKy BpallleHHe KOCMOTOHMYECKHX TIa3MEHHBIX OOBEKTOB SBIISIETCSI BEChbMa PacIpo-
cTpaHeHHBIM (heHOMEeHOM BO BcenmeHHOM, BO3HMKAeT BOMPOC: KaK 3TH (haKTOPhI JACHCTBYET Ha
JUKMHCOBCKYIO HEYCTOMYMBOCTH? B CBS3M € 3TUM paccCMOTPUM B YIPOLIEHHOW MOCTAaHOBKE MPO-
OneMmy BiusiHUS criibl Kopuosinca Ha TpaBUTAIMOHHYIO HEYCTOMYMBOCTh HEAKCTEHCUBHOU Cpe-
JIbI JIOTJIAHETHOTO TUTA3MEHHOTO o0Jaka ¢ u3inydeHueM. Mcxoansie 6e3auccCunaTUBHBIE YpaBHeE-
HUS B JTOM Clydae COCTOST M3 CIEAYIOIIUX YpaBHEHW: ypaBHeHWil Oilepa B (-

ruApoauHaMuKe, ypaBHeHus [lyaccoHa 1 ypaBHEHUsI MATHUTHON MHAYKIIMH:

%+V-(pu)=0, (51)
6_“+(u.v)u=—v—P+2ux9+iij—w, (52)
ot p pc

%+U~VT=(F3—1)%{2t—p+u-Vp}, (53)
V2 =4nGp, (54)
%ZVX(UXB), V-B=0. (55)

. . . - C
3nece Q =Q,i, +Q,i,; B=8B, =B, — marHuTHOE 10JIe; C — CKOPOCTh CBETA; | = 4—V xB -

T
4-3B)yg-)
B+12(vq —D(L—P)

a,I[I/Ia6aTH‘leCKHﬁ IIOKa3aTe€jib CMECH BE€HICCTBa U

cuna toka; I'z3=1+

N D+1
4EPHOTEIHLHOIO H3ITy4CHUS, = =Cpq/Cyg=|2——— — moKa3aTellb aguadaTel ra3o-
1Y y4 Yq="Ygas = Cpq ! Cvg D

BOI'O BEIIECTBA JIUCKA.
Jlyis u3y4yeHus: MajbIX BO3MYIICHUI TuHeapusyeM cuctemy (51)-(55). s atoro mpencrtaBum

BXOJIAIIUE B 3TY CUCTEMY IIEpEMEHHBIE B BUE CYMM PaBHOBECHBIX U BO3MYILIEHHBIX BeHYKH. B
MIPEIOJIOKEHUH, YTO U HEBO3MYILEHHOTO 00JlaKa COCTOSHHE €r0 Cpelbl SBIJISAETCS OJHOPO-
HBIM U paBHOBeCHBIM (U = Uy + U’, Uy =0) u uto ypaBHenue [Tyaccona (65) MOXKHO MPHUMEHSThH

TOJIBKO K BO3MYIIICHHUSM IJIOTHOCTH, JIMHEapU30BaHHbIe ypaBHeHus (51)-(55) mpuHUMarOT BHT:

op'

= +pV-U' =0, 56
at Po ( )
8_u_2ufxg+ﬁo_%{v[ﬂj+wv(1j}+ L g (vxB)+Vy=0, ()
ot Po Po Bo To )| 4mpg
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6T’ T, Op'
~(T30-1)-2% -0, (58)

Po ot
VZ\V' —4nGp' =0, (59)
%—VX(UXBO) 0, V-B=0. (60)

Pgo| 4-3 2
3necs Vg g = pq —[30(1"3 o—1)+1|; — agmabarmyeckas CKOPOCTb 3ByKa B HEIKCTCHCHB-
0 0

P, k T
HOU Ta30BOM CpeJie ¢ U3TyICHHEM; BoRo =B 0 D 2UxQ = {ZUyQ,— 4,0, (} Be-

muauHbl Py, Tg, By, Ug, By 1 Py ONHCHIBAIOT HEKOTOPOE CTAIIMOHAPHOE PEIIeHNe CUCTEMBI (56)-
(60), a Bemuumnsr p',T', u', B' 1 y' — cyTh Majble BO3MYIIEHUS MarHUTO-THAPOJMHAMHYECKHAX
napameTpoB, CJ1a00 HaPYIIAOIIMX HEBO3MYIIICHHOE COCTOSHHE.

B pesynbrare o0benunenus ypasaenuii (57) u (58) Oynem umersb

ou’
—-2u ><9+v Vo' +Vvu'+
at SqYP v 47py

Byx (VxB)=0. (61)

Cucrema ypasuenwii (56), (59)-(61) omuceiBaeT pa3BUTHE MANIbIX aIda0aTHUYESCKUX BO3MYIIIC-
HUW BO (DpakTalbHOM IJIA3MEHHOM Cpele ¢ M3ydeHHeM Ha (JOHE OCHOBHOTO PEIICHHUsS B IPO-
CTpaHCTBE M BO BpeMeHHU. OHa SIBISETCS CUCTEMOMW JTMHEWHBIX U OJTHOPOJHBIX YPABHEHUM B Ha-
CTHBIX MPOU3BOAHBIX, CJIEI0BATEIbHO, K HEM MPUMEHUM METO]I HOpMaJIbHBIX KOJIeOaHHH (METOx

moy). [Ipennonaras nanee NUIMHAPHIESCKYIO CHMMETPUIO ABMOKeHHs U'(= 14U + izu;)v”), a TakK-

K€ YTO BO3MYyIICHHBIC mapamerpbl p, U,y u B', DSBOJIOLHOHUPYIOT 10 3aKOHY
~exp(—iot+ik, x+ik,z), rie ® — YacroTa rapMOHHYECKUX KojeOaHuii (B oOmeM ciydae

2 2 .
KOMILJIEKCHAs BEJINYUHA), a|k| = \k5+K; — BoiHOBOE uHMCIIO, B pe3y/ibTaTe MOTYYHM:

—op'+pok-u'=0, (73)

viD W3BecTHO, 4TO MpOOIEMY YCTOMIMBOCTH CaMOTPAaBUTHPYIOIIETO ra30BOr0 O0ONaKa B IPHUHIUIIE HEIb3s
OITMCHIBATH B PAMKaX JBYMEPHOTO MPUOIMKEHU, TOCKOJIBKY OHO 3aBEJOMO SIBJISIETCS CHIBHO HEYCTOHYUBBIM (CM.,
Hanpumep, [24]). OqHako npyu HATKMYKHE CUIBHOIO BHEIIHETO TPABUTAIIMOHHOTO MOJS C HMAIHHIPHICCKON TeoMeT-
pueit u ¢ obpa3syromieil BIOIb OCH BpalIeHHs 00JIaka, BO3MOXXHO OOECIIEYHTh €r0 YCTOHYMBOCTH B CiIydae, KOrnaa
YIJIOBast CKOPOCTh BPAICHHUSI JOCTATOYHO BeNMKa. B 3TOM ciydae CTpyKTypa JOIUIAHETHOTO OOJIaka BJONb OCH
BpamieHus OyJeT onpeaensaThCs HCKITIOUNTENFHO €ro caMorpaBuTanueil. Pasymeercs, 3TOT ciry4ail HCKYCCTBEHHBIH,
MIOCKOJIbKY B PEasbHBIX acTPOGH3MUECKUX CHCTEMax TaKHe IWIMHIPUYECKHE IO €CIM M BCTpedaroTcsi, To 0e3
BIIOKEHHBIX ICKOB. BMecTe ¢ TeM, paccMOTpEeHHE TAKOro BIOKEHHOT'O B IIMITMH/IP CAMOTPAaBUTHPYIOIIETO Ta30BOr0
JIMICKa TPEICTABISIET ONpENENEHHBIH MaTEMaTHIECKHH HHTEPEC, MMOCKOIBKY TONBKO B 3TOM CIydae MOXKHO BBIJE-
JUTh 3(h(HeKTHI, K KOTOPHIM IPUBOANT CAMOTPABHUTAIMS B YUCTOM Bue. VIMEHHO Takne MOAENN PacCMaTPUBAIIICH B
GOJIBIIIMHCTBE KIIACCHUECKUX PaboT 10 acTpoQHU3MIECKHM JUCKaM (cM., Hanpumep, [27,28,57].

193



A.V. Kolesnichenko.

—opgU +i20'x @ +2 o'k — poky’ +f0[ (ky B~k B —iy K, By |0 (74)

|k|2 y' —4nGp' =0, (75)
—oB; = Bk,uy =0, -oBj-Bk,u, =0, -oBb]+Bku,=0, kB +kB =0. (76)

Cucrema ypaHeHut (73)-(76) siBasieTcss MCXOIHOW NS JATbHEHIIIET0 aHAIN3a JUHAMUKA
MaJIbIX BO3MYIIEHUH B MOJIEIH BPAIIAIOMIETOCs TNIA3MEHHOTO 00J1aka C paualien.

JucnepcuoHHbIe YPABHEHHs B H3DHTPONHMYECKOM ILNIA3MEHHOM o0/1aKe. YCIOBHE Cylie-
CTBOBaHMS HETPUBUAIBHBIX pelieHuil cucteMsl (73)-(76) mpUBOAUT K CIEAYIOIIEMY JUCIEPCH-
OHHOMY YPaBHEHHUIO 6-T0 MOPSIIKa OTHOCHTEIFHO KOMIUTIEKCHOU BemmuuHbl  (K):

o® — o [4|9|2+ VA (Jkf k) + (V8 o[- 4nep0)} +o? ﬁ(véo k'~ 47Gpo )
x(QX k2+Q, k2 )2+ v k2 [vi |k|2+ 2 (VSZ,O |k|2— 4nGpO)}} —

V4K (vglo I[P~ 4nGpo) =0, (77)

rne vV, =085/ w/41tp0 — anb(hBeHOBCKas (MarHUTOTHUAPOIMHAMHUYECKAs) CKOPOCTh BOJIH, 00Y-

CIIOBJICHHBIX KBa3UYIPYTUM HATSHKEHHEM MarHUTHBIX CHJIOBBIX JIMHUH.
Metonom Kapmana BO3MOKHO TOJIy4EHHE TOYHOTO PEIICHHs 3TOTO aNreOpandecKoro ypaB-

HeHUs (KyOM4eCKOro OTHOCHUTENBHO BEIMYUHBI N = 0)2). OpaHako 3TO pelieHue, K COXAICHHUIO,
HE MPHUBOJUT K HAIVISIAHBIM (opMyliaM Ui pa3ndHbIX MOKa3aTenel pocta. Bmecre ¢ Tem kaue-
CTBEHHBINM aHaIu3 cucTeMbl ypaBHeHu (73)-(76) BO3MOKEH Ha OCHOBE PAllHOHAIBLHOM aIlIpOK-
CUMAIIMH OTAEIbHBIX UX YJICHOB.

Hckirouas ¢ 3TOH 1EIbI0 U3 CUCTeMbI ypaBHeHui (73)-(76) Bo3MylieHHbIE TapaMeTphl P, '

u B', B pe3ynbpTaTe NOJy4UM ClieAylolee alredpandeckoe COOTHOIIEHHE

02U —i20U' x Q- Vs ok(k- u)+4nGpokT |u —VA|k| (u'—i,u;)=0. (78)
k

klk- u) —kx(u xK) [58], npurumaro-
Kk

o -2
IIErO ISl TMPOJOJIBHBIX 3BYKOBBIX BOJIH B YKHJIKOCTH CICAYIOIIMNA BUa U = k(k‘u')/]k| (cm.

[Ipu ucnonab30BaHUM BEKTOPHOTO TOXKAECTBa U = ————=
CHOCKY «VI»), cooTHoIIeHue (77) MOKHO Mepenucarh CIeAyIOIINM 00pa3oM:

20 —j m2p61(u' x Q) — |k|2 Vglqu' +4nGpgu’ — Vi |k|2 (u'—i,u;)=0. (78")

[Ipoananuzupyem Tenepp 3TO ypaBHEHHE.
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1. PaccmoTpuMm cHayana ciydail caMOTPaBUTHPYIOIIETO HE3apsHKEHHOTO Ta30BOTO O0JaKa.
Tornma

®2U' —|K[" V2 U’ +4nGpyu’ =i w2(u'x Q). (79)

[Ipn cxaiasipHOM YMHO>KE€HUHU 3TOrO0 COOTHOLIEHMSI HAa BO3MYILEHHYIO CKOPOCTH U’ MOJIy4UM
JMCIIEPCUOHHOE COOTHOLIEHUE ISl 3ByKOBBIX BOJIH BO BpalIaroIeMcs 00IaKe

o’ |k[ V2, +4nGp, =0, (80)

M3 KOTOPOTO CJIEYET, YTO KOPHOJIMCOBA CHJIa HE MPEOJJ0JIEBAET CTa0MIM3upyromero gdexra
M3ITYYEHUS ISl BPAIIaroIIerocs: o0yiaka, MOCKOJIBKY B 9TOM CITydae CIpaBeJTUB PAaCCMOTPEHHBIH
BBIIIIE KPUTEPUN HEycTOMUYMBOCTH J[)KMHCa (42*) JUTSI CaMOTPaBUTHPYIOIIETO Ta30BOTO 00JIaka ¢
W3ITy9YCHUEM.

Ecnu BoiHa BO3MYUICHUSA PaCIPOCTPAHACTCA B INNIOCKOCTHU XZ NEPNCHAUKYIAPHO HaIlpaBJIC-
HUIO OCH BparieHus obnaka Q =1i,Q , To u3 (79) cneayer anredpanyeckoe COOTHOIICHHE:

? (02— |K[*VZ g +4nGpq)? = —4o?(u'x Q) - (' x @) =40’ [u* [0 (81)

u’ u’

3alMcaHHOe 37eCh C HCIOoJb3oBaHHEeM YycioBus U-Q=0 u ¢GopMynasl BEKTOPHOI aireOpbl
(axb)-(axb)=(a-b)*—a’b* [58]. U3 (81) BEITEKAET ClIeIyIONIEe JUCIIEPCHOHHOE YPaBHEHUE

o +20? (4nGp, — K| V2, —2Q%) +(4nGp, — |k[VZ,)* =0, (82)
IIycTh ®; U ©, — KOPHHM ypaBHeHHs (82); Toraa
o + @2 = —2(—|K[ v +4nGp, —200?),  wfw? = (k[ V2, —4nGp,)’. (83)

OTCIOI[a CJICAYCT, YTO YCIOBHE HGYCTOﬁqHBOCTH obOnaka (,0]2_2 <0 IJI1 COBOKYITHOCTH BOJIH

BO3MYHIICHUA UMCCT BUJT
v |K[" < 4nGp, —202? (84)
S.q pO )
B sToM ciyuae KpuTHUECKas JUIMHA BOJIHBI BO3MyIIeHus A, =27 /K, u KpuTHueckoe BOI-

HOBOE uHclo K, = |k|cr, paszaenstomee ycroituuBbie (K, > K, ) u Heycroiuuseie (K, <K_) BO3-

MYIICHHBIC BOJIHBI, ONIPCACIIAIFOTCA COOTHOICHUAMU

) , N2
||<|cr :i(4nepo_2g}2)ﬂ2 =2 iz% (1—9—] , (85)
Vsq Vsq 2nGp,
|/2 2 -1/2
>\‘cr = 2n = . =4 1- « : (86)
Kl VGpo ' 2nGp,

195



A.V. Kolesnichenko.

Crnenyer UMeTh B BUIY, YTO KpuTepuii (84) uMeeT CMBICI TOJBKO B CIIydae, €CJIU BBIMOJIHSACT-
2 o
cst yenosue Q° /2nGp, <1 (ycnoBue ycroiunBocTH Bparmaromerocs oonaka mo Tympe [57]).

Takum oOpazom, Uil KpUTEpUsl HKUHCOBCKOM HEYCTOWYMBOCTH BPALIAIOIIEIOCS T'a30BOTO
o0aka ¢ y4eToM H3JIydeHHs Uil BOJH BO3MYIIEHHUS PACHPOCTPAHSIOMIMXCS B HAlpaBICHUU
NEPIEHANKYIIIPHOM HAIIPABICHUIO OCU BpallleHUs o0jaka, MOIyduM CieLyroliee IpecTaBie-
HUE:

QZ -1/2 Q2 -1/2
hep > Ay =Vi g |=—| 1- =Vyo |—|1- , (87)
"\ Gpy 2nGp, "\ Gp, 2nGp,

KOTOpoe, ¢ yueToMm Ghopmyibl (46) mist nuHbl JPKuHCa, MOXKET OBITh 3aITMCAaHO B BUJIE

2 v QZ -1/2
s 8alg— =
Ay Vv 2nGp,

gas

NE! [1+ 2(4—3130)2(vq—1) } [1— i j (©9)
Y1 (Vq_ 1P Bo +12B, (Yq_ DA-B,) 2nGp,

2. Ilycte Temeph BpalieHHe IIa3MEeHHOTO 00J1aka oTcyrcTByeT. Torma u3 (77) cienyer

k(K- U/ K(k-u' .
WU = o k[ %Mnepo%—vﬂkf ('—i,u) =0, (89)

PaccmoTpuM Ba IPOCTHIX CITydast:
a). Jlist nomepeyHoro pacnpocTpaHeHus BOJIH Bosmymenus (koraa K,=K, u;=0) ypaBHeHHe
(89) cBOIUTCS K IPOCTOMY ITUCIIEPCHOHHOMY COOTHOIICHHIO (cpaBHH ¢ (42))

o —v5 Ka—v§ o Ki+4nGpy =0, (90)

.. *, ~ v v
JUI KOTOPOTro, ¢ Y4éTtoM (42 ), KpuTepuil TpaBUTAI[MIOHHON HEYCTOMYMBOCTU CAMOTPABUTUPYIO-
e MmIa3Mbl ¢ MArHUTHBIM TOJIEM U PaIMallUOHHBIM JaBJICHUEM IPUHUMAET BUJI:

2l 1 kT, (4-3B0)*(rg=D)
I (-2 m |7 B2 1284 (v~ )(L—Bo)

b). B cityuae mpoosibHOTO (K HAIPABJICHHIO MATHUTHOTO TIOJIST) PACIIPOCTPAHEHHS IyJIbCalli-
oHHBIX BOJH (Uit kotopeix K, =K, K, =0) ypaBuenune (89) 3amuceiBaercs cieayronmm oopa-
30M:

@?U' —v& o (K2 up) i, +4nGpouyi, + v kS (U'—iuy)=0. (92)
Otcrona 171 BOJHBI BO3MYIICHHUS, HAMIPABJICHHOW BJIOJIb HAMIPABICHHS BEKTOPAa MarHUTHOTO MO~
ast (U'=1,U), MOIYYUM IUCTIEPCHOHHOE COOTHOIICHUE

@® V4 o Ké+4nGpy =0. (93)
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Ecmu u, =0, to u3 (92) cienyer

o’ -4k =0. (93)

Takum 00pa3oM, B MOMEPEYHOM PEKHMME PACIIPOCTPAHEHHS BOJIHBI BO3MYIIEHHS KPUTEPHMA
HeycToWYnBOCTH JI>KWHCA /ISl TUTa3MBbl MOJM(DHUIMPYETCS MATHUTHBIM TIOJIEM U paJMallHOHHBIM
JaBJieHHEM. B ciydae npojoibHOro pexuma MarHUTHOE I0JI€ HE BIUSET Ha JUKMHCOBCKUM KpH-
TEpHil, MOCKOJIbKY 3TOT PEeKUM olecrieunBaeT AJb(BEH-PEKUM ABMKEHUS OTJECIBHO OT rpaBU-
TallMOHHOTO PEKUMA.

3AK/IIOYEHHUE

Nwmes B Buay 607b1110€ KOCMOTOHMYECKOE 3HAYEHHE NMPOOIeMbl IPaBUTALIMOHHON HEYCTOWYH-
BOCTH, B MpEACTaBIEHHOW paboTe B paMKax HE3KCTEHCUBHOW KWHETUKU HCCIIEOBAHO BIUSHUE
HEIKCTEHCUBHOCTH CpE/bl Ha KPUTEPU IPaBUTAMOHHOW HEYCTOMYMBOCTH JI)KMHCa I caMo-
I'PaBUTHPYIOLIETO JOIUIAHETHOTO 00J1aKa, BEIECTBO KOTOPOrO COCTOMUT U3 CMECH MJI€albHOro (

-ra3za u ‘—IépHOTeJII)HOFO HSqueHHH. BI)IBG,ZIGHBI )II/ICHepCI/IOHHI)Ie ypaBHeHI/ISI, Ha OCHOBC KOTOpLIX
BBITTIOJIHCH aHAJINU3 OCGCHMMeTquHBIX KO.]'Ie6aHI/II71 KOCMHNYCCKUX CaMOFpaBI/ITI/Ip}IIOHII/IX 06’[:.61(-
TOB C M3JIYYCHHEM M Pa3MEPHOCTHIO MMPOCTPAHCTBA CKOpOCTEH. [[1s1 HEAKCTEHCHUBHBIX CpPEIl T0-
Jy4eHbl MOJIU(UIMPOBAHHBIE KPUTEPUU TI'PABUTALMOHHOW HeycToWuMBocTH JDKHHCA Kak JUIst
0eCKOHEUHO! MoKoseiics chepruueckr 0JHOPOJHOM Cpebl, COCTOSAIIEN U3 HaeaabHOro (-rasa

Y U3JYYCHUs, TaK ¥ ISl 0€3IUCCUTIATHUBHON HAMarHMYEeHHOH TUIa3MbI ¢ Y4ETOM BpaIlleHHsI U pa-
JMAIMOHHOTO JTABJICHUSI.

PaccMoTpeHHBIH 3/1eCh TIOJXOT K OMTUCAHUIO B paMKaX HEAKCTCHCUBHOW KMHETUKU BOJIIOLIUU
OTHOCHTEIILHO TTPOCTHIX (MOJIEIBHBIX) aCTPOPU3MIECKUX 0OBEKTOB MOKET OBITh PACIIPOCTPAHEH
Ha 0oJiee peaCTUYHbIe (U3UYECKUE CHUTYAllUH, CBA3aHHBIC, B YACTHOCTH, C YUETOM JTUHAMHKH
BO3MYIIICHUH B HEOJHOPOTHBIX M HEU3OTPOITHBIX JUCKOBBIX (PpaKTAIBHBIX CpElax, ¢ MCCIe0-
BaHUEM TPABUTALMOHHBIX BO3MYIICHUH JHCCUIIATHBHBIX TUCKOB, C MCCIICOBAHUEM COOCTBEH-
HBIX YacTOT KOJI€OaHUIl BEPTHKAIBHO HEOTHOPOIAHBIX MATHUTHBIX AUCKOB U T.10. (cM.[24] ). Do
MO3BOJISIET OoJiee OOOCHOBAaHHO MOJEIHPOBATh pPEaTbHbIC acTPOPU3UUYCCKUX T'a30-THUICBbIC
CTPYKTYPBI X HAXOJIUTh COOTBETCTBYIOIINE KPUTEPUHU MX TPABUTAITUOHHON HEYCTOMYUBOCTH.

[TockonbKy (hru3MYEeCcKHii CMBICT M YMCIICHHBIC 3HAYCHUSI WHACKCA SHTPOIMHHON eopManun
( WrparoT CyIIECTBEHHYIO POJIb B OHMMAHHH 3BOJIIOIMM MHOTHX aHOMAJIBHBIX acTpodusnye-

CKUX 00BEKTOB, TO MpobIeMa UX ONpeAeTIeHHs MPeICTaBIsieTcs Ype3BblyaiiHo BaxkHOM. K coxa-
JIEHUI0, 3Ta mpobiieMa Bc€ emé octaéres OTKphITO. BMecTe ¢ TeMm, B HacTosiiiee BpeMsi HMEIOT-
Csl CepbE3HBIE YCIIEXH B COBPEMEHHON T'elIMOCEMCMOIOTHH, KOTOpasi HaI&KHO HCCIIENyeT BHYT-
peHHIO CTPYKTYpy  quHamMuKy CouHia [59]. B conneuHoii atMmochepe YCTaHOBIICHBI U U3y4e-
Hbl MIJIJTHOHBI PE30HAHCHBIX MOJ KojeOaHui. X 4acTOThl U3MEPEHBI C HOCTATOYHO OOJBIIONMN
TOYHOCTBIO, YTO TIO3BOJISIET UCCIIEI0OBATh BHYTPEHHIOW CTPYKTYpy ConHIIa Ha OONBIINX TIyOH-
Hax [60]. DTi pe3ynbTaThl MO3BOJIAIOT PEIIUTh HE TOJBKO HEKOTOPbHIC M3BECTHBIC MPOOIEMBI
KOCMOJIOTHH, HO M MTOJTHUMAIOT Psiji TEOPETUUECKUX BOIIPOCOB, OTBETHI HA KOTOPBIE HEOOXO MBI
JUIsl TOHUMAaHUS TOTO, KaK Ha caMOM JieJie HBOJIIOLIMOHUPYET 00bIYHas 3Be3/a. B wacTHOCTH, Tre-
JIMOCEHCMOIIOTUsl MO3BOJISIET, BOOOIIE TOBOPS, HAWTH SKCIIEPUMEHTAIbHBIE JOKA3aTeIbCTBA MPHU-
CYTCTBHS HE3KCTEHCHBHBIX 3()(EeKTOB B Heapax 3Be3Jlbl MO OINpeNesseMbIM CKOPOCTSAM 3BYKA.
CrnenoBarenbHO, €CTh YBEPEHHOCTb, YTO B camoe Ommkaiiiiee BpeMss MOXKHO OyJeT MOIy4uTh
ACTPOHOMMYECKHUE JIaHHBIE 110 YNCICHHBIM 3HAYEHUSIM NapameTpa (, OTIIMYHBIM OT €IUHULIBL.
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Summary. The article briefly presents the life and scientific activities of an outstanding
mechanical scientist, a major scientist, corresponding member of the RAS, honored professor
of Lomonosov Moscow State University Vladimir Vasilyevich Beletsky. He is rightly
considered one of the founding fathers of the Soviet and Russian school of space flight
dynamics in the theory of rotational movements of artificial and natural celestial bodies.

1 INTRODUCTION

In 2017, Vladimir Beletsky (Fig.1), an outstanding scientist and unsurpassed teacher, the
corresponding member of the RAS, honored Professor of Moscow state University, passed
away. He is rightly considered one of the founding fathers of the Soviet and Russian school of
space flight dynamics in the field of the theory of rotational movements of artificial and
natural celestial bodies.

Vladimir Vasilyevich was born on may 2, 1930 in Irkutsk. He spent his childhood in this
city and in the villages on the banks of the Angara and lake Baikal. At the age of 12, he lost
his hearing after a severe form of meningitis. In the postwar years, the family moved to
Smolensk, where Bielecki graduated from the 7th high school with a gold medal. In 1949, he
entered the mechanics and mathematics faculty of Moscow state University. In 1954 he
graduated with honors from the faculty of mechanics and mathematics of Lomonosov
Moscow State University. In the same year, V.V. Beletsky was assigned to work in the
Department of Applied Mathematics of the Steklov Mathematical Institute of the USSR AS
USSR, created by M.V. Keldysh (now the Keldysh Institute of Applied Mathematics of
RAS). This determined his scientific destiny as one of the galaxy of brilliant scientists -
representatives of the world-recognized school of space flight dynamics, founded by
M.V. Keldysh and D.E. Okhotsimsky. In his book "Theoretical mechanics and modern
technology” A.A. Kosmodemyansky wrote: "l Think that for some well-known nowadays
scientists interest in certain problems of modern mechanics arose as a result of work in
scientific circles and seminars of the mechanics and mathematics faculty of Moscow State
University. | can name, for example, the following comrades: corresponding members of the
USSR Academy of Sciences D.E. Okhotsimsky and T.M. Eneev, doctors of physical-
mathematics sciences V.A. Egorov, V.V. Beletsky, V.A. Sarychev...".

Here is how Vladimir Vasilyevich himself wrote about that time: "I felt that | was in the
midst of the brewing events in space exploration and that these events are not least maturing

2010 Mathematics Subject Classification: 37Q05, 70Q05, 70M20, 70F15.
Key words and Phrases: spacecraft, space vehicle, orbiter, artificial earth satellite, artificial moon satellite,
artificial martian satellite, gravity assist maneuver, quasi-synchronous orbit.
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thanks to the authoritative, businesslike and purposeful activity of M.V. Keldysh. He defined
the style of research direction of the dynamics of space flight and in General the scientific
program of space research. This was done by M.V. Keldysh at all levels, up to the state. After
all, he was Chairman of the Interdepartmental Commission on space research, and then
President of the USSR Academy of Sciences. Later E.L. Akim, A.K. Platonov came to our
team, and in 1957 M.L. Lidov was appeared”. Characteristic of all his work was the practical
direction of research. Most of the results of spacecraft orbit design were implemented in
specific missions. Perhaps for this reason, the direction in which the employees of the
Keldysh - Okhotsmskiy school acted was called as the "applied celestial mechanics".

Fig. 1. V.V. Beletsky (02.05.1930-20.07.2017)

Academician D.E. Okhotsimsky wrote about that time: "When in 1953 the Department of
applied mathematics of Steklov Moscow Institute Academy Sciences USSR was organized,
Mstislav Vsevolodovich offered me to go to the Institute together with the team as the head of
the Department. Research on our subject has always been carried out here; first, it was aimed
at the development of missile technology, and then, when the air blew the possibility of space
launches, we joined in these cases from the very beginning. In 1954, when it became clear
that the time of the space age was approaching, she was already knocking at the door,
Mstislav Vsevolodovich convened a meeting of scientists and leaders of missile technology.
Apparently, as a result of the discussion at this meeting with academician P.L. Kapitsa,
Dmitry Evgenievich had the idea of passive gravitational stabilization of artificial earth
satellites, i.e. orientation of satellites at the expense of natural forces without any fuel costs
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for orientation control. The fifties years — the years of preparation and implementation of the
breakthrough into space — were years of unprecedented takeoff initiated and led by
M.V. Keldysh research in the Department of D.E. Okhotsimsky.

2 SCIENTIFIC ACHIEVEMENTS

The first researches of V. V. Beletsky became known and recognized by specialists.
Speaking on September 14, 1956 at a meeting of the Presidium of the USSR Academy of
Sciences, M. V. Keldysh in his report, talking about the stability of the relative equilibrium of
the satellite in orbit, said: "... This interesting problem of solid mechanics was solved by a
very young employee V. V. Beletsky in the Department of applied mathematics". The results
of these studies are summarized in the monograph of 1965, which, being translated into
English, and is now a Handbook of specialists.

In the introduction to his monograph V.V. Beletsky indicates that the theory of motion of
celestial bodies near the mass center in classical mechanics has developed with respect to
specific bodies (Earth, Moon) and therefore used a number of simplifications. In this case, the
influence of gravitational moments was mainly considered. The problem of the rotational
motion of artificial space objects is much more complex, because "due to the arbitrariness of
the shape and mass distribution of the object, the arbitrariness of the initial data, the many
factors affecting the movement. In addition to the gravitational moments should take into
account more aerodynamic and electromagnetic moments.

V.V. Beletsky practically opened a new branch of the celestial mechanics, simplifying the
classical formulation of problems and received as a result of such simplification the main
"scrolls” for the mechanics of rotational motion of satellites. On successful examples, he
showed how they should be used, came up with the number of interesting problems outside
these schemes, solved for the first time standard problems in the new situation. In this sense,
Vladimir Beletsky has being brilliantly solved a number of such problems, and become the
father-founder for a whole area of such problems solving, giving the scientific community the
tools for such solving.

The main results of this cycle of work are as follows. A theorem on the stability conditions
of the relative equilibrium of a satellite in a gravitational field is proved. The theory of
oscillations of a satellite in an elliptical orbit under the action of the gravitational moment was
developed. The problems has been formulated and the theory of the evolution of satellite
rotation under the influence of disturbing moments caused by the gravity gradient, the
influence of the Earth’s magnetic field, atmosphere and light pressure forces has been
developed. This theory has been applied to describe the motion of a number of the particular
artificial satellites.

V.V. Beletsky was the first who posed and considered the problem of the dynamics of the
orbital tethered bodies as a system with release from coupling.

In the same years, V.V. Beletsky for the first time in the world has been setting the general
task of determining the actual orientation of the satellite and clarifying the parameters of the
perturbing acting moments based on the results of processing the measurements of the
orientation sensors installed on Board. He developed and applied an effective method of
solving this problem (the third Soviet satellite, the “Proton” satellite, the “Electron”
satellites). This approach has been successfully used today.
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Since the early 1970s, V.V. Beletsky has conducted a series of studies of nonlinear
problems of the dynamics of rotational motion of artificial satellites and planets, taking into
account the existing resonances in their orbital and rotational motion, as well as the effect of
energy dissipation (tidal effect) on the formation of a modern picture of the rotation of
planets, taking into account the probability of capture in existing resonances [11]. The
resonance theory of "generalized Cassini's laws" of planetary rotation was developed by him,
which gives a rigorous justification of the empirical Cassini's laws for the moon's
rotation (1693).

The main results of Beletsky's scientific activity also include deservedly the theory of tidal
evolution of the rotational motion of celestial bodies; the solution of the optimal problems of
spacecraft’ flights with low-thrust engines; the formulation and analysis of problems of the
orbital tether systems dynamics; the construction of models and the study of the of bipedal
devices dynamics.

3 RESULTS

Here is how briefly VV.V. Beletsky presented his main scientific achievements, with links to
his own anthology.

1. A theorem on the stability conditions of the relative equilibrium of a satellite in a
gravitational field is proved [1], [2]. This result is used in the theory and practice of
the passive gravitational stabilization of artificial satellites.

2. The theory of oscillations of a satellite at the elliptical orbit in the gravitational field is
developed [1], [2], [3], [4].

3. The problem is posed and the theory of evolution of satellite rotation under the
influence of disturbing moments of forces (gravitational, magnetic, aerodynamic, light
pressure) [5],[2], the moment of tidal forces [11] is developed.

4. The problem of determining the actual orientation of satellites and the acting moments
by on-Board measurements is posed and solved [6], [2], [7].

5. The theory of orbital tether system motion and motion randomization is formulated
and developed [8], [9], [10].

6. A resonant theory of generalized “Cassini's laws of rotation” of the natural and
artificial celestial bodies has been created [12], [13]. This theory, in particular,
justifies the empirical laws of J.D. Cassini, established more than 300 years
ago (1693).

Vladimir V. Beletsky, as a chief scientific officer of the KIAM of RAS, was the Member
of his Scientific Council, also has been a Member of the specialized dissertation councils of
KIAM RAS and mechanics and mathematics faculty of Lomonosov Moscow State
University, a Member of the Russian National Committee on Theoretical and Applied
Mechanics (1976). In 1997 he was awarded the title corresponding member of RAS. He was a
Full member of the International Academy of Astronautics (1992) and a Full member of the
Russian Academy of cosmonautics (1994), was a Member of the editorial Board of the journal
“Regular and chaotic dynamics”. V.V. Beletsky prepared 26 candidates and 5 Doctors of
Sciences.

Beletsky's scientific achievements are highly appreciated in Russia and abroad. He was
awarded Honored Professor of Lomonosov MSU (2002), and laureate of A. von Humboldt
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prize (Germany). He honored the F.A. Tsander prize of RAS. The minor planet No. 14790
(discovered July 30, 1970) has been named after V.V. Beletsky “Beletskij” (Fig.2).

-
14790 Beletsky

14790 Beletskij

Earth Distance: 4.024 au
Sun Dista : 3.51 au
2017-07-20 00:00 UTC

Fig. 2. Small planet Ne 14790 (opened July 30, 1970), named after V.V. Beletsky

Summarizing, it can be argued that V.V. Beletsky practically opened a new the scientific
school and the branch of the celestial mechanics, simplifying the classical formulation of
problems and developed in such simplification main "science scrolls" to describe the
mechanics of the rotational motion of a satellites and planets.
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UCKYCCTBEHHBIM CHyTHUK JIyHBI, HMCKycCTBEHHBIM chnyTHUK Mapca, 1uianera Benepa,
IpaBUTALMOHHBIA MaHEBD, TPAaBUTALUOHHOE T10J1€

AHHOTanus. B cratbe KpaTKo NpeACTaBiIeHA )KU3Hb U Hay4yHas J€ATEeIbHOCTh BbIJAOIIETOCs
YUEHOT0-MEXaHUKa, KPYIHOI'O Yy4YeHOro, wieHa-koppecnoHaeHta PAH, 3acmyxeHHOro
npodeccopa MI'Y umenu M.B.JlomonocoBa Bmanmumupa BacunbeBnua benernkoro. O mo
MpaBy CYUTAETCS OJHUM H3 OCHOBATEJIC COBETCKOM M POCCUMCKOM WIKOJbI JUHAMHUKHU
KOCMHUYECKHUX MOJIETOB B TEOPUU BpaLIATENIbHBIX JBUKEHUN UCKYCCTBEHHBIX U €CTECTBEHHBIX
HEOECHBIX Te.

1 BBEJAEHUE

Bnagumup Bacuneesuu benerkuit (Puc.1.) ponuncs 2 mast 1930 rona B ropone Mpkyrcke.
JleTcTBO €ro mpouuio B 3TOM ropojie M B JepeBHsIX Ha Oeperax AuHrapsl u baiikama. B 12-
JIETHEM BO3pacTe MOTEPsUT CIyX IOCie MEepeHEeCEHHON UM TskENol (opMbl MeHUHTUTA. B
MIOCJIEBOCHHBIE IOl ceMbs nepeexania B CMOJIEHCK, e benenkuil 3akoHum 7-10 CpeHIO
LIKOJY C 30JI0TOM MEJAJIBIO.

B 1949 rony on nmoctynui Ha MexaHHKo-MaTeMaTnueckuit ¢pakynpter MI'Y. B 1954 1. oH
OKOHUYMWJI C OTVINYMEM MeXaHHMKo-MaTemaTnueckuil ¢akynbrer MI'Y nm. M.B. JlomoHocoOBa.
B tom xe rony B.B. beneuxuii Obln pacnpeneneH Ha paboty B OtheneHue NpUKIIaJIHON
marematuku MUAH CCCP, Tombko uto co3manHoe M.B. Kemnppimem (temeps MucTHTYT
npukiagHoi matematuku uM. M.B. Kenapiima PAH). Oto onpenenumno ero HayuHyio cyan0y
KaK OJTHOTO U3 IJIeS bl OJIECTAMIMNX YUEHBIX - MPEACTaBUTENCH BCEMUPHO MPU3HAHHOM IIKOJIBI
JIWHAMHUKH KOCMHYECKOro mojiera, ocHoBaHHoM M.B. Kengemmem u [I.E. Oxomumckum. B
cBoel kHMure «Teopernyeckas MEXaHMKa U COBpeMeHHas TexHuka» A.A. KocMonempsHCKUI
nucail: «Jlymaro, 4TO I HEKOTOPBIX HM3BECTHBIX B HAIlM JHU YUYEHBIX HHTEPEC K
ornpezieNieHHbIM TMpoOJjeMaM COBPEMEHHOW MEXaHWKH 3apoJuics B pe3yjibTare pabOThl B
HAYYHBIX KpPY)KKax M CEMHMHapax MeXaHUKO-Marematudeckoro ¢akynpreta MI'Y. S mory
Ha3BaTh, HAIpUMeEp, CIEAYIOIIMX ToBapuilen: wieHbl-koppecnoHaeHTel AH CCCP
JLE. Oxouumckuit u T.M. DHeeB, aokropa ¢us.-maT. Hayk B.A. Eropos, B.B. benenxkui,
B.A. Capsbryes...».

2010 Mathematics Subject Classification: 37Q05, 70Q05, 70M20, 70F15.
Key words and Phrases: spacecraft, space vehicle, orbiter, artificial earth satellite, artificial moon satellite,
artificial martian satellite, gravity assist maneuver, quasi-synchronous orbit
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Puc. 1. B.B.Benenxwuii (02.05.1930-20.07.2017)

Bor kak cam Bnagumup BacunbeBuu nmucan o ToM BpeMeHH: «S MoYyBCTBOBAM, UTO MOMAT
B CaMyI0 TYIIy Ha3peBalOMIUX COOBITUH B MCCICIOBAHUU KOCMOCA M YTO ATH COOBITHS HE B
MOCTIEAHIOID O4YepeNb 3peloT Onaromapsi aBTOPUTETHOM, JETOBHTON U IIeNIeyCTPEMIICHHOM
nesitensHocTH M.B. Kennpima. OH onpenensin CTUIIb HallpaBlIeHUEe UCCIEIOBAaHUN TUHAMUKHI
KOCMHUYECKOT0 TOJieTa M BOOOIIe Hay4yHOW MpOTrpamMMbl HCCIEIOBAaHUS KOCMHYECKOTO
npocTpaHcTBa. OJTo nenanock M.B. KengeimieM Ha Bcex ypoBHSX, BIUIOTH 10
rocynapcTBeHHoro. Beab oH Obul mpencenareneM MeXBEIOMCTBEHHOW KOMHCCHUU IO
MCCJIEIOBAHHUIO KOCMOCa, a MoToM U rnipesusienToM Akagaemun Hayk CCCP. Heckonbko mo3sxke
B Haml KosuiekTuB npuuuia J.JI. Axum, A.K. IInatonos, a B 1957 r. nosiBuncs M.JI. Jlugosy.
XapakTepHbIM JUJI1 BCETO €ro TBOpUYeCTBa OblIa TMpaKTHUECKas HaMpaBIEHHOCTh
uccienoBanuii. boJblnas 4acTh pe3yNbTaTOB MO MPOCKTHUPOBAHUIO OPOUT KOCMHUYECKUX
amnmapaToB Oblla peajn30BaHa B KOHKPETHBIX ToyieTax. MokeT OBITh, MO 3TOW NPUYHUHE
HaIpaBlieHUE, Ha KOTOPOM JACMCTBOBAIM COTPYAHHMKH IIKONbI Kenmpima - OXOLKUMCKOTO,
MOJTYYIJIO Ha3BaHUE "TIPUKIIaIHas HeOecHass MexaHuKa'.

Axanemuk /[.E. OxounMckuii nucan o ToMm Bpemenu: «Korzaa B 1953 r. oprannsosbsiBaiochk
Otnenenue MpUKIATHON MaTeMaTuku, McTrcinaB BceBoso10BUY Mpe ik MHE TIEPEHTH B
OIIM BMecTe ¢ KOJUIEKTUBOM B KaueCTBE PYKOBOAUTENs oTaena. MccrnenoBanus mo Hamei
TEMAaTHKE 3/IECh TTPOBOJIMIINCH BCET/IA; CIIEpBa OHU OBLIIM HAIIpaBJICHBI HA PA3BUTHE PAKETHOMN
TEXHUKH, a 3aT€M, KOT/la B BO3yX€ MOBESAJIO BO3MOKHOCThIO KOCMHUUECKHUX 3aITyCKOB, MBI C
CcaMOTO Hauaja MOAKIIOUMINCh K 3TUM nenam. B 1954 r., xorma yxke crajo sSCHBIM, 4YTO
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NpUOJIMKAETCs BpeMsi KOCMHMUYECKOW Jpbl, OHa YXE€ CTY4YuTCs B JBepb, MCTHCIIaB
BceBosiogoBu4 co3Bajl coBelaHNE YUSHBIX M PYKOBOJUTENICH pakeTHON TeXHUKH. Buanumo, B
pe3yJibTate IUCKYCCMH Ha 3TOM coBemlanuu ¢ akagemukom ILJI. Kanuueun y Jmutpus
EBrenpeBnua poauiach ujaes MacCUBHOW TI'PABUTAIIMOHHOW CTAOMIIM3AIlMU MCKYCCTBEHHBIX
CIIyTHUKOB 3€MIJIH, T.€. OPUEHTAIIMH CITYTHHKOB 3a CUET MPUPOJHBIX CHJI 0€3 BCAKHX 3aTpar
TOIUIMBA Ha YIpaBJICHWE oOpueHTanuen. Ilarumecareie TOAbI — TOABI IMOATOTOBKH H
peanu3alnuu MpopbiBa B KOCMOC — ObUIM T'0JIaMM HEBHMJIAHHOTO B3JIETa WHULIUUPOBAHHBIX U
pykoBoaumMbiXx M.B. Kenapimem Hayunbix uccieaoBanuii B oraene [I.E. Oxonumckoro.

2 HAYYHBIE JOCTUXXEHUSA

VYxe mnepsble uccnenoBanus B.B. benenkoro mnpuoOpenu H3BECTHOCTh W MPU3HAHUE
cnenuanuctoB. Beicrymas 14 centsaOps 1956 1. Ha 3acenanuu npe3uauyma AKaJeMUU HAyK
CCCP, M.B. Kenaplil B cBOEM JOKIIaJe, paccKa3biBasg 00 yCTONYMBOCTH OTHOCHUTEIBHOTO
paBHOBECHs CIIyTHHKa Ha opOuTe, 3ameTwi: "... DTa MHTEpEecHEWIas 3ajadya MEXaHHKH
TBEPAOro Tena Oblla pelleHa COBCeM elle MOJIoAbIM coTpyanukoMm B.B. bermenkum B
Otnenenun npukiagHod MatemMaTuku'. Pe3ynbTaTbl 3THX HCCIIEJOBaHMM IOABITOKEHBI B
MoHorpaduu 1965 1., KoTOpas, OyAy4yd NEpeBEelEHHOW Ha AHTJIMICKUN $3bIK, U cenlyac
SBJISICTCS HACTOJIbHOM KHUTOW CIEUAaINCTOB.

Bo BBenenuu k monorpadguu B.B. benenkuii ykaspiBaeT, 4To TeOpHsl ABMKEHUSI HEOSCHBIX
TE1 OKOJO IIEHTpa MacCc B KIJIACCUYECKOW MEXaHUKE pa3BUBAJaCh IMPUMEHUTEIBHO K
KOHKpeTHbIM TenaMm (3emiisi, JlyHa) u moceMy ucmonb3yeT psn ynpouieHuid. Ilpu stom
paccMaTpuBajoch B OCHOBHOM BIIMSIHME TIPaBUTALMOHHBIX MOMEHTOB. 3ajadya o
BpalaTeIbHOM JBMKEHHM HCKYCCTBEHHBIX KOCMHUYECKHX OOBEKTOB ropasfo 0ojee CIO0XKHA,
MOCKOJIBKY «00YCJIOBJIMBAETCSI TIPOU3BOJIBHOCTBIO (POPMBI M pacmpenesieHuss Macc oOBbeKTa,
MPOU3BOJIBHOCTHIO HAUYANbHBIX JaHHBIX, MHOTOUHCICHHOCTHIO (DAaKTOPOB, BIMSIONIMX Ha
nBuxkeHne. KpoMe rpaBUTallMOHHBIX MOMEHTOB CIIEAYET YUUTHIBATh €€ a’dpOAUHAMUYECKUE
Y DJIEKTPOMATrHUTHBIE MOMEHTBI.

B.B. benenkuil npakTHYECKH OTKPBLI HOBYIO OTPACIIb MEXAHUKH, YIIPOCTUB KIACCUYECKUE
MIOCTAHOBKH 3a/1a4 U MOJIYYUB B PE3YJIbTATE TAKOTO YIPOILIEHUSI OCHOBHBIE «CKPUKAIN» IS
MEXaHMKH BpalllaTelIbHOI0 JIBUKEHUS CIYTHUKOB. Ha ynauHbIX mpuMepax OH IMMOKazaj, Kak
MX HAJ0 MCMOJb30BaTh, MPUIyMall psAJl UHTEPECHBIX 3a7a4 BHE ATUX CXEM, BIEPBBIC PELINII
CTaHJIApTHBIC 3aJ1a4M B HOBOU cutyaunu. B sTom cmbiciie Banumup BacunbeBnu benenkuit,
¢ OJecKOM pelIrB psiJi yKa3aHHbBIX 3ajiay, sIBUJICS OTIIOM-OCHOBATEJIEM II€JIOT0 HAIpaBJICHUs
M0 PpEUICHUI0 MOJAO0OHBIX 3ajad, JaB HAay4dHOMY COOOIIECTBY HMHCTPYMEHTAapHil A HX
peleHusl.

OcHOBHBIE pe3yJIbTaThl ATOTO IHUKJIA PabOT COCTOST B cieayromeM. JlokazaHa Teopema o0
YCIIOBUSIX YCTOMYMBOCTU OTHOCHUTEIBHOIO PABHOBECHSI CIIYTHHKA B IPaBUTALIMIOHHOM IIOJIE.
Pa3zBuTa Teopus kose0aHUil CIyTHUKA Ha AJUTUNITHYECKONH OpOUTE MOJ JACHCTBHEM MOMEHTa
rpagueHTa CWiIbl TsDKeCTH. BblmonHeHa mocTaHoBKa mpoOjema W pa3paboTaHa Teopus
SBOJIIOLMM BPAILIEHUS] CIYTHUKOB MOJl BJIMSHUEM BO3MYIIAIOIIUX MOMEHTOB, BBI3BAHHBIX
IPaJUEHTOM CHJIBl TSDKECTH, BIMSHMEM MAarHMUTHOTO TOJS 3eMiu, atMocepbl U CHUJ
CBETOBOI'O JIaBJICHUS. JTa TEOPHS HAlla CBOE IPUMEHEHHUE Ul ONMCAHUS ABU)KEHHUS LIEJI0T0
psiia KOHKPETHBIX CITyTHUKOB.

B.B. beneukuii BrepBble MOCTaBHJI W PacCMOTpeN HpoOieMy JAMHAMHUKU OpOMTANbHOM
"CBA3KM TeN" KaK CUCTEMBI C OCBOOOKIAIOIIEI CBA3BIO.
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B »tm xe ronel B.B. benenkuii BmepBele B MHpe MOCTaBWI OOIIyr0 3amady o0
onpezeneHuu (PaKTUUECKON OpUEHTAIMU CITYTHUKA U YTOYHEHHs TapaMeTPOB JACHCTBYIOIUX
Ha HEr0 BO3MYIIAIOIIMX MOMEHTOB IO pe3yibTaTaM OOpaOOTKM H3MEpPEHHH JaTYMKOB
OpUEHTAIlMM, YCTaHOBJIEHHBIX Ha Oopry. OH paspabotan u npumMeHU1 3)PEKTUBHYIO
METOJMKY pELIEHUs 3TOH 3a7auu (TpEeTUil COBETCKUM CITyTHUK, ciyTHUK "IIpoToH", ciyTHUKM
"DnekTpoH"). DTOT MOAXO YCIEITHO UCIIOIB3YETCs U B HAIIK JTHH.

C Havanma 1970-x romoB B.B. beneukuil npoBen LUK HCCIEIOBAaHUN HEIMHEHHBIX
npo0iieM JWHAMUKH BpAallaTEJbHOTO JIBU)KEHUS HCKYCCTBEHHBIX CIIYTHHKOB W IUIAHET C
YU4ETOM CYIIECTBYIOLUX PE30HAHCOB B WX OpPOUTAIbHOM M BpalllaTEJIbHOM JABM)KECHHUH, a
TaK)Ke BIUSHUS AUCCUTIAIIMU SHEPTUH (MPHIUBHOM 3¢ dekT) Ha GOpMUPOBAHHUE COBPEMEHHOMN
KapTUHBI BPAIICHUs IUIAHET C YYETOM BEPOSTHOCTEN 3aXBaTa B CYIIECTBYIOLUE PE3OHAHCHI
[11]. Im co3nana pe3oHaHcHas Teopus "0000MIEHHBIX 3aK0HOB KaccuHu" BpallleHus IUIaHET,
KOTOpasi JaeT CTporoe OOOCHOBAaHUE SMIIMPUYECKHX 3akoHOB KaccuHu BpaieHus
Jlyusr (1693).

B.B. benenkuii ony6imkoBan ceiie 200 HaydHBIX paboT, B ToM uucie 11 MoHOTrpadwmii,
Mepen3/1aBaBIIUXCs B cTpaHe U 3a pyoexkoMm. Ero paboThl jerko 4uTaTh, MOTOMY YTO OHHU
HalucaHbl C JIOOOBBIO K YMTATEII0 M COUETAIOT B ce0€ CTPOroCTh aHAIM3a M MPEKPACHBII
CTUJIb U3JI0KEHHUSL.

K d4ucny 3amedarenbHbIX HayyHBIX JocTwkeHMM B.B. benenkoro ortHocuTes —ero
MoHorpadus "Ouepkd O JBMKEHHMM KOCMHYECKMX Ten" (BTopoe wuszmanue B 1977 r1.),
NepeBe/IeHHAasl Ha MHOTHE SI3bIKU. B 3TOM KHUTe, HallMCaHHOW JKHMBBIM U KPACOUHBIM SI3BIKOM,
ACHO M JOCTYIIHO MW3JIaraJIiCh KaK KJIACCUYECKUE, TaK U COBPEMEHHBIE DPE3YJIbTAaThI
MCCJIEIOBAaHUM MHOTHX YUYE€HBIX (M cCaMOro aBTopa) B 001acT HEOECHON MEXaHUKH.

K ocHOBHBIM pe3ynbraTaM HaydyHOW nedrenbHocTd B.B. benenkoro 3aciy’keHHO Takxke
OTHOCSITCSI: TEOpHUsl MPWIMBHBIX 3(PPEKTOB BO BpAIICHUH M OpPUEHTAIUU HEOECHBIX Tel;
pellleHne ONTHMAJBHBIX 3a7a4 KOCMUYECKHX IIEpPEJIETOB C JIBUTaTENIsIMM MaJIOM TATH;
MOCTAaHOBKA W aHalu3 NpoOJieM JMHAMUKH OPOUTAJIbHBIX TPOCOBBIX CHUCTEM; MOCTPOEHUE
MOJIEJIEN U UCCIIEOBAaHUE TUHAMUKHU ABYHOTOXOSIINX YCTPONCTB.

3 HUTOI'n

Bor kak Bkparue cam B.B. benenkuit npeacrasiisii CBOU OCHOBHBIE HAYYHBIE TOCTUKEHUS
CO CCBUIKAaMH Ha COOCTBEHHYIO aHTOJIOTHIO.

1. lokazaHa Teopema 00 YCIOBHUSX YCTONYMBOCTH OTHOCHUTEIBHOTO PaBHOBECHS CITyTHUKA
B rpaBuTaniioHHOM Tonie [1], [2]. DTOT pe3ynapTaT UCMOJB3YEeTCS] B TEOPHH M TPAKTUKE
CUCTEM MMAaCCUBHOM rPaBUTAIIMOHHON CTAOMIN3AIUN CITyTHUKOB.

2. PazBura Teopus koyiebaHWI CIYTHHKA Ha JUTMIITHYECKOW OpOUTE B IpaBUTAIIMOHHOM
noste [1], [2], [3].[4].

3. IlocraBnena mpobiema U pazpaboTaHa TEOPHs SBOIIOIUHN BpPAILICHHUS CIIYTHHKOB IO
BIIUSTHUEM BO3MYIIAIOIINAX MOMEHTOB CuI (TpaBUTAIIMOHHBIX, MarHUTHBIX,
a’pPOJIMHAMUYECKHUX, CBETOBOTO JaBieHus) [S5],[2], MomeHTa npunuBHbIX cui [11].

4. TllocraBineHna u pelmieHa MpoOieMa ompeneiaeHuss Mo OOPTOBBIM H3MEPEHUSIM
(haKTUYECKOW OPUEHTAIIUY CITYTHHKOB U JISHCTBYIOIIUX Ha HET0 MOMEHTOB [6], [2], [7].

5. TlocraBnena u pa3BUTa TEOpHsl ABMIKEHUS OPOUTAIHHOW TPOCOBOM CHCTEMBI U
xaoTtu3auuu asuxenus [8], [9], [10].
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6. Co3mana pe3oHAHCHas TEOpUs OOOOIICHHBIX 3aKOHOB KaccuHHM —«BpalieHUs»
€CTECTBCHHBIX M MCKYCCTBEHHBIX HeOecHbIX Ten [12], [13]. Dra Teopus, B YacCTHOCTH,
o0ocHoBbIBaeT aMnupuueckue 3akonsl k. /1. Kaccunu, ycranosnennsie 0osee 300 net Tomy
Hazan (B 1693r.).

.
14790 Beletsky

14790 Beletskij

Earth Distance: 4.024 au
Sun Distance: 3.51 au
2017-07-20 00:00 UTC

Puc. 2. Manast miianera Ne 14790 (otkpsita 30 uronst 1970 r.), HazBanHas uMeHem B.B. Benenkoro

Bramumup BacunbeBnu beneukuii, Oyay4u riaBHbBIM HaydHbIM coTpyaHukom WIIM um.
M.B. Kennpmma PAH, coctosm YneHoM ero YdeHOro coBeTa, SBSUICA Takke UieHoM
CIELMATM3UPOBAHHBIX JuccepTaioHHbix coBetoB MIIM um. M.B. Kengeima PAH wu
MexaHMKo-MaTematuueckoro  ¢akynprera MI'Y  um. M.B. JlomonocoBa,  Unenom
Poccuiickoro HallMOHaIBHOTO KOMUTETA 110 TEOPETUUECKOI U npukiIagHoi MexaHuke (1976).
On 6511 U36pan Unenom-koppecnounaeaTromM PAH (1997), sBnscs JlelicTBUTETLHBIM YJICHOM
MexyHaponHoil akagemun actpoHaBTUKU (1992) u JleiictBurensHbiM wieHoM Poccuiickoit
akageMuu KocMoHaBTUKH (1994), coctoan UnenoMm penkosiernu xypHaia “PerynsphHas u
XaoTH4YeCKask AMHAMUKA .

Hayunsie goctmxenust B.B. benernkoro Beicoko oreHeHbl B Poccun u 3a py6exxkom. OH
ObUT yZnocToeH 3BaHUs 3acimyxkeHHbI mpodeccop MI'Y (2002), cran naypearom npemMuu
A. ¢on I'ymbonpara (I'epmanus), naypear npemun PAH um. @.A. Lannepa. Manas ruianera
Ne 14790 (otkperta 30 utons 1970 r.), Ha3Bana umeneM B.B. benenkoro “Beletskij” (puc. 1).

Pesromupysi, MOXKHO yTBepxkaaTh, 4T0 B.B. beneukuii mpakTU4eCKH OTKPBUI HOBYIO
OTpacib MEXAaHHWKH, YIPOCTUB KJIACCUYECKHE MOCTAHOBKHM 337a4 W IOJIYYUB B PE3YJIbTATE
TAaKOrO YIPOILIEHUS OCHOBHBIE «CKpMXKAIW» ISl ONMCAaHUS MEXaHWKH BpPAalaTEIIbHOTO
JBUKEHUSI CITyTHUKOB U IJIaHET.
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OT10 OBUT ONIMCTATENBHBIA YUEHBIH M HENPEeB30HAEHHBIN yunTenb. Ero mo mpaBy cuuTaroT
OJIHAM U3 OTLIOB-OCHOBATEJIE COBETCKOM M POCCHMCKOW IIKOJIBI JUHAMMKU KOCMHYECKOTO
nojéra B OOJIACTH TEOPHH BpallaTeNIbHBIX JBM)KEHUI MCKYCCTBEHHBIX W E€CTECTBEHHBIX
HeOecHbIX Ten. Bragmmup BacunbseBnu benernkuit ckonvancs 20 utons 2017 r. Bnagumup
BacunbeBnd noxoponen Ha TpoekypoBckoM kinagouiie B Mockse.
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