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Summary. In this paper, we study the notion of  -biflatness,  -biprojectivity, approximate 

biprojectivity and Johnson pseudo-contractibility for a new class of Banach algebras. Using 

this class of Banach algebras, we give some examples which are approximately biprojective. 

Also some Banach algebras are given among matrix algebras which are never Johnson 

pseudo-contractible. 

1 INTRODUCTION 

Given a Banach algebra  , Kamyabi-Gol  et al. in [4] defined a new product on   which is 

denoted by . In fact        ,  for each  ,    where   is an element of the closed unit 

ball   
  of  . A Banach algebra   equipped with  as its product is denoted by   . They 

studied some properties like amenability and Arens regularity of   . In [6] some homological 

properties of    like biflatness, biprojectivity and   amenability discussed. 

New notions of   amenability and approximate notions of homological Banach theory 

introduced and studied for Banach algebras see[14], [15] and [5]. In fact a Banach algebra a 

Banach algebra   is called approximate   contractible if there exists a net (    in   such 

that               and        , for every      where   is a multiplicative 

linear functional on  . For more information see [2]. Also a Banach algebra   is called 

approximate biprojective if there exists a net of bounded linear maps from   into     , say 

       , such that  

1.                
     
   , 

2.                
     
   , 

3.              , 

for every  ,    . In [1] the structure of approximate biprojective Banach algebras and its 

nilpotent ideals and also the relation with other notions of amenability are discussed. 

We present some standard notations and definitions that we shall need in this paper. Let   

be a Banach algebra. Throughout this work, the character space of   is denoted by     , that 
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is, all non-zero multiplicative linear functionals on  . For each        there exists a unique 

extension    to     which is defined           . It is easy to see that          . The 

projective tensor product      is a Banach  -bimodule via the following actions  

                                          

The product morphism           is given by             for every        

Let   and   be Banach algebras. We denote by     a map defined by          
         for all     and      It is easy to see that              

Let   and   be Banach   bimodules. The map       is called   bimodule morphism, 

if  

                                                    

Also a net of      of maps from   into   is called approximate   bimodule morphism, if  

                                                            

The content of the paper is as follows. In section 2 we study   homological properties of 

   like   biflatness and   biprojectivity. Approximate biprojectivity and Johnson pseudo-

contractibility are two important notions of Banach homology theory, which we discuss for 

   in section 3. We give some examples of matrix algebras to illustrate the paper.  

2.   - HOMOLOGICAL PROPERTIES OF CERTAIN BANACH ALGEBRAS 

This section is devoted to the concepts of Banach homology related to a character     

Proposition 2.1 [4, Proposition 2.3] Let A be a Banach algebra and     
  . Then    is 

unital if and only if A is unital and   is invertible.  

  

Proposition 2.2 [4, Proposition 2.4] Let A be a Banach algebra and     
  .Then the 

followings hold:   

1.  If   is a multiplicative linear functional on A, then       is a multiplicative linear 

functional on   .  

2.  If    is unital and   is a multiplicative linear functional on   , then              

is a multiplicative linear functional on A.  

  

Proposition 2.3 [6, Proposition 2.3] Let A be a Banach algebra and     
 . If    is unital 

then         = A, ( isometrically isomorphism ).  

  

Proposition 2.4  Suppose that   is a Banach algebra and also suppose that     
  and 

      . Then the followings hold:   

1.  If   is approximate   contractible and       , then    is approximately  -

contractible, where        .  

2. If    is unital and approximate   contractible, then   is approximate  -contractible, 

where              for each    .  

  

Proof. Suppose that   is approximately   contractible. So there is a net      in   such that    
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Define    
  

    
. Since                 , we have  

                       

   
  

    
     

  

    

   
  

    
      

  

    
      

  

    
     

  

    
                  

 

Also  

         
  

    
        

  

    
           

It follows that    is approximate   contractible. 

Suppose that              and also suppose that    is unital and approximately left 

  contractible. It is easy to see that           . Let      be a net in    such that  

                                           

Since  

                       

             

                

                

              

 

 we have  

                            

for each      Replacing   with      we have               Regarding  

                           

  we may suppose that          for each    Now define    
  

     
. Clearly          

Also  

             
  

     
     

  

     
    

It finishes the proof.  

Example 2.5 In this example we show that there exists a Banach algebra    which is not 

approximate  -contractible. Let     

         

       

     

         and suppose that   
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. Clearly   with matrix operations and   -norm is a Banach algebra. We know 

that   is invertible and by Proposition 2.1,    is unital. Define       by  

    

         

       

     

        

Clearly   is a character(multiplicative linear functional) and       . Suppose 

conversely that    is approximate   contractible. By previous Proposition(2),   becomes 

approximate   contractible. On the other hand by the same arguments as in the proof of [7, 

Theorem 5.1]   is not approximate   contractible, which is a contradiction.  

Let   be a Banach algebra and       .   is called  -biprojective, if there exists a 

bounded  -bimodule morphism          such that         . Also   is called  -

biflat if there exists a bounded  -bimodule morphism              such that      
   

   . For more information about   biflatness and   biprojectivity, the reader refers to 

[8] and [9]. 

 

Theorem 2.6 Let   be a Banach algebra and       . Suppose that     
  and         

If   is  -biprojective, then    is        -biprojective.  

  

Proof. Since   is  -biprojective, there exists a bounded   bimodule morphism     

     such that           Define    
 

    
 . We show that    is a bounded   -

bimodule morphism. To see this, consider  

 

        
 

    
       

 

    
         

 

    
    

   
 

    
    

                          

 

Also  

 

        
 

    
       

 

    
       

 

    
      

 
 

    
      

                          

 

On the other hand, since  

      
                

we have  
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So    is   biprojective.  

Using the similar arguments as in the proof of the previous theorem, we have the following 

corollary:  

Corollary 2.7 Let   be a Banach algebra and       . Suppose that     
  and         

If   is  -biflat, then    is        -biflat.  

   Let   be a Banach algebra and       .   is called   amenable if there exists a bounded 

net      in   such that              and          for every      see [5].  

Corollary 2.8 Let   be a Banach algebra and       . Suppose that     
  and         

If   is  -biflat and   has a left approximate identity, then    is approximate        -

contractible.  

  

Proof. Since   is  -biflat and   has a left approximate identity, by similar arguments as in the 

proof of [7, Theorem 2.2]   is  -amenable. It is easy to see that  -amenability of   implies 

that   is approximate   contractible. Applying Proposition 2.4,    becomes approximate 

  contractible.  

  Let   b a Banach algebra and         Then   is called approximate left  -biprojective if 

there exists a net of bounded linear maps from   into     , say        , such that   

    1.                  
     
   ,  

    2.                
     
   ,  

    3.              ,  

for every      , see [12].  

Theorem 2.9  Let   be a Banach algebra and       . Suppose that     
  and         

If   is approximate left  -biprojective, then    is approximate left        -biprojective.  

  

Proof. Since   is approximate left  -biprojective, there exists a net of bounded linear maps 

     from   into      such that  

                                                              

Define     
 

    
  . We show that there exists a net of bounded linear maps       from    in 

to        such that  

                                                                      

To see this, consider  
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Also  

                   
 

    
        

 

    
          

On the other hand, since  

      
                  

we have for       

      
                                                          

So    is approximate left   biprojective.  

  

Remark 2.10  Let   and   be Banach algebras and      
 
 

 and      
 
 

. Then there exist 

two sequences      and      in the unit ball   and the unit ball B such that       and 

       respectively. Since  

                                                    

we have         
 
    

. Define      
     

          
 by            

for every     and      It is easy to see that   is an isometric algebra isomorphism. Also 

  is a bounded          
 bimodule morphism.  

  

Proposition 2.11 Let   and   be Banach algebras and      
 
 

 and      
 
 

. Suppose that 

        and         which          and           If   and   are 

   biprojective and    biprojective, respectively, then          
 is          

         biprojective.  

  

Proof. Since   and   are    biprojective and    biprojective, respectively, then by 

Theorem 2.9,    and    are          biprojective and          biprojective, 

respectively. So there exist a    
 bimodule morphism       

    
     

 and a    
-

bimodule morphism       
    

     
 such that                         and 

                       . 

  Define       
     

       
     

      
     

       
     

  by  

                                  

where         and        . Clearly   is an isometric algebra isomorphism. Set   

                   , where   is the map defined as in Remark 2.10. We know that 

  is a bounded linear map from          
 into           

             
 . 

Consider  
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then clearly one can show that           
       

     
. Hence,  

           
                    

           
       

and it is easy to see that  

                                                              

 the proof is complete.  

 

3 APPROXIMATE HOMOLOGICAL PROPERTIES OF CERTAIN BANACH 

ALGEBRAS 

In this section we investigate approximate biprojectivity and Johnson pseudo-

contractibility of   .  

Theorem 3.1  Suppose that   is a Banach algebra and also suppose that     
 . Then the 

followings hold:   

1.  If   is approximately biprojective and    is unital then    is approximately 

biprojective.  

2.  If    is unital and approximately biprojective, then   is approximately biprojective.  

 

Proof. To show (1), suppose that   is approximately biprojective and    is unital. It follows 

that there is an approximately   bimodule morphism      from   into      such that 

             for each      Note that  

                               

                                   
 

and  

                               

                                   
 

for each       It implies that      from    into        is an approximately   -bimodule 

morphism. Define                 by                Note that using 

Proposition 2.1, the definition of   makes sense. It is easy to see that  

                                                               

Set         . Using direct calculations we can see that  

   
           

It follows that    
                                 

Thus    is approximately biprojective. 
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To show (2), suppose that    is unital and approximately biprojective. By Proposition 2.3, 

we know that          . Now applying (1) it is easy to see that   is approximately 

biprojective.  

A Banach algebra   is called biprojective if there exists a bounded   bimodule morphism 

         such that           for each      see [13].  

Example 3.2 In this example we give a Banach algbra    which is approximately  

biprojective. Let     

         

         

         

        . With the matrix operations and   -norm, 

  becomes a Banach algebra. Suppose that   

 

 
 

 

 

 

 
 

 
 

 
 

  
 

  

 
 

. Clearly   is invertible and   is 

unital. So by Proposition 2.1,    is unital. It is well-known that   is biprojective, see [13]. So 

  is approximately biprojective. Applying previous theorem    becomes approximately 

biprojective.  

  

Definition 3.3 We say that a Banach algebra   has approximate (F)-property(or   is AFP) if  

there is an approximate   bimodule morphsim      from   into          such that 

  
              for each       

 For the motivation of this definition see [3].  

Proposition 3.4 If   is AFP and    is unital, then    is approximately biprojective.  

  

Proof. Since   is AFP, there exists an approximate   bimodule morphsim      from   into 

         such that   
              for each      It is easy to see that      is an 

approximate    bimodule morphsim from    into         
   such that    

         

     for each       Let                 be the same map as in the proof of 

Theorem 3.1. Clearly   is   -module morphism, so is    . Similar to the proof of Theorem 

3.1, for the net          is an approximate    bimodule morphism from    into 

        
   such that  

   

                 
                        

We denote the identity of    with    and define          . Clearly      is a net in 

        
   which satisfies  

                       

                         

Take     and arbitrary finite subsets     ,           
  and     

 . Then we 

have  
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It is well-known that for each  , there exists a net    
    in        such that   

 
  

    . 

Since    

   is a   -continuous map, we have    
   

      

     
  

  

    
        

Thus we have       
              

 

  
        

               
 

  
 

and      
   

         

           
 

  
  

for each    ,     and     , where                   and                  . 
Since             and    

              we can find              such 

that 

      
       

         
 

  
        

   
              

 

  
                   

for some     . Using Mazur’s lemma, we have a net              in        such that  

                                                                         

Define                      by                            for each       It is clear 

that                                 for each        Also  

                                                                    

                                      
 (3.1) 

for each         Also  

     
                        

                  

      
                  

                  
                  

      
                  

                      
                  

   

 

for each    . Thus with respect to the net                           becomes approximately 

biprojective. 

A Banach algebra   is called Johnson pseudo-contractible, if there exists a not necessarily 

bounded net      in          such that           and   
             for 

every      see [11] and [10]. 

A Banach algebra   is called biflat, if there is a bounded   bimodule morphsim   from   

into          such that   
          , for each    , see [13]. 

Proposition 3.5 Let   be a Banach algebra and     
 . Suppose that    is unital. Then   is 

Johnson pseudo-contractible if and only if    is Johnson pseudo-contractible.  

Proof. Since    is unital, by Proposition 2.1   is unital. So using [3, Theorem 2.1], Johnson 

pseudo-contractibility of   implies that   is amenable. Thus by [13, Exercise 4.3.15],   is 

biflat. Then by [6, Theorem 2.4]    is biflat. Since    is unital, biflatness of    gives the 

amenability of   . 

For converse, suppose that    is Johnson pseudo-contractible. Since    is unital by [3, 

Theorem 2.1]    is amenable, so is biflat. Applying [6, Theorem 2.4] follows that   is biflat. 

13
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Using Proposition 2.1,   is unital, thus by [13, Exercise 4.3.15]   is amenable. So [11, 

Lemma 2.1] implies that   is Johnson pseudo-contractible. 

Example 3.6 We give a Banach algebra    which is not Johnson pseudo-contractible. Let  

    

         

       

     

         and suppose that   

 

 
 

 

 

 

 
 

 
 

 
 

  
 

  

 
 

. Clearly   is invertible  

and   is unital. So by Proposition 2.1    is unital. Using [11, Theorem 2.5] we know that   is 

not Johnson pseudo-contractible. So by previous proposition    is not Johnson pseudo-

contractible.  
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Summary. Congruences involving sums of Harmonic numbers and binomial coefficients are 

considered in this paper. Recently, many great mathematicians have been interested to find 

congruences and relationships between these numbers such Sun & Tauraso, Koparal & Ömür, 

Mao & Sun and Meštrović & Andjić. In the present paper, some new combinatorial 

congruences are proved. These congruences are mainly determined modulo    or    (  in any 

prime) and they are motivated by a recent paper by Meštrović and Andjić. The first main 

result (Theorem 1) presents the congruence modulo    (      is any prime) involving sum 

of products of two binomial coefficients and Harmonic numbers. Two interesting congruences 

modulo a prime     (Corollary 2) involving Harmonic numbers   , Catalan numbers    

and Fermat quotient               are obtained as consequences of Theorem 1. The 

second main result (Theorem 2) presents the congruence modulo    (      is any prime) 

involving sum of products of two binomial coefficients and Harmonic numbers.  

1. INTRODUCTION AND MAIN RESULTS 

The harmonic number and the congruence in the ring of   integer    ply important role in 

mathematics. Recall that harmonic numbers are to be 

         
 

 

 

   

      

   is the set of rational numbers having denominators not divisible by   and the unit group 

      is the set of rational numbers having denominators and numerators not divisible by  .  

We define, for all prime number   and for all numbers        

            ⇔                         . 

This shows when           that  

            ⇔ 
 

 
 

 

 
          

Congruences involving sums of Harmonic numbers and binomial coefficients in the ring of 

  integer have been studied recently by many mathematicians and a considerable amount of 

research results has been produced, such in 2011 Sun and Tauraso [9] proved, that for any 

prime    , the following congruences hold 
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where  
 

 
  denotes the Legendre symbol and               is the Fermat quotient with 

a prime   and an integer  . Also, in 2016 Mao and Sun [5] established, that for a prime   
 , the following congruences 

                                
  
 
 

   

   

  
 
 
 

 
 
 

 
      

 

 
                                     

                               
  
 
 

   

   

   
 
 
 

  
 
 

 
      

 

 
                                   

where       is the  -th Bernoulli polynomial. In 2016 Koparal and Ömür [2] proved that 

                      

       

   

 
  
 
      

  

 
        

                                       

                           
    
     

 

       

   

 
    
 

 
    

 
                                     

and if  
 

 
    they also proved that 

                       
  
 
 

       

   

    
     

 
 

 
             

  

 
                               

where    is the Fibonacci numbers,  
 

 
  denotes the Legendre symbol,      is the Pell-Lucas 

sequence and    
 

   
 
  
 
  is the  -th Catalan number. 

We have the following two theorems and corollaries. 

Theorem 1. Let     be a prime number and                  . We have 

               
   
 

 
  

 
       

 
    

 

    
            

       

   

                    

where 
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Reducing the modulus in this congruence to get 

              
   
 

 
  

 
  
 
 
  
  

 
  

    
                        

       

   

                

By the congruence (16), the congruence (9) for         and by the fact that 

 
   
 

 
  

 
 

   
 

 

   
  

we may state: 

Corollary 2. For each prime number     we have 

                               
    
  

             

       

   

                                     

                      
  
 
 

       

   

  
       

 
 

 
 
 

 
                                            

Theorem 3. Let     be a prime number and                  . We have 

          

       

   

 
       

 
  
 
 
     

     

      
   

           

       
 
  
 
                   

Reducing this modulus to obtain 

                   
  
 
 

       

   

 
 
 
 
   
  

 
     

    
   

           

   
 
  
 
                        

Corollary 4. For each prime     we have 

        

       

   

 
       

 
     

 

   
   

           

    
           

        

       

   

 
       

 
       

 

   
   

           

  
          

and 
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To prove Theorem 1, we give the following two lemmas. 

Lemma 5. [8, Eq. 19] Let     and     be integers. The following identity holds 

                      
 

   

 
   
 

 
  

 
 
 
    

 

   
                                      

Lemma 6. Let     be a prime number. Then for                   we have 

           
 
    

                             
 

 
         

                     

Reducing the modulus in this congruence to obtain 

    
 
    

                          

Proof. We have 

    
 
    

  
 

 

       

   

  
 

   
 

  

   

   

                   

  
 

 

       

   

   
 

        

   

   

    

     
 
   

        

          

   

   

     

     
 
   

        

       

   

   

       

                 
 
     

 

       

   

   

   
 

    

   

   

     

                                
 
            

 

 
                

 

 
            

which, by the result congruence of Lehmer [4]     

 

         
            the proof is 

complete. 
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Proof of Theorem 1. From the relation (14), we can write 

         
   
 

 
  

 
       

 
    

 

  
   
 

     
 
    

      

       

   

 

                                           
  

      
     

 
    

        

So, by the congruences (15) and 

 

      
 

 

    
 

 

       
         

we obtain 

         
   
 

 
  

 
       

 
   

       

   

 

  
  

    
 

   

       
                              

 

 
         

         

  
  

    
 

   

       
                               

 

 
         

    

 
 

    
                    

             
 

    
    

                   
             

    
             

To prove the relationship (9) we use the known congruence [2] 

                           
       

 
  

 

     
 
  
 
                                                            

Proof of Theorem 2. Let             in the identity of Corollary 2.2 [1] 

         
 
 
 

 

   

 
 
 
     

     

   
 
 

 
 
         

  
 
 

 
    
   

 
   

Then, we have 
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From the known congruence [7] 

 
   

       
      

   
                

we have 

        

       

   

 
       

 
  
 
 
     

     

      
       

   
 

        
  
 
 

    
  

                                     
     

      
       

   
      

  
 
  
 

 
 
   

           

To prove the relationship (13), use the congruence (16) and Fermat little theorem. 

2. CONCLUSION 

The principal results of this paper given by Theorems 1 and 2 represent an interesting 

contribution in congruences. They are obtained upon using technical operations on the 

binomial coefficients, harmonic numbers and Catalan numbers. To extend our results using 

the useful technics or methods to study congruences in the ring of  -integers may be, in 

general, difficult. A first question on the extension of these congruences is: how can us 

generalize the obtained congruences modulo some successive powers of a prime number 

    A second question on such extensions of Theorems 1 and 2 can be viewed as 

generalizations on using the  -Binomial coefficients instead of the binomial coefficients or 

the hyper-harmonic numbers instead of the harmonic numbers. These seem to be interesting 

and require technical calculus and some mathematical tools based on number theory and on 

complex integration.  
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Summary. In this paper, we extend the characterizations of Kuroki [17], by initiating the 

concept of intuitionistic fuzzy left ( resp. right, interior, quasi-, bi-,  generalized bi- )  ideals in 

a class of non-associative and non-commutative rings ( LA-ring ) . We characterize regular 

( intra-regular, both regular and intra-regular )  LA-rings in terms such ideals. 

 

1 INTRODUCTION 

In ternary operations, the commutative law is given by .cbaabc   Kazim and Naseerudin 

[7], have generalized this notion by introducing the parenthesis on the left side of this 

equation to get a new pseudo associative law, that is  .)()( acbcab   This law  acbcab )()(   is 

called the left invertive law. A groupoid S  is called a left almost semigroup ( abbreviated as 

LA-semi-group )  if it satisfies the left invertive law. An LA-semi-group is a midway structure 

between a commutative semigroup and a groupoid. 

A groupoid S  is said to be medial ( resp. paramedial ) if ))(())(( bdaccdab   ( resp.  

)).)(())(( cadbcdab   An LA-semi-group is medial, but in general an LA-semi-group needs not 

to be paramedial. Every LA-semi-group with left identity is paramedial and also satisfies  
).)(())((),()( badccdabacbbca   

 Kamran [16], extended the notion of LA-semi-group to the left almost group ( LA-

group ).  An LA-semi-group G is called a left almost group, if there exists a left identity  

Ge    such that  aea    for all  Ga    and for every  Ga    there exists  Gb    such that  

.eba     

Shah et al. [22], by a left almost ring, mean a non-empty set R  with at least two elements 

such that  ,R  is an LA-group,  ,R  is an LA-semi-group, both left and right distributive 

laws hold. For example, from a commutative ring  ,,, R  we can always obtain an LA-ring  

 ,,R  by defining for all ,, Rba   abba   and ba   is same as in the ring. Although 

the structure is non-associative and non-commutative, nevertheless, it possesses many 

interesting properties which we usually find in associative and commutative algebraic 

structures.  

A non-empty subset A  of R  is called an LA-subring of R  if Aba   and Aab   for all  

22
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., Aba   A  is called a left ( resp. right )  ideal of R  if  ,A   is an LA-group and 

(ARA  resp.  ).AAR   A is called an ideal of  R  if it is both a left ideal and a right 

ideal of  .R  

A non-empty subset A  of R  is called an interior ideal of R  if  ,A  is an LA-group 

and .)( ARRA   A non-empty subset A  of R  is called a quasi-ideal of R  if  ,A  is an LA-

group and .ARAAR   An LA-subring A  of R  is called a bi-ideal of R  if  .)( AAAR    A 

non-empty subset A  of  R  is called a generalized bi-ideal of R  if  ,A   is an LA-group and 

.)( AAAR    

We will define the concept of intuitionistic fuzzy left ( resp. right, interior, quasi-, bi-, 

generalized bi- ) ideals of an LA-ring .R  We will establish a study by discussing the different 

properties of such ideals. We will characterize regular ( resp. intra-regular, both regular and 

intra-regular )  LA-rings by the properties of intuitionistic fuzzy ( left, right, quasi-, bi-, 

generalized bi- )  ideals such ideals. 

2 INTUITIONISTIC FUZZY IDEALS IN LA-RINGS 

After, the introduction of fuzzy set by Zadeh [24], several researchers explored on the 

generalization of the notion of fuzzy set. The concept of intuitionistic fuzzy set was 

introduced by Atanassov [1], as a generalization of the notion of fuzzy set. Liu [18], 

introduced the concept of fuzzy subrings and fuzzy ideals of a ring. Many authors have 

explored the theory of fuzzy rings ( for example [3, 9, 11-15, 18, 19-20, 23] ).  Gupta and 

Kantroo [4], gave the idea of intrinsic product of fuzzy subsets of a ring. Kuroki [17], 

characterized regular ( intra-regular, both regular and intra-regular )   rings in terms of fuzzy 

left ( right, quasi, bi- )  ideals. 

An intuitionistic fuzzy set ( briefly, IFS )  A  in a non-empty set X  is an object having the 

form },:))(),(,{( XxxxxA AA    where the functions ]1,0[: XA  and ]1,0[: XA  

denote the degree of membership and the degree of non-membership, respectively and  

1)()(0  xx AA    for all  Xx    [1]. 

An intuitionistic fuzzy set }:))(),(,{( XxxxxA AA    in X  can be identified to be an 

ordered pair  ),( AA    in  ,XX II    where  
XI   is the set of all functions from  X   to  ].1,0[   

For the sake of simplicity,  we shall use the symbol  ),( AAA    for the IFS  

}.:))(),(,{( XxxxxA AA     

Banerjee and Basnet [2] and Hur et al. [6], initiated the notion of intuitionistic fuzzy 

subrings and intuitionistic fuzzy ideals of a ring. Subsequently many authors studied the 

intuitionistic fuzzy subrings and intuitionistic fuzzy ideals of a ring by describing the different 

properties ( see [5] ).  Shah et al. [21, 22] initiated the concept of intuitionistic fuzzy normal 

subrings over a non-associative ring and also characterized the non-associative rings by their 

intuitionistic fuzzy bi-ideals in [8]. Kausar [10] explored the notion of direct product of finite 

intuitionistic anti fuzzy normal subrings over non-associative rings. 
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We initiate the notion of intuitionistic fuzzy left ( resp. right, interior, quasi-, bi-, 

generalized bi- )  ideals of an LA-ring .R    

 An intuitionistic fuzzy set ( IFS )  ),( AAA   of an LA-ring R  is called an intuitionistic 

fuzzy LA-subring of R  if 

       )},(,min{1 yxyx AAA     

       )},(,max{2 yxyx AAA     

        },,min{3 yxxy AAA     

        },,max{4 yxxy AAA   for all ., Ryx     

An IFS ),( AAA   of an LA-ring R  is called an intuitionistic fuzzy left ideal of  R  if  

       )},(,min{1 yxyx AAA     

       )},(,max{2 yxyx AAA     

      ,3 yxy AA     

      ,4 yxy AA    for all ., Ryx     

An IFS ),( AAA   of an LA-ring R  is called an intuitionistic fuzzy right ideal of R  

if  

       )},(,min{1 yxyx AAA     

       )},(,max{2 yxyx AAA     

      ,3 xxy AA     

      ,4 xxy AA    for all  ., Ryx     

An IFS ),( AAA  of R  is called an intuitionistic fuzzy ideal of an LA-ring R if it is 

both an intuitionistic fuzzy left ideal and an intuitionistic fuzzy right ideal of .R    

Let A  be a non-empty subset of an LA-ring .R  Then the intuitionistic characteristic of  A  is 

denoted by 
AAA   ,  and defined by  

   


















Ax

Ax
x

Ax

Ax
x

AA   1

 0

  0

  1

if

if
 and

if

if  
   

We note that an LA-ring R  can be considered an intuitionistic fuzzy set of itself and we 

write ,RIR   i.e.,    )0,1(,)(  RRxR   for all  .Rx    

Let A  and B  be two intuitionistic fuzzy sets of an LA-ring .R  Then 

   BABA  1  and ,BA     

 BABA )2( and ,AB    

    ,,3 AA

cA    
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 )4(     ,,, BABABABABA     

    ,,,)5( BABABABABA    

 )6(     .0,11),1,0(0   

The product of ),( AAA   and ),( BBB   is denoted by  

),( BABABA     and defined as: 

















































ii

n

i

iiii

n

i
iBiA

n

i
bax

BA

ii

n

i

iiii

n

i
iBiA

n

i
bax

BA

bax

Rbabaxba

x

bax

Rbabaxba

x

ii

n

i

ii

n

i

1

1
1

1

1
1

1

, ,  )}}()({{

))(( 

0

, ,  )}}()({{

))((

1

1

 if

 if

 and

 if

 if













 

An IFS  AAA  ,   of an LA-ring R  is called an intuitionistic fuzzy interior ideal of R   

if  

       ),(1 yxyx AAA     

       ),(2 yxyx AAA     

      ,)(3 yzxy AA     

      ,)(4 yzxy AA    for all .,, Rzyx    

An IFS  AAA  ,  of an LA-ring R  is called an intuitionistic fuzzy quasi-ideal of R  if 

       ,1 AAA RR      

     ,)2( AAA RR      

       ),(3 yxyx AAA     

       ),(4 yxyx AAA    for all ., Ryx    

An Intuitionistic fuzzy LA-subring  AAA  ,  of an LA-ring R  is called an 

intuitionistic fuzzy bi-ideal  of R   if  

        ,)(1 zxzxy AAA     

        ,)(2 zxzxy AAA    for all .,, Rzyx    

An IFS  AAA  ,  of an LA-ring R  is called an intuitionistic fuzzy generalized bi-ideal 

of  R   if  

       ),(1 yxyx AAA     

25



N. Kausar, M. Alesemi, Salahuddin and M. Munir. 

       ),(2 yxyx AAA     

        ,)(3 zxzxy AAA     

        ,)(4 zxzxy AAA   for all .,, Rzyx    

An intuitionistic fuzzy ideal  AAA  , of an LA-ring R is called an intuitionistic 

fuzzy idempotent if 
AAA    and .AAA      

Now we give some imperative properties of such ideals of an LA-ring ,R  which will be 

very helpful in later sections.  

Lemma 2.1: Let R  be an LA-ring. Then the following properties hold: 

  1      ,ABCCBA     

          ,2 DBCADCBA    

      ,3 CABCBA     

         ),(4 ACBDDCBA     

          ,5 ABCDDCBA    for all intuitionistic fuzzy sets CBA ,,  and D  of  .R  

Proof: Obvious.  

Theorem 2.2: Let A  and B  be two non-empty subsets of an LA-ring .R  then the following 

properties hold: 

  1   If  BA    then  .BA     

   .2 ABBA     

    

  4    .BABA     

 Proof:  1   Suppose that  BA    and  .Ra    If  ,Aa    this implies that  .Ba   Thus  

)(1)( aa
BA      and  ),(0)( aa

BA      i.e.,  .BA      

If  ,Aa   and .Ba    Thus  )(0)( aa
BA      and  ),(1)( aa

BA     i.e.,  

.BA     

If αA and αB. Thus μA(α) = 0 and μB(α) = 1 and γA(α) = 1 and γB(α) = 0, i.e.,  

 2  Let xR and xAB. This means that x=ab for some αA and bB.  

Now 

If ,ABx    i.e.,  abx    for all  Aa    and  .Bb   Then there are two cases.  

    

    
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 i  If  uvx    for some  ,, Rvu    then  

    

    
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 ii  If  uvx    for all  ,, Rvu    then obviously  ).(0))(( xx ABBA     Hence  

.ABBA    

Similarly, we can prove (3) and (4).  

Theorem 2.3: Let A  be a non-empty subset of an LA-ring .R  then the following properties 

hold.  

   A1  is an LA-subring of  R   if and only if A  is an intuitionistic fuzzy LA-subring of  .R   

   A2  is a left ( resp. right, two-sided )  ideal of R  if and only if A  is an intuitionistic 

fuzzy left (  resp. right,  two-sided )  ideal of  .R   

Proof:  1  Let A  be an LA-subring of R  and ., Rba   If  ,, Aba    then by definition  

)(1)( ba AA    and ).(0)( ba AA   Since ba    and  AAab ,   being an LA-

subring of ,R  this implies that )(1)( abba AA    and ).(0)( abba AA     

Thus  

   

   .)()(,)()(

)()(,)()(

baabbaba

baabbaba

AAAAAA

AAAAAA









 and
 

Similarly, we have  

   

   .)()(,)()(

.)()(,)()(

baabbaba

baabbaba

AAAAAA

AAAAAA









 and
 

when ., Aba   Hence A  is an intuitionistic fuzzy LA-subring of .R    

Conversely, suppose that A  is an intuitionistic fuzzy LA-subring of R  and let  ., Aba    

This means that  )(1)( ba AA    and ).(0)( ba AA   Since  

 

 

 

  ,000)()(

,000)()(

,111)()(

,111)()(









baab

baba

baab

baba

AAA

AAA

AAA

AAA









 

A  being an intuitionistic fuzzy LA-subring of .R  Thus )(1)( abba AA    and  

),(0)( abba AA     i.e.,  ba    and  .Aab    Hence  A   is an LA-subring of  .R   
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  2   Let A  be a left ideal of R  and ., Rba   If ,, Aba   then by definition  

)(1)( ba AA     and ).(0)( ba AA   Since ba   and AAab ,  being a left 

ideal of  ,R  this implies that )(1)( abba AA    and ).(0)( abba AA     Thus  

   

   .)(,)()(

)(,)()(

babbaba

babbaba

AAAAA

AAAAA









 and
 

Similarly, we have  

   

   .)(,)()(

)(,)()(

babbaba

babbaba

AAAAA

AAAAA









 and
 

when ., Aba   Therefore A  is an intuitionistic fuzzy left ideal of .R    

Conversely, assume that  A   is an intuitionistic fuzzy left ideal of  R   and let                       

Aba ,  and  .Rz   This means that )(1)( ba AA     and  ).(0)( ba AA    

Since 

 

 
 

 

 

A  being an intuitionistic fuzzy left ideal of .R  Thus )(1)( zbba AA    and  

),(0)( zbba AA     i.e.,  ba    and  .Azb   Therefore  A   is a left ideal of  .R    

Remark 2.4:    Ai   is an additive LA-subgroup of R  if and only if A  is an intuitionistic 

fuzzy additive LA-subgroup of  .R   

  Aii  is an LA-subsemigroup of R  if and only if A  is an intuitionistic fuzzy LA-

subsemigroup of  .R   

Lemma 2.5: If A  and B  are two intuitionistic fuzzy LA-subrings ( resp. ( left, right, two-

sided )  ideals )  of an LA-ring ,R   then BA   is also an intuitionistic fuzzy LA-subring       

( resp. ( left, right, two-sided )  ideal )  of .R   

Proof: Obvious. 

Lemma 2.6: If A  and B  are two intuitionistic fuzzy LA-subrings of an LA-ring ,R  then  

BA    is also an intuitionistic fuzzy LA-subring of  .R   

Proof: Let  AAA  ,  and  BBB  ,  be two intuitionistic fuzzy LA-subrings of .R   We 

have to show that  BA    is also an intuitionistic fuzzy LA-subring of  .R   Now  

.)()()()()(

)()()()()(

2

2

BABBAABABABA

BABBAABABABA













 and  

Since BBB    and  BBBBB B  ,,   being an intuitionistic fuzzy 

LA-subring of .R  This implies that BABBA    )(  and  

 

 

 

  ,0)(

,000)()(

,1)(

,111)()(









bzb

baba

bzb

baba

AA

AAA

AA

AAA








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,)( BABBA     i.e., BABABA     and  

.BABABA     Therefore BA   is an intuitionistic fuzzy LA-subring of .R    

Remark 2.7: If A   is an intuitionistic fuzzy LA-subring of an LA-ring ,R   then AA    is 

also an intuitionistic fuzzy LA-subring of .R   

Lemma 2.8: Let R   be an LA-ring with left identity .e  Then  RRR    and  .Re ReR   

Proof: Since RRR   and  ,RRexx    where  ,Rx    i.e.,  .RRR   Since e  is the left 

identity of ,R  i.e.,  .ReR    Now    .)(Re RRRReReRR     

Lemma 2.9: Let R  be an LA-ring with left identity .e  Then every intuitionistic fuzzy right 

ideal of R   is an intuitionistic fuzzy ideal of .R   

Proof: Let  AAA  ,  be an intuitionistic fuzzy right ideal of R  and ., Ryx   Now 

           

           .yyxeyxyexxy

yyxeyxyexxy

AAAAA

AAAAA









 and  

Thus A  is an intuitionistic fuzzy ideal of .R   

Lemma 2.10: If A and B  are two intuitionistic fuzzy left (  resp. right )  ideals of an LA-

ring R  with left identity ,e   then BA    is also an intuitionistic fuzzy left ( resp. right )   

ideal of .R   

Proof: Let  AAA  , and  BBB  ,  be two intuitionistic fuzzy left ideals of .R   We 

have to show that BA   is also an intuitionistic fuzzy left ideal of .R  

Since BABABA    and BABABA    . Now  

).()()()()()(

)()()()()()(

BAAABABA

BABABABA

RRRRR

RRRRR













 and  

Hence BA   is an intuitionistic fuzzy left ideal of .R   

Remark 2.11: If A  is an intuitionistic fuzzy left ( resp. right )  ideal of an LA-ring R  with 

left identity ,e   then  AA    is an intuitionistic fuzzy  ideal of  .R  
Lemma 2.12: If A  and B  are two intuitionistic fuzzy ideals of an LA-ring ,R  then  

.BABA    

Proof: Let  AAA  ,  and  BBB  , be two intuitionistic fuzzy ideals of  R   and  

.Rx   If x  cannot expressible as ,
1 ii

n

i
bax 

  where Rba ii ,  and n  is any positive 

integer, then obviously ,BABA    otherwise we have 

      

    

   

.

.)(})({

}{

}{)(

1

1

1

1

1

1

BABA

BAiiBA

n

i
bax

iiBiiA

n

i
bax

iBiA

n

i
bax

BA

xba

baba

bax

ii

n

i

ii

n

i

ii

n

i













































 

Similarly, we can prove .BABA    
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Therefore BABA   for all intuitionistic fuzzy ideals A  and B  of .R   

Remark 2.13: If A  is an intuitionistic fuzzy ideal of an LA-ring  ,R   then  .AAA    

Lemma 2.14: Let R  be an LA-ring. Then BABA   for every intuitionistic fuzzy right 

ideal A and every intuitionistic fuzzy left ideal B  of .R   

Proof: Same as Lemma 2.12 

Theorem 2.15: Let A  be a non-empty subset of an LA-ring .R  Then  is an interior (resp. 

quasi-, bi-, generalized bi-) ideal of R  if and only if A  is an intuitionistic fuzzy interior 

(resp. quasi-, bi-, generalized bi-) ideal of  .R   

Proof: Let A  be an interior ideal of ,R  this implies that A  is an additive LA-subgroup of 

.R Then A is an intuitionistic fuzzy additive LA-subgroup of R  by the Remark 2.4. Let  

.,, Rayx   If ,Aa   then by definition 1)( a
A  and .0)( a

A Since  

AAyxa ,)(   being an interior ideal of ,R  this means that 1))(( yxa
A  and 

.0))(( yxa
A  Thus )())(( ayxa

AA     and  ).())(( ayxa
AA     Similarly, we 

have )())(( ayxa
AA     and  ),())(( ayxa

AA      when  .Aa    Hence  A   is an 

intuitionistic fuzzy interior ideal of  .R    

Conversely, suppose that A  is an intuitionistic fuzzy interior ideal of ,R this means that A  

is an intuitionistic fuzzy additive LA-subgroup of .R  Then A  is an additive LA-subgroup of 

R  by the Remark 2.4. Let Ryx ,  and ,Aa    so  1)( a
A  and .0)( a

A  Since 

1)())((  ayxa
AA    and ,0)())((  ayxa

AA    A  being an intuitionistic 

fuzzy interior ideal of .R  Thus 1))(( yxa
A  and  ,0))(( yxa

A   i.e.,  .)( Ayxa   

Hence A  is an interior ideal of .R  Similarly, we can prove for (quasi-, bi-, generalized bi-) 

ideal. 

Lemma 2.16: If A  and B  are two intuitionistic fuzzy bi- ( resp. generalized bi-, quasi-, 

interior )  ideals of an LA-ring ,R  then BA  is also an intuitionistic fuzzy bi- ( resp. 

generalized bi-, quasi-, interior )  ideal of  .R   

Proof: Obvious.  

Lemma 2.17: If A  and B  are two intuitionistic fuzzy bi- ( resp. generalized bi-, interior )   

ideals of an LA-ring R  with left identity ,e  then BA   is also an intuitionistic fuzzy bi-  

( resp. generalized bi-, interior )  ideal of .R   

Proof: Let  AAA  ,  and  BBB  ,  be two intuitionistic fuzzy bi-ideals of .R   We 

have to show that  BA    is also an intuitionistic fuzzy bi-ideal of .R  Since A  and  B  are 

two intuitionistic fuzzy LA-subrings of ,R then BA   is also an intuitionistic fuzzy LA-

subring of R  by the Lemma 2.6. Now 

 

.

))(())((

)())()((

)())()(()())((

BA

BBAA

BABA

BABABABA

RR

RR

RRR
























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Similarly, we have .)())(( BABABA R     Therefore BA   is an intuitionistic 

fuzzy bi-ideal of  .R   

Lemma 2.18: Every intuitionistic fuzzy ideal of an LA-ring R  is an intuitionistic fuzzy 

interior ideal of  .R  The converse is not true in general. 

Proof: Let ),( AAA   be an intuitionistic fuzzy ideal of R  and .,, Rzyx   Thus  

     yxyzxy AAA  )(  and      .)( yxyzxy AAA    Hence A  is an intuitionistic 

fuzzy interior ideal of  .R  
The converse is not true in general, giving an example: 

Example 2.19: Let }7,6,5,4,3,2,1,0{R   is an LA-ring. 

033003307

077007706

077007705

033003304

000000003

044004402

044004401

000000000

76543210

 

012345677

203164756

130257465

321076544

456701233

647520312

574613021

765432100

76543210 

      and

 

Let  ),( AAA    be an IFS of an LA-ring .R  We define   

,7.0)4()0(  AA     0)7()6()5()3()2()1(  AAAAAA   

and ,0)4()0(  AA     .7.0)7()6()5()3()2()1(  AAAAAA   

),( AAA   is an intuitionistic fuzzy interior ideal of ,R  but not an intuitionistic fuzzy 

ideal of  ,R   because A  is not an intuitionistic fuzzy right ideal of  ,R  as 

).4()41(

.0)4(

.7.0)3()41(

).4()41(

.7.0)4(

.0)3()41(

AA

A

AA

AA

A

AA

























 and
 

Proposition 2.20: Let ),( AAA   be an IFS of an LA-ring R  with left identity .e  Then  

A   is an intuitionistic fuzzy ideal of R if and only if A  is an intuitionistic fuzzy interior ideal 

of .R   

Proof: Let ),( AAA   be an intuitionistic fuzzy interior ideal of R  and ., Ryx    

Thus )())(()( xyexxy AAA    and ),())(()( xyexxy AAA    i.e., A  is an 

intuitionistic fuzzy right ideal of  .R  Hence A  is an intuitionistic fuzzy ideal of  R   by the 

Lemma 2.9. Converse is true by the Lemma 2.18. 
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Lemma 2.21: Every intuitionistic fuzzy left ( resp. right, two-sided )  ideal of an LA-ring R   

is an intuitionistic fuzzy bi-ideal of .R  
Proof: Suppose that ),( AAA   is an intuitionistic fuzzy right ideal of R  and  

.,, Rzyx   Thus  

               xxyzxy AAA  )(  and ),()())(())(( zzyxzyzxy AAAA     

this implies that ).()())(( zxzxy AAA    Similarly, we have ).()())(( zxzxy AAA    

Therefore A  is an intuitionistic fuzzy bi-ideal of  .R  
The converse is not true in general, giving an example: 

Using Example 2.19, ),( AAA   is an intuitionistic fuzzy bi-ideal of ,R  but not an 

intuitionistic fuzzy right ideal of ,R  as 

).4()41(

.0)4(

.7.0)3()41(

).4()41(

.7.0)4(

.0)3()41(

AA

A

AA

AA

A

AA

























 and

 

Lemma 2.22: Every intuitionistic fuzzy bi-ideal of an LA-ring R  is an intuitionistic fuzzy 

generalized bi-ideal of  .R   

Proof: Obvious.  

Lemma 2.23: Every intuitionistic fuzzy left (  resp. right, two-sided )  ideal of an LA-ring  R   

is an intuitionistic fuzzy quasi-ideal of .R   

Proof: Assume that  AAA  ,  is an intuitionistic fuzzy left ideal of .R  Now  

AAAA RRR     and .AAAA RRR     So A  is an intuitionistic 

fuzzy quasi-ideal of .R   

Lemma 2.24: Let R   be an LA-ring with left identity ,e  such that xRRxe )(   for all  

.Rx  Then every intuitionistic fuzzy quasi-ideal of R  is an intuitionistic fuzzy bi-ideal of  

.R   

Proof: Let   AAA  ,   be an intuitionistic fuzzy quasi-ideal of R  and AAA   by the 

Proposition 2.20. Now  

.)(

.)()()(

)()()()(

)()(

AAAAA

AAA

AAAA

AAAA

RRR

RReRRe

ReRRRR

RRRR

























 and

 

Similarly, .)( AAAAA RRR    Hence A  is an intuitionistic fuzzy bi-ideal 

of .R   
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3 REGULAR LA-RINGS 

An LA-ring R  is called a regular if for every ,Rx  there exists an element  Ra    

such that .)( xxax   In this section, we characterize regular LA-rings by the properties of 

intuitionistic fuzzy left ( right, quasi-, bi-, generalized bi- )  ideals.  

Lemma 3.1: Every intuitionistic fuzzy right ideal of a regular LA-ring R  is an intuitionistic 

fuzzy ideal of  .R   

Proof: Suppose that  AAA  ,  is an intuitionistic fuzzy right ideal of .R  Let  ,, Ryx   this 

implies that there exists an element ,Ra  such that .)( xxax   Thus    

                                )()()))((()))((()( yyxxayxyxxaxy AAAAA    

and 

                                ).()()))((()))((()( yyxxayxyxxaxy AAAAA    

Hence A  is an intuitionistic fuzzy ideal of .R  
Lemma 3.2: Let  AAA  ,  be an IFS of a regular LA-ring .R  Then A  is an 

intuitionistic fuzzy ideal of R   if and only if A  is an intuitionistic fuzzy interior ideal of .R   

Proof: Consider that  AAA  ,  is an intuitionistic fuzzy interior ideal of .R  Let  

,, Ryx   then there exists an element ,Ra   such that .)( xxax   Thus   

                                )()))((()))((()( xxayxyxxaxy AAAA     

and  

                               ),()))((()))((()( xxayxyxxaxy AAAA     

 i.e., A  is an intuitionistic fuzzy right ideal of .R  So A  is an intuitionistic fuzzy ideal of R  

by the Lemma 3.1. Converse is true by the Lemma 2.18. 

Remark 3.3: The concept of intuitionistic fuzzy (  interior, two-sided )  ideals coincides with 

the same concept in regular LA-rings. 

Proposition 3.4: Let R  be a regular LA-ring. Then AARRA  )()(   for every 

intuitionistic fuzzy right ideal A  of .R   

Proof: Suppose that  AAA  ,  is an intuitionistic fuzzy right ideal of .R  This implies that 

,)()( AARRA    because every intuitionistic fuzzy right ideal of R  is an intuitionistic 

fuzzy quasi-ideal of R  by the Lemma 2.23. Let ,Rx   this implies that there exists an 

element ,Ra   such that .)( xxax   Thus 

    

    

.
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}{))((
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}{))((
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n

i
bax

A
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iiA

n

i
bax

A

ii

n

i

ii

n

i









































 and  
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Similarly, we have ,ARA  i.e., ).()( ARRAA     Hence  .)()( AARRA     

Lemma 3.5: Let R  be a regular LA-ring. Then LDLD   for every intuitionistic fuzzy 

right ideal D  and every intuitionistic fuzzy left ideal  L   of  .R   

Proof: Since ,LDLD   for every intuitionistic fuzzy right ideal  DDD  ,  and every 

intuitionistic fuzzy left ideal  LLL  ,  of R  by the Lemma 2.14. Let  ,Rx    this means 

that there exists an element  Ra    such that  .)( xxax    Thus  

    

    

).)(()()()()(

}{))((

))(()()()()(

}{))((

1

1

1

1

xxxxxa

bax

xxxxxa

bax

LDLDLD

iLiD

n

i
bax

LD

LDLDLD

iLiD

n

i
bax

LD

ii

n

i

ii

n

i





































 and
 

Therefore .LDLD    

Lemma 3.6: Let R  be an LA-ring with left identity .e  Then Ra  is the smallest left ideal of  

R   containing  .a   

Proof: Let Rayx ,  and .Rr   This implies that arx 1   and  ,2 ary   where  

., 21 Rrr   Now  

.))((

))(()))((()))(((

)))((())(())(()(

)(

1

111

1111

2121

Raarer

erarerareearer

eerarerararerarrrx

Raarrararyx









 and
 

Since .Raeaa   Thus Ra  is a left ideal of R  containing .a  Let I  be another left ideal of 

R containing .a  Since ,Ira   where ,Rara   i.e., .IRa   Hence Ra  is the smallest 

left ideal of R  containing .a   

Lemma 3.7: Let R  be an LA-ring with left identity .e  Then aR   is a left ideal of  .R   

Proof: Straight forward.  

Proposition 3.8: Let R   be an LA-ring with left identity .e  Then RaaR   is the smallest right 

ideal of R  containing .a   

Proof: Let ,, RaaRyx   this means that aRyx ,  or .Ra  Since aR  and Ra  both are left 

ideals of ,R  so aRyx   and ,Ra  i.e., .RaaRyx   We have to show that  

).()( RaaRRRaaR   Now  

.)(

.)(

)()(Re)(

))(()()()()(

RaaRRRaaR

RaaRaRRaRRaRa

aRRRaaRRa

eRRaaRRRRaRaRRRaaR








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Since ,Raa   i.e., .RaaRa   Let I be another right ideal of R  containing .a  Since  

IIRaR   and ,)()()( IIRRIRRaRaRRRa   i.e., .IRaaR    Therefore 

RaaR   is the smallest right ideal of R  containing .a   

Theorem 3.9: Let R  be an LA-ring with left identity ,e  such that  xRRxe )(   for all  

.Rx    Then the following conditions are equivalent. 

  1   R   is a regular. 

  2  LDLD    for every intuitionistic fuzzy right ideal  D   and every intuitionistic 

fuzzy left ideal  L   of  .R   

  3   CRCC  )(   for every intuitionistic fuzzy quasi-ideal  C   of  .R   

Proof: Suppose that  1  holds and  CCC  , be an intuitionistic fuzzy quasi-ideal of .R  

Then  ,)( CCRC    because every intuitionistic fuzzy quasi-ideal of R  is an 

intuitionistic fuzzy bi-ideal of R  by the Lemma 2.24. Let  ,Rx   this implies that there 

exists an element a  of R  such that  .)( xxax   Thus  

    

    

.)(

).()()()(

)(}{

)())((

})({))()((

1

1

1

1
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CiiC

n

i
qpxa

CC

iCiC

n

i
baa

CC

R

xxaRx

xqRp

xxaR

baRxR

ii

n

i

ii

n

i




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

































 

Similarly, we have ,)( CCC R    i.e., .)( CRCC  Hence  1  implies  .3   

Assume that )3(  holds. Let D  be an intuitionistic fuzzy right ideal and L  be an intuitionistic 

fuzzy left ideal of .R  This means that D  and L  be intuitionistic fuzzy quasi-ideals of  R   by 

the Lemma 2.23, so  LD    be also an intuitionistic fuzzy quasi-ideal of  .R   Then by our 

assumption, ,)()())(( LDLRDLDRLDLD    i.e., .LDLD    Since  

.LDLD   Therefore ,LDLD   i.e.,   ).2(3   Suppose that  2  is true and  

.Ra    Then  Ra   is a left ideal of  R   containing  a   by the Lemma 3.7 and RaaR   is a 

right ideal of R  containing a  by the Proposition 3.8. This implies that Ra  is an intuitionistic 

fuzzy left ideal and RaaR   is an intuitionistic fuzzy right ideal of ,R  by the Theorem 2.3. 

Then by our supposition  

                    
,RaRaaRRaRaaR      i.e.,      RaRaaRRaRaaR      

by the Theorem 2.2. Thus  .)()( RaRaaRRaRaaR   Since ,)( RaRaaRa   i.e., 

,)( RaRaaRa   so ).)(())(( RaRaRaaRa   This implies that  

                                                  ))(( RaaRa   or ).)(( RaRaa    

If ),)(( RaaRa   then   
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ayxeaaayxeaxeayaxaeyaxyayaaxa )))((()))((()))((()))((())(())((   for any  

., Ryx    

If ),)(( RaRaa   then ),)(())()(())(((Re)))(( RaaRRaRaeRaaRaRa   i.e.,  

).)(( RaaRa   So a  is a regular, i.e., R   is a regular. Hence    .12     

Theorem 3.10: Let R  be an LA-ring with left identity ,e  such that xRRxe )(   for all 

.Rx   Then the following conditions are equivalent. 

  1    R   is a regular. 

 ARAA  )()2(    for every intuitionistic fuzzy quasi-ideal A  of  .R   

  3    BRBB  )(   for every intuitionistic fuzzy bi-ideal B  of  .R   

   CRCC  )(4    for every intuitionistic fuzzy generalized bi-ideal C  of .R   

 Proof:    ),4(1   is obvious. Since    ,34   every intuitionistic fuzzy bi-ideal of R  is an 

intuitionistic fuzzy generalized bi-ideal of R  by the Lemma 2.22. Since     ,23    every 

intuitionistic fuzzy quasi-ideal of  R   is an intuitionistic fuzzy bi-ideal of  R   by the Lemma 

15.    ,12   by the Theorem 3.9. 

Theorem 3.11: Let R  be an LA-ring with left identity ,e  such that  xRRxe )(   for all  

.Rx    Then the following conditions are equivalent. 

 1    R   is a regular. 

 2  AIAIA  )(  for every intuitionistic fuzzy quasi-ideal A  and every intuitionistic 

fuzzy ideal I   of  .R   

 3  BIBIB  )(   for every intuitionistic fuzzy bi-ideal B  and every intuitionistic 

fuzzy ideal  I   of  .R   

 4  CICIC  )(   for every intuitionistic fuzzy generalized bi-idea C   and every 

intuitionistic fuzzy ideal  I   of  .R   

 Proof: Assume that  1  holds. Let  CCC  ,  be an intuitionistic fuzzy generalized bi-

ideal and  III  ,  be an intuitionistic fuzzy ideal of .R  Now  

IRIRIRCIC   )()(  and ,)()( CCRCCIC    i.e.,  

.)( ICCIC    Let  ,Rx    this means that there exists an element  Ra    such that  

.)( xxax    Now  ).)(())(())(( aaxxxaaxaxxaxa    Thus  

    

    

.)(

).)(()()(

)())(()(

)(}{

)())((

})({))()((

1

1

1

1

CICIC

ICIC

CIC

CiIiC

n
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iCiIC

n

i
bax

CIC
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xaaxx

xqp

xxa

bax

ii

n

i

ii

n

i


































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









 

Similarly, we have .)( CICIC    Hence ,)( CICIC    i.e.,     .41    

It is clear that    34   and   ).2(3   Suppose that )2(  is true. Then  
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,)( ARARA   where R  itself is an intuitionistic fuzzy two-sided ideal of .R  So  

,)( ARAA  because every intuitionistic fuzzy two-sided ideal of R  is an intuitionisitc 

fuzzy quasi-ideal of .R  Hence R  is a regular by the Theorem 3.9, i.e.,     .12    

Theorem 3.12: Let R  be an LA-ring with left identity ,e  such that  xRRxe )(   for all  

.Rx   Then the following conditions are equivalent. 

 1   R  is a regular. 

 2  ADDA   for every intuitionistic fuzzy quasi-ideal A  and every intuitionistic 

fuzzy right ideal  D   of  .R   

 3  BDDB    for every intuitionistic fuzzy bi-ideal B  and every intuitionistic fuzzy 

right ideal  D   of  .R   

  CDDC 4  for every intuitionistic fuzzy generalized bi-ideal C  and every 

intuitionistic fuzzy right ideal  D   of  .R   

Proof:    ),4(1   is obvious. It is clear that     34    and     .23   Suppose that   2  

holds, this implies that ,ADDAAD   where A  is an intuitionistic fuzzy left ideal of 

.R  Since  ,ADAD    i.e.,  .ADAD   Hence R  is a regular by the Theorem 3.9, 

i.e.,    .12    

4 IINTRA-REGULAR LA-RINGS  

An LA-ring An LA-ring R  is called an intra-regular if for every ,Rx   there exist 

elements  Rba ii ,   such that  .)( 2

1 ii

n

i
bxax 


 In this section, we characterize intra-

regular LA-rings by the properties of intuitionistic fuzzy left ( right, quasi-, bi-, generalized 

bi- )  ideals. 

Lemma 4.1: Every intuitionistic fuzzy left (  right )  ideal of an intra-regular LA-ring R  is an 

intuitionistic fuzzy ideal of .R   

Proof: Suppose that  AAA  ,  is an intuitionistic fuzzy right ideal of .R  Let  ,, Ryx   

this implies that there exist elements ,, Rba ii   such that  .)( 2

1 ii

n

i
bxax 

  Thus 

).()(

)))((()))((()(

)()(

)))((()))((()(

22

22

yyb

xaybybxaxy

yyb

xaybybxaxy
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iiAiiAA
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











 and
 

Hence A  is an intuitionistic fuzzy ideal of .R  
Proposition 4.2: Let  A   be an IFS of an intra-regular LA-ring R  with left identity .e  Then  

A   is an intuitionistic fuzzy ideal of R  if and only if A  is an intuitionistic fuzzy interior ideal 

of  .R   

Proof: Suppose that  AAA  , is an intuitionistic fuzzy interior ideal of .R  Let ,, Ryx   

this implies that there exist elements ,, Rba ii   such that  .)( 2

1 ii

n

i
bxax 

  Thus 
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).()))()(((

)))()((()))()(((
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Similarly, we have ),()( xxy AA    i.e., A  is an intuitionistic fuzzy right ideal of .R  Hence 

A  is an intuitionistic fuzzy ideal of R  by the Lemma 4.1. Converse is true by the Lemma 

2.18. 

Remark 4.3: The concept of intuitionistic fuzzy (  interior, two-sided )  ideals coincides in 

intra-regular LA-rings with left identity.  

Lemma 4.4: Let R   be an intra-regular LA-ring with left identity .e  Then DLLD   

for every intuitionistic fuzzy left ideal  L   and every intuitionistic fuzzy right ideal D  of  .R   

Proof: Let  LLL  ,  be an intuitionistic fuzzy left ideal and  DDD  ,  be an 

intuitionistic fuzzy right ideal of .R  Let ,Rx   this means that there exist elements such that 

Rba ii ,  such that  .)( 2

1 ii

n

i
bxax 

  Now 
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 and

 

Theorem 4.5: Let R  be an LA-ring with left identity ,e  such that xRRxe )(  for all  

.Rx    Then the following conditions are equivalent. 

 1  R   is an intra-regular. 

 2  DLLD   for every intuitionistic fuzzy left ideal L  and every intuitionistic fuzzy 

right ideal D  of  .R   

Proof:     21   is true by the Lemma 4.4. Suppose that   2   holds. Let  ,Ra    then  

Ra   is a left ideal of  R   containing  a   by the Lemma 3.6 and  RaaR    is a right ideal of R  

containing a  by the Proposition 3.8. So Ra  is an intuitionistic fuzzy left ideal and RaaR    

is an intuitionistic fuzzy right ideal of ,R   by the Theorem 1.3. By our supposition  

                       
,RaaRRaRaRaaR      i.e.,    RaaRRaRaRaaR   )(   
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by the Theorem 1.2. Thus  ).()( RaaRRaRaRaaR    Since  ,)( RaRaaRa    i.e.,  

).)(())(()( RaRaaRRaRaaRRaa   This implies that ))(( aRRaa   or ).)(( RaRaa    If  

),)(( aRRaa    then 

.)())((Re)()))(((

))(())(()))(((

)))((())))((((

)))()((()))()((())((

2 RRaRaaReaRa

RaRaRaRaaRRRa

RaRRaRRaeRa

aeRRRaRReaRaaRRa









 

So .)( 2 RRaa  If ),)(( RaRaa  then obvious .)( 2 RRaa   This implies that a  is an intra-

regular. Hence  R   is an intra-regular, i.e.,    .12    

Theorem 4.6: Let  R   be an LA-ring with left identity  ,e   such that  xRRxe )(   for all  

.Rx    Then the following conditions are equivalent. 

 1   R   is an intra-regular. 

 2  AIAIA  )(   for every intuitionistic fuzzy quasi-ideal A  and every intuitionistic 

fuzzy ideal  I   of  .R   

 3  BIBIB  )(   for every intuitionistic fuzzy bi-ideal B  and every intuitionistic 

fuzzy ideal  I  of  .R   

  CICIC  )(4    for every intuitionistic fuzzy generalized bi-ideal C  and every 

intuitionistic fuzzy ideal I   of  .R   

Proof: Suppose that   1  holds. Let  CCC  ,  be an intuitionistic fuzzy generalized bi-ideal 

and  III  ,  be an intuitionistic fuzzy ideal of .R  Now 

IRIRIRCIC   )()(  and ,)()( CCRCCIC    thus 

.)( ICCIC   Let ,Rx   this implies that there exist elements  Rba ii ,   such that  

.)( 2

1 ii

n

i
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Similarly, we have .)( CICIC   Hence ,)( CICIC   i.e.     .41   It 

is clear that    34  and    .23   Assume that  2  is true. Let A  be an intuitionistic fuzzy 

right ideal and I  be an intuitionistic fuzzy two-sided ideal of  .R   Since every intuitionistic 

fuzzy right ideal of R  is an intuitionistic fuzzy quasi-ideal of  R   by the Lemma 2.23, so A  

is an intuitionistic fuzzy quasi-ideal of .R  By our assumption  

  ,)( AIAIRAIAIA     i.e.,  .AIIA   Hence R  is an intra-regular 

by the Theorem 4.5, i.e.,     .12    

Theorem 4.7: Let R  be an LA-ring with left identity ,e  such that xRRxe )(   for all  

.Rx    Then the following conditions are equivalent. 

 1   R   is an intra-regular. 

 2  ALLA    for every intuitionistic fuzzy quasi-ideal A  and every intuitionistic fuzzy 

left ideal  L   of  .R   

 3  BLLB    for every intuitionistic fuzzy bi-ideal B  and every intuitionistic fuzzy 

left ideal  L   of  .R   

  CLLC 4  for every intuitionistic fuzzy generalized bi-ideal C  and every 

intuitionistic fuzzy left ideal L  of  .R   

Proof: Assume that  1 holds. Let  CCC  ,  be an intuitionistic fuzzy generalized bi-ideal 

and  LLL  ,  be an intuitionistic fuzzy left ideal of .R  Let  ,Rx   this means that there 

exist elements Rba ii ,  such that .)( 2

1 ii

n

i
bxax 

  Now  

.))(())(())(( xxabbxaxbxxax iiiiii   Thus 
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Similarly, we have .CLLC   Hence ,CLLC   i.e.,  .4)1(   It is clear 

that    34   and    .23   Suppose that  2  holds. Let A  be an intuitionistic fuzzy right 

ideal and L  be an intuitionistic fuzzy left ideal of .R  Since every intuitionistic fuzzy right 

ideal of  R  is an intuitionistic fuzzy quasi-ideal of ,R  this implies that A  is an intuitionistic 

fuzzy quasi-ideal of .R  By our supposition ., ALLA   Thus R   is an intra-regular by the 

Theorem 4.5, i.e.,    .12   

5 CONCLUSION 

Our ambition is to inspire the study and maturity of non associative algebraic structure 

(LA-ring). The objective is to explain original methodological developments on ordered LA-

rings, which will be very helpful for upcoming theory of algebraic structure. The ideal of 

fuzzy set to the characterizations of LA-rings are captivating a great attention of algebraist. 
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The aim of this paper is to investigate, the study of (regular, intra-regular) LA-rings by using 

of fuzzy left (right, interior, quasi-, bi-, generalized bi-) ideals. 
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Summary. In this paper we will present the global dynamic and the Julia set of a quartic 

second order difference equation with nonnegative parameters and the initial conditions are 

arbitrary nonnegative real numbers. 
 

1 INTRODUCTION 

In general, polynomial difference equations and polynomial maps in the plane have been 

studied in both the real and complex domains (see [8, 9]). First results on quadratic 

polynomial difference equation have been obtained in [1, 2] but these results gave us only a 

part of the basins of attraction of equilibrium points and period-two solutions. In [4], the 

general second order difference equation is completely investigated and described the regions 

of initial conditions in the first quadrant for which all solutions tend to equilibrium points, 

period-two solutions, or the point at infinity, except for the case of infinitely many period-two 

solutions. In [3], case of infinitely many period-two solutions is completely investigated. Our 

results are based on the theorems which hold for monotone difference equations. Our 

principal tool is the theory of monotone maps, and in particular cooperative maps, which 

guarantee the existence and uniqueness of the stable and unstable invariant manifolds for the 

fixed points and periodic points (see [5]). Consider the difference equation 

                        (1) 

where f is a continuous and increasing function in both variables. The following result has 

been obtained in [1]: 
 

Theorem 1 Let     and let            be a function which increases in both 
variables. Then for every solution of Eq. (1) the sub sequences         

  and            
  of 

even and odd terms of the solution do exactly one of the following: 
 

(i) Eventually they are both monotonically increasing. 
 

(ii) Eventually they are both monotonically decreasing. 
 

(iii) One of them is monotonically increasing and the other is monotonically decreasing 
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As a consequence of Theorem 1 every bounded solution of Eq. (1) approaches either an 

equilibrium solution or period-two solution and every unbounded solution is asymptotic to 

the point at infinity in a monotonic way. Thus, the major problem in dynamics of Eq. (1) is 

the problem of determining the basins of attraction of three different types of attractors: the 

equilibrium solutions, period-two solution(s) and the point(s) at infinity. The following result 

can be proved by using the techniques of proof of Theorem 11 in [5]. 
 

Theorem 2 Consider Eq. (1) where f is increasing function in its arguments and assume 
that there is no minimal period-two solution. Assume that           and           are two 
consecutive equilibrium points in North-East ordering that satisfy 

                    

and that    is a local attractor and    is a saddle point or a non-hyperbolic point with second 
characteristic root in interval       , with the neighborhoods where f is strictly increasing. 
Then the basin of attraction       of    is the region below the global stable manifold 
      . More precisely  

                                      

The basin of attraction              is exactly the global stable manifold of   . The 
global stable manifold extends to the boundary of the domain of Eq. (1). If there exists a 
period-two solution, then the end points of the global stable manifold are exactly the period 
two solution. 

Now, the theorems that are applied in [5] provided the two continuous curves        

(sta-ble manifold) i        (unstable manifold), both passing through the point            

from Theorem 2, such that        is a graph of decreasing function and         is a graph 

of an increasing function. The curve         splits the first quadrant of initial conditions into 

two disjoint regions, but we do not know the explicit form of the curve       . In this paper 

we investigate the following difference equation 

        
         

     
         

       
     

             
   (2)  

      
               

                 

We expose the explicit form of the curve that separates the first quadrant into two basins of 

attraction of a locally stable equilibrium point and of the point at infinity. One of the major 

problems in the dynamics of polynomial maps is determining the basin of attraction of the 

point at infinity and in particular the boundary of the that basin known as the Julia set. We 

precisely determined the Julia set of Eq. (2) and we obtained the global dynamics in the 

interior of the Julia set, which includes all the points for which solutions are not asymptotic to 

the point at infinity. It turned out that the Julia set for Eq. (2) is the union of the stable 

manifolds of some saddle equilibrium points, nonhyperbolic equilibrium points or period-two 

points. We first list some results needed for the proofs of our theorems. The main result for 

studying local stability of equilibrium is linearized stability theorem (see Theorem 1.1 in [7]). 

 

Theorem 3 (linearized stability): Consider the difference equation 

                        (3) 
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and let     be an equilibrium point of difference equation (3). Let   
         

  
 and   

         

  
 

denote the partial derivatives of        evaluated at equilibrium   . Let    and    be roots of 

quadratic equation          .  

 

a) If        and      , then the equilibrium    is locally asymptotically stable 

(sink). 

 

b) If         or       , then the equilibrium     is unstable. 

 

c)                             . Equilibrium    is a sink. 

 

d)                                         Equilibrium    is a repeller. 

 

e)                              Equilibrium    is a saddle point. 

 

f)                                                Equilibrium    is 

called a non-hyperbolic point. 

 

The next theorem (Theorem 1.4.1. in [6]) is a very useful tool in establishing bounds for the 

solutions of nonlinear equations in terms of the solutions of equations with known behaviour. 
 

Theorem 4 Let I be an interval of real numbers, let k be a positive integer, and let 

         I be a function which is increasing in all its arguments. Assume that         
 ,  

        
   and         

  are sequences of real numbers such that 

                          

                          

                          

and  

                         
 

Then  
                      

 

The next well-known theorem gives us the number of positive zeros of a polynomial     . 

 

Theorem 5 Let         
      

           where   ,           are  real 

numbers and              are integers. The number of positive zeros of       , 

counting multiplicities, is either equal to      or less than that by an even number, where 

     denotes the number of sign changes in the sequence             
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2 MAIN RESULTS 

By using the Theorem 3, we obtained the following result on local stability of the zero 

equilibrium of Eq. (2): 

 

Proposition 1 The zero equilibrium of Eq. (2) is one of the following: 

 

a) locally asymptotically stable if      , 

 

b) non-hyperbolic and locally stable if      , 

 

c) unstable if      . 

 

Set                                                      and 

let   
         

  
  and   

         

  
 denote the partial derivatives of        evaluated at the 

equilibrium   .  The linearized equation at the positive equilibrium    is 

                

                           

                               

Now, in view of Theorem 3 we obtain the following results on local stability of the positive 

equilibrium of Eq. (2): 

 

Proposition 2 The positive equilibrium of Eq. (2) is one of the following: 

 

a) locally asymptotically stable if             
 

b) non-hyperbolic and locally stable if             
 

c) unstable if             
 

d) saddle point if           
 

e) repeller if                   
 

Theorem 6 If     then every solution      of Eq. (2) satisfies          . 

 

Proof. If       is a solution of Eq. (2) then       satisfies the inequality 

                   

which in view of the result on difference inequalities, see Theorem 4, implies that    
       where      is a solution of the initial value problem 
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Consequently,           then         ,              , and 

          
 

        
 
         

where         such that      for all  , which implies              
 

Theorem 7 Consider the difference equation (2) in the first quadrant of initial conditions, 

where                     and           . Then Eq. (2) has a zero equilibrium and a 

unique positive equilibrium    . The line                                      
                        is the Julia set and separates the first quadrant into two regions: 

the region below the line is the basin of attraction of point         the region above the line 

is the basin of attraction of the point at infinity and every point on the line except            
is a period-two solution of Eq.(2) 

 

Proof. The equilibrium points of Eq. (2) are the solutions of equation  

                                           

that is equivalent to 

                                                (4) 

Since the number of sign changes in the sequence                         is one, 

then by applying Theorem 5 implies Eq. (4) has two equilibria: zero equilibrium and unique 

positive equilibrium   . Since     and      , then by applying Proposition (1) the zero 

equilibrium is locally asymptotically stable. Denote by                         
                                                  and let   and   denote the 

partial derivatives of function        at point   . By straightforward calculation we obtain 

that the following hold: 

                                                            

                             

                                                        

                                

                                                            

                                     
  

Hence, by applying Proposition (2) the positive equilibrium is an unstable non-hyperbolic 
point. Period-two solution u, v  satisfies the system 

                                                               

                                                                

Obviously, the point        is solution of the system above, but it is not period two solution. 
Hence, it has to be      which implies  

                                                           . 
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Therefore every point of the set  

                                                        

is a period-two solution of Eq. (2) except point     Now, we have to show that line  

                                                              
        

is a graph of the decreasing function in the first quadrant. Let for some       there are    
and                   such that                    . As        is increasing in both 
variables then 

                     

which is impossible. Thus the curve          is the graph of function in the first quadrant. 
Further over           then 

  

  
 

  

  
      

By applying the fact that is        is increasing in both variables we obtain      in the first 

quadrant. Hence,             is the graph of the decreasing function in the first quadrant. 

Let      be a solution of Eq. (2) for initial condition          which lies below the line 

                                               .  

Then  

             
     

           
      

      
             

     

           

                     

and  

                     

                                          
 
Thus         and          are two points in North-East ordering                     

which means that the point          is also below the line            and also holds 

            

Similarly, we find 

                   

                                        

Continuing on this way we get 

                                         

which implies that both sub sequences        and           are monotonically decreasing and 

bounded below by     Since below the line           there are no period-two solutions it 

must be       and          On the other hand, if we consider solution       of Eq.(2) 
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for initial condition          which lies above the line            then             and 

by applying the method shown above we obtain the following condition: 

                                 

Therefore, both sub sequences        and         are monotonically increasing, hence 

      and         as    . 

 

The next figure is visual illustration of Theorem 7 obtained by using Mathematica 9.0, with 

the boundaries of the basins of attraction obtained by using the software package Dynamica 

[6]. 

 

Figure 1. Illustration of Theorem 7 

a = 0.3, b = 1, c = 0.5, d = 1, e = 0.4 and f = 0.25 

In view of Theorem 4 which implies results on difference inequalities we get the 
following: 

 
Proposition 3 Consider the difference equation of type 

        
         

     
         

       
     

             
   (5) 

      
               

          

where the given parameters satisfy conditions                       and       . 

Then the global stable manifold of the positive equilibrium is between two lines 

                                                     (6) 

                      .  

and 
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                                                     (7) 

                      .  

Proof.  Since the number of sign changes in the sequence                      
             is one, then by applying Theorem 5 implies Eq. (5) has two equilibria: zero 

equilibrium and unique positive equilibrium    . Since       the zero equilibrium is always 

locally asymptotically stable thus the positive equilibrium must be unstable equilibrium point. 

The theorems applied in [5] provided the following global behavior. More precisely, if the 

positive equilibrium is a saddle point or a non-hyperbolic point then there exists a global 

stable manifold which contains point          ; where    is the positive equilibrium. In this 

case global behavior of Eq. (5) is described by Theorem 9 in [4]. If the positive equilibrium is 

a repeller then there exists a period-two solution and we obtain that the period-two solution is 

a saddle point and there are two global stable manifolds which contain points         and 

        whre       is unique period-two solution of Eq.(5). In this case the global behavior 

of Eq. (5) is described by Theorem 10 in [4]. Although the Theorems 9 and 10 in [4] have 

been applied on a polynomial second order difference equation they are special cases of 

general Theorems in [5] applied on function f, where f is increasing function in its arguments. 

So, the global dynamics of Eq. (5) is exactly the same as the global dynamics of equations 

described by Theorems 9 and 10 in [4]. Furthermore 

        
         

     
         

       
     

             
   

      
               

        

             
      

              
            

         

             
      

                                     

and  

        
         

     
         

       
     

             
   

      
               

        

             
      

         
            

         

             
      

                                     

for all  , by applying Theorem 4 for solution       of Eq. (5) the following inequality holds 

          

for all  , where      is a solution of the difference equation 

                 
      

              
            

        (8) 

             
      

                                      

and      is a solution of the difference equation 

                 
      

              
            

        (9)  
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Since Eq. (8) and Eq. (9) satisfy all conditions of Theorem 7 this implies that the statement 
of Proposition 3 holds.  

3 CONCLUSION 

In this paper we restrict our attention to certain polynomial quartic second order difference 

equation Eq. (2). It is important to mention that we have accurately determined the Julia set of 

Eq. (2) and the basins of attractions for the zero equilibrium and the positive equilibrium 

point. In general, all theoretical concepts which are very useful in proving the results of 

global attractivity of equilibrium points and period-two solutions only give us existence of 

global stable manifold(s) whose computation leads to very uncomfortable calculus. 

 

Acknowledgements: The authors would like to express their sincere thanks to reviewers on 
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Summary. The work considers application of Runge-Kutta Discontinuous Galerkin method for 

solution of Godunov-Romenskii type hyperbolic model for hyperelastic medium. The medium 

is considered inhomogeneous with piecewise uniform distributed properties. To describe 

evolution of medium Godunov-Romenskii model is used supplemented with transport equation 

that describes evolution of properties distribution. The numerical approach is based on 

application of Runge-Kutta Discontinuous Galerkin method with Godunov type fluxes both for 

conservative and non-conservative terms. We describe mathematical model and corresponding 

numerical algorithm briefly. Results of numerical simulations are presented. 

1 INTRODUCTION 

The present paper is devoted to numerical study of Runge-Kutta Discontinuous Galerkin 

(RK/DG) method of high order of accuracy for solution of first order hyperbolic system of 

equations of hyperelasticity.The model describes dynamics of continuous media (deformation 

and strain fields, velocity, temperature and entropy) in Eulerian reference frame. The model 

was originally proposed[1] by S.Godunov and E.Romenskii. Recently there has been a 

significant increase in interest in such type of the models since it is assumed that in some cases 

they are more suitable (comparably to traditional models based on arbitrary 

Lagrangian-Eulerian description) to simulation of physical phenomena involving extremely 

large deformations of the media[2, 3]. Such type of problems are often arise in numerical 

simulation of shock wave phenomena in solids induced by rapid mechanical, thermal or 

radiation loads[24, 25]. 

Currently, a number of papers is devoted to numerical solution of hyperelasticity model[4, 

5]. However, the most of them considers WENO-based approaches[6, 7]. In present work 

Runge-Kutta Discontinuous Galerkin method[8] is considered. The general motivation for such 

a choice is its universality and possibility of generalization to higher-order equations, that may 

occur in the multiphase problems. The second reason is to estimate efficiency of the RK/DG 

method when simulating Godunov-Romenskii model for particular cases of more simple (gas 

and fluid dynamics) and more complex (inhomogenious hyperelastic medium) settings. Both 

issues can be considered as a preliminary tests for further development of RK/DG numerical 

techniques for complex multiphase and multicomponent models developed in, e.g., 

Baer-Nunziato framework[9]. 

The main features of present paper are: 
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 first order hyperbolic hyperelastic model is considered as a unified framework to 

describe solid/liquid/gaseous media; 

 heterogeneous elastic medium case which assumes piecewise uniform distribution of 

medium properties is considered . 

The structure of the paper is as follows. The basic Godunov-Romenskii hyperelastic model 

is described at the beginning of the section 2. In the subsection 2.1 its simple generalization to 

the case of piecewise homogeneous case is considered. Section 3 is devoted to the description 

of the RK/DG numerical algorithm for both conservative and non-conservative hyperbolic 

equations. In section 4 the implementation detalis and results of numerical experiments are 

presented. 

2 MATHEMATICAL MODEL 

 To describe dynamics of the continuous hyperelastic medium in the Euler reference frame 

the Godunov-Romenskii model[10] is used. The corresponding system of equations is 

hyperbolic and consists of conservation law of momentum (1), dynamic equations for distortion 

tensor components (2) and conservation law of energy (3): 

 
  = 0,

t





   



u
u u T  (1) 

 
   = ,T

t


  


       



F
F u u F u F  (2) 

 
  = 0.

E
E

t





   


u u T  (3) 

Here T  is Cauchy stress tensor, 2= | | /2E  uU  – total energy,  = ,FU U S  – internal 

energy. The primary variables are components of distortion tensor = 
X

F x  ( x  and X  are 

Euler and Lagrange coordinates of medium points, respectively), velocity u  and entropy S . 

Symbol “ ” denotes the tensor product. The medium density   is defined as 

 0= / det ,  F  (4) 

where  0 0=  x  denotes the density of undeformed medium. The combination of equations 

(2) and (4) recovers the continuity equation: 

  = 0.
t





 


u   

This equation can be used instead of one of the equations in (2) for the distortion tensor 

components. 

System (1)-(3) has to be closed by the specific internal energy (equation of state, EOS) in its 

canonical form,  = ,FU U S . To provide the frame indifference of internal energy it must be 

expressed in terms of some symmetric strain tensor G [10, 5]: 
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   ˆ= , = , .F GU U S U S  (5) 

Here and further ˆ, , ,U U U  denote functional dependencies of the same variable on 

particular set of arguments. 

A number of strain tensors[10, 11] can be used in (5). In the present work the Finger tensor 
1= T 

G F F  is considered[4]. In this case the Cauchy stress tensor T  is expressed by 

Murnaghan formula[10]: 

ˆ
= 2 .


 


T G

G

U
 (6) 

Since Û  is a function of Finger tensor components it can be expressed, due to objectivity 

arguments, as a function of its invariants 1,2,3I : 

 1 2 3= , , , ,I I IU U S  (7) 

       
2 2

1 2 3= , = / 2, = det .I tr I tr tr I 
 

G G G G   

The internal energy U  can be considered as the sum of two terms. The first one, hU , is 

“hydrodynamical” part that depends only on bulk deformation and the second one, shU , 

describes dependency on shear deformation: 

   h sh

3 1 2 3= , , , , .I I I I U U S U S  (8) 

Hereafter the isotropic hyperelastic EOS[4] is used: 

      
2

h /2 /20

3 3 0 32
, = 1 exp / 1 ,

2
V V

K
I I c T I c 


  U S S  (9) 

   sh /2 2

1 2 3 0 3 1 2, , = / 3 / 2.I I I B I I I U  (10) 

Here  2 2

0 0 0= 4 / 3K c b  is the squared bulk sound velocity, 
0c  is sound velocity, 

0b  is 

shear elastic wave velocity, 2

0 0=B b , 
Vc  is the volumetric heat capacity, 

0T  is reference 

temperature,  ,  ,   are constant parameters. 

The considered model can describe both solids ( 1,2,3/ 0I  U ) and liquids/gases (

1,2 3/ 0, / 0I I      U U ). In the latter case the system of equations (1)-(3) can be reduced 

to classical gas dynamics equations with only bulk deformation accounted. That can be done by 

replacing the equations for distortion tensor components (2) with mass conservation law. 

2.1 Piecewise homogeneous model 

Consider now spatial domain   occupied by piecewise homogeneous medium. The latter 

means that parameters of EOS (9), (10) are different in different subdomains (phases) of  . 
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Let ,  = 1,k fk N where fN  is number of phases, be such subdomains, 

= ,  1, fk k N   . Let = ( )k k  X  be characteristic functions of 
k : 

k

=1k

1, ,
( ) =  = 1, ;     ( ) = 1.

0, ,

N
f

k f k

k

k N 



 


X

X X
X

 (11) 

Set of EOS parameters specific for subdomain 
k  is defined as  ( )

0= , , , ,k K  a , 

= 1, fk N . The EOS in that case has the form  ( )= , ; k

k k G aU U S  in domain 
k . Then the 

distribution of medium property in the Lagrangian reference frame is defined as  

( )

1

( ) = ( ).
fN

k

k

k




a X a X  (12) 

During deformation of the medium, the values of characteristic functions  ˆ ˆ= ,k k t  x  in 

Eulerian reference frame satisfy the following equation:  

ˆ ˆ
= 0,k k

t

  


 
u

x
 (13) 

where  , tu x  is velocity defined as a function of Eulerian coordinates. Equation (13) should 

be supplemented by appropriate initial conditions. 

Further we do not use characteristic functions ˆ
k  but rather their “smoothed” version. The 

smoothed zone width is a parameter of the model and is resolved by the computational mesh 

used in simulations. Equation (13) is nonconservative and is solved together with 

hyperelasticity model equations (1)-(3). 

Considered above inhomogeneous model assumes that only one EOS is used to describe 

behavior of all phases, – that is, it is not “real” multiphase model. However, it has a number of 

features of multiphase models: e.g., it consists of two groups of equations (conservative and 

nonconservative)[12, 9]. In present work this model is considered as the simplest one to test and 

verify algorithmic techniques for numerical solution of more complicated models. 

3 NUMERICAL ALGORITHMS 

The considered class of problems is described by the hyperbolic system of equations of the 

first order. The total number of equations is large (13 equations of hyperelastic model plus fN  

equations for k ), and its solution has a rich wave structure. The system consists of 

conservative and nonconservative equations. Its possible generalizations include spatial 

operators of higher order (for example, when considering surface tension). This motivates the 

following requirements for numerical methods: 

 The method must be capable for calculations with high approximation accuracy. 

 It has to provide possibility to construct numerical approximations of the hyperbolic 

operators as well as of diffusion ones. 

 It can be applied in conservative and nonconservative settings. 
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 It should provide unified framework when considering both theoretical and software 

implementation issues. 

We consider RK/DG as a candidate for such a framework. Further we briefly describe it for 

both conservative and nonconservative cases. 

Conservative case. Consider one-dimensional conservation law in spatial domain 

= [0, ]L  R : 

    ,,
= 0,

g x tg x t

t x




 

F
 (14) 

where  ,g x t  is conserved quantity and  gF  is corresponding physical flux. 

Let  
=

=0

i N

i i
  be a partition of   into computational cells, and  1/2 1/2= , ,1i i ix x i N   „ „ . 

We shall denote by  k

h V  the space of elements of   L  whose restriction to 
i  belongs 

to a vector space  k

iP  of polynomials of degree k : 

  = : | ;1 .k k

h i
i

v v i N  „ „V P   

Define the elements of  k

iP  by linearly independent orthogonal set of Legendre 

polynomials   
=

=0

l k
l

i
l

  and replace exact solution  ,g x t  in 
i  by its approximation 

     ( ) ( )

=0

, | = ,
k

l l

h i i
i

l

g x t x g t   (15) 

In order to obtain the semidiscrete equation for function  ,hg x t  we multiply equation (14) 

by test function k

h hv V , integrate over 
i  and apply Green’s formula: 

 
    

 
    

,
ˆ, , = 0.

h h

h h h h

e eii i

g x t v x
v x dx g x t d x g x t v x d

t x   

 
  

 
  F F  (16) 

In equation (16) physical flux   ,hg x tF  is replaced by numerical flux   ˆ ,hg x tF  in 

surface integral. In one-dimensional case one can obtain: 

   1/2 1/2 1/2 1/2
ˆ ˆ ˆ= .h i h i i h i

e ei

v d v x v x


 

   



  F F F  
 

Here 1/2
ˆ
iF  is numerical flux at ix  .  

 1/2 1/2 1/2
ˆ ˆ= , ,i i ig g 

  F F   

where 1/2ig 

  and 1/2ig 

  are left and right hand side limiting values of hg  at ix  . 

Different numerical fluxes for hyperbolic hyperelastic models are known (including HLLC, 

HLL, etc.)[4]. We consider here only two options: 
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1. Lax-Friedrichs flux: 

     LF

1/2 1/2 1/2 1/2 1/2

1 1ˆ = ;
2 2

i i i i i

x
g g g g

t

   

    


   
  

F F F   

2. Rusanov flux: 

     RS

1/2 1/2 1/2 1/2 1/2

1 1ˆ = ,
2 2

i i i i ig g g g   

    
    
 

F F F   

here  

   1/2 1/2 1/2 1/2= , = max | |,| | ,i i i ig g     

       

where 1/2i


 , 1/2i


  – eigenvalues of Jacobian matrices 1/2( )iJ g 

 and 1/2( )iJ g 

 , 

 ( ) = /J g g g F . 

Considering test functions in the form     
=

=0
=

l k
l

h i
l

v x   the following system of ordinal 

differential equation is obtained for vector of coefficients  
=

( )

=0
ˆ =

l k
l

i l
gg : 

ˆ
ˆ= ( ).

d

dt

g
M g  (17) 

For time discretization of (17) a strong stability preserving TVD/RK3 method[8] is used. 

The appropriate limiting procedure (see below) is applied at each Runge–Kutta stage. 

Nonconservative case. Let us describe now the RK/DG method applied to the nonconservative 

equation (13) in spatial domain = [0, ]L  R . 

For (13) the traditional approach can not be applied in the same way as it was done 

previously for conservative case. The main cause is the difficulty of the definition of the 

solution  ,g x t  in terms of distributions. The correct formulation of the Riemann problem 

and corresponding generalized Hugoniot conditions can not be set in traditional way. The 

constructive solution to this problem is provided by DLM (DalMaso–LeFloch–Murat) 

theoretical framework[13]. 

Consider the discontinuous function 

l d r( ) = ( ) ,g x g H x x g    

where = ( )H H x  is Heaviside function, dx  is the discontinuity coordinate, 

 , = 0r l dg g x   are the right and left-hand solution limits, respectively. For this case the 

expression 

 , ,
g

a x g
x




 (18) 
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where function  ,a x g  has the discontinuity at the same point 
dx , can not be defined 

correctly as distirbution[14] and the special treatment is needed as developed in DLM theory. 

To proceed, replace g  by its smooth regularization g : 

 

l d

d

d d

r d

, < ,

= , ,
2

, > ,

g x x

x x
g x x x x

g x x






 








  
    
 

 

„ „   

where > 0 , mapping 
l r: [0,1] [ , ]g g  is Liepshitz continuous and is called path[13]. 

Now define non-conservative product (18) as 

d

( , ) = lim ( , ) ,
x x

gg
a x g a x g

x x








 
  

In such a way at 0   the product (18) can be defined as bounded Borel measure, 

converging to (18) in  -weak topology: 

1

d

0

( )
( ) ( ), = ( ( )) ,

g
a g C x x C a d

x





  



 
  

   (19) 

where  x  is Dirac delta-function. 

Consider again spatial domain = [0, ]L  R  with given partition  
=

=0

i N

i i
 . Define the 

space of boundary points  = : , = 1,ix x i N  . Introduce the piecewise polynomials 

space k

hV  as was done previously. Multiply (13) by test function k

h hv V  and integrate it over 

  taking (19) into account. This leads to the following semidiscrete equation for k

h hg V : 

     
1

0

, ( ) = 0,h h

h h h h x
x

i i

g g
v dx a x g v dx v a d

t x 

  
 

  
  

  
      

where  r l= / 2h h hv v v . Borel measure (19) depends on the choice of the path  . In the 

present work the linear path    r l l= g g g     is chosen[13]. Further one can proceed as 

in the conservative setting. 

Limiting procedure. For considered method the numerical solution will not be monotonic in 

case of discontinuous solution. To avoid non-physical oscillations in numerical solution an 

artificial dissipation has to be introduced. It can be done in various ways, among which methods 

based on geometric limiting, explicit introduction of additional dissipative terms and 

algorithms based on high-pass filtering component of the solution are known [15]. In
 
[16] 

method for monotonizing the solution by explicitly introducing von Neumann-Richtmeier type 

artificial viscosity is described. The most popular technique is to use geometrical and 

moment-based limiters such as maximum preserving limiter[17], minmod limiter[8], or 
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Krivodonova limiter[18]. In the present work we use maximum preserving limiter for 

concentration function in nonconservative transport equation (13) and Krivodonova moment 

limiter for hyperelastic model (1)-(3). 

4 NUMERICAL RESULTS 

The described algorithm was implemented as program code using C++ language. The 

feature of software implementation is usage thermodynamical potential with its natural 

variables as EOS. For appropriate medium properties calculation the automatic differentiation 

technique is used (STAN[19]). Thermodynamical parameters (stress tensor, acoustic tensor, 

temperature, entropy, etc) are obtained directly from thermodynamical potential without 

numerical approximation of its derivatives. The developed program also uses libraries 

BOOST[20] and EIGEN[21]. 

In present section the numerical results for Godunov-Romenskii model are given for 

homogeneous and heterogeneous medium testcases. The well-known model tests for solid and 

gaseous phases are considered. In the examples below, initial value problems are solved in a 

computational domain = [0,1]  cm. The position of the discontinuity in the initial data is 

= 0.5x  cm. 

4.1 Homogeneous case 

Gas dynamics. As mentioned above, Godunov-Romenskii model can describe gas flow 

assuming that EOS is chosen in a proper way. This approach is used here to solve the 

well-known Sod shock tube problem[22], adapted for hyperelastic model setting. Complete 

hyperelastic model with 13 equations for variables  , ,k iju F S  is considered instead Euler 

ideal gas dynamics system with 5 equations[23]. 

Mesh step is 0.001  cm. Time step is 0.01  sec. The piecewise polynomials inside each cell 

are up to third order. As it is mentioned above, EOS consists of only hydrodynamical term (9) 

    h /2

3 0 3= , = exp / 1 .V VI c T I c U U S S   

with 3

0 = 1.0 g / cm  being initial density, 6= 1.0 10 kJ / (gK)Vc
  – heat capacity, 

0 = 100KT  – reference temperature, 0 = 0.0km / sb  – shear wave speed and = 0.4  – 

constant parameters. 

Distortion tensor coefficients and entropy values are chosen in such a way that they 

correspond to the parameters of the Sod problem for Euler equations. The initial state 

corresponds to Riemann problem with two constant states:  

6

l l l

0 1 0 0
km kJ

= 0 , = 0 1 0 , = 4.0 10 ,
s gK

0 0 0 1



   
   

   
   
   

u F S   

6

r r r

0 8 0 0
km kJ

= 0 , = 0 1 0 , = 1.7 10 ,
s gK

0 0 0 1



   
   

   
   
   

u F S   
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where indices “l” and “r” denotes left and right states, respectively. 

Figure 1 shows various state dimensionless profiles at time  = t 0.6 sec. The results are fully 

identical to gas dynamics ones[23].  

 

Figure 1: Dimensionless density (  ), velocity ( u ) and internal energy ( U ) profiles at a time  = 0.6t s. 

 

 

Figure 2: Density  (up) and velocities , ,u v w (down) distributions for finite volume (left) and RK/DG 

(right) methods at time 0.5 s. 

Nonlinear hyperelasticity. This test is from [4] with nondiagonal distortion tensor. The 

RK/DG and finite volume methods are considered. Mesh step is 0.002 cm. Time step is 0.005 
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 s. Piecewise polynomials in each cell are considered up to third order. The initial state is 

given by: 

3

l l l

0 0.98 0 0
km kJ

= 0.5 , = 0.02 1 0.1 , = 10 ,
s gK

1 0 0 1



   
   
   
   
   

u F S   

r r r

0 1 0 0
km kJ

= 0 , = 0 1 0.1 , = 0 .
s gK

0 0 0 1

   
   
   
   
   

u F S   

The material is assumed to be copper with EOS parameters defined in [4]: 0  =  8.9 g/cm
3
,

0 =c 4.6 km/s, =Vc 3.910
-4 

kJ/(gK), 
0 =T 300 K, 

0 =b 2.1 km/s, = 1.0, = 3.0, = 2.0. 

Results are shown in Figure 2 at time 0.5  s in the comparison with finite volume method 

results. RK/DG method has better resolution of waves. The results are fully identical to the 

published ones[4]. 

4.2 Heterogeneous case 

In this testcase mesh step is h  510
-4

 cm and time step is 0.005  s. The polynomials 

inside each cell are considered up to third order. 

Consider the heterogeneous medium model described in subsection 2.1. Homogeneous 

domains correspond to  l = 0,1 / 2  and  r = 1 / 2,1 . The smoothed characteristic 

functions for l,r  are chosen as 
l r= 1  , 

 

 

 

l

0, 0,1 / 2

1 1 1 1 1
= sin , 1 / 2 ,1 / 2

2 2 2 2 2

1, 1 / 2 ,1 ,

x

x x x

x




  

  



  


     
           

    
  

  

where = 10h . Initial conditions are given by[4]: 

l l l

2 1 0 0
km kJ

= 0 , = 0.01 0.95 0.02 , = 0 ,
s gK

0.1 0.015 0 0.9

   
   

   
      

u F S   

r r r

0 1 0 0
km kJ

= 0.03 , = 0.015 0.95 0 , = 0 .
s gK

0.01 0.01 0 0.9

   
   
   
       

u F S   

Left material EOS parameters: 0  =  8.93 g/cm
3
, 0 =c 4.6 km/s, =Vc 3.910

-4 
kJ/(gK), 

0 =T 300 K, 0 =b 2.1 km/s, = 1.0, = 3.0, = 2.0. 

61



M.V. Alekseev, E.B. Savenkov 

 

 

Figure 3: Denstiy (  ) distribution at  = t 0.5  s (left) and x - t diagram (right). 

 

Figure 4: Velocity ( u ) distribution at  = t 0.5  s (left) and x - t diagram (right). 

 

Figure 5: Stress tensor component ( 11 ) distribution at  = t 0.5  s (left) and x - t diagram (right). 

Right material EOS parameters: 0  =  8.93 g/cm
3
, 0 =c 6.22 km/s, =Vc 9.010

-4 
kJ/(gK), 

0 =T 300 K, 0 =b 3.16 km/s, = 1.0, = 3.577, = 2.088. 

Solution at time  = t 0.5  s is shown in Figures 3-5. Interphase boundary is moving from 

left to right. Left figures correspond to variables profiles at given time, right ones are 

corresponding x - t diagrams. 
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In Figure 3 the density profile and corresponding x - t  diagram is shown at time  = t 0.5  s. 

In Figures 4 and 5 velocity u  and stress tensor component 
11  and corresponding x - t  

diagrams are shown. 

5 CONCLUSION 

The paper discusses the application of the RK/DG method for solving problems of 

hyperelasticity in an inhomogeneous medium. Both models, the homogeneous and 

heterogeneous one, admitting piecewise-constant distribution of medium properties, are 

investigated. As a result of a series of calculations, it was shown that the Godunov-Romenskii 

hyperelastic model can be practically applied to solve gas dynamics problems, when the 

internal energy of a medium depends only on its bulk deformations and entropy. The 

application of the RK/DG method demonstrates sharp resolution of wavefronts, comparable to 

the use of methods of the WENO type. 
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Summary. The technique of Monte Carlo modeling of radiation-induced electric currents in 

heterogeneous finely dispersed medium with direct consideration of their microstructure is 

worked out. The main attention is paid to developing the method of the construction of a 

geometric model of the polydisperse structures. The method based on random tracing 

algorithm is intended for implementation on heterogeneous computing clusters with using the 

graphical processors and the CUDA parallelization of calculations. The geometric model 

includes a detecting system for statistical evaluation of the desired physical quantities (electric 

current density). A computational experiment was performed to study the basic regularities of 

generation of electrical currents arising in polydispersed mfterial being under X-radiation. 

The results of the experiment showed the irradiation of the object under study produces 

electric currents with a sharply inhomogeneous spatial structure. Inhomogeneities occur near 

the boundary surfaces between the binder and inclusions. 

1 INTRODUCTION 

Heterogeneous materials of finely dispersed structures are widely used in mechanical 

engineering, heat power engineering, rocket, aviation, chemical and other industries. This is 

because these materials provide the required strength, thermal, hydraulic, technological 

properties and can operate at high temperatures and pressures. Such materials are used, for 

instance, in protection of structures from intensive energy flows [1], creation of solid 

propellants [2, 3]. 

Investigation of radiation-induced electrical effects in heterogeneous finely dispersed 

media is very actual for researching the protective and functional properties of such media 

being under radiation [4-9]. Heterogeneous dispersed structures are the materials having huge 

number of inner boundaries between homogeneous components. The presence of these 

boundaries leads to generation of electrical phenomenon due to the lack of electronic 

equilibrium near them [10-12]. 

Mathematical modeling of radiation-induced electrical effects in finely dispersed media 

involves the development of radiation transport simulation algorithms as well as the 

construction of a geometric model of a substance with a direct resolution of its microstructure. 

The transport of radiation in heterogeneous materials of complex geometric structure is 

cascade process and characterized by the fact that the particle pathways are comparable with 

the size of the inhomogeneities of the medium. In this situation, a detailed simulation of each 

collision of radiation particles with atoms of the medium is required [13]. Statistical 
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algorithms of radiation cascade transport modelling are worked out considering the features of 

radiation transport in finely dispersed media [14, 15]. 

The main attention in this work is paid to the construction of a geometrical model of a 

dispersed structure. The model includes the detector (registration) system for statistical 

estimation of the electrical current in an irradiated object. 

Various algorithms can be used to construct a geometric model of the material (placement 

of microstructure particles with specified geometric properties inside the sample). The most 

popular of these is the algorithm of Lubachevsky-Stillinger [16-18]. The algorithm simulates 

the process of mechanical compression of a set of solid particles. There are other techniques 

for construction of geometrical model of materials in question [19, 20]. 

These algorithms are poorly parallelized on GPUs due to their complex internal logic and 

therefore cannot be integrated into common code designed for heterogeneous computing 

clusters (HCC). 

A method of creating the geometrical model of the irradiated object based on ray-tracing 

algorithm [21] is worked out in this work. The method has almost unlimited scalability and is 

easily implemented on the graphics subsystem of the HCC. 

The developed code for supercomputer simulation of radiation-induced electric currents in 

heterogeneous dispersed materials with direct consideration of their microstructure is 

implemented on heterogeneous computing clusters. 

The results of a computational experiment to calculate the current density in a fragment of 

finely dispersed material show that electric currents with a sharply inhomogeneous spatial 

structure are formed during irradiation of the object under study. Inhomogeneities occur near 

the boundary surfaces between the binder and inclusions. 

2 GEOMETRICAL MODEL OF THE FINELY DISPERSED STRUCTURES 

Base characteristics of the dispersed medium are the size of suspended particles in 

dispersed systems and dispersity (relative volume fraction of suspended particles of every 

type). It is assumed in this paper that all particles of given type are of the same size. 

The geometric model also includes a model of the detector system for the statistical 

evaluation of the required physical quantities (electrical current). The detector system 

intended for the statistical estimation of functionals on the space of solutions of the transport 

equation includes a set of “detectors”, spheres of a specified size and location within which 

the events of the interaction of the radiation quanta and the secondary particles with the 

material are recorded. 

The detectors must be isolated from each other (should not intersect) and the entire volume 

of the detector should be inside the given matter (in the context of the considered media, they 

should not “capture” the boundaries between homogeneous components). 

It can consider the model of the dispersed matter with the detectors as a polydisperse 

medium consisting of some types of solid nonoverlapping objects (inclusions): suspended 

particles and detectors. However, several detectors may be inside a single particle. 

Let some object be a polydisperse medium consisting of a binder and N types of suspended 

spherical particles of radius rn (n=1,…,N). 

The developed algorithm for creating a geometric model has the following structure. 

Initially, the placement of inclusions of the 1
st
 type is constructed. 

1. The coordinates (Xmin, Ymin, Zmin) and (Xmax, Ymax, Zmax) of the object are determined; 
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2.    1 2

max min max min 1

n

x nM Z Z Y Y r

     beams are drawn from a random point on the 

plane x=Xmin along the X-axis;    1 2

max min max min 1

n

y nM Z Z X X r

     beams are 

drawn from a random point on the plane y=Ymin along the Y-axis and 

   1 2

max min max min 1

n

z nM Y Y X X r

     beams are drawn from a random point on the 

plane z=Zmin along the Z-axis; 

3. The intersection points of the beams with boundary surfaces of homogeneous parts of 

the object are calculated (fig. 1). 

4. A random point (center of a particle of 1
st
 type) on every interval between two 

consecutive intersection points (segments 1-2, 3-4 and 5-6 in fig. 1) is played. 

The next stage of the algorithm is to filter (exclude) particles according to the following 

criteria. 

- The particles should not intersect the boundary surfaces of the homogeneous parts of 

the object (if intersection takes place, particle is excluded from corresponding set); 

- The particles must be isolated from each other. 

Elimination of mutual intersections of detectors is carried out by using the following 

method. 

- It is built a graph on the set of constructed points (centers of the inclusions). The nodes 

of the graph are the centers of the particles. The edges of the graph are constructed 

between two nodes for which the distance between the centers of the particles is less 

than 1 12 n nr S   (Sn=1 is special value that restricts the minimum distance between the 

particles); 

- The node of the graph having the maximum number of edges is defined. It is excluded 

from the graph (fig. 2). 

Last step is repeated until there are no edges left in the graph. 

The algorithm is repeated with additional beams if a number of inclusions is less then 

requiered. 

The set of detectors is constructed after the geometrical model is built with inclusions of all 

types. The developed algorithm is used for the construction of the detector set but there is one 

 
 

Fig. 1. Scheme of particle placement algorithm Fig. 2. Scheme of particle excluding 
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exception. Some of the detectors may be located entirely inside the inclusions to estimate the 

desired value in suspended particles. 

A fragment of geometrical model consisting of epoxy binder, metal or dielectric inclusions 

(blue spheres) and a set of detectors (magenta spheres) is shown in fig. 3 (the image is 

enlarged for clarity). 

All inclusions are closed, but appear cropped due to image magnification. 

3 MODELING OF THE RADIATION TRANSPORT 

The complicated process of particle transport through the matter can be represented by a 

sequence of elementary processes of the interaction between the particle and the atoms of 

matter (particle trajectory). These processes include the scattering, braking or disappearance 

of the particle due to absorption or escape from the considered system (from the object). This 

representation is convenient for modelling the radiation transport by the Monte-Carlo method. 

The transport of the particles accompanied by the birth of secondary particles in cascade 

processes of the interaction of the radiation with matter is described by a system of integral 

equations. 

   1 1,Q Q k x x Q x dx Q KQ      . (1) 

Here  r Ωx E , , , where r,Ω,E  are coordinates, direction of motion and energy, 

respectively;  Q x  is the density of collisions and  1Q x  is the density of the first collisions; 

 ,k x x  is the kernel of the integral operator and has the meaning of probability density of 

x x   transition. 

 

Fig. 3. A fragment of geometrical model constructed by use of developed algorithm 
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Equation (1) is true for every type of particles of cascade. The previous generation particle 

flux is the next generation particle source. 

The objective of the radiation transport theory is to compute the readings of detector 

located in the field of radiation. The desired (measured) values are presented as the readings 

of some detector and are written as functional on the space of the transport equation solutions. 

We consider such registering facilities (detectors) whose readings are equal to the sum of the 

contributions of some particle’s collisions in a sensitive volume of the detector (additive 

detectors). To evaluate the desired measured value by the Monte Carlo method, the random 

trajectories of the particles are simulated (fig. 4). 

The contributions of these trajectories to the detector’s measurable value are summed up. 

The particle trajectory construction is performed according to the chosen physical model of 

the interaction between the radiation and matter. 

Trajectories are simulated using the individual computational algorithms for each type of 

particle considering their physical properties [13]. 

The developed algorithm is described in detail in [15]. 

4 RESULTS OF THE COMPUTATIONAL EXPERIMENT 

This section presents the results of computational experiments on simulation of radiation-

induced electric currents in heterogeneous materials of finely dispersed structure. 

A fragment of dispersed structure (fig. 5) is considered for researching the basic features of 

the current generation process in an object being under radiation. The cubic fragment of 0.003 

cm size consists of binder (epoxy resin, density is about 1 g/cm
3
) and one spherical inclusion 

(ammonium perchlorate, NH4ClO4, density is about 2 g/cm
3
) of 0.002 cm diameter. The 

studied fragment is irradiated by photons of 20 KeV energy in the direction of the Z axis. 

4.1 The main regularities of the generation of radiation-induced effects 

The distribution of fields of radiation-induced effects (heating, charge effects, electric 

currents) is determined mainly by the number of electrons born and their penetrating power. 

The first value is proportional to the macroscopic cross section of the interaction of photons 

with matter, and the second is proportional to the braking path of electrons. The dependence 

of these values on the energy of the radiation particles is shown in fig. 6, 7. 

These figures show that in inclusion, the macroscopic cross-section of the interaction of 

photons significantly (up to two orders of magnitude) exceeds this value for the binder. 

Therefore, much more electrons are born in the inclusion than in the binder. The penetrating 

 

 

Fig. 4. Particle trajectory Fig. 5 A fragment of dispersed material 
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power (braking distance) of electrons, on the contrary, is noticeably greater in the binder. 

The generation of electric currents in a substance being under gamma-or x-ray radiation is 

caused by the fluxes of photo and Compton electrons generated as a result of the photo-

electron cascade processes in the material under study. 

Current components for which there is no electronic equilibrium, that is, electron flows 

along the direction of this current component and in the opposite direction do not compensate 

for each other, will be different from zero at a given spatial point. The photon flux propagates 

along the z axis in the computational experiment under consideration, so the transverse (x, y) 

components of the current will obviously be negligible in a homogeneous medium. 

The electron braking distance does not exceed 4 microns, and the number of collisions 

reaches tens and hundreds in the studied fragment of heterogeneous material. Therefore, at the 

periphery of the fragment (at 2-4 microns from the inclusion boundaries) in the binder, the 

absence of transverse current components should be expected. 

Another situation is realized near the interface of two media with different physical 

properties (density, cross sections, braking paths) on spatial scales of the order of the electron 

path. The concentration of electrons born in the inclusion is much greater than in the binder. 

  

Fig. 6. Microscopic cross sections Fig. 7. Braking paths 

 

Fig. 8. Electron fluxes from and into the inclusion 
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In addition, electrons emitted from the inclusion into the binder have a much greater 

penetrating power than electrons moving in the opposite direction (fig. 8). 

Therefore, uncompensated electron fluxes arise near the boundaries of two media and the 

direction of the electron fluxes is from the inclusion into the binder. This direction is due to 

the predominance of electron emission from inclusion in the binder over emission in the 

opposite direction [23]. 

4.2 Results of the modeling of radiation-induced electrical current 

The fig. 9-12 below show the spatial distributions of the amplitude of the transverse 

components Jx and Jy of the current in the irradiated fragment. These figures show the 

amplitudes of the electric current density in CGSE units per 1 photon/cm
2
. 

The fig. 9, 10 show graphs of the transverse components along straight lines {z=0.0015 

cm, y=0.0015 cm} and {z=0.0015 cm, x=0.0015 cm} respectively. Dotted lines mark the 

boundaries of the inclusion. 

The transverse components of the current are negligible along the longitudinal axis 

{x=0.0015 cm, y=0.0015 cm} passing through the "poles" of the inclusion. 

Spatial distributions of the transverse components Jx and Jy in the plane z=0.0015 cm are 

shown in Fig. 11, 12 in the form of the surfaces. 

  

Fig. 9. The transverse component Jx Fig. 10. The transverse component Jy 

  

Fig. 11. 2D image of the component Jx Fig. 12. 2D image of the component Jy 

71



M.E. Zhukovskiy, M.B. Markov, R.V. Uskov and L.V. Kuznetsova 

 

In General, these figures demonstrate the expected symmetry of the distribution of the 

transverse components of the current relative to the corresponding coordinate axes. 

Fig. 13, 14 show the spatial distributions of the longitudinal (along the direction of the 

photon flow) component of the current Jz. The component Jz in the plane x=0.0015 cm is 

shown in Fig. 14 in the form of the surface. 

The component Jz reaches the maximum value at the boundary of the two media because 

the electron emission from the inclusion into the binder is much more intense than in the 

opposite direction (fig. 8). The background longitudinal component of the current is generated 

at the periphery of the binder (at a distance from the boundary surfaces exceeding the braking 

path of the electron). Its value is significantly less than one of the inclusion-binder 

boundaries. 

  

Fig. 13. Jz component along the longitudinal axis 

{x=0.0015 cm, y=0.0015 cm} 
Fig. 14. 2D image of the component Jz 

  

Fig. 15. Jz Fig. 16.  J=Jx+Jy+Jz 
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Vector field of the current in the binder near the boundary surface inclusion-binder is 

depicted in fig. 15 (Jz) and fig. 16 (J=Jx+Jy+Jz). 

These figures demonstrate the expected asymmetry of the electric current distribution with 

respect to the z=const plane passing through the center of the inclusion. 

5 CONCLUSION 

The technology of supercomputer simulation of radiation-induced electric currents in 

heterogeneous dispersed materials with direct consideration of their microstructure is 

developed. The main attention is paid to the creation of an algorithm for constructing a 

geometric model of a polydisperse medium, which is intended for implementation on 

heterogeneous computing clusters. The geometric model includes a detecting system for 

statistical evaluation of the desired physical quantities (electric current density). 

The results of a computational experiment to calculate the current density in a fragment of 

finely dispersed material show that electric currents with a sharply inhomogeneous spatial 

structure are formed during irradiation of the object under study. Inhomogeneities occur near 

the boundary surfaces between the binder and inclusions. The generation of a current at the 

boundaries between two media is caused by the predominance of electron emission from the 

inclusion (a material with a large macroscopic cross-section of photons) in the binder (a 

material with a greater penetration of electrons) over the emission in the opposite direction 

(Fig. 8). Only the longitudinal component of the current (along the direction of the photon 

flow) is present in the binder at more than the length of the braking distance from the outer 

surface of the inclusion. Its value is much smaller than the amplitude of the current near the 

binder-inclusion boundary. 
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Summary. INMOST is a software platform for the development of parallel numerical models 

on general polyhedral grids. In this paper we present the INMOST platform as the powerful 

tool for numerical modelling. The place of INMOST platform among other modern 

widespread libraries and numerical modelling packages is shown. A brief overview of tools 

that help in implementation of each stage of mathematical modelling is presented. Examples 

of INMOST application demonstrate appealing features of INMOST-based numerical 

modelling. 
 

1 INTRODUCTION 

The amount of software for unstructured mesh generation, numerical modelling and 

graphic visualization is huge. Along with the development of modern parallel computer 

systems, there is a need to use parallel algorithms with distributed mesh data. All these 

applications undoubtedly have a common set of needs for representing and manipulating 

distributed unstructured meshes. However, a large number of mesh representations are in use 

in the computational community each tailored to a specific application. Therefore, to gain 

widespread acceptance it is important to have a full mesh framework which allows 

applications to operate with all types of mesh data including the general polyhedral grids. At 

the same time, the infrastructure should be lightweight and efficient to have sufficient utilities 

for real-world numerical modelling applications. In addition, such an infrastructure should 

provide an opportunity for convenient assembling of systems of linear and nonlinear 

equations, their solving, as well as analysis and visualization of obtained solutions. 

INMOST is a software platform for the development of parallel numerical models on 

general polyhedral grids [1, 2, 7, 9]. In this paper we present the INMOST platform as the 

powerful tool for numerical modelling. The examples of INMOST application demonstrate 

appealing features of INMOST-based numerical modelling. 

In fact, the INMOST software platform does not include ready-made numerical models or 

even ready-made discretization schemes (such as finite volumes and finite elements). 

INMOST is just a software “platform” on the basis of which scientific researchers or 

developers of industrial codes can build their general-purpose grids distributed across 

processors, apply their discretization schemes and perform calculations for their numerical 

models. The presented examples of INMOST application demonstrate appealing features of 

INMOST-based numerical modelling. However, in view of the above reasoning, in this paper 

there is no direct comparison with the results of calculations using other packages. 
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It is worth noting that at present there is a development (see, for example, [6]) presenting 

the extension of parallel platform INMOST using the Ani3D package [16], which allows the 

construction of adapted tetrahedral meshes along with the use of a large number of finite 

element discretizations (see INMOST Ani_Inmost examples [6]). 

The present paper is organized as follows. Section 2 contains a brief description of 

INMOST platform functionality and shows the place of INMOST among other modern 

widespread libraries and numerical modelling packages. A detailed review of specific 

approaches to construction of numerical models is given in Section 3. In Section 4 we present 

several INMOST-based numerical models and their computational performance. The 

conclusion summarize the research. 

 

2 INMOST SOFTWARE PLATFORM 

 The main purpose of INMOST platform is to provide to the user all the necessary tools for 

development and exploration of various numerical models. This involves wide functionality,  

i.e. operations for general distributed mesh data, convenient interface for assembling and 

solving systems of nonlinear and linear equations, with built-in or plugged-in linear algebra 

packages. INMOST software platform was developed to meet the following criteria: 

 wide functionality; 

 efficiency; 

 reliability; 

 universality; 

 ease of use; 

 portability; 

 open source code. 

At present, it is very difficult to find software packages that satisfy all of the above 

requirements. There are many alternative solutions, such as the FMDB library (Flexible 

distributed Mesh DataBase) [36], the MOAB library (Mesh-Oriented datABase) [37], the 

MSTK library (MeSh ToolKit) [38], the STK library (Sierra ToolKit) [39], Salome package 

[40], OpenFOAM package (Open Source Field Operation And Manipulation CFD ToolBox) 

[41] and others that do not fully meet the stated criteria. Existing solutions do not always have 

easy portability between different platforms (Windows, Linux), existing implementations are 

not always reliable, it is impossible (in some packages) or difficult to implement user's 

discretization schemes. However most of publicly available packages are the best choice for 

the solution of a particular problem. For instance, packages ParMETIS [42] and Zoltan [43] 

distribute and redistribute a general mesh and graph data across processors, while libraries 

PETSc [21] and Trilinos [22] solve distributed systems of linear equations. 

These considerations motivated a group from INM RAS to develop a comprehensive set of 

software tools that provides the necessary functional capabilities and allow the use of 

ParMETIS, Zoltan, PETSc, and Trilinos packages. These tools form the INMOST (Integrated 

Numerical Modelling and Object-oriented Supercomputing Technologies) software 

platform [9]. 

The main modules of the platform are: 

 mesh operations module (INMOST Mesh); 

 mesh data balancing module (INMOST Partitioner); 
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 automatic differentiation module (INMOST Automatizator); 

 module for assembling and solving linear systems (INMOST Solver). 

In the near future, visualization (INMOST DrawGrid) and parameter optimization tools 

(INMOST TTSP (Tool for Tuning Solver Parameters), INMOST OptimizerSolve example) 

will also be added as separate modules. 

The main objective of INMOST is to support data structure and distributed mesh 

operations (INMOST Mesh) demanded by grid generators and numerical implementations of 

physical models. Consistent computational grids may contain cells with arbitrary numbers of 

faces, each face may be formed by an arbitrary number of edges. Thus, INMOST supports 

polyhedral cells of arbitrary configuration. 

The grid balancing module (INMOST Partitioner) is responsible for automatic and 

efficient distribution of a computational grid among processors. External ParMETIS and 

Zoltan partitioners can be exploited as well as internal parallel paritioner based on K-means 

clustering. Upon grid distribution, the user can determine ghost cells along the interfaces of 

mesh subdomains where data of neighboring processors are synchronized. The number of 

layers of ghost cells is defined by the user who can also assign ghost cells explicitly. The last 

option is useful for complex discretization stencils. Importantly, the MPI exchange library is 

hidden from the user and compilation of the sequential single-processor version of INMOST 

is easy. 

The automatic differentiation module (INMOST Automatizator) is developed to help in 

implementation of nonlinear numerical models, automatic generation and assembling of 

Jacobian matrices and nonlinear residuals appearing in Newton type linearizations. This 

module simplifies discretizations of new mathematical models. 

The module (INMOST Solver) for assembling and solving systems of linear equations has 

the following appealing features: 

 convenient and efficient assembling of a linear system matrix via addressing by the 

global row and column indices (INMOST MatSolve example); 

 variety of built-in linear solvers based on threshould incomplete triangular 

factorizations as well as linear solvers from external packages, such as PETSc and 

Trilinos; 

 the user can switch between linear solvers independently of the matrix assembling 

procedure. 

 

3 NUMERICAL MODELLING STAGES AND ASSOCIATED TECHNOLOGIES 

Numerical modelling is used both in academic and industrial purposes. The design of a 

numerical model consists of the following stages: 

 Physical model; 

 Mathematical model; 

 Discretization; 

 Solution methods; 

 Computer program; 

 Post-processing and analysis of the results. 

Physical model. Understanding of underlying physical phenomena is crucial: advection, 

diffusion, reaction or decay processes; heat or density transfer; elasticity or rheology effects, 
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etc. Chosen physics implies a list of primary physical quantities to be measured and/or 

simulated: pressure, velocity, concentration, temperature, probabilities, etc. 

Mathematical model is represented by a system of differential or integral equations 

describing the chosen phenomena and involving the chosen physical quantities. Often, 

formulation of boundary and initial conditions is required. Apart of problem formulation, 

analysis of solution existence and uniqueness is important. In some cases the analysis is not 

available though this does not inhibit the numerical solution.  

Mathematical description involves governing equations and domain geometry. For 

academic models in parallelepipedal domains it is sufficient to specify the length-width-

height parameters only. In more realistic cases the domain geometry can be presented as a set 

of unions or intersections of primitives: spheres, cylinders, cones, half spaces, parallelepipeds, 

etc. The most complex geometries for industrial applications can be constructed with one of 

the following tools: AutoCAD [10], 3DS Max [11], Sketchup [12], OpenCascade [13], etc. 

Discretization of a mathematical model includes discretization of the domain and the 

equations. Discretization of the domain implies generation of a computational mesh. A priori 

or runtime local mesh refinement near solution gradients crucially affects the solution 

accuracy. Accurate approximation of domain boundaries is also important. A lot of mesh 

generation and refinement tools (commercial or open source) are available: Tetgen [14], 

GMSH [15], ANI3D [16], INMOST OctreeCutcell [9], etc.  

The type of the computational grid correlates with the method for discretization of 

differential equations: finite differences (FD) imply structured grids, finite elements (FE) 

imply tetrahedral or hexahedral meshes, while finite volumes (FV) fit to general polyhedral 

meshes.  

Discretization results in a system of linear or nonlinear algebraic equations. The total 

number of equations is proportional to the number of mesh elements (cells, faces, edges, 

nodes) and ranges from thousands to billions. 

Solution methods. For the solution of systems of nonlinear algebraic equations, the 

following approaches can be used: Newton method, Picard method, line search method, trust 

interval method and others. Examples of nonlinear solver packages are: SUNDIALS [17], 

Trilinos NOX [18]. Automatic differentiation capabilities of INMOST allow for easy 

assembly and solution of the nonlinear system with the Newton method.  

The solution of a nonlinear system is based on its linearization which results in a large 

system of sparse linear equations. For solution of the system the following methods are 

applicable: direct factorization, Krylov's iterative methods with different preconditioners such 

as incomplete factorization, algebraic multigrid methods, domain decomposition methods, 

etc. A variety of advanced software packages can be used for this purpose: SuperLU [19], 

MUMPS [20], PETSc [21], Trilinos [22], Hypre [23], ILUPACK [24], INMOST Solve [9], 

etc. 

Computer program. To design the computer program and connect the required software 

packages, one exploits computer languages C, C++, Fortran, Python, etc. To utilize 

parallelism of modern computers including various accelerators, one may use computer 

libraries and languages: OpenMP [25], MPI [26], OpenCL [27], CUDA [28], etc. In some 

cases the number of computer languages within a numerical model may reach 4 or 5. 

For computer program debugging the following tools are available: gdb [29], valgrind [30], 

drmemory [31], etc.  

Post-processing and analysis of results. Computation of required metrics, plotting of 
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graphs and diagrams, generation of pictures and videos facilitate analysis of the computed 

results. Useful visualization tools are ParaView [32], VisIt [33], General Mesh Viewer [34], 

gnuplot [35], INMOST DrawGrid [9], etc. 

 

4 INMOST-BASED NUMERICAL MODELS 

In this section we review several applications of INMOST platform in numerical 

modelling. 

4.1 Incompressible fluid flow 

We first consider the incompressible fluid flow. The problem is described by the Navier–

Stokes equations: 
 

 

 

div

div 0.

Tρ + ρ μ + p = ,
t

=


 



u
uu u I 0

u
 (1) 

Here u={u,v,w}
T
 is the unknown fluid flow velocity, p is the unknown pressure, ρ  is the 

constant density and μ  is the dynamic viscosity. The system of Navier–Stokes equations is 

augmented by the boundary conditions. On the boundary we can impose no-slip or slip 

condition, Maxwell–Navier friction, do-nothing condition, condition for the normal stress 

(fixed pressure).  

  

 

Figure 1. FV solutions: flow over the backward step (top-left), flow in the lid-driven cavity (top-right), 

flow in a channel with obstacles (bottom). 

 

Figure 2. Decomposition of a computational domain for 92 processors 
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Both the momentum and the continuity equations are discretized by the finite volume 

method. The unknowns are collocated at the cell centers. To avoid checkerboard patterns in 

the discrete pressure due to the Ladyzhenskaya–Babushka–Brezzi instability, we stabilize the 

discretization by eigen-splitting of the part of the flux that corresponds to the pressure and the 

incompressibility condition, by analogy with the approach [44]. The FV system is nonlinear 

due to the convective term and the numerical scheme is stable even for large time steps. 

In Figure 1 (top row of pictures) visualization of the flow for the solutions to two 

benchmark problems are shown: the steady flow over the backward step and the steady flow 

in the lid-driven cavity. In the bottom picture of Figure 1 we present the unsteady flow in a 

channel with cylindrical obstacles in the case of high Reynolds number (Re~1000). Figure 1 

demonstrates physically adequate absolute velocity solution for a relatively small number of 

cells using finite volume discretization scheme. The presented examples make the full use of 

the INMOST programming platform, i.e. they exploit the general mesh data structure, the 

sparse matrix structure and automatic differentiation for the Jacobian system assembly and 

built-in sparse parallel linear solvers. Thanks to INMOST the flow model may be run in 

parallel. Decomposition of a computational mesh in a channel for 92 processors is 

demonstrated in Figure 2. The solution times of steady Pousielle flow problem for 36 and 92 

MPI processes were 2.51 and 1.25 seconds, respectively, which implies feasible parallel 

efficiency. 

The presented incompressible fluid flow model was complemented with the blood 

coagulation model [7] using INMOST multiphysics extension. This extension is currently 

under active development. It allows to couple the flow model with a reaction-advection-

diffusion model triggering coagulation into a joint nonlinear system which is solved on each 

time step. 

4.2 Free surface fluid flow 

We solve numerically the problem of fluid flow with a free surface on dynamically adapted 

octree grids. The problem is guided by the coupled solution of the system of incompressible 

Navier–Stokes equations and the level set equation: 

 

 

 

div

div 0,

div 0,

| | 1,

Tρ + ρ μ + p = ρg z,
t

=

φ
+ φ =

t

φ =


  









u
uu u I

u

u

 (2) 

where u={u,v,w}
T
 and p are unknown velocity and pressure, ρ  is the density, μ  is the 

dynamic viscosity, g  is the gravitational constant. In this problem the velocity is staggered on 

cell faces and the pressure is collocated at cell centers. The Navier–Stokes equations are 

augmented with the boundary conditions listed in Section 4.1. The unknown level-set 

function φ , satisfying the Neumann boundary condition, is passively advected with fluid and 

reinitialized by the solution of the Eikonal equation. The level-set function is prescribed at 

mesh nodes, its sign separates the domain into two parts: the fluid domain and the empty 

domain, see Figure 3 (left). The boundary condition at the interface accounts the surface 
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tension:  

 
.

2

T
+

μ + p = σκ
 


u u

n n n  (3) 

Here σ  is the surface tension coefficient, κ  is the surface curvature computed from the level-

set function, n is the surface normal. More implementation details can be found in [45] and 

references therein. Figure 3 (right) shows the surface tension induced water crown as a splash 

from falling drops into a pool filled with the fluid.  

Currently, the numerical model relies on the sparse matrix structure, automatic 

differentiation and linear solvers from INMOST tackling the diffusion problem and pressure 

projection problem. However, the octree mesh data structure of the model is not based on 

INMOST tools limiting parallelization of the model to OpenMP technology. The parallel 

general mesh adaptivity functionality is already developed [8, 46], and the transition of the 

code to the INMOST mesh data structure is underway. 

  

Figure 3. Computational domain (left) and the computed water crown (right) 

4.3 Oil and gas modelling 

The flow of the mixture of fluids subject to the Darcy law is used for simulation of primary 

or secondary oil and gas recovery from a heterogeneous anisotropic fractured reservoir. The 

black oil model equations for unknown pressure and saturations are [50]: 

  

  

 
  

  

div

div

div

div .

w w
w w w

o o
o o o o

g o g

g g g

go o o g

ρ θS
λ p ρ g z = q ,

t

ρ θS
λ p Pc ρ g z = q ,

t

ρ θ RS +S
λ p Pc ρ g z

t

λ p Pc ρ g z = q


   




    




    



    

K

K

K

K

 (4) 

Here K is the permeability of the rock, R is the gas solubility, θ  is the porosity, ρ  is the 

density dependent on pressure, /rλ= ρk μ are phase mobilities dependent on pressure and 

saturations for water, oil and gas, q are sources and sinks representing the wells guided by the 
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Peaceman formula [49]. The no-flow boundary condition is imposed on all the boundaries. 

Various FV discretization methods for the Darcy problem may be used for the numerical 

solution of system (4) [51]. In Figure 4 (left) we present an example of water saturation field 

in a reservoir with complex geology defined through a general mesh adapted to geological 

structures. In Figure 4 (right) we demonstrate water saturation in a network of fractures. 

  

Figure 4. Water saturation field and general mesh in a reservoir (left); water saturation in a fracture 

network (right) 

The numerical model uses the mesh data structure, sparse matrix structure, automatic 

differentiation and linear solvers from INMOST. 

4.4 Mechanics of deformable bodies 

The model describes the elastic deformation of bodies from heterogeneous anisotropic 

material. The model is given by the elasticity equations :( ( ) ) / 2Tσ = + , C u u  div( ) 0.σ =  

Here u={u,v,w}
T
 is the displacement field, σ  is the 3x3 stress tensor, C is the 4-th rank 

material stiffness tensor, “:” is the contraction operator. The system is augmented by Diriclet, 

Neumann or roller type boundary conditions. 

   

Figure 5. Stress components under load (left), stress magnitude under twisting (middle), and 

bending (right) 

The numerical implementation is based on the FV method described in [47]. Figure 5 

demonstrates the application of the model to benchmark problems: three components of stress 

in perforated infinite strip under load (left), magnitude of stress in a beam under twisting 

(middle) and bending (right) on structured and unstructured grids. 
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The numerical model uses the mesh data strucutre, sparse matrix structure, automatic 

differentiation and linear solvers from INMOST. 

4.5 Poromechanics 

The last example describes a solid body saturated with the fluid. The model is used for 

analysis of land subsidence and Earth fissuring due to water pumping into or out of the 

ground, as well as bed failure under constructions. It couples the solid mechanics problem 

(Section 4.4) with the fluid filtration problem guided by the Darcy problem (Section 4.3), the 

interaction between solid and fluid being described by Biot coupling terms [52]. For the 

single phase flow with unknowns u, v, w, and p it reads as: 

 

 

1
div

div : .
2

T

p
p ρg z = q,

M t t

+
p = ρg z

  
     

  

  
   

 
 

u
K B

u u
S B

 (5) 

Here p is the fluid pressure, u={u,v,w}
T
 is the displacement of solid, S is the material 

compliance tensor, inverse of the stiffness tensor, ρ  is the density, B is the Biot coefficient 

tensor, M is the Biot modulus, 1/M is the specific storage coefficient. The boundary 

conditions are similar to those discussed in Sections 4.3 and 4.4. 

 

Figure 6. Computational mesh and the pressure field for poromechanics problem 

Figure 6 demonstrates the pressure field for the poromechanics problem due to oil recovery 

from the Norne oil field, the elastic properties are synthetic. The grid is unstructured with 

faults, the system (5) is discretized by the FV method [48]. 

The numerical model uses the mesh data structure, sparse matrix structure, automatic 

differentiation and linear solvers from INMOST. 
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CONCLUSION 

The present paper presents the INMOST platform as a powerful tool for numerical 

modelling. INMOST provide a wide functionality of operations for general distributed mesh 

data, convenient interface for assembling and solving systems of linear and nonlinear 

equations, as well as analysis and visualization of obtained solutions. The description of the 

most important modules of INMOST is given. An overview of numerical modelling stages 

along with the tools that help in their implementation is presented. The place of INMOST 

platform among other modern widespread libraries and numerical modelling packages is 

shown.  

For a specific application in numerical modeling, it may turn out to be the most optimal 

choice of a special grid generator, as well as the sampling method for this type of grid. This is 

the main reason that these modules are not included in the INMOST software platform. For 

the same reason, it is difficult to make a full comparison of INMOST with other popular 

numerical modelling packages, which mainly use the simplest semi-regular types of grids, 

allowing the direct use of certain types of discretization, for example, two-point finite-volume 

ones. Conversely, INMOST software platform focuses on support for operation with general 

type grids. Despite this, the presented examples of INMOST application demonstrate 

appealing features of INMOST-based numerical modelling. Especially, this includes a wide 

range of its application for solving problems from gas hydrodynamics and problems with a 

free surface to problems of mechanics of a solid and deformable bodies, as well as problems 

of subsurface flow, including problems of poromechanics. 
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Summary. The velocity of the solid/liquid interface (SLI) υsℓ plays an important role in the 

processes of crystallization and melting. It is one of the fundamental concepts of materials 

science. Based on the analysis of kinetic models of melting/crystallization with diffusion and 

collisional-thermal constraints, a modification of the transition state theory is performed. 

Using two interaction potentials (KIHS and SW), molecular dynamics modeling of Si 

melting/crystallization under deep overheating/undercooling was performed. From comparing 

the simulation results with the data of the modified kinetic model, we constructed the 

response function of interface υsℓ in the region of the maximum allowable values of 

superheating/undercooling of Si. The temperature dependence of the velocity of the 

solid/liquid interface υsℓ is diffusion-limited and is described by the same equation in the 

entire temperature range. 
 

1 INTRODUCTION 

Melting of solid body and liquid solidification are among the widely used and actively 

studied [1] phenomena. Two mechanisms of melting/crystallization of solids/liquids are 

known: heterogeneous (surface or frontal) and homogeneous (volume). In the first case, in the 

framework of classical thermodynamics [2], melting of solids and solidification of liquids 

belong to the first-order phase transformations that occur at a certain (equilibrium) 

temperature Tm, which corresponds to the equality of the Gibbs free energies of the solid and 

liquid states. The phenomena of heterogeneous melting and solidification are always non-

uniform. They correspond to the motion of a continuous medium with a strong discontinuity 

surface, on which the mechanical, thermodynamic, thermophysical, and optical characteristics 

of a substance abruptly change. 

The velocity υsℓ(ΔT) = υsℓ(Tsℓ) of the solid/liquid interface (SLI) is the function of the 

deviation ΔT=Tsℓ – Tm from the equilibrium melting temperature Tm and is called the response 

function of the interface to overheating or undercooling, respectively, of the solid/liquid 

phase. The interface velocity υsℓ(Tsℓ) is a fundamental quantity that describes crystallization 

and melting processes and plays a fundamental role in materials science [3-5]. 

A significant part of the dynamics of melting and crystal growth from the melt is 

determined by the heat transfer from the moving interface. However, there are limiting 

circumstances in which the growth rate is regulated not only by the macroscopic heat flux. 

One of such circumstances is the emergence of fast phase transitions of the first kind, which 
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are typical to the action of concentrated energy fluxes on materials. These processes have 

their own specifics [6]. Fast phase transitions are accompanied by the appearance of 

metastable, strongly superheated/undercooled states. Reaching the maximum permissible 

values of overheating/undercooling [7,8] leads to a number of interface instabilities. 

Initially, experimental and theoretical studies were carried out more intensively in the field 

of crystallization/solidification of melts [9–11]. Along with the fundamental aspects [12], this 

is due to a large number of technological applications related to the production of metal 

glasses [13, 14] amorphous semiconductors [15], nanomaterials [16], etc. 

However, the widespread use in the last two decades of ultrashort pulsed (pico- and 

femtosecond) laser irradiation on various materials causes increased interest in fast first-order 

phase transitions. An analysis of the processes caused by pulsed laser irradiation leads to the 

consideration of a number of important fundamental problems, which, at high heating rates, 

include the features of homogeneous and heterogeneous melting/solidification and 

evaporation mechanisms and the associated extreme overheating and supercooling of matter. 

An understanding of the melting/solidification processes is also of great interest for the 

applied problems of photonics [17], ultrafast laser microprocessing of materials [18, 19], 

generation of nanoparticles and nanostructures [20,21], etc.  

Homogeneous melting/crystallization mechanisms are characterized by the nucleation of a 

new phase (liquid/crystal) in a certain volume of respectively superheated crystal and 

undercooled melt and will not be considered in this paper. 

In the theoretical studies of the mobility of the solid/liquid interface and the kinetics of 

crystal and melt growth associated with it, kinetic models [10, 22–24] and atomistic modeling 

[25–28] are widely used. In most works, the studies of the temperature dependence of the 

stationary velocity υsℓ(Tsℓ), as before, are carried out mainly in the temperature range of 

crystallization. Nevertheless, none of the models discussed describes the solidification process 

in the entire range of undercooling: from the minimum near the melting point Tm to the 

maximum in the region of amorphization (glass transition). In addition, the important question 

remains open about the possibility of using the analyzed kinetic models to determine the 

temperature dependence of the solid/liquid interface velocity for the melting process in the 

entire overheating region: from the minimum near the melting point Tm to the maximum in the 

spinodal region. 

The main tool for studying the kinetic rate of melting/crystallization in the region of the 

maximum allowable values of superheating/supercooling is atomistic modeling, the results of 

which are compared with the data of kinetic models. An acceptable match is achieved by 

introducing appropriate correction parameters in the model [25 - 30]. 

The main goal of the work is to construct a modified kinetic model with diffusion 

constraint that describes the mobility of the solid/liquid interface in a wide temperature range, 

including the region of maximum permissible values of superheat/supercooling. As the 

studied material, crystalline silicon (Si) was chosen, for which a series of MD calculations of 

the temperature dependence of the stationary melting/crystallization rate υsℓ(Tsℓ) were 

performed. MD results are compared with the data obtained from the modified kinetic model. 

2 KINETICS THEORY OF THE SOLID/LIQUID INTERFACE 

Of the many solid/liquid interface kinetics theories that display various crystal growth 

mechanisms, two of the most commonly used and cited directions can be distinguished. The 
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first is described by original Wilson – Frenkel (WF) growth models [31, 32], in which the 

interface velocity is associated with the diffusion of atoms in the liquid phase. This theory is 

often called the transition state theory, since it assumes that melting or solidification occurs 

through some intermediate or transition state. In this theory, a diffusion limitation mechanism 

is used to control the speed of the crystallization-melting front. This mechanism is based on 

the assumption that atoms (molecules) must overcome the diffusion barrier upon transition 

from a liquid to a solid phase [31, 32]. The transition is accompanied by a significant 

restructuring of the interface. The rate of the crystallization process was assumed to be 

proportional to the diffusion coefficient, which is usually presented in the form of the 

Arrhenius equation  

   



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
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sBTk
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DD exp0

       (1) 

where Q is the activation energy for the diffusive motion in liquid, kB is the Boltzmann 

constant, kBT is the average thermal energy of one atom, D0 is the prefactor, controlling the 

rate of the process. 

In the final form, the velocity of the meting/crystallization front υsℓ(ΔT) = υsℓ(Tsℓ) with the 

diffusive limitation is formulated as [33]: 
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where f
a
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2
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WF


 , a is the interatomic distance, λ is the mean free path of atoms for this 

process usually assumed being proportional to the lattice constant, a: λ < a, f is the efficiency 

coefficient (a constant of the order of unity, f ≤ 1), characterizing the fraction of collisions of 

liquid atoms with the solid leading to crystallization. The values of λ, f, D0, Q do not have a 

strict definition and are difficult to measure. Moreover, they depend on the crystallographic 

orientation of the interface. 

The second direction is based on the kinetic model originally proposed by Broughton, 

Gilmer and Jackson (BGJ) [34] as an improvement on the earlier model (WF). The BGJ 

model uses, as a limitation, the frequency of thermal collisions of atoms with an interphase 

boundary [35]. A modification of the transition state theory [31, 32] was motivated by the 

results of MD modeling with the Lenard – Jones interatomic potential [36], which showed 

that the growth of crystals of monatomic systems may not in all cases be limited by diffusion. 

In particular, far from the melting temperature in the region of very low temperatures, 

diffusion tends to zero, while, according to the simulation results, the SLI speed is still finite. 

On this basis, a conclusion was formulated on the unacceptability of the model with a 

diffusion restriction for crystallization in the entire temperature range. 

The BGJ model [34] was based on the hypothesis formulated earlier that solidification of 

monatomic metals is limited only by the frequency of collisions of the melt atoms with the 

crystal surface [35]. Following this hypothesis, an assumption was made that the kinetic 

model with the collision-thermal restriction mechanism best fits the obtained simulation 

results. According to this limiting mechanism, the maximum crystallization rate is controlled 

by the average thermal velocity of the atoms in the melt. The result of such reasoning was the 
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replacement by the authors of the BGJ model [34] of the diffusion term in (2) with the 

average thermal velocity of atoms mTk sBT /3  .  
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where 0f
a

СBGJ


 is a dimensionless coefficient, m is the atomic mass. 

However, in later works [25, 29, 33], atomistic modeling showed that in the range of 

values close to the melting temperature, the crystallization process can be displayed with 

acceptable accuracy by the kinetic models with the diffusion (2) and collision-thermal 

constraints (3), as well as models of the density functional theory [24, 37]. 

A much smaller number of works is devoted to analysis of the possibility of using the 

analyzed kinetic models (2), (3) to determine the speed of movement of the solid/liquid 

interface υsℓ(Tsℓ) with acceptable agreement in the temperature region not only of 

crystallization, but also of melting with strong overheating of the solid phase. 

In one of the first works [29], the results of molecular dynamics simulation were presented, 

in which the stationary rate of the silicon crystallization/melting interface was determined as a 

function of temperature in the conditions of strong undercooling/superheating. Particle 

interaction in the atomistic model was determined by the Stillinger – Weber potential [38]. 

The simulation results were compared with the data of the kinetic model with diffusion 

constraint (2). The model was adjusted to the simulation results by selecting the C
WF

 

parameter. An analysis of the results showed that the transition state theory provides a 

reasonable qualitative description of heterogeneous crystallization and melting of silicon in 

the temperature range 0.64 Tm ≤ Tsℓ ≤ 1.18Tm. Close to the melting temperature, good 

agreement with experimental data was observed. In the region of deep undercooling, there 

was a strong discrepancy between the results of atomistic modeling and the crystallization rate 

data obtained from equation (2).  

Similar studies using the kinetic model with the collision-thermal constraint mechanism (3) 

for metals were performed in [23, 26, 28, 30]. In an early work [30], the results of comparing 

the molecular dynamics simulation of crystallization and melting of sodium with the data of 

the kinetic model (3) in the temperature range 0.2 Tm ≤ Tsℓ ≤ 1.26 Tm are presented. The 

comparison of the temperature dependence of the stationary velocity of motion solid/liquid 

interface υsℓ(Tsℓ) showed that the kinetic model data are in good agreement with the results of 

atomistic modeling in the entire crystallization region. However, an agreement was not 

obtained for the melting branch. A similar agreement was obtained with high accuracy for the 

model with a frequency-thermal limitation (3) in [23, 26, 28] for atomistic modeling with 

EAM potentials for aluminum (Al), copper (Cu), and iron (Fe) in the following temperature 

ranges:  

Al:   0.3·Tm ≤ Tsℓ ≤ 1.26·Tm;     Cu:   0.61·Tm ≤ Tsℓ ≤ 1.2·Tm;  Fe:   0.6·Tm ≤ Tsℓ ≤ 1.15·Tm. 

Nevertheless, the important question remains unanswered to date: which of the kinetic 

models and in which temperature range can be used to determine the stationary SLI motion 

velocity in the processes of metal melting/crystallization at high supercooling/overheating. 
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This problem is also crucial when using the continuum models describing the heterogeneous 

mechanisms of melting and crystallization. 

3 MOLECULAR DYNAMICS STUDY 

The molecular dynamics method was used to simulate the process of heterogeneous 

melting/crystallization of silicon under conditions when the melting/crystallization front 

propagates over the superheated/undercooled phase. Two series of numerical experiments 

were performed for two selected interaction potentials: KIHS [39] and Stillinger-Weber (SW) 

[38]. 

The calculated area of 5.5×5.5×42.3 nm in the form of a parallelepiped was filled with 

64,000 particles interacting by means of the corresponding potential. In all three spatial 

directions, periodic boundary conditions are imposed on the boundaries of the computational 

domain. The particles form a layered structure containing two phases in contact: crystalline 

and liquid. The crystalline phase is formed by a diamond-like cubic lattice. The orientation of 

the lattice cells is such that the crystallographic direction [100] coincides with the large edge 

of the parallelepiped of the computational domain, and the melting/crystallization fronts 

propagate in this direction. At the initial stage, to study the melting process, the liquid phase 

occupies approximately 20% of the volume of the computational domain, and 80% in the 

study the crystallization process. 

Using a thermostat in the entire calculation area, a fixed temperature value is set and 

maintained during the entire numerical experiment. At the same time, a constant value of 

external pressure is held by the barostat. The entire computational domain is divided into 30 

layers of equal thickness along the long edge of the parallelepiped. Separately, in each layer, 

the thermostat controls the local temperature and keeps it equal to the target one. Thus, the 

inverse effect on the local temperature of the absorption/release of the latent heat of fusion Lm 

at the melting/crystallization fronts is leveled out. 

As a result, the process of heterogeneous melting/crystallization quickly goes to the 

stationary mode, and the change in the amount of the new phase occurs almost linearly.  

The integration of the equations of motion was carried out with a time step of 1 fs. 

Depending on the values of overheating/supercooling, from 400 thousand to 1 million steps 

were required to obtain each value of the melting/crystallization rate. 

The values of the target temperature of the calculation region in each series were selected 

from the range of approximately – 40% ... + 30% of the equilibrium melting temperature. An 

exit to the right outside the specified temperature range ended in failure, due to the beginning 

of the volume nucleation process, in which the solid / liquid interface became unstable. On the 

left outside this range, the crystallization process did not occur, the liquid “froze”, and an 

amorphous phase formed. 

The control of the order parameter made it possible to automatically track the positions of 

the melting/crystallization fronts and to calculate the speed of their motion. 

The discrete set of solid/liquid interface speed values thus obtained are presented in Table 

1 and with markers on the curves in Figs. 1, 2. Subsequently, they were used to construct the 

analytical dependences υsℓ(Tsℓ) for each of the considered interaction potentials of model 

silicon.  
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KIHS 

Tsℓ 1007.4 1175.4 1343.7 1428 1512 1595.8 1680 1844.9 2009.2 2171.9 

υsℓ -0.04 -0.41 -8 -13.7 -14 -10.03 0 30 81.75 160.22 

SW 

Tsℓ 839.5 1007.5 1175.6 1344.2 1512 1680 1845.2 2010 2174 2256 

υsℓ -0.07 -1.5 -7.45 -17.9 -15.4 0 27.7 77.5 141.8 177 

Table 1. The values of velocity υsℓ(Tsℓ), obtained from MD calculations. 

4 MODIFIED KINETIC MODEL 

In the theory of the transition state of Jackson and Chalmers [40], it is assumed that 

crystallization and melting proceed through an indefinite transition state, which is 

characterized by the presence of processes with two rates: one describes the melting rate Rs→ℓ, 

and another - solidification rate Rℓ→s. The difference of these two gives the velocity of the 

solid/liquid interface: 

 sss RR      (4) 

The intermediate state (intermediate phase) through which direct and reverse transitions 

take place has some Gibbs energy G
*
. The driving force of these transitions is the difference 

between the Gibbs energy G
*
 and the one of the corresponding phase Gs, Gℓ, being in the 

Arrhenius exponent: 

])(exp[ * kTGGR sss    

            (5) 

])(exp[ * kTGGR s     

Here k is the Boltzmann constant, Т is the temperature, χs, χℓ are the proportionality 

coefficients, which in classical theory are assumed to be equal to each other χs = χℓ = χ. 

Then the velocity is written as: 
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The energy barrier in front of the curly bracket in the exponent can be interpreted as the 

activation energy of the process that limits the rate of melting/crystallization. In the Wilson-

Frenkel phenomenological theory, this limiting process is associated with the diffusion of 

atoms in the liquid delivering the atoms to the crystallization front: 
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After performing thermodynamic transformations of the Gibbs energy difference between 

the solid and liquid phases, the final expression is obtained. It is the main conclusion of the 

transition state theory as applied to melting/crystallization processes with diffusion constraint: 
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Here Tm is the equilibrium melting temperature, Tsℓ is the temperature of the melting front, 

Lm is the latent heat of melting at the melting temperature Tm. 

The equation (8) showed an acceptable coincidence of the rate in the crystallization and 

melting region in a small vicinity of the equilibrium temperature Tm with the results of 

molecular dynamics modeling (MDM) and experimental data. However, in a wide 

temperature range in which the melting/crystallization processes can proceed with the 

maximum allowable values of superheating/undercooling, an acceptable agreement could not 

be obtained, since the kinetics of melting/crystallization far from the temperature Tm differs 

significantly from the kinetics in the vicinity of Tm. 

To overcome this difficulty, it is necessary to modify the Wilson-Frenkel kinetic model 

with diffusion constraint (8). The proposed modification is based on the assumption that the 

processes of direct and reverse transitions (5) in the transition state are asymmetric. The 

simplest form of asymmetry can be represented as the absence of equality of proportionality 

coefficients χs ≠ χℓ, and the relation s  as a functional dependence on the temperature 

f(Tsℓ). Considering the relation s , the expression for the velocity (6) can be written as: 
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Or, repeating the above discussion,  
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To determine the functional dependence   ss Tf  we use the following 

considerations. The relation s  is generally different from unity. But in the state of 

equilibrium, when Tsℓ = Tm and Gs = Gℓ, the expression in the curly brackets in (9), (10) must 

be equal to zero. This means that functional dependence   ss Tf  should in 

equilibrium take a value equal to unity.  

As such a dependence satisfying the condition s =1, one can use the ratio  
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where  is a dimensionless coefficient. 

In view of expression (11), the modified model with diffusion constraint takes the final 

form: 
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where D0 = χℓ is a dimensional constant. 

The modified equation (12) contains 3 constants D0, Q, , the values of which were 

determined from a comparison with MD results. To do this, we used a procedure containing 
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the least squares criterion  [41], which minimizes the deviation of the values of equation 

(12) with the selected parameters from the MD results. The values of the calculated 

parameters D0, Q, , as well as the least squares criterion  for each of the interaction 

potentials are shown in Table 2. 

Interaction 

potential 0D , [m/s] Q, [eV]  , [m/s] 

KIHS 83460.42 0.9241 – 1.1308 2.30 

SW 22816.30 0.7220 – 0.8994 1.76 

Table 2. The values of the calculated parameters D0, Q, , and the least squares criterion  for 

each of the interaction potentials. 

The equilibrium temperatures Tm and latent heat of melting Lm corresponding to the 

potentials KIHS [39] and SW [38] are taken from [42, 43] and are shown in Table 3. 

 

Interaction potential Tm, [K] Lm, [kJ/mole] 

KIHS [42,43] 1680 35 

SW [42,43] 1680 32 

Reference data [44] 1688 45,3  

Table 3. Equilibrium values of temperature Tm and latent heat Lm. 

5 DISCUSSION OF THE RESULTS 

Figs. 1a, b, present the results of the molecular dynamics simulation, in which the 

stationary rate of the Si crystallization/melting interface was determined as a function of 

temperature in the conditions of strong undercooling/superheating. The interaction of particles 

in the atomistic model was determined by the potentials of SW [38] and KIHS [39]. The 

simulation results were compared with the data of the modified kinetic model with diffusion 

constraint (12). The approximation of the model to the simulation results was carried out by 

selecting 3 parameters D0, Q, . In the deep undercooling region, the modified kinetic model 

(12) showed that the data on crystallization rate obtained from the equation (12) is almost 

completely identical to the results of atomistic modeling for both potentials. Thus, the 

introduction into the theory of the transition state of a functional temperature dependence of 

direct and reverse transitions makes it possible to eliminate the main drawback of the Wilson-

Frenkel model, which shows that in the region of very low temperatures, diffusion tends to 

zero faster than modeling data indicating that the velocity solid/liquid interface is still finite. 

In particular, far from the melting temperature in the region of very low temperatures, 

diffusion tends to zero, while, according to the simulation data, the SLI speed is still finite. 

An analysis of the results showed that the modified theory of the transition state gives a 

reasonable qualitative description of heterogeneous crystallization and melting of silicon in 

the temperature range 0.596Tm ≤ Tsℓ ≤ 1.28Tm for the KIHS potential and 

0.49Tm ≤ Tsℓ ≤ 1.35Tm for the SW potential. 

94



V.I. Mazhukin, A.V. Shapranov, A.V. Mazhukin, P.V. Breslavsky 

1000 1200 1400 1600 1800 2000 2200 2400

0

50

100

150

200

T
m
=1680 K

 MD-modeling with KIHS

 Approximation by theory
Si:

V
sl
 ,
 [

m
/s

]

T, [K]
 

800 1000 1200 1400 1600 1800 2000 2200 2400

0

50

100

150

200

T
m
=1680 K

 MD-modeling with SW

 Approximation by theorySi:

V
sl
 ,

 [
m

/s
]

T, [K]
 

Fig.1. Temperature dependence of the melting/crystallization front for silicon: MD modeling and 

approximation. KIHS potential (a), SW potential (b). 

In the vicinity of the melting temperature Tm, a smooth change in the temperature 

dependence of the velocity, determined from the simulation, is observed without breaking the 

slope when passing through the melting point for both potentials.  

At the same time, the calculation results demonstrate a pronounced asymmetry of the curve 

υsℓ(Tsℓ) relative to the melting point Tm, i.e. between undercooling and overheating. The 

velocity profiles approach large unercooling and large superheating in different ways, since 

the solidification kinetics far from the melting temperature differs significantly from the 

melting kinetics in a very superheated state. The crystal growth rates in the melt are largely 

(a) 

(b) 
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determined by the structural order parameter, which measures the local degree of crystallinity. 

When crystals grow, each atom on the interface must go to a specific place in the lattice. As 

the melt grows, the crystal melts and turns into a liquid without any structural limitations for 

atoms passing from the interface to the melt. Thus, structurally, it is easier for a crystal to 

transform into a liquid than to melt into a crystal. These structural differences in the processes 

lead to the asymmetry observed in the crystal/melt growth rate. The structural factor also has 

a great influence on the velocity profiles when approaching severe overheating and 

undercooling. Near the limiting superheating, the metastability state reaches its maximum and 

upon further heating, the crystal becomes unstable due to homogeneous nucleation, which 

leads to the disappearance of the solid/liquid interface. With large undercoolings, the mobility 

of the melt decreases significantly, reducing the value of the interface velocity. 

6 CONCLUSION 

1. A modification of the transition state theory for melting/crystallization processes is 

proposed using the Wilson-Frenkel kinetic model as an example. The modification consists in 

replacing the constant coefficients in the rate of direct and reverse transitions with a 

functional dependence on the temperature of the solid/liquid interface Tsℓ. 

2. Atomistic modeling of Si melting / crystallization processes under the conditions of deep 

overheating/undercooling was performed using two interaction potentials KIHS and SW. 

3. From comparing the simulation results with the data of the modified kinetic model, the 

interface response function is constructed in the region of the maximum allowable values of 

superheating/undercooling in Si. The crystallization part of the interface response function, as 

well as the second part of the interface response function for melting, are diffusion-limited 

and are described by the same equation over the entire temperature range. 

4. The temperature dependence of the speed of the solid/liquid interface determined from 

the simulation results using both interaction potentials shows a clear asymmetry with respect 

to the melting point Tm. This is explained by the strong difference between the solidification 

kinetics in a highly undercooled state and the melting kinetics in a very superheated state. 

5 The change in the temperature dependence of the velocity υsℓ(Tsℓ) upon passing through 

the melting point Tm occurs smoothly without a kink of the slope.  
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Summary. The paper considers a computational algorithm for solution of surface PDEs 

defined on the evolving surfaces. The basis of the algorithm is a finite element version of the 

closest point projection method. The method is applied to the Reynold’s lubrication equation 

which governs fluid flow in thin fractures. The closest point approach is used for description of 

fracture mid-surface evolution and for construction of the embedding equation. We describe 

algorithmic details of the proposed approach as well as a number of numerical experiments 

which demonstrates robustness of the method. 

1 INTRODUCTION 

Currently, hydraulic fracturing (HF) is one of the most widely used methods of oil and gas 

reservoir stimulation. The essence of the technology is an injection of special fluid into 

reservoir in order to create an artificial fracture of considerable area (length ~ 100  m, height 

~ 10  m, average opening ~ 5 10  mm). The fracture is filled with a proppant – calibrated 

artificial or natural sand-like granular material. The result of HF procedure is an artificial flow 

channel connected to the production or injection well with large inflow area and high 

permeability. This provides a significant increase in inflow of reservoir fluid to the well. 

Engineering aspects of technology are considered, for example, in [1]. 

Mathematical description of the hydraulic fracture evolution during its development comes 

down to solution of complex coupled problem which includes (among other groups of 

equations) flow equations of (usually non-Newtonian) for fluid in the evolving fracture. 

A number of models for HF evolution are known. Most general of them (see, e.g., [2]) 

assume that: 

 fracture mid-surface is an arbitrary sufficiently smooth surface with boundary; 

 at a fixed point of the mid-surface its opening is defined by reaction of the 

surrounding medium and pressure in the fracture; 

 during the hydraulic fracturing procedure, the fracture evolves, and the exact way of 

this evolution is not known in advance (in other words, the fracture mid-surface is a 

part of the solution of complete problem); 

 the fracture mid-surface is not flat – fracture can switch direction of propagation 

locally; the direction of its propagation may be different at different points on its 

front. 

Note that common approaches to solve the problem of fracture propagation in an elastic 

medium are based on boundary integral equations. In this case it turns possible to solve both 
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fracture flow equations and elasticity equations in the surrounding medium using single surface 

computational mesh defined on the fracture mid-surface. This simplifies overall algorithm for 

the complete problem. In the case when the medium is, for example, heterogeneous, these 

methods cannot be applied – and the mesh-based methods like, e.g. finite element method are 

more preferable. In that case an additional computational mesh has to be introduced for solution 

of surface PDE. The same situation arises when realistic fluid flow models in reservoir has to be 

considered, see, e.g. [3]. 

Another approach is to use the so called embedding methods when surface PDE is solved 

using the same spatial mesh as a problem in the surrounding medium. A number of such 

methods are known. In the works [4, 5, 6, 7, 8] an original method was proposed for solving 

surface PDEs based on surface representation using closet point projection operator. The 

essence of the method is that closest point projection operator is used to extend surface PDE 

into the surrounding space to obtain the so called embedding PDE. Further, this embedding 

PDE is approximated by a suitable difference method on a mesh which, generally, is not 

consistent with surface geometry. As a solution to the original problem on the surface, the trace 

of 3D embedding equation is considered. At the same time, the closet point projection operator 

is used to approximate Dirichlet (or Neumann) boundary conditions defined on the boundary of 

both the original surface and the three-dimensional domain, where embedding PDE is solved. 

In this paper, we consider the finite element version of the closet point projection method to 

solve Reynold’s lubrication equations which governs fluid flow inside evolving fracture. 

In contrast to the works cited above, the finite element method is used a basic approximation 

scheme. More detailed description of the algorithm as well as numerical examples are presented 

in [19, 20]. 

2 CLOSEST POINT PROJECTION METHOD 

This section briefly describes the main ideas of the closest point projection method for 

numerical solution of surface PDEs. The method was proposed and developed in [4, 5, 8, 6, 7]. 

It uses implicit representation of the surface and is based on the extension of surface PDE into 

the space. To construct such extension the closest point projection operator is used rather then 

commonly used level set method. 

In this section, for simplicity, we consider model boundary value problem for a parabolic 

equation with Laplace–Beltrami operator (see, for example, [21]) defined on a curved surface 

F  with boundary: 

= 0,
u

u
t


 


F  (1) 

complemented by the initial and boundary condition of the desired type. 

We assume that the surface F  is entirely located inside the spatial domain 
3  R . 

Suppose that for an arbitrary point x , a point cpx  is the nearest to x  point on the 

surface F , 

cp = ,argmin  
y

x y xF P P   
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where P P is the Euclidean norm in 
3R . The point cpx  is called the closest point projection 

of the point x  onto the surface F , and the corresponding operator will be denoted by P , 

cp = P .x x   

The operator P  is vector-valued: it maps spatial domain   to the surface F , considered 

as a subset of 
3  R . 

If the sign distance function ( )d xF
 can be specified for the surface F  (for example, if F  

is oriented surface without boundary), then the following representaion for the operator P  is 

valid: 

P( ) = ( ) ( ), ( ) = P .d d d  x x x x x x xF F P P   

Just like the sign distance function (or a pair of such functions in the case of a surface with 

boundary), the projector P  uniquely defines surface F , 

 = : = P .x x xF   

However, the closest point projection approach is more general: it allows one to describe 

geometry of surface with boundary, non-orientable manifolds or manifolds of codimension 

greater than one (i.e. curves and points which are codimension 2 and 3 objects in 3d case – as 

well as union of objects of different codimension). 

Using projector P , it is easy to construct an extension of an arbitrary function defined on the 

surface to the spatial domain  : for an arbitrary function u  defined on a surface, its 

continuation [ ]uE  in   is defined as  

[ ]( ) = (P ), .u u x x xE   

In both cases, the operator E  is a projector in the sense that 
2 = IE , where I  is the identity 

operator. Note that: 

 for an arbitrary function in   which is constant along the direction normal to F , 

   | = | ;u u F F F   

 for an arbitrary vector field in   tangent to the surface F , 

   | = | .q   q F F F   

Then, due to the properties of the projector P  and the extension operator E : 

[ ]( ) = (P ) = .u u u  x x FE   

Since the [ ]( )u xE  is constant along directions normal to the surface, the vector field 

[ ]( )u xE  is tangent to F . Hence,  

   [ ]( ) = (P ) = .u u u       x x F FE   

Similar extensions can be constructed for more complex elliptic operators defined in the 

surface, see [9]. 
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Thus, the original equation (1) can be extended to the spatial domain   to define the so 

called embedding equation. Further, the embedding equation is approximated by a suitable 

difference method on a three-dimensional mesh introduced in   and, generally, inconsistent 

with the surface geometry. Solution of the original problem on the surface can restored as a 

trace of the solution of 3D problem on the surface. A rigorous justification for the constructions 

described above is presented in [9]. Details of the method are given in the papers cited above. 

Following the described approach the embedding equation which corresponds to (1) reads: 

( [ ]) = [ ], .
u

u f
t


   


x FE E  (2) 

The trace of the solution of this equation on F  is the solution of the equation (1). 

Regarding domain  , it is assumed that (i) it is small in the sense that the closest point 

projection of an arbitrary point from   is well defined and (ii) the domain   includes the 

surface F ,   F , and the distances from the boundary points of   to surface are positive. 

In other words, all points on the surface are interior points of the domain. 

If the surface F  is a surface without boundary, the value of the solution ( , )u t x  of the 

embedding PDE (2) at the points lying on the surface F  will coincide with the solution of the 

original surface PDE (1) (in this case = F  and the problem (1) is the Cauchy problem). 

Otherwise it is required to provide embedding PDE (2) with boundary conditions defined in a 

suitable way. This can be done in different ways. In [8] a convenient way to adress this issue in 

the discrete setting. In the context of the finite element method the corresponding questions 

were adressed in [10]. 

3 PROBLEM STATEMENT 

This section presents the mathematical formulation of the problem. In subsequent  section 

with consider a flow model itself and geometrical model for fracture mid-surface evolution. 

3.1 Flow model in fracture 

Consider a one-sided surface F  with boundary F  immersed into three-dimensional 

space 
3R . Let = ,F F F  where an open domain F  is an internal part of the surface, 

F  – its boundary. In some cases, we will identify the notation F  and F . We assume that 

F  and its boundary have the required smoothness. 

The surface F  is assumed to be immersed into spatial domain  . Let for each point 

x  a closest point projector P  onto F  is uniquelly defined (see section 2). Depending on 

the location of the point, its projection onto F  belongs to either F  or F . This allows us to 

represent   as a union = ,  F F  where  

= { : P }, = { : P }.     x x x xF FF F   

The boundary F  of the F  can be represented as 

= , = , = \ .         F F F F F F F F   
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In the case of evolving fracture geometry, the constructions above are generally the same, 

except that the computational domain now depends on time. That is, the problem is solved in 

the domain = ( )t tF F F , where t  is the time, = ( )t t    , ,= ( )t t   F F F , etc. 

Additionally, we assume that for all moments of time, all previously considered time-dependent 

domains, as well as the mid-surface of the fracture are located inside some spatial and 

time-independent domain  . Let us note that the dependency of the mid-surface F  on time 

cannot to be an arbitrary. Corresponding clarifications will be given below.  

The Reynold’s lubrication equation of fluid flow in fracture has the form:  

3

m

1
= , ,

12
t

w
div w p f

t






  
    

  
x F  (3) 

where   is the fluid density; = ( )w w x  – fracture opening, x F  – point of the fracture 

mid-surface F ;   – fluid viscosity, = ( )p p x  – its pressure, 
mf  – mass rate of external 

sources. 

We assume that the fluid density linearly depends on pressure, i.e. 

0 f 0= [1 ( )],c p p      

where 
0  and 

0p  are reference values of density and pressure, 
fc  is compressibility of the 

fluid. 

The equation (3) is supplemented with initial and boundary condition of the form 

ini( , = 0) = ( ), | = .p t p p p x x F F
  

Further, we assume that the opening w  is always positive, 

0= ( ) > 0, .w w w  x x… F F   

In the simplest case we can assume that fracture opening w  does not depend on pressure. In 

a more realistic setting, opening is a function of pressure. This relationship reflects the fact that 

the fracture is located inside an elastic medium that deforms when the pressure in the fracture 

changes. In this paper it is assumed that this dependency is linear, i.e. 

 ref w ref( ) = ( ; ( )), ( ; ) = ( ) 1 [ ( ) ] ,w p p w c p p x x x x x xW W  (4) 

where 
ref ( )w x  is fracture opening at reference pressure 

refp , 
wc  is coefficient describing 

“compressibility” of fracture (more precisely, the medium containing the fracture). 

3.2. Model for surface evolution 

Evolution of the surface tF  in the formulation (3) can not be an arbitrary. This section 

presents relevant assumptions, both of the fundamental and technical character. They reflect the 

specifics of the problem under consideration, namely, the fact that tF  is the mid-surface of an 

evolving fracture. 

Let the problem (3) be solved on the time interval [0, ]t T  and for 1 2t t…  condition 

1 2
t tF F  holds. In other words, a family of surfaces corresponding to smaller times, is 
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contained inside a surface corresponding to any larger time. Or, which is the same, the surface 

may evolve only due to the movement of its boundary. 

We assume that: 

 at any time [0, ]t T  the surface 
tF  is entirely located inside some spatial 

time-independent domain  ; 

 the evolution of the surface F  is “smooth”, i.e., at any time the surface can be 

smoothly and one-to-one mapped onto, for example, a unit disk in 
2R . In particular, 

during its evolution F  should not have self-intersections, and so on.  

In this case, the family of surfaces { , 0}t tF …  can be represented as a union of the “initial” 

surface 
0F F  and the “trace” of the movement of the surface boundary, i.e.  

0= { ( )|0 },t t t t  F F „ „   

where 
0F F  is the surface at = 0t , ( ) tt  F . 

Thus, the evolution of the surface is determined by the motion of its boundary ( )t . In the 

following we assume that at every moment of time, on the curve ( )t  the velocity vector field  

= ( , )tv v x , ( )tx is defined which governs fracture evolution. Movement of the 

(Lagrangian) point of the boundary is described by the equation 

=0 0= ( , ), | = (0).t

d
t

dt


x
v x x x  (5) 

We assume that = ( , )tv v x  (i) is smooth function of point ( )tx  for [0, ]t T  and (ii) 

is a smooth function of time for each fixed (Lagrangian) point on the boundary. 

Such a model of surface evolution corresponds to the problem of fracture dynamics. In this 

case the direction of surface evolution is known only at the points of its boundary (fracture 

front) and is determined by the appropriate fracture criteria (see e.g. [11, 12]). 

Note that in a number of cases (in particular, for the purposes of theoretical analysis) it is 

convenient to assume that the velocity field ( , )tv x , tx F  is a trace on tF  of some smooth 

vector field = ( , )tV V x  without singular points which is defined in the domain   containing 

the family of surfaces tF  at all instants of time [0, ]t T . The natural requirement for the field 

= ( , )tV V x  is that that it is tangent to surfaces 
t

F  for all <t t  (in other words, it does not 

change already formed fracture mid-surface). Under a suitable choice, the field V  generates a 

smooth and one-to-one mapping of the surface 0F F  onto the surface tF  for any (0, ].t T  

4 COMPUTATIONAL ALGORITHM 

4.1. Formal time approximations 

We write the problem (3) in the operator form as  
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( )
( ( ); ) = , ,

| = , ,

t

t

u
w u u f

t

u g






 





x

xF

A F

F

 (6a) 

with initial condition 

0 0( , = 0) = ( ), .u t u x x x F   

Let the problem (6a) be solved for [0, ]t T . We divide interval [0, ]T it into intervals (time 

steps) t , so that 

00 = < < < = < = = .n Nt t n t t N t t T     

According to section 3.2 at time point t  the solution = ( )n nu u t  is defined in the domain 

t n
n
F F , moreover, 

1n nF F . 

Semi-discrete (in time) approximation of the problem (6a) on the interval 
1[ , ]n nt t 

 can be 

defined as  

1

1 1 1 1

( ) E[ ( )]
( ( ); ) = , .n n

n n n n

u u
w u u f

t

 

   


 


xA F  (6b) 

Here E[ ]  is the continuation operator that maps functions, defined in 
nF  to functions 

defined in 
1nF . For the problem to be well-posed, the continuation operator must satisfy 

certain smoothness and boundedness properties. In terms of Sobolev spaces, such properties of 

the continuation operator are formulated in [13]. 

In this paper, a rigorous theoretical justification of the proposed method used is not given, 

but it can be expected that the conditions necessary for its correctness are satisfied since: 

 for smooth domains with smooth boundary natural smoothness properties of the 

solution coincide with those ones for the case of planar domains (subsets of 
2R ). 

Moreover, the surface tF  for all t  can be mapped smoothly to the 

two-dimensional domain 
2

t F R  (and even to a time-independent canonical 

domain, for example, a disk of a given radius) 

 the vector field V  that governs mid-surface evolution (see section 3.2) defines a 

smooth mapping 
0F F  onto 

tF . 

We also note the following. In the works [13] and [14] the continuation operator is not used 

explicitly. Instead, an implicit way to prolongate solution from domain n  to the domain 

1n  is used. Technically it is implemented by adding to the weak statement of the problem an 

additional penalty-type bilinear form. As a result, the required smoothness of the discrete 

extension is a consequence of the modified variational statement of the problem. This method is 

called “ghost penalty stabilization”. It can directly be used to solve the problem considered in 

this paper. 
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Below we use an algorithm, that assumes explicit definition of continuation E[ ]u  of the 

solution u . Namely, the solution defined in the region 
nF  is extended to the domain 

1nF  as 

a constant in the direction normal to the boundary of the domain 
nF . 

Alternatively, a continuation approach typical for the X-FEM method can be used (see, for 

example [15, 16]). Essentially it consist of two steps: 

1. First, the vector field v  defined at the boundary 
tF  is extended into tubular 

neighborhood of 
tF  (or the entire three-dimensional domain containing the 

surface); 

2. Second, the extended velocity field is used to extend solution from the domain 
nF  

into an “extended’’ domain 
1nF  by solving appropriate Hamilton-Jacoby type 

equation.  

At each time step, the problem (6b) is solved on the surface 
1nF . A number of methods can 

be applied to do it, including variational version of the closest point projection method (see 

[10]). 

In what follows, we assume that during its evolution, the surface 
tF  (and surfaces 

nF , 

= 0,n N ) are always located inside spatial domain  . To proceed with spatial 

approximations, we assume that the finite element mesh 
hT  is introduced in  . This mesh is 

used to build spatial approximations of the problem (6b) for = 1,n N . 

At each moment in time, a three-dimensional domain 
h

n  is associated with the surface 
nF  

in which solution to the problem (6b) will be approximated by the closest point projection 

method. Geometrically 
h

n  can be constructed as a set of finite elements 
h T , all nodes of 

which are distant from the surface 
nF  by a distance not exceeding the value of the given 

parameter  , which is a multiple of the step of the computational mesh. Everywhere in the 

domain 
h

n  we will assume that closest point projector Pn
 (the index “ n ’’ indicates the 

number of time step) is well defined. 

Afterwords to solve the problem in the domain 
1n , algorithms from [17, 10, 20] can be 

used directly. 

The sketch of the computational algorithm is as follows: 

1. Initialize surface 0F F , velocity field ( )v x  defined at x F ; initial condition 

0 ( )u x , x F . 

2.  Set domain   and the computational mesh hT  in it. 

3. Set = 0n , = 0t . 

4. Compute discrete approximations of the closest point projector 0Ph
 to the 

surface 0.F . 

5. For = 1,n N : 

a) Set := 1n n  . 

b) Define mid-surface boundary evolution velocity v . 
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c) Setup mesh domain 
h

n  as a correct subset of the finite elements in 
hT . 

d) Based on the given field v  and the mesh projector 1Ph

n  determine discrete 

domain 
h

n  and the corresponding closest point projector Ph

n . see [18]. 

e) Compute the extention 
1E nu 
 of the solution from the domain 1

h

n  to the 

domain 
h

n . 

f) Assemble and solve a finite-dimensional approximation of the problem (6b). 

g) Go to step 5a.  

6. Terminate algorithm. 

Note that during the operation of the algorithm, the surface is specified directly only at its 

first initialization step. In the further steps, only the evolution over time of the projector Ph

n  is 

computed. The image of this projector is an approximation of the surface; Its geometric 

characteristics, if necessary, can be calculated according to the algorithms described in [18]. 

To solve discrete non-linear problem at step (5f) of the algorithm, fixed point iterations are 

used. 

As applied to time-implicit approximations of the problem (3) this algorithm, describing 

transition from the current state { , , }p w  at the time t  to the state ˆˆ ˆ{ , , }p w  at the time 

t t   has the following form: 

1. For = 0i  set ˆ =ip p . 

2. Compute 
1

ˆ
iw 

 as  

1 1
ˆˆ ˆ ˆ( ) = ( ; ), ( ) = ( ( )).i i i iw p p  x x x xW   

3. Compute 
1

ˆ
ip 

 as solution of the equation: 

3

1 1 1 1 1

1 1
ˆˆ ˆ ˆ ˆ( ( ) ) = .

12
i i i i ip w w div w p f

t
  


    

 
    

  
 (7) 

4. Check iterations stopping criteria. If the required accuracy is not achieved, set 

:= 1i i   and go to step 2. If the required accuracy is achieved, set  

   1 1 1
ˆˆ ˆ ˆ ˆ ˆ, , := , ( ), ( )i i ip w p p p   W   

It is assumed that the solution is obtained with the required accuracy, if the uniform norm of 

pressure increment is less then the given threshold value iter : 

1 1

1

iter

0

< .
n n

i ip p

p


 






 (8) 

4.2 Spatial approximations with closest point projection method 

To simplify notations let us write down equation (7) as 
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1
( ) ( ( ) ) = , .M u u A u f

t
    


x x F  (9) 

Following [8] consider continuation of the equation (9) to the spatial domain F
: 

1
( ) ( [ ]( ) [ ]) = [ ], .M u u A u f

t
    


x xE E E F  (10) 

The trace of the solution of the embedded equation (10) on F  is the solution of the 

equation (9). 

Boundary conditions for the embedding equation (10) on 
 F

 (see section 2) can be 

constructed as an extension of the surface boundary conditions of the original problem (3) 

defined at F : 

| = [ | ] = [ ],u u g 


F
F

E E  (11) 

or, which is the same,  

cp cp( ) = (P ) = ( ), , = P .u g g  x x x x x xF F   

Note that the values of the solution of (10) on F
 are completely defined as an extension of 

u  from interior points of the surface F . For this reason, the boundary conditions for (10) are 

not defined on this part of the boundary. 

Let us briefly describe now the spatial approximations. Let = ( )h h T T  be a partition of   

into finite elements (tetrahedrons)  ,  

= = ,h

h





 
T

 
 

that is, domain itself and its boundary are approximated exactly. Let N  be a set of 

triangulation nodes, equipped with simplest continuous piecewise linear basis functions 

= ( )i i  x , i N . The finite-dimensional space ( ) ( )hV V    can be defined as 

( ) = ( ).h i
i

V span


 x
N

 (12) 

Recall that the boundary   of the domain   is approximated by the computational mesh 

exactly. Let =  N N N , N  and N  be sets of nodes inside domain   and on its 

boundary  , respectively. Then elements of the space = ( )h hV V   have the form  

( ) = ( ).h i i

i

v v
 

 

x x
N N

 
 

To proceed we construct discrete approximation Ph  of the closest point projection operator 

P  first. The details are covered in [18]) and are not considered here. Let ix  be a mesh node in 

h , 
cp = Pi h ix x  be its projection, i  be a finite element such that 

cp

i ix . Discrete extension 

operator defines the value of the (extended) function in the node ix  as (P )h h iu x . This value 
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can be computes using linear interpolation over the values 
ku , 

ik   of 
hu  over nodes 

i . 

As a result, the value of 
ext

hu  can be defined as  

ext = ,h h hu E u   

where 
hE  is a square matrix which nonzero rows are of the form 

1 2 3 4 1 2 3 4( ,[ , , , ]) = [ ( ), ( ), ( ), ( )].h i i i ii k k k k        E   

Here ( )i   are barycentric coordinates of the point P( )ix  inside finite element 
i . 

Provided with discrete extension operator, the finite element approximations to (10) (in a 

case of homogeneous Neumann boundary conditions) reads:  

ˆ
= ,h h

h h h h h h
t






u u
M A E u E f   

where 
hM  is the mass matrix, = ( )h h tu u  is a vector of degrees of freedom of the solution at 

time = nt t ; ˆ = ( )h h t t u u  is vector of degrees of freedom of the solution at time 

1= =nt t t t   , 
hf  is the right side of the finite-dimensional problem, A  – its stiffness 

matrix,  

[ ] = , [ ] = [ ] , [ ] = , , .h ij i j h ij i j h i iM d A d f d i j   
  

      M A fE N   

The resulting system of linear algebraic equations has the form:  

ˆ( ) = .h h h h h h ht t   M B u E f M u   

As it is shown in [7], the constructed finite-dimensional problem can be unstable since 

matrix =B AE  may have eigenvalues with both positive or negative real part. The same work 

suggests modification that eliminates this effect. The solution is to modify 
hB  according to 

= ( ) .h h h h hdiag diag B A A A E   

The same modification is used in this work.  

A number of approaches can be used to account for boundary conditions in the discrete 

setting. In this paper, we use the simplest one: the values of the solution in the nodes of the 

computational mesh, which are projected onto the surface boundary, are assigned according to 

the given boundary values. Technically, this is done in a standard way, by modification of the 

appropriate rows of the system of equations above. 

The described algorithm is applied at each step of the fixed point iterations to solve the 

equation (7). 

5 SIMULATION RESULTS 

5.1 Geometric constructions 

This section provides an illustrations to the basic geometrical constructions needed for 

application of the closest point projection method (see section 2) using simple example. 
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Generally, an algorithmic steps used in closest point projection method are as follows. First, 

the spatial domain   is defined. The somain contains surface F  with boundary F  such 

that =   F F F . We consider here the stationary case, i.e., the fracture mid-surface is 

assumed to be fixed in time and space. Therefore, in this section domains   and   are 

treated equally. 

Hereafter in this work the domain   is asumed to be cube-shaped with an edge of the 

length l . In this domain a tetrahedral mesh is introduced which is constructed as follows: (i) a 

uniform mesh of x y zN N N   smaller cubes in   is introduced; (ii) each small cube is 

further divided into five tetrahedra. Those tetrahedrons forms a computational mesh in  . In 

the following it is always assumed = = =x y zN N N N . The mesh step size is defined as 

= /h l N . Note that it is not assumed a-priory that the surface F  and the constructed mesh are 

consistent (i.e., the surface F  is not represented as a union of the mesh faces). 

The constructed meshed domain 
h  is not used in the calculations directly, but is used to 

build a mesh 
hF , in which solutions to the extended (prolongated) equation is to be found. 

In accordance with the approach under consideration, the problem (surface PDE) is solved in 

the meshed domain 
hF , which is the “submesh” of the 

h  so that the distance (in the sense 

of closest point projection) from all nodes of the mesh in 
hF  to the surface does not exceed a 

given value  . In all calculations below this value is selected as = N h , where = 4N . 

Further in this section, the domains   and 
h  (as well as 

hF  and F
) are identified and 

the superscript “ h ” is dropped, if it does not lead to any misunderstanding. 

For the example discussed in this section the surface F  has the form of a flat disk of the 

diameter = 1L . The disk is located in the plane xyO  and is centered at the origin. Domain   

containing the disk is a cube with edge length = 1.5l . 

On each edge of the cube  , a = 31N  nodes are defined. Thus, the characteristic mesh 

step size is = 0.05h . 

According to the closest point projection method an equation defined on the surface F  is 

extended and solved in the spatial domain   F . The region F  consists of tetrahedrons 

from   with nodes located at the distance of = 0.2  or smaller from F . So, the 

“thickness” of the domain F
 equals to 2 = 0.4  (  8 grid nodes) and its largest diameter is 

1.4  (  28 grid nodes). 

The nodes of F  are shown on figure 1 (on the left plot). It also shows a section of the 

domain   by the plane passing through the center of the disk F . The mesh with red edges 

shows the surface F , red spheres denote nodes located in the domain F  (“cloud”). In the 

same figure (on the right plot) the vectors connecting the mesh nodes x  with their projections 

P( )x  onto F  are shown. The color of each vector corresponds to its length. 

Figure 2 shows the sections of the computational domain by the coordinate planes xyO  and 

yzO . Red spheres indicate mesh nodes located in F  which projections belong to the boudary 
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F  of the surface. On the same plots the white spheres are nodes in F
, which projections 

are internal points of the surface F . Blue lines indicate the volumetric mesh defined in  . 

5.2 Fluid flow in fracture with fixed mid-surface 

Here we consider the case when the geometry of the fracture does not change in time and 

fracture opening is pressure dependent. The statement of the problem in this case has the form 

of (3). 

Fracture opening, as a function of pressure, is defined by (4), where reference opening 

ref ( )w x  corresponds to the surface of bi-axial ellipsoid with axes 
0l  and 

0L , 
0 0Łl = . Here 

0l  is equal to maximum value of fracture opening, see below. 

Let 
cx  be the center of the fracture, cp = P( )x x  – projection of a point x  onto the fracture 

mid-surface, d  is a distance from the center of the fracture to the projection of the point onto 

the fracture,  

c cp= ( ) = ,d d x x xP P   

where P P is the Euclidean norm in 
3R . Then the reference opening as a function of the point 

at the fracture mid-surface is expressed as  

2

c cp

ref 0 2

0

( ) = 1 .
x x

w l
L


x

P P
 (13) 

As it was mentioned above, Reynold’s lubrication equation (3) is degenerate as opening 

vanishes at the fracture front (mid-surface boundary). To avoid this situation, we set 

0 = (1 )L L  where L  is actual radius of the disk-shaped fracture. Here 
0l L = =  is a 

small parameter. 

At the initial state, the pressure is constant over the fracture mid-surface and is equal to 0p  

(reference pressure value). Accordingly, the initial opening distribution equals to the reference 

one. 

Boundary conditions at the fracture front read:  

c

0= ( ) = 1 , ,
x x

p p p
L

 

 
  

 
x xF F F   

with = 0.1  being a parameter, x  being projection of the point x  onto the axis xO . 

As before, the computational domain is a cube with edge = 30l  m. The mesh step size 

= 1h  m. The equation is solved in the domain F  consisting of tetrahedrons, all nodes of 

which are distant from the fracture mid-surface no further then = 2  m. Time step is 
7= 0.5 10t    s. 

The radius of the fracture is equal to = 10L  m. The fracture is a subset in the plane xyO  

and is centered at the origin. The maximum fracture opening 0 = 1l  cm. 
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(a) (b) 

Figure 1:(a) -  section of the domain  , surface (red mesh) and mesh nodes in F  (red markers). 

(b) -  projection vectors of the nodes inside domain F  on F . 

 
(a) 

 
(b) 

Figure 2: Projections of the mesh nodes onto the surface (white spheres) and onto its boundary (red 

speres). The blue lines are edges of computational mesh. (a) - top view, (b) - side view. 

In the center of the fracture, inside disk bc

h  of the radius =R h  a constant pressure is set 

being equal to 01.1p . 
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Accuracy parameter in (8) is set to 
6

iter = 1.0 10   and the maximum number of iterations is 

max

iter = 10N . 

Physical parameters of the fluid in fracture are as follows: kinematic viscosity 
3= 1 10   Pa  s, reference pressure 

0 = 300p  bar, reference opening 
0 = 1l  cm, 

compressibility 
10

f = 4.16 10c   Pa
-1

, density 
0 = 1000  kg/m

3
. Parameters of the equation 

(4) are 
w 0=1/ ,c p  

ref 0=p p . 

Pressure distribution and fracture opening for the computed solution for different moments 

of time are shown on figure 3. 

 

Figure 3: Pressure (on the top) and fracture opening (on the bottom) distribution at time      (a, d), 

      (b, e),       (c, f).  
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Figure 4: Pressure distribution at time t = Δt (a, d), t = 3Δt (b, e), t = 5Δt (c, f). Top: top view, bottom: 

side view. 

 

Figure 5: Pressure (top) and fracture opening (bottom) distribution at time t = Δt (a, d), t = 6Δt (b, e), t = 

12Δt (c, f). 
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The presented simulation results show that to achive the required accuracy using fixed-point 

iteration method requires no more than 10 iterations for each time layer. As expected, the 

number of iterations significantly decreased with time. 

Next, we consider the case of fracture with fixed geometry but of the complex shape. The 

statement of the problem is the same in general. 

At the initial moment of time, the pressure is constant over the middle surface of the fracture 

and is equal to 
0p  (reference pressure value). The opening is constant as a function of the 

mid-surface point and is equal to 
0l  (reference value of the opening). Dependency of the 

opening on the pressure is given by (4) with 
ref 0( ) = = constw lx . 

The computational domain is a cube with edge length = 50l  m, mesh step size is = 1h  m. 

The equation is solved in the domain F
, consisting of tetrahedrons, all nodes of which are 

distant from the fracture no further than = 2  m. Time step size is = 0.00024t  s. 

Accuracy parameter in fixed point iterations stopping criteria is equal to 
6

iter = 1.0 10  , the 

maximum number of iterations is set to 
max

iter = 3N . 

Physical parameters of the fluid are as followos: kinematic viscosity 
3= 1 10   Pa  s, 

reference pressure value 
0 = 300p  bar, reference opening 

0 = 1l  cm, compressibility 

6

f = 1 10c   Pa
-1

, density 
0 = 1000  kg/m

3
. Parameters in equation (4) are 

w 0= 1/c p , 

ref 0=p p . 

The fracture mid-surface is part of the paraboloid of the height 3 m and radius of lower 

section 4 m. At the top of the paraboloid, in the disk bc

h  of the radius =R h , where h  is 

characteristic grid step, constant pressure equal to 
01.1p  is set over time. The simulation 

results are presented on figure 4.  

5.3 Fluid flow in evolving fracture 

In this section a case of fluid flow in evolving fracture is considered. 

We assume that fracture opening depends on pressure in accordance with the equation (4). 

Evolution of the fracture is driven by axially symmetric velocity field v  given by 

m

m

m

( , ) = , .tt v





x x
v x x

x xP P
F   

As it can be seen, fracture evolution occurs in the plane xyO . The velocity field is defined 

by the point of the “growth center” mx  and a constant (i.e., independent of the moment of time 

and point of space) velocity mv . For time interval t  the point x  of the fracture front moves 

according to 

m

m

m

( )
( ) = ( ) .

( )

t
t t t tv

t r


   



x x
x x

x x
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It is assumed that domain   is sufficiently large and contains fracture mid-surface at each 

moment of time during fracture evolution. Domain F
, where the problem is actually solved, 

evolves according to fracture evolution. 

The computational domain is a cube with edge = 50l  m. Accordingly, the mesh step size is 

= 1h  m. The equation is solved in the domain 
n

h , consisting of tetrahedrons, all nodes of 

which are distant from the fracture not further than = 2  m. Time step is set to 
7= 0.5 10t    

s. 

The radius of the fracture at the initial moment of time = 10L  m, the fracture belongs to 

plane xyO  and is centered at the origin. The fracture growth velocity 
mv  is chosen so that 

m = 0.5v t  m. The reference opening is assumed to be constant over fracture surface, 

ref ( ) = constw x . 

The physical parameters are as follows: kinematic viscosity of the fluid 
6= 1004 10  Pas, 

reference pressure value 
0 = 300p  bar, fluid compressibility 

10

f = 4.16 10c   Pa
-1

, density 

0 = 1000  kg / m
3
. The reference value of the opening is 

ref = 10w  mm. Parameters of the 

equation (4) are 
w 0= 1/c p , 

ref 0=p p . 

In the center of the fracture, in the disk 
bc  of the radius =R h , with h  being the 

characteristic mesh step size, a constant in time pressure equal to 
01.1p  is defined. At the 

initial time, the pressure in the fracture is equal 
0p . 

Accuracy parameter in fixed point iterations stopping criteria is equal to 
6

iter = 1.0 10  . 

The maximum number of iterations is 
max

iter = 10N . 

The simulation results are presented in the figure 5.  

6 CONCLUSION 

The present work is devoted to the numerical study of the finite element version of the 

closest point projection method applied to the numerical solution of the Reynol’d lubrication 

equations which describes fluid flow in fractures. Both stationary and evolving fractures are 

considered. The key idea of the approach is to apply closest point projection method to describe 

surface evolution and to construct embedding PDE. The fracture mid-surface evolution is 

described entirely in terms of discrete closest point projection operator without use of any other 

representation of the fracture. A number of test problems are considered, for stationary and 

evolving fractures. Numerical experiments demonstrated has demonstrated robustness and 

efficiency of the overall approach. 
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Summary. An analytical function of pressure on specific volume and internal energy is de-

veloped for niobium. This function allows one to adequately describe the thermodynamic prop-

erties of this metal in a wide range of densities and pressures. A comparison of the calculated

shock adiabat with experimental data at high dynamic pressures is made. The equation of state

proposed for niobium can be used to model physical phenomena at high energy densities.

1 INTRODUCTION

The problem of a thermodynamic description of the properties of matter is of interest for

both fundamental and applied investigations [1]. For the analysis and numerical simulation of

physical processes at high energy densities, equations of state (EOSs) for materials are needed

over the entire range of parameters that are realized in these processes [2]. For example, at high

velocity impact [3–5], under the action of intense laser [6–8] and particle beams [9, 10], at an

electrical explosion of conductors [11, 12], this range continues from normal conditions up to

extremely high pressures and specific internal energies.
Niobium is a refractory material, has a low thermal neutron capture cross section. In partic-

ular, the EOS for this metal is required when modeling the operating modes of some nodes at

nuclear power plants.

In this work, the EOS for niobium is proposed in the form of an analytic function of pressure

on specific volume and internal energy. In this form, the EOS can be used in hydrodynamic

simulations of adiabatic processes. To illustrate the quality of the EOS, the calculated shock

adiabat of niobium is compared with experimental data at high pressures.

2 EOS MODEL

The model is formulated in the framework of the quasi-harmonic approximation. The general

form of the EOS [13] is as follows:

P(V,E) = Pc(V )+
Γ(V,E)

V
[E −Ec(V )], (1)
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where P is the pressure; V is the specific volume, V = 1/ρ; ρ is the density; E is the specific

internal energy; Ec is the specific internal energy at zero temperature, T = 0; Pc is the corre-

sponding pressure at T = 0: Pc =−dEc/dV .

The coefficient Γ is the ratio of thermal pressure to thermal energy density: V [P−Pc]/[E −

Ec]. Its dependence on volume and internal energy is chosen as follows:

Γ(V,E) = γi +
γc(V )− γi

1+σ−2/3[E −Ec(V )]/Ea

, (2)

where σ = V0/V ; V0 is the specific volume under normal conditions, E = E0 and P = P0; γc is

the Grüneisen coefficient γ =V (∂P/∂E)V at the case of T = 0; γi is the value of the Grüneisen

coefficient at the case of high thermal energies, E −Ec ≫ Eaσ 2/3; Ea is a parameter.

The coefficient γc is represented by the volume function

γc(V ) = 2/3+(γ0c −2/3)
σ 2

n + ln2 σm

σ 2
n + ln2(σ/σm)

, (3)

where the value of γ0c corresponds to the normal volume V0; σm and σn are parameters.

The cold energy is represented by a polynomial

Ec(V ) =
B0cV0c

m−n

(

σ m
c

m
−

σ n
c

n

)

+Esub. (4)

Here, σc =V0c/V ; V0c and B0c are the specific volume and the bulk modulus at T = 0 and P= 0;

Esub = B0cV0c/(mn); m and n are parameters.

3 EOS FOR NIOBIUM

Under normal pressure, the solid phase of niobium has a body-centered cubic (bcc) structure;

it melts at T = 2740 K [14]. At quasi-hydrostatic compression at room temperature, niobium

was studied up to 134 GPa [15]; no transformations of the bcc phase were observed.

At shock compression, niobium was studied up to 180 GPa with traditional explosive sys-

tems [16–19]. Pressure up to 400 GPa in niobium was recorded in experiments with special

explosive systems [17].

Figures 1–3 display the results of the calculation of the principal Hugoniot curve of nio-

bium over entire range of measured shock and particle velocities, pressures and compression

ratios [16–19]. The shock adiabat of the material is calculated using the energy conservation

law at the shock front [20],

E = E0 +
1

2
(P0+P)(V0 −V ), (5)
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Figure 1: The principal Hugoniot adiabat of niobium: curve corresponds to the present calculations; markers—

experimental data (I1—[16]; I2—[17]; I3—[18]; I4—[19]).
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Figure 2: The principal Hugoniot adiabat of niobium: the notation is similar to figure 1.
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Figure 3: The cold curve (Pc) and the principal Hugoniot adiabat (H) of niobium: curves correspond to the present

calculations; marker designations are similar to those used in figure 1.

along with the EOS (1)–(4). The velocities of the shock front (Us) and particles behind it (Up)

are calculated with the use of the mass and momentum conservation laws [20]:

Us =V0

√

(P−P0)/(V0−V ), (6)

Up =
√

(P−P0)(V0 −V ). (7)

Comparison of the calculated adiabat with experimental data [16–19] is illustrated in fig-

ures 1–3. One can see that the EOS (1)–(4) adequately describes thermodynamic properties of

niobium in the region studied in shock waves.

The coefficients of the EOS (1)–(4) for niobium are as follows: V0 = 0.11646 cm3/g, V0c =

0.116 cm3/g, B0c = 174.449 GPa, m = 0.66, n = 0.68, σm = 0.9, σn = 1.2, γ0c = 1.6, γi = 0.45

and Ea = 60 kJ/g.

4 CONCLUSIONS

Thus, EOS for niobium is developed, which is consistent with data from experiments with

shock waves at high pressures. The EOS has a form suitable for use in the numerical simulation

of adiabatic processes in a wide range of densities and internal energies.
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Summary. This paper discusses the problem of describing thermodynamic properties of a

substance at high temperatures and pressures on the basis of the fundamental equation of state

(FEoS). This FEoS has the following characteristics: it transforms into the virial equation of

state in the region of low densities; it is converted into the Berestov equation in the vicinity

of the critical point. FEoS testing has been carried out on known thermodynamic properties

of argon and has allowed establishing its workspace: by the pressure up to 1000 MPa; by the

temperature from the temperature of the triple point to 1200 K. It has been shown that our FEoS

can qualitatively correctly describe the thermal surface of argon up to 17 000 K. A comparison

of FEoS has been made with some well-known equations of state. When developing FEoS of

argon, we have used elements of the similarity theory, which has allowed reducing the number

of individual parameters of this FEoS.

1 INTRODUCTION

We investigate a problem of describing the thermophysical properties of substances in a

wide range of temperatures and pressures including the critical region. The problem attracts the

attention of many researchers [1–24]. In particular, this problem is actual when studying the

behavior of substances:

• in the range of highly developed density fluctuations near the critical point;

• at high temperatures and high pressures.

To describe the properties of pure substances at high pressures and high temperatures, the

authors of [25–32] have developed a number of fundamental equations of state (FEoS). When

describing the liquid behavior in the vicinity of the critical point, we have used previously a

number of approaches and developed some equations of state (EoS):
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• scaling EoSs and crossover EoSs in a parametric form and with (the density, the temper-

ature variables) [1, 2, 10, 12, 16, 24];

• FEoS of the virial type [3, 6, 9, 17];

• FEoS [14] based on requirements of the scaling theory (ST) for the critical region [33];

• FEoS [4,5,7,8,11,15,18–20,22,23] converted into a Widom EoS and valid in the vicinity

of the critical point.

We have analyzed approaches [1–12,14–20,22–24] and have got the following results. Scal-

ing EoSs [1, 2, 16, 24] and crossover EoSs [10, 12] meet the requirements of ST [33], but they

have a narrow work area limited by temperatures T (0.9Tc < T < 2Tc [12], here Tc is the critical

temperature), and, therefore, can not be used when modeling thermodynamic properties of a

substance in the range of high temperatures and high pressures.

One of the disadvantages of the crossover EoS [12] is the need to use different critical tem-

peratures: one Tc to calculate the pressure (p) and another Tc to calculate the isochoric heat

capacity (CV ). FEoS [3, 6, 9, 17] do not meet the requirements of ST. Therefore, these EFoSs

do not describe the sound velocity (w), CV , the isobar heat capacity (Cp), and isothermal com-

pressibility factor (K) in the critical region with acceptably small uncertainties. At the same

time, these EFoSs describe the equilibrium properties of argon in the regular part of the ther-

modynamic surface with low uncertainties. For example, FEoS of argon is proposed [9] in this

form. The workspace of FEoS FEoS [9] is (limited by pressures 0 6 p 6 1000 MPa, by tem-

peratures 83 6 T 6 700 K) and can be successfully used when predicting thermal properties at

high temperatures.

Bezverhiy et al [14] has developed FEoS, which takes into account the feature presence of

CV (T,ρ) as a known function in the critical region, here ρ is the density. Our analysis shows

that EFoS [14] reproduces power laws of ST qualitatively incorrectly. For example, the critical

isotherm [14] follows ∆p ∝ (∆ρ)3
. It should be ∆p ∝ ∆ρ |∆ρ |δ−1

[33], here ∆p = (p− pc)/pc;

∆ρ = (ρ −ρc)/ρc; pc is the critical pressure; ρc is the critical density; δ is the critical index of

the critical isotherm.

Empirical FeoSs are proposed in [5,7,8,11]. They qualitatively correctly reproduce all of ST

power laws when describing properties in the vicinity of the critical point.

On the basis of the phenomenological theory of the critical point [34], the authors of [4,

15, 18–20, 22, 23] developed FEoS which is not inferior to scaling EoS and crossover EoS

when describing the asymptotic vicinity of the critical point. We mark that FEoSs [4, 5, 7, 8,

11, 15, 18–20, 22, 23] do not satisfy the theory of extended scaling [2]. Indeed, the function,

CV (T,ρc) [4, 5, 7, 8, 11, 14, 15, 18–20, 22, 23], follows CV ≃ Aτ−α +Cτ . It is shown in [2] that
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CV (T,ρc) should be CV ≃ Aτ−α +Bτ−α+∆ +Cτ , here τ = (T −Tc)/Tc; α and ∆ are the critical

indexes. In addition, our analysis shows that FEoSs [4, 5, 7, 8, 11, 14, 15, 18–20, 22, 23] are

inferior to FEoS [9] when describing properties at high temperature region. For example, there

are a discrepancy between p values calculated by EFoS [9] and p values calculated by [20] at

17 000 K these deviations exceed 50%.

In this paper on the basis of the approach [35], we plan to develop a FEoS that meets the

following requirements:

• satisfies ST requirements [33] and does not inferior to EoSs [10, 12] when describing

properties in the critical region;

• simulates the thermal surface of argon at temperatures up to 17 000 K and by pressures

up to 12 GPa;

• can be converted into the Berestov equation [2] in the critical region.

2 STRUCTURE OF FEOS

By analogy with [4, 15, 18–20, 22, 23], this FEoS has the following structure:

F(ρ ,T ) = Freg(ρ ,T )+Fnreg(ρ ,T ), (1)

where F(ρ ,T ) is the Helmholtz free energy; Freg(ρ ,T ) is a regular function; Fnreg(ρ ,T ) is an

irregular component of the Helmholtz free energy:

Fnreg(ρ ,T ) = RTcφ(ω, t)
(

|∆ρ |δ+1
a0(x)+ |∆ρ |

δ+1+ ∆
β a1(x)

)

, (2)

where φ(ω, t) is the regular function; R is the gas constant; ω = ρ/ρc; x = τ/|∆ρ |1/β is the

scaling variable; t = T/Tc; β is the critical index.

We notice: there is a principal difference of our FEoS from FEoS [4, 15, 18–20, 22, 23]. We

have included an additional component in Fnreg(ρ ,T ). There is a special scale function, a1(x),

in this additional component recommended in [35]. This principal modernization has allowed

us to improve a FEoS structure and to meet the requirements [2].

The scaling functions a0(x) and a1(x) are calculated based on the following:

• a new representation of the scaling hypothesis [34, 35];

• the Benedek hypothesis [36];

• the Berestov equation [2].
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i j = 0 j = 1 j = 2

0 0 0

1 0 0

2.727 031 612 1447

−2.180 917 085 2935

2 0

3 0

0

−1.651 807 350 2083

4 0

2.018 179 285 6405

1.951 547 138 476

5.861 967 866 4433

5 0 −2.078 078 708 984

−2.801 735 606 01726  −0.283 648 592 739 017
    −0.031 673 399 139 638

    − 0.117 319 5 11 7 89 66

    3.235 0 97 0 27 9 45 2
   0.203 261 164 281 0 7
−1.850 670 154 3516

2.497 843 489 6566

−1.164 995 874 2581

9 0.413 193 730 791 89

9.620 211 455 1673

−3.476 213 158 3227

−0.811 288 614 251 57

0.766 664 260 646 57

0.450 684 903 397 98

−0.239 259 405 790 52

−1.024 947 033 0846

    2.810 166 015 2324

−2.801 124 9 73 5 011

−2.592 742 798 4863

5.578 734 268 4796

−2.485 069 647 1961

−2.392 997 971 8019 0.759 164 862 584 33

10  − 0.765 606 7 37 657 4 9
11  − 0.650 4 91 354 2378

12     1.808 588 644 5017 
13  −1.042 305 9 56 0 28 
14  −0.813 9 44 9 71 192 7 5 
15     1.328 0 57 607 1621 0

−0.221 489 078 823 57

3.119 794 125 8801

−0.933 985 969 4002

−0.585 625 628 796 48 0.091 451 137 589 177

0

16 −0.486 803 106 500 06

17 −0.243 474 625 433 64

18 0.327 530 667 992 16

19  −0.154 068 046 320 52

0.660 860 378 937 56

−0.286 546 955 475 54

20 0.039 124 504 337 479 0.068 175 553 922 501

−0.008 667 473 663 7731

0.001 865 695 143 8862

21 −0.005 346 887 409 843 −0.008 772 962 958 1014 0

22    0.000 310 067 180 058 02 0.000 478 732 897 948 04      −2.5448089017224 × 10−5

Table 1: Coefficients Ci, j of FEoS (1).

These functions are written the following form:

a0(x) =−
u0kγ1x2−α

0

2αb2α1(1− ε)

[

(ϕ +ϕ1)
2−α

− ε(ϕ +ϕ2)
2−α

]

+
u0x

γ
0

2k
(ϕ +ϕ3)

γ +u0C0, (3)

a1(x) =−
u1kγ2x2−α+∆

0

2αb2α2(1− ε)

[

(ϕ +ϕ1)
2−α+∆

− ε(ϕ +ϕ2)
2−α+∆

]

+
u1x

γ+∆
0

2k
(ϕ +ϕ3)

γ+∆ +u1C1,

(4)

where ε0 = x1/x2; α1 = (2−α)(1−α); γ1 = γ(γ −1); γ2 = (γ +∆)(γ +∆−1); α2 = (2−α +

∆)(1−α+∆); ϕ = x/x0; ϕi = xi/x0, i∈ {1,2,3}; b2 = (γ−2β )/[γ(1−2β )]; k = [(b2
−1)/x0]

β
;

γ is the critical index; x0, u0 and u1 are the individual parameters; Zc = pc/(RρcTc)× 103; C0
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i j = 3 j = 4 j = 5

0 4.482 248 574 7539 1.808 465 772 8776

1 −3.225 639 106 0006

2.332 643 055 2399

−1.048 810 609 669 −0.932 531 831 731 91

2 −3.143 085 800 7921 −7.416 650 230 6154 −4.156 240 517 2991

3 7.651 653 302 7528 6.805 576 926 7176 3.940 459 100 9914

4 6.118 667 623 2535 4.737 381 837 8476 0.741 441 138 784 28

−8.232 510 077 0624 −2.172 672 507 20285 −8.029 797 760 4914 6
−0.081 651 952 400 293

7 8.388 156 700 3335

1.488 772 709 3593 0.930 235 432 967 88

2.510 816 288 7711 −0.130 873 463 355 37

8  −4.059 017 137 1799 0

9  −0.103 759 991 449 93

−1.089 247 218 7001

 −0.277 754 425 60302 0

10 1.129 529 996 898 0.093 168 194 589 203 0

11 −0.543 765 088 527 54 0.151 336 027 7963 0

12     0.008 645 103 248 2461    −0.082 484 913 633 882 0

13 0.001 821 779 428 3432     0.012 151 299 548 948 0

Table 2: Coefficients Ci, j of FEoS (1).

and C1 are the constant coefficients which value is found from the equations

(δ +1)a0|ϕ=−1 +
x0

β
a′0|ϕ=−1 = 0, (5)

(

δ +1+
∆

β

)

a1|ϕ=−1 +
x0

β
a′1|ϕ=−1 = 0. (6)

We have selected the regular component (1) in the form [19]:

Freg(ρ ,T ) = F0(ρ ,T )+RT ωy2 +RT ω(Zc −0.2)y6 +RT ωD3(y4 − y6)

+RT ωτ1

[

D1(ω −3)+D2

(

ω2
−2ω

)

]

+RT ω
22

∑
i=0

20

∑
j=0

(

Ci, jτ
j

1∆ρ i
)

, (7)

where F0(ρ ,T ) is the ideal gas component of F(ρ ,T ); τ1 = Tc/T −1; functions y2, y4, y6 have

the following form: y2 = −7.7/6+ 2.9/6∆ρ − 1.1/6∆ρ2 + 0.05∆ρ3, y4 = 5− 4∆ρ + 3∆ρ2
−

2∆ρ3 +∆ρ4, y6 = 4−3∆ρ +2∆ρ2
−∆ρ3 +∆ρ5.

We have calculated ϕ1, ϕ2, ϕ3 values according to the method detailed in [15]. It let us got

ϕ1 = 2.80722347, ϕ2 = 14.4717304, ϕ3 = 5.73246825.
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i j = 6 j = 7 j = 8

0 1.942 056 320 0621 3.245 246 493 1065 −8.239 406 700 9885

1  −1.034 640 564 3285

2  −0.944 139 567 2871

−0.970 159 560 317 12 −0.011 163 693 637 208

0.298      859 602 686 75 0.039 252 086 979 538

3 1.204 115 946 6534 0 0

4  −0.327 499 512 264 19 0 0

i j = 9

0   −18.746 448 404 883

j = 10

51.077 633 966 366

j = 11

68.645 329 452 91

1 0.541 072 550 799 12 0 0

2   −0.178 044 619 880 26 0 0

i j = 12 j = 14

0 −182.047 371 3271

j = 13

−144.870 071 874 34 383.406 155 478 06

i j = 15 j = 16

0 174.017 641 515 55 −472.418 838 330 36

j = 17

−110.347 173 018 13

i j = 18

0 314.552 869 844 35

j = 19

28.506 239 206 301

j = 20

−87.384 487 306 415

Table 3: Coefficients Ci, j of FEoS (1).

We have chosen the crossover function in accordance with the recommendations [7]:

φ(ω, t) = φ0(ω)φ1(t), φ0(ω) =
[

(

1−ω
)m

−1
]2

, φ1(t) = 1/t2, (8)

where m ∈ N.

We have tested FEoS (1) with components (2)–(4) and (7) on the example describing the

equilibrium properties of argon [37–54].

3 FEOS OF ARGON

Select the ideally-gas component of argon F0(T,ρ) according to the recommendations of [9]:

F0(ρ ,T ) = RT
(

lnω +a0
1 +a0

2t−1
−1.5lnt

)

, (9)

where a0
1 = 58.31666243 and a0

2 = 524.94651164.
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Figure 1: Isotherms, the liquid–gas coexistence curve and the melting line of argon. Isotherms 
calculated using FEoS (1): 1—critical isotherm; 2—300 K; 3—573.15 K; 4—1223.15 K; 5—2300 K; 
6—17 000 K. Experimental data: 7—150.65 K [42]; 8—300 K [3]; 11—2300 K [3]. Tabulated data: 9

—573.15 K [43]; 10—1223.15 K [43]; 12—17 000 K [9]; 13—tabulated data on the density at the 
saturation line [9]; 14—experimental data on the density of a saturated liquid and saturated vapor [49]; 
15—data on the density at the saturation line calculated by FEoS (1); 16—data on the density at the 

melting line [9].

We have calculated expressions for compressibility Z on the basis of FEoS (1) with compo-

nents (2)–(4) and (7):

Z(ρ ,T ) = 1+ y1ω2 + y2ω +D3

(

y3ω2 + y4ω − y5ω2
− y6ω

)

+
(

y5ω2 + y6ω
)

(Zc −0.2)

+ω
22

∑
i=0

20

∑
j=0

Ci, jτ1
j∆ρ i−1(iω +∆ρ)+D1ωτ1(2ω −3)+D2ω2τ1(3ω −4)

+Zcω|∆ρ |δ φ1(t)t
(

φ0(ω)sign(∆ρ)h0(x)+φ ′

0(ω)|∆ρ |a0(x)
)

+Zcω|∆ρ |
δ+ ∆

β φ1(t)t
(

φ0(ω)sign(∆ρ)h1(x)+φ ′

0(ω)|∆ρ |a1(x)
)

, (10)

where y2i−1 = y′2i(ω) (i ∈ {1,2,3}); hn(x) are scale functions of chemical potential [27]:

h0(x) = (δ +1)a0(x)−
x

β
a′0(x), h1(x) =

(

δ +1+
∆

β

)

a1(x)−
x

β
a′1(x). (11)
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Figure 2: Relative deviations δ p = (pexp − pcal)/pexp100% corresponded to pcal values calculated with the help 
of FEoS (1) and FEoS [9] in the metastable states of argon: (pexp, ρexp, Texp) data are taken from [45] over 
isochoric lines 1231.9, 1210.9, 1180.2, 1165.6, 1140.9, 1099.8, 1050.8 and 1010.7 kg/m3; 1—pcal values 
calculated with the help of FEoS (1); 2—pcal values calculated with the help of FEoS [9]. On each of the 

isochors, two experimental points corresponding to large values of the pressure are located in the single-phase 
range, the rest of experimental points are located in the metastable range.

Figure 3: Argon sound speed at 150.8 K isotherm: 1—experimental data [46]; 2—calculation by FEoS (1); 3—

calculation by FEoS [9].

Coefficients and parameters of FEoS (1) with components (2)–(4) and (7), (8) were deter-

mined on the basis of an array of experimental data [37–54] among them: Tc = 150.66 K,

pc = 4.8634 MPa, ρc = 535.1 kg/m3, R = 0.20813332 J/(g K), u0Zc = 4.54936419, u1Zc =

0.0524296231552, α = 0.11, β = 0.3255, γ = 1.239, δ = 4.806, ∆ = 0.51, m = 3, D1 =

0.52854169554602, D2 = 0.87466821897252, D3 = −7.9131735557194× 10−3 and x0 =

0.31122037639966. The values of coefficients Ci, j are presented in tables 1, 2 and 3.
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Figure 4: Relative deviations δCV = (CV,exp −CV,cal)/CV,exp100%; pcal: CV,cal corresponded to values 
calculated with the help of (1) in the single phase range; CV,exp corresponded to data [48] over isochoric line 

473.6 kg/m3; 1—CV calculated with the help of FEoS (1); CV calculated with the help of FEoS [9].

Figure 5: Relative divergence values of density δ ρ = (ρexp −ρcalc)/ρexp100% calculated as per the equations 
pre-sented in this study as compared with the experimental data [44]. Isothermal lines: 1—148.007 K; 2—149.006 

K; 3—149.598 K; 4—149.983 K; 5—150.372 K; 6—150.52 K; 7—150.579 K; 8—150.621 K.

Based on compressibility Z (10), we have calculated the thermal surface of argon (figure 1).

As one can see, FEoS (1) transmits the thermal surface of argon in the temperature range from

the saturation line and the melting line to 2300 K and it can be extrapolated by temperature up

to 17 000 K and by pressure up to 12 GPa. FEoS (1) describes the experimental (p,ρ ,T )-data

in the metastable range [45], experimental data about CV [48] and about the speed of sound

w [46] in the vicinity of the critical point with less uncertainty than FEoS NIST [9] (figures 2,

3 and 4). Note that when searching for the coefficients of FEoS (1), experimental data [45, 46]

were not used. The FEoS (1) represents experimental (p,ρ ,T )-data [44] within the range of

the experimental error (figure 5). Experimental data on CV [48, 50] are transmitted within the

experimental error (figure 6) in a wide range of state parameters including the vicinity of the

critical point.
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Figure 6: Behavior of the isochoric heat capacity of argon in a single-phase region: 1—experimental points [48] 
over the isochor of 531 kg/m3; 2—experimental points [50] over the isochor 530 kg/m3; 3—CV calculated with 

a help of the FEoS (1) over isochor 530.5 kg/m3.

4 CONCLUSIONS

On the basis of a new representation of the scaling hypothesis [34, 35] and the Berestov

equation [2], FEoS (1) was developed. This FEoS primarily works satisfactorily in a wide range

of pressures and temperatures including the critical range and the range of high temperatures

and pressures. FEoS (1) with components (2)–(4) and (7) has the properties of the virial series in

the regular part of the thermodynamic surface as well as the properties of the Berestov equation

in the critical range.

Argon FEoS (1) can be used to calculate the equilibrium properties in various technology

processes. We have analyzed properties calculated with the help of FEoS (1) in the vicinity of

the critical point. Our values significantly exceeds the accuracy of the data generated with the

help of known FeoSs and known crossover EoSs [6, 9, 12, 17].

The proposed method of constructing FEoS can be recommended for developing EoSs of

substances, which have reliable experimental data, for example, it carbon dioxide and sulfur

hexafluoride.

Calculated values of properties from the FEoS (1) to verify computer code are T = 400 K,

ρ = 1000 kg/m3, p(T,ρ) = 168974.25 kPa, CV (T,ρ) = 0.3920699 J/(g K).

Acknowledgments: The paper is based on the proceedings of the XXXIV International Con-

ference on Interaction of Intense Energy Fluxes with Matter, Elbrus, the Kabardino-Balkar Re-

public of the Russian Federation, March 1 to 6, 2019.
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Summary. Copper is a noble metal and has unique properties, due to which it is widely used 

in scientific research, industrial production and, more recently, in the problems of 

biomedicine. Using the molecular dynamics method, a series of calculations was performed to 

determine the lattice thermophysical properties of copper in a wide temperature range of 

300K ≤ T ≤ 5800K. In the calculations, special attention is paid to the melting-crystallization 

and near-critical regions, in which cardinal changes in the thermophysical properties of the 

substance occur. The temperature dependences of the specific heat Cp(T), thermal 

conductivity κ(T), and density ρ(T) were among the studied characteristics of the phonon 

subsystem of Cu. Molecular - dynamic modeling was carried out using the potential of the 

embedded atom method (EAM). A comparison of the results with the results of experiments 

and alternative calculations showed a good agreement. The obtained calculation results were 

approximated by polynomials of low degrees.. 
 

1 INTRODUCTION 

Copper, a noble metal, occupies an important place among metals in importance and 

prevalence in many branches of scientific research and innovative technological applications 

[1-5]. Such a relatively new, rapidly developing direction is the production of metal-based 

nanomaterials, including copper, which attracts general attention by its wide applicability [5-

8]. Due to its unique properties, copper nanoparticles have gained the possibility of being 

used primarily in problems of theranostics and nanomedicine [1-3, 5]. One of the rapidly 

developing methods for the production of nanomaterials is pulsed laser ablation of metals 

(PLA) [5-9]. The increasing possibilities of using PLA in the production of nanoparticles 

make this direction attractive for basic research, the main tool of which is mathematical 

modeling. Continuous, atomistic, and combined models are used for the mathematical 

description of fast and highly nonequilibrium processes induced by ultrashort laser pulses in 

the metal targets [9-15]. For continuum and combined models, the properties of the substance 

are input parameters. Therefore, one of the most important problems of mathematical 

modeling is the need to determine for each of the subsystems the thermophysical, optical, and 

thermodynamic characteristics in a wide temperature range - from room temperature T0 = 300 

K to critical Tcr. 

The most important thermophysical properties characterizing heat transfer in metals are 

density ρ(T), specific heat Cp(T) and thermal conductivity κ(T). 
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The specific heat of metals at the temperature T> 300 K is mainly determined by the lattice 

vibrations. The contribution of the electronic subsystem to the specific heat is noticeable only 

at a low temperature T <10 K [16]. 

Unlike specific heat, the contribution of the electronic component to the thermal 

conductivity of copper is significant. According to [17], the contribution of the electronic 

component to the total thermal conductivity is ≈ 95%. Since in metals the main part of the 

heat flux is carried by conduction electrons, it was believed that lattice thermal conductivity 

does not play a significant role. Therefore, it was not necessary to separate the total thermal 

conductivity into electronic and phonon components. 

The interest in quantifying the thermophysical characteristics of the phonon subsystem of 

metals was stimulated primarily by the need for a deeper understanding of the mechanisms of 

thermal transfer during nonequilibrium energy transfer in a number of applications, for 

example, [18, 19]. 

Due to the limited possibilities of instrumental measurement of the thermophysical 

characteristics of the material under study at high temperatures (T> Tm, where Tm is the 

melting temperature), computational approaches become relevant. 

Significant progress, first of all, in the development of (numerical) atomic modeling 

methods (and computational algorithms) allows one to determine the thermophysical 

characteristics (phonon specific heat, phonon thermal conductivity, etc.) in a wide 

temperature range for most metals [20-30] and semiconductors [24, 25 , 31-34] with a 

sufficient degree of accuracy. 

The aim of this work is to obtain lattice thermophysical characteristics (ρ(T), Cp(T), κ(T)) 

of copper in a wide temperature range T0 ≤ T ≤ Tcr using the molecular dynamics method with 

the EAM potential [21]. 

2 METHODS AND APPROACHES 

The determination of the thermophysical properties of the phonon subsystem of copper in 

this work is based on the atomistic approach. Atomistic models rely on the molecular 

dynamics (MD) method. The MD method is based on a model representation of a polyatomic 

molecular system in which all atoms are represented by material points, and the motion is 

described in the classical case by Newton’s equations. Because of this, atomistic models are a 

system of differential equations, the integration of which requires knowledge of the 

coordinates and velocities of all particles at the initial time t = 0. The resulting ODE system is 

solved using the Verlet finite-difference scheme [35]. 

When using atomistic models to study various properties of substances, the most important 

role is played by the choice of interaction potentials between particles, since the reliability of 

the results obtained directly depends on it. In molecular dynamics modeling of the properties 

of metals, the empirical and semi-empirical potentials of the “embedded atom method” 

(EAM) are mainly used as the interparticle interaction potentials [22, 23]. Since pair and 

collective interactions are taken into account in the EAM potentials, the potential energy of 

the metal is the sum of the embedding potential of the ith atom, which depends on the 

effective electron density in the region where the center of the atom and the pair potential are 

located. However, the EAM potentials do not take into account the phonon-electron 

interaction, which is their drawback. The disadvantages of these potentials include a large 

number of fitting parameters included in them (up to two dozen). When choosing the potential 
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for atomistic modeling, careful testing of the potential used is necessary, since not all the 

EAM potentials used allow a good description of both the crystalline and liquid phases of the 

metal. In this work, we used the EAM potential for copper developed and tested in [21]. 

Of all the thermophysical properties, the determination of phonon thermal conductivity in 

the framework of classical molecular dynamics occupies a special place, being a complex 

problem. 

The direct method (DM) was chosen as an approach for determining the temperature 

dependence of the phonon thermal conductivity of copper using molecular dynamics (MD). 

This method is the most simple and economical from a computational point of view. 

The direct method (DM) [24-26] is one of the most common methods for calculating 

thermal conductivity. DM is a nonequilibrium method of molecular dynamics (NEMD); it is 

based on applying a temperature gradient to the modeling cell, for which it received its name 

"heat source - sink". Due to this, the direct method is similar to the experimental situation. 

One of the advantages of DM is the saving of computing resources, which is very important, 

sometimes determining the choosing of the modeling method. For example, as noted in [24], 

for the direct method, the simulation time of 1 ns is sufficient to obtain a smooth temperature 

profile, and the value of κ converges with an accuracy of ± 10%. The method demonstrates 

the finite-size effects, which are its drawback. These effects arise if the mean free path of 

phonons is comparable to the size of the simulation cell. In this regard, the necessary size of 

the computational domain to achieve a completely convergent value of κ may be beyond the 

reach of atomistic modeling and it becomes necessary to impose a restriction on the smallest 

length of the computational domain. In this connection, the thermal conductivity of copper 

can be obtained by the direct method from modeling systems of different sizes and 

extrapolating the results to a system of an infinite size. 

Along with classical molecular dynamics, the ab-initio approach is also used to determine 

the phonon thermal conductivity [17, 36]. The ab initio methods have appeared recently and 

are considered the most promising. They do not require specifying the interparticle potential 

and can be applied to any material. However, ab-initio methods have limitations associated 

with an increase in computational costs with an increase in model size. The use of these 

methods in the calculation of phonon thermal conductivity allows one to take into account the 

influence of both phonon-phonon (p-p) and phonon-electron (p-e) interactions, which can 

significantly increase the reliability of the results. However, the number of calculations of the 

phonon thermal conductivity of metals and, in particular, copper [17, 36], is currently 

relatively small. As a rule, all calculations are limited to the solid-state phase in the 

temperature range T ~ (300 - 1000) K. There are no systematic results of experimental-

theoretical studies of the properties of liquid metals in a wide temperature range (from the 

beginning of melting to the critical region). 

The wide temperature range 300K ≤ T ≤ 5800K, in which the thermophysical properties of 

copper are determined in this work, covers the first-order phase transition (melting-

crystallization) and the near-critical region in which drastic changes in the thermophysical 

properties of the substance occur. Therefore, calculations of the properties of copper in this 

range cannot be carried out without knowledge of such important characteristics as the 

melting temperature Tm and critical parameters: temperature Tcr, density ρcr, pressure Pcr. 

The equilibrium melting temperature used in the calculations was obtained from molecular 

dynamics calculations in [27] with the EAM potential [21], which is also used in this work, by 

the two-phase method [28]. We used a system with an ensemble of particles of 8000 atoms. 
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The obtained value is Tm = 1330 K, slightly lower than the reference (Tm = 1356 K) [37] and 

experimental value (Tm = 1357.7 K) [38] and deviates from these values by 1.9% and 2.06%, 

respectively. The error is quite acceptable for modeling. In this work, the following values of 

the critical parameters of copper were taken: Tcr ≈ 6550 K, ρcr ≈ 1.895 g / cm3, Pcr ≈ 0.16 

GPa, obtained in [30] using the liquid – vapor coexistence curve. 

The specific heat and thermal conductivity of the phonon subsystem, as well as the copper 

density characterizing heat transfer, were simulated in the temperature range 300 ≤ T ≤ 5800 

K using the well-known LAMMPS application package (large-scale atomic-molecular 

massively parallel simulator) [39]. It implements many paired and multiparticle potentials, the 

ability to save atomic configurations in a text file, as well as built-in thermostats and 

barostats. The velocity and pressure for the ensemble of particles were controlled using the 

thermostat and barostat of Berendsen [40]. 

3 MODELING RESULTS 

For convenience of further use, the calculation results are approximated by polynomials of 

the degree of m: 

m

0

(x)
m

k

k

k

P a x


 ,      (1) 

where ak are the polynomial coefficients. 

The approximation error was calculated by the least squares criterion [41]: 

        min,11,
0

2
 



n

j
jjmjjm ytPnytP     (2) 

where yj are the values of the variable from the results of calculations for tj (j=0,...,n).  

3.1 Calculation of specific heat and density of copper 

The traditional way to determine the thermophysical properties of metals is experiment. 

For copper, the experimental values of density [42–44] and heat capacity in the solid [45,46] 

and liquid [46, 47] phases are known. The experimental approach has limitations, primarily 

for the temperature range. The copper density was obtained experimentally [42] in a wide 

temperature range of 300 K ≤ T ≤ 5000 K, and the heat capacity of the liquid phase was 

obtained up to 2000K [46]. A scatter of values is also observed in various experiments, which 

was noted in [44]. 

However, when simulating the laser ablation processes, the modeling enters the higher 

temperature region, including the region of the critical point, so the known data becomes 

insufficient. In addition, for working with mathematical models, it is relevant to obtain 

temperature dependences in a wide range of parameters. 

The temperature dependences of the density ρ(T) and specific heat Cp(T) of copper were 

determined from a series of molecular dynamics calculations within the framework of one 

computational experiment. 

We used a cubic computational region of 30×30×30 unit cells containing an fcc crystal of 

108,000 particles (fluctuations that are too large arise with smaller sizes). Periodic boundary 

conditions were set. The relaxation procedure preceding the simulation was carried out at a 
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temperature of 300 K and zero pressure. After that, the slow heating of the sample with a 

constant rate of approximately 0.5 K/ps continued to a temperature of 6000 K. During MD 

calculations, the temperature dependences were recorded: density ρ(T) and enthalpy H(T). 

The experiment was carried out at a constant zero pressure P = 0. 

3.1.1 Density of copper 

As a result of MD calculations in the range 300K <T<5620K, the temperature dependence 

of the density of copper ρ(T) was obtained, which, after additional statistical processing, is 

shown in Figure 1. The markers in this figure show the experimental data [42]. The vertical 

dashed lines indicate the melting temperature Tm [27] and the critical temperature Tcr [30] of 

copper. Figure 1 shows the changes in the density of copper at the equilibrium melting 

temperature (Tm = 1330K). The density of the copper melt is lower than the density of the 

crystal at the same temperature Tm, i.e. copper melts with decreasing density, similar to what 

was observed in experiments [42, 43]. At the equilibrium melting temperature Tm, the density 

changes abruptly. The density difference between the solid and liquid phases in the 

calculations is 5.2%, and in the experiment [42] - 4.4%, which shows a fairly good agreement 

between the results. 

 

Fig. 1. The temperature dependence of the density of copper. The markers show the 

experimental data [42]. 

It is also noticeable that the density decreases to ρ(T) ≈ 8 g/cm
3
 upon overheating of the 

solid phase in the temperature range Tm < T < 1.2Tm (green dashed line in Figure 1). In the 

liquid phase, with increasing temperature T > Tm, the copper density decreases. The results 

obtained show good agreement with the experimental results [42]. At T ≈ 3000 K, the density 

value in this work is ρ(T) = 6.678 g/cm
3
, in the experiment - ρ(T) = 6.675 g/cm

3
 the values 

differ by 0.04%. At T ≈ 5000 K in this work, ρ(T) = 4.956 g/cm
3
, in the experiment - ρ(T) = 

5.03 g/cm
3
, the difference is 1.49%. At T ≈ 5620 K, a temperature close to the critical 
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temperature Tcr = 6550 K [30], the density ρ(T) = 4.207 g/cm
3
 was obtained. In Fig. 1, the 

dashed line shows the continuation of the function ρ(T), which extrapolates the density of 

copper to the critical point. At Tcr = 6550 K, the density ρcr ≈ 1.895 g/cm
3
 was obtained in 

[30]. 

The results obtained in the calculations are more convenient to use as an analytical 

dependence of the form (1). For solid and liquid phases, dependences of the third degree are 

obtained 

       303
2

02010 TTaTTaTTaaT   

For the solid phase, (300 K ≤ T ≤ Tm), T0 = 300 K, for the liquid phase, (Tm ≤ T ≤ 5620K), 

T0 = Tm. The values of the coefficients ak and the approximation errors by the least squares 

criterion (2) are presented in table 1. 

k Solid Liquid 

a0 8,81 7.89 

a1 -4.28×10
-4

 -7.96×10
-4

 

a2 -6.12×10
-8

 8.69×10
-8

 

a3 -2.77×10
-11

 -2,383×10
-11

 

)),(( jj yxP  0.001 0.014 

Table 1. The coefficients ak of the function, which approximates the calculation results 

of the copper density ρ(T) in g/cm
3
. 

 

3.1.2 Specific heat of copper 

The temperature dependence of the specific heat of the lattice Cp(T) in the temperature 

range 300 K < T <5800 K at constant pressure P in this work was determined from the 

enthalpy H(T) obtained during the computational MD experiment considered above. The 

values of H(T) were approximated for the liquid and solid phases by polynomials )(
~

TH  (1). 

The temperature dependence of the specific heat Cp(T) for each phase was determined by 

differentiating the corresponding dependence )(
~

TH : 

 
 

P

p
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~

     (3) 

Fig. 2. shows the temperature dependence of the specific heat of copper Cp(T) according to 

the results of calculations of the present work, the markers show the reference and 

experimental results [37, 38]. The vertical dashed lines indicate the melting temperature Tm 

and the critical temperature Tcr of copper. The region of the solid – liquid phase transition, 

with zooming, is shown in the inset of Fig. 2. It is seen that at the equilibrium melting 

temperature Tm, an insignificant jump by about ~ 3.128% occurs, an abrupt decrease in the 

heat capacity of copper. According to the experiment [38], this value is ~ 1.529%. On the 

inset of fig. 2 one can clearly see an increase in the specific heat to Cp(T) ≈ 39 J·mol
-1

·K
-1

 

upon overheating of the solid phase in the temperature range Tm < T < 1.2Tm (green dashed 
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line in Figure 2). With increasing temperature Tm <T < 2.63Tm in the liquid phase, the specific 

heat is almost constant and amounts to Cp(T) ≈ 31.0 J·mol
-1

·K
-1

, which is 8% less than Cp(T) 

≈ 33.84 [38]. At the temperature T > 4000 K, the specific heat of copper increases. At T = 

5800 K, its value is Cp(T) = 47.698 J·mol
-1

·K
-1

. In the near-critical region in Fig. 2, the dashed 

line shows the extrapolation of the temperature dependence of the specific heat to the critical 

point. 

 

 

Fig.2. The temperature dependence of the specific heat Cp (T) of copper according to the calculation 

results (solid line). Markers: (1), (2) - experimental results [37, 38]. 

 

For the use in further calculations, the results obtained are more convenient to use in the 

form of an analytical dependence of the form (1). For the solid and liquid phases, the results 

were approximated by power dependences of the 4th degree: 

4
04

3
03

2
02010 )()()()()( TTaTTaTTaTTaaTC p  , 

where T0 = 300 K for the solid phase (300 K ≤ T ≤ Tm), T0 = Tm for the liquid phase (Tm ≤ T ≤ 

5800K). The values of coefficients ak and approximation error according to the least squares 

criterion (2) are shown in the Table 2. 
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k Solid Liquid 

a0 24.27 31.0018 

a1 1.23×10
-2

 3.28×10
-3

 

a2 -2.05×10
-5

 -2.91×10
-6

 

a3 1,53×10
-8

 7.06×10
-10

 

a4 -2.88×10
-12

 -4.68×10
-15

 

)),(( jj yxP  0.021 0.038 

Table 2. The values of coefficients ak for the function, which approximates the calculation 

results of specific heat of copper Cp(T) J·mol
-1

·K
-1

 

 

3.2 Calculation of thermal conductivity of copper 

To determine the thermal conductivity of the phonon subsystem of copper, a series of 

calculations was carried out based on molecular dynamics modeling. The phonon thermal 

conductivity was determined using the direct method (DM) [24.25]. 

When using DM, the heat source and sink areas are created in the modeling domain to 

apply a constant heat flux along the direction of interest. 

At each time step, a fixed amount of heat dQN was deposited in the heating region, and the 

same amount was taken from the sink region. The heat flux W was calculated as 

W = dQ/(SNdt)/2,     (4) 

where dQ = N×dt×δQN  is the total deposited energy, δQN is the energy deposited during one 

timestep, N is the number of timesteps, dt is the size of the timestep, S is the domain cross-

section. The timestep size was chosen depending on the temperature, from 3fs at 300K to 1fs 

at 2000K and above. The division by 2 is used due to periodic boundary conditions, i.e. heat 

flux goes in two directions. Then, the resulting temperature gradient is calculated, and the 

thermal conductivity coefficient κlat was determined from the known heat flux by the Fourier 

law [16] 

x

T
W lat




        (5) 

where W is the heat flux, x is the coordinate in the direction of the flux.  

The difficulty in applying the direct method to solids lies in the fact that the size of the 

modeling region should be much larger than the mean free path of phonons in a substance. 

For a crystal, this is difficult to do, because requires a very large size of the computational 

domain and, accordingly, a very large number of atoms. Therefore, when calculating with a 

small number of atoms, the thermal conductivity coefficient is dependent on the length of the 

region due to phonon scattering at the boundary. To limit the size of the simulation region, a 

scaling procedure is used, in which the thermal conductivity is determined for several lengths 

of the simulation region Ln (n is the number of unit cells in the computational domain) along 

the x direction. Then, the inverse dependence of the thermal conductivity 1/κlat is constructed 

with respect to the reciprocal of the length of the simulation region, 1/Ln, and the thermal 

conductivity is determined by extrapolating the data 1/Ln → 0 [24-26].  
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To determine the thermal conductivity of copper, the simulation domain in the form of a 

parallelepiped was considered. The initial sizes of the region were 10×10×20 unit cells (lattice 

constant 0.361 nm), corresponding to 8000 particles. Periodic boundary conditions were set 

along the three axes. As the interaction potential, the EAM potential is used [21]. The particle 

velocities were set as random variables with a Maxwell distribution corresponding to a double 

temperature of 600 K. Then the sample was equilibrated at 300 K using a thermostat and 

barostat. 

The sample was divided along the x axis into the number of cells corresponding to the 

number of particles. At each step, a certain amount of heat is deposited in the first interval, 

and the same amount of heat is taken from the middle of the sample, where the drain is 

located. After some time (for small samples 5 ns, for large 10 ns), a stationary equilibrium is 

established. The temperature difference is calculated at 0.8 of the entire length between the 

heat source and the sink over the last 0.5 ns and averaged. 

3.2.1 Modeling results of thermal conductivity 

To calculate the thermal conductivity from the Fourier law (5), it is necessary to determine 

the value of the heat flux W (4) from the spatial temperature distribution obtained from the 

MD modeling. Figure 3 shows the time-averaged spatial temperature profile for an average 

temperature of 300 K. In a small region (~ 6 nm) in the immediate vicinity of the source, a 

very strong nonlinear temperature profile is observed. The same strong nonlinear temperature 

profile is also observed near the sink in the middle of the computational domain. In the 

intermediate region, the behavior of the temperature profile is close to a linear dependence. 

The intermediate region in Fig. 3 is indicated by dashed lines. In this interval between the heat 

source and sink, the temperature gradient was measured. The presence of the heat source and 

heat sink, the use of periodic boundary conditions creates a current in two opposite directions. 

 

 
 

Fig. 3. Spatial temperature profile at one moment in 

time. The dashed lines indicate the interval in which 

the temperature gradient was measured. 

Fig. 4. The dependence of the reciprocal of the 

thermal conductivity on the reciprocal of the size of 

the region for the temperature T = 300K. 

To overcome the effects of the finite size, in accordance with the scaling procedure, the 

heat flux was determined by a series of calculations for various sizes of the computational 

145



M.M. Demin, O.N. Koroleva, A.A. Aleksashkina, V.I. Mazhukin. 

domain. The number of computational regions and their sizes depended on the temperature 

for which the thermal conductivity was calculated. The lower the temperature, the more areas 

were selected. For the range 300K ≤ T ≤ 900K, the calculations were carried out for 8 regions 

of different sizes Ln: 20, 40, 80, 160, 240 320, 480, 560 unit cells corresponding to the 

number of particles. For the range 1200K ≤ T ≤ 2000K, 3 calculations were performed for the 

sizes of the Ln region: 80, 160, 240 cells, and for T ≥ 4000K, only one calculation was 

performed for the size of the region Ln = 80 cells (for larger size, the results were the same). 

The cross section of the region was constant: S = 10 × 10 cells. The heat flux was determined 

from the temperature difference between the heating and heat sink areas, for which the 

instantaneous temperature difference was averaged over the entire calculation time after 

establishing a stationary distribution. To increase the accuracy of the calculations, the 

temperature difference was calculated not over the entire interval between the source and the 

sink, but in its central part, 0.8 of the total length.After a series of calculations, for each 

temperature from the range 300K <T <5700K, the scaling procedure was performed and 

thermal conductivity was calculated. Let us consider the scaling procedure using the example 

of calculating the thermal conductivity of copper for 300 K. Figure 4 shows the dependence 

of the reciprocal of the thermal conductivity on the reciprocal of the size of the region for a 

temperature of 300 K. The results of the calculations on the graph are shown by black lines 

with markers. 

Five values of the inverse thermal conductivity corresponding to the longest lengths of the 

computational domain were approximated by a linear dependence (1) 

  xx
lat

13.6086.0
1




 ,    (6) 

where x = 1/Ln. The approximation error, according the least squares criterion (2) was Δ = 

0.972. At x = 1/Ln = 0 from the dependence (6) one can obtain the inverse value of thermal 

conductivity 1/κlat = 0.086, from which the thermal conductivity of copper was obtained 

κlat(T=300K) = 11.627 W/mK. It corresponds to the infinite value of Ln. Fig.4 shows the linear 

dependence (6) as a red line with markers.  

The results of calculation of the thermal conductivity of copper are presented in Fig. 5. The 

vertical dashed lines indicate the melting temperature Tm and the critical temperature Tcr of 

copper. At the temperature of 300 K, according to the above calculations, the phonon thermal 

conductivity is κlat = 11.627 W/mK. With increasing temperature, the thermal conductivity of 

copper decreases. The region of the solid – liquid phase transition is shown in enlarged form 

in the inset of Fig. 5. It is seen that at the equilibrium melting temperature Tm = 1330 K, the 

value of thermal conductivity decreases stepwise. In the solid phase, the thermal conductivity 

is κlat = 1.55 W/mK, and in the liquid phase at the same temperature the thermal conductivity 

is κlat = 1.29 W/mK. The difference in thermal conductivity between solid and liquid phases is 

16.77%. The calculation was carried out up to the temperature T = 5700 K, at which the 

thermal conductivity is κlat = 0.647 W/mK. Such a change in the phonon thermal conductivity 

with increasing temperature does not contradict the ideas about the behavior of the phonon 

thermal conductivity of metals. In the near-critical region in Fig. 5. the dashed line shows the 

extrapolation of the temperature dependence of thermal conductivity to the critical point. 

A comparison with alternative ab-inito calculations in the range 300K≤T <1000K made by 

the Generalized Gradient Approximation (GGA) method in [36] showed good agreement. At 
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low temperatures (300K ≤ T < 600K), the largest difference with [36] is Δκ ~ 14% at 300K. 

With increasing temperature, the difference in results becomes smaller. At T = 600 K, the 

difference is Δκ ~ 4%, and at T = 1000 K, Δκ ~ 2% - the results almost completely match. In 

the temperature range T > 1000K, there is no data for comparison. In general, such 

comparison results suggest that the selected method and potential describe the model with 

good accuracy and are applicable for further studies. 

 

 

Fig. 5. Temperature dependence of the phonon thermal conductivity of copper. Markers [1] show the 

results of calculations from [36]. The fragment shows an abrupt decrease in thermal conductivity at the 

solid – liquid phase transition. 

For the use in further calculations, the results obtained are more convenient to write as an 

analytical dependence of the form (1). For the solid phase, the results were approximated by a 

polynomial dependence of the 4th degree, for the liquid phase by a polynomial of the 3rd 

degree 
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2
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    3
03

2
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where T0 = 300 K for the solid phase (300 K ≤ T ≤ Tm), T0 = Tm for the liquid phase (Tm ≤ T ≤ 

5700K). The values of the coefficients ak and approximation errors according to the least 

squares criterion (2) are shown in the Table 3. 
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k solid liquid 

a0 11.627 1.29 

a1 -4.2781×10
-2

 -5.01×10
-4

 

a2 9.2403×10
-5

 1.31×10
-7

 

a3 -9.6577×10
-8

 -1.2×10
-11

 

a4 3.686×10
-11

  

)),(( jj yxP  1.201×10
-11

 0.021 

Table 3. The values of the coefficients ak of the function, which approximates the calculation 

results of the thermal conductivity of copper κlat(T), W·m
-1

·K
-1

 

4 CONCLUSION 

The temperature dependences were obtained for the thermophysical characteristics of 

copper: phonon thermal conductivity, heat capacity and density using molecular dynamics 

simulation with the EAM potential [21]. The wide temperature range 300K ≤ T ≤ 5800K, in 

which the thermophysical properties of copper were determined in this work, covers the first-

order phase transition (melting-crystallization) and the near-critical region in which drastic 

changes in the thermophysical properties of the substance occur. The calculation results were 

approximated by polynomials of low degrees. 

The temperature dependences of the density ρ(T) and specific heat Cp(T) of copper were 

determined from a series of molecular dynamics calculations within the framework of one 

computational experiment. 

The temperature dependence of the density of copper ρ(T) was obtained in the range 

300K<T <5620K. At the melting point, the density is calculated for two states of matter: solid 

and liquid. Based on the simulation results, the temperature range of the overheating of the 

solid phase Tm <T <1.2Tm and the density values in this range were obtained. The results 

obtained show good agreement with the experimental results [42]. 

The temperature dependence of the specific heat of copper Cp(T) was obtained in the range 

300K <T <5800K. In the region of the solid – liquid phase transition at an equilibrium melting 

temperature Tm, a small stepwise decrease in the heat capacity of copper occurs, amounting to 

~ 3.128% (according to the experiment [38], ~ 1.529%). In the temperature range of the 

overheating of the solid phase Tm<T<1.2Tm, the specific heat was obtained. In the temperature 

range Tm <T <2.63Tm in the liquid phase, the specific heat is constant and amounts to Cp(T) ≈ 

31.0 J·mol
-1

·K
-1

, which is 8% less than in [38]. At temperatures above 4000 K, the heat 

capacity of copper increases and at T = 5800 K its value is Cp(T) = 47.698 J·mol
-1

·K
-1

. The 

results obtained show good agreement with the experimental results [37, 38]. 

Based on a series of calculations by the direct method using molecular dynamics 

simulation, the temperature dependence of the phonon thermal conductivity of copper was 

obtained in the temperature range 300 <T <5700 K. The EAM potential [21] was used in the 

simulation. In the region of the solid – liquid phase transition, at the equilibrium melting 

temperature Tm = 1330 K, the value of thermal conductivity decreases stepwise. The 

difference in thermal conductivity between solid and liquid phases is 16.77%. Comparison 

with alternative ab-inito calculations in the range 300K ≤ T <1000K made by the Generalized 

Gradient Approximation (GGA) method in [36] showed good agreement. 
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In general, such comparison results suggest that the selected interparticle interaction 

potential and calculation methods for copper of the phonon specific heat, phonon thermal 

conductivity, and density show good accuracy and can be used for further studies. 
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1 INTRODUCTION

Modern hardware-accelerated graphics pipeline consists of dozen stages and has great
flexibility [1]. However, it is not always possible to rely on existing graphics hardware
for various reasons. At first, various embedded applications do not have dedicated graph-
ics processors and thus forced to use software implementation. Second, a huge amount
of popular Linux distributives uses open-source graphics drivers with partial or com-
plete software implementation of rasterization (Mesa OpenGL). Particular applications
use specific hardware anyway [2, 3]. In such cases, software implementation should be
able to provide real-time rendering sacrificing graphics quality for the sake of correctness
or clarity of the displayed information. In such situations programmable functionality of
OpenGL shaders, for example, can be excluded or restricted.

At the same time, processors are greately evolved over the past decades and therefore
software rasterization methods that were relevant a couple of decades ago may not be
the best ones for today. This gives rise to a fundamental contradiction in the design of
the rasterizer: it is necessary to pay attention to efficient loading of hardware units of a
modern CPU when we come to its peak performance, but on the other hand we don’t
want to depend too much on any particular hardware. At last, software rasterization is
still remaining a widespread challenge in graphics community and thus, have a scientific
interest to study within itself.

1.1 Need for software rasterization

Today, almost all rendering techniques have become GPU based. Software solutions,
however, do not lose their relevance. For example, Linux uses widely open-source software
graphics drivers (Mesa OpenGL [4]). GPU driver installation is not always easy and even
not possible on some Linux systems (running, for example, on a custom CPU development
board which is quite common for embedded systems). Microsoft also has its own software
rasterizer in DirectX10 and DirectX11 called “WARP”. WARP rasterizer scales well into
multiple threads, and in some cases is known to be faster than low-end GPUs [5]. Besides,
software graphics pipilene is more flexible and can directly use system memory. Thus it is
useful in scientific visualization of large data sets [6, 7]. At last, the recent development of
CPUs sets a new round in software rendering research since many applications for which
it was previously impossible to achieve high speed pure in software are enabled now.

1.2 Graphics pipeline

Before moving on, we would like to shortly describe a subset of graphics pipeline that
we took for our research and point out why this subset is important and challenging to
accelerate on CPU. Useful graphics pipeline requires at least 5 stages:

1. vertex processing;

2. primitive assembly;

3. triangle rasterization;
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4. pixel processing;

5. alpha blending.

Both first and second stages are quite simple, especially if we don’t have to consider
triangle clipping. Vertex processing consists of multiplying points by a matrix and is
implemented trivially. Primitive assembly consists of the formation of triangles by indices
of its vertices and thus, is mostly trivial. Also, these stages are rarely a bottleneck due
to vertices and triangles amount is considerably less than pixel amount.

Fig. 1. Graphics pipeline forming producer-consumer scheme where some threads (0 and 1) push triangles
(or some other portion of work) to queue and other threads process pixels and behave like consumers
taking work from the queue.

However, the following 3 stages are not so simple. It becomes especially noticeable for
multi-core implementation where triangle rasterization became a sort of work distribution
for pixel processing forming a producer-consumer scheme (fig 1). Alpha blending should
be mentioned separately due to it assumes fixed order for processing of pixels for different
triangles. The situation is complicated by the fact that not all rasterization algorithms
and not all methods of efficient pixel processing (using instruction level parallelizm for
example) can be easily used together. This happens due to algorithms have different
optimal data structure layout and different access patterns to frame-buffer data. When
performance is a goal, these problems became essential. Programmable functionality of
OpenGL shaders, on the other side, can be excluded from consideration without loss
of generality due to it influences mostly on the pixel processing computation complex-
ity. Thus, we can model its influence if consider heavy pixel processing cases (heavy in
comparison to vertex processing and triangle assembly, for example).
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1.3 Scientific problems

With the extensively developed graphics hardware last decades many research topics
in the area of real-time software rendering became abandoned. At the same time CPUs
have evolved significantly:

1. deep out-of-order pipelines, speculative execution, SIMD and various CPU architec-
tures;

2. multi-level caches and tremendous gap between memory and processor speed;

3. true multi-core systems, the number of cores increases significantly;

4. The “relaxed memory model” have appeared and efficient sharing of the cache by
many threads has become non-trivial task, especially when increasing number of
cores.

Thus, many algorithms and optimizations that were populular 20 years ago (the dawn
of graphics hardware development) mostly useless and even performance-harmful for mod-
ern CPUs. The goal of our work is to explore different techniques together (considering
the influence of all factors upon each other) and find the most practical and scalable
approach for software implementation of OpenGL graphics pipeline on modern multicore
CPUs which is, in our opinion, is not solved.

2 HIGH PERFORMANCE SOFTWARE RASTERIZATION TECHNIQUES

2.1 Triangle rasterization basics

Before considering triangle rasterization algorithms, we should note that in the existing
graphics pipelines (for example OpenGL, DirectX or Vulkan) there is a certain agreement
about drawing triangles. A pixel is considered as overlapped by a two-dimensional triangle
if its center lies inside the triangle. Thus, the pixel-triangle overlap test is called a
“coverage test” (fig. 2).

Fig. 2. Standard agreement about covered pixels. A pixel is considered as overlapped by two-dimensional
triangle if its center lies inside the triangle.

Probably the most well known scanline algorithm [8] sudbidives a triangle into 2
adjacent triangles with horizontal edges. Then it is proposed in some way to move along
the edges of the triangle and paint the area between the edges line by line. A straitforward
way is to move along edges using finite differences (equations 1 and 2) [9].
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∆xy1 =
v2.x− v1.x

v2.y − v1.y
; ∆xy2 =

v3.x− v1.x

v3.y − v1.y
. (1)

y := y + 1;

x1 := x1 + ∆xy1; (2)

x2 := x2 + ∆xy2.

We will refer to this algorithm “scanline”. Despite the simple idea, we should pay
attention to the fact that the algorithm has certain problems:

• The known algorithms for moving along edges (Brezenham [10], Fujimoto [11], or
algorithm with finite differences discussed above) do not allow us to say whether
the edge pixel is covered by a triangle or not. This means that such a rasterization
algorithm itself does not comply with the agreement adopted in OpenGL. For its
correct implementation it is necessary to add a pixel-triangle overlap test (so-called
“coverage test”, fig. 2).

• The algorithm should be additionally limited to a rectangle (built around a triangle),
because scanline uses division by the difference between the coordinates of 2 vertices,
which under certain conditions became a small number (though zero, as a rule, is
excluded by a separate condition that the triangle does not degenerate into a line).
This leads to the fact that the offset in y by 1 pixel gives a huge offset in x, which
can even go beyond the limits of the screen. The reason for this problem is that
according to the OpenGL standard, the coordinates of the triangle’s vertices when
moving to screen space should be floating point numbers (or at least, have 4-bits
subpixel precision [12]). They can not be just integer pixel coordinates. Therefore,
strictly speaking, the Bresenham algorithm cannot be used to move along edges.

2.2 Related Work

An improved scanline implementation can be found in [13]. It moves along the longest
edge, drawing lines between edges. In comparison to the prevoius naive scanline ap-
proach, this algorithm is simpler for CPU due to it has less branches and special cases
and it doesn’t have a near zero division problem because it doesn’t use finite differences.
However, it does not eliminates the need for the coverage test and the original version
does not implement it. We will refer to this algorithm as “scanline(fast)” and will test
its original implementation without coverage test. Such algorithm would be equivalent to
the classic version using Bresenham for movement along the edges.

In [14] half-space rasterization was proposed. This paper introduces the concept of
edge-function (equations 3–6) which was later adopted as a kind of standard agreement
for “coverage test” that we discussed before. This method is based on the fact that a line
in 2D subdivides the space (plane) into two half-spaces (half-planes). If we substitute the
coordinates of the center of the pixel P into the equation of a line, we can obtain the sign
distance to this line (equation 3). The edge-function is a special case of well known cross
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Fig. 3. Half-space algorithm idea

product and it allows calculating the signed distance from pixel center (x, y) to some edge
— (α, β, γ; equations 4–6). If all signed distances are greater than zero, the point lies
inside the triangle (fig. 3).

E(A,B, P ) = (P.x− A.x)(B.y − A.y) − (P.y − A.y)(B.x− A.x) (3)

Eα(x, y) = E(A,B, P ) = (x− A.x)(B.y − A.y) − (y − A.y)(B.x− A.x); (4)

Eβ(x, y) = E(B,C, P ) = (x−B.x)(C.y −B.y) − (y −B.y)(C.x−B.x); (5)

Eγ(x, y) = E(C,A, P ) = (x− C.x)(A.y − C.y) − (y − C.y)(A.x− C.x). (6)

The most useful property of the edge-function is that it can be evaluated incremen-
tally when rasterizer moves along pixels (figure 4) [14]. Besides, baricentric coordinates
(u, v, w) also can be evaluated directly from edge-function by multiplying its value with
inverse triangle double area which is also evaluated with the edge-function (equations
7–9).

u(P ) =
E(A,B, P )

E(A,B,C)
; (7)

v(P ) =
E(B,C, P )

E(A,B,C)
; (8)

w(P ) = 1 − u(P ) − v(P ) =
E(C,A, P )

E(A,B,C)
. (9)

The most significant advantage of half-space rasterizer is extremely simple kernel of the
algorithm, especially in comparison with scanline approach. No more difficult to fill the
rectangle (fig. 4). This property allows branch prediction mechanisms working efficiently
and this is also the reason for the popularity of hardware solutions. The disadvantage
of half-space approach (in comparison to scanline for example) is the presence of idle
iterations since inside the bounding rectangle; there can be a rather large area which
is not covered by a triangle. However, this disadvantage is easily fixed by a serpentine
traversal algorithm [14] or Blocked based version of half-space rasterization [15].
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1: for y in range minY .. maxY do
2: Cx1 := Cy1;
3: Cx2 := Cy2;
4: Cx3 := Cy3;
5: for x in range minX .. maxX do
6: if Cx1 > 0 and Cx2 > 0 and Cx3 > 0 then
7: u = Cx1*TriAreaInv;
8: v = Cx2*TriAreaInv;
9: framebuffer[x,y] := DrawPixel(u, v, 1-u-v);

10: end if ;
11: Cx1 := Cx1 - Dy12;
12: Cx2 := Cx2 - Dy23;
13: Cx3 := Cx3 - Dy31;
14: end for;
15: Cy1 := Cy1 + Dx12;
16: Cy2 := Cy2 + Dx23;
17: Cy3 := Cy3 + Dx31;
18: end for;

Fig. 4. Half-space rasterization kernel. Cx∗ and Cy∗ variables store edge-functions for line and colum
respectively. TriAreaInv = 1/E(A,B,C) is a constant inverse triangle double area. A triplet of (u, v, 1−
u− v) represents baricentric coordinates of a pixel center.

Blocked based half-space method was also suggested in [14] but well-developed
much later in [15]. The main idea of blocked version is that if we perform coverage test
check (via evaluating edge-function) for 4 corner points of a pixel block (4x4 or 8x8 for
example) and all tests have passed then the block is covered by triangle and we can
fill/process all internal pixels in parallel (for example using SIMD instructions). Several
blocked versions of half-space rasterizer were proposed and tested in [15]. The most com-
plex version (called “Block-based Bisector Half-Space Rasterization”) processes triangle
in such a way that it minimizes checks for empty blocks due to a quick cut of empty space
from inside triangle bounding box. The advantages of “bisector” algorithm appear only
on extremely large triangles and simple fill modes (without texture for example) because
incremental edge-function evaluation is quite cheap in comparison to pixel processing for
a fully-covered or even partially-covered block. At the same time average amount of
blocks for most of triangles is usually just a little: 4-8 blocks. As a result complication
of the algorithm leads to poor performance due to branch misprediction simultaneously
with winning of empty blocks tend to zero. We will refer to the blocked version of half-
space rasterizer as “blocked half-space”. The main advantage of blocked version (over
previous half-space approach) is the possibility of parallel processing of pixels via SIMD
instructions. Besides, blocked half-space algorithm processes empty space faster. The
disadvantage of blocked version appears with small triangles — not all calculations that
were performed for 4x4 tile (for example) are useful.

2.2.1 Floating point vs fixed point

When choosing between a floating point and a fixed point, two cases should be distin-
guished: (1) rasterization algorithm itself and (2) pixel operations. When speaking about
rasterization — current graphics hardware uses “28.4” or “15.8” (or other) fixed point
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format with 4 or 8 bit subpixel precision [12, 1, 16] and there is simply no any reason
for using floating point to process the triangle in the rasterization algorithm. This is so
because a fixed point has deterministic behavior and is not subject to rounding errors;
therefore, it’s not even about speed, but rather about correctness. Both half-space and
scanline approaches are known to be implemented in fixed point well [17, 18].

Fig. 5. PlayStation1 (right) didn’t have correct texture mapping due to absence of floating point for
pixel operations [19].

While speaking about pixel processing — it depends on the hardware. Early versions
of gaming consoles didn’t have floating point support [20] so they had visible problems
with texture mapping and Z-buffer (fig. 5). There are still processors without a floating
point and SIMD support (or its performance may be not enough), therefore, fixed-point
can be an option [18]. Also, if we do not need rendering in three dimensions, we can get
by with a fixed point. Otherwise, we believe that for pixel operations it’s better to use
floating point in conjuction with SIMD. Here are our reasons:

1. Rendering in 3D is difficult to be correct without a floating point (fig. 5).

2. SIMD and floating point can be used together. If SIMD instructions are enabled,
there should be no need in complex and chip-expensive Out Of Order execution
mechanisms to speed-up floating point operations. Blocked based half-space always
has a lot of independent work (at leats 16 operations for 4x4 pixel block), so coarse-
grained instruction parallelism [21] can be used. GPUs actively use this idea sending
commands to the pipeline from different micro-threads [22]. This is why they are
so good at floating point operations and have high memory bandwidth. Thus, even
straitforward implementation of SIMD floating point should work well.

3. Almost all CPUs have different register sets for integer and floating point numbers.
Using both (we must use integer registers for fixed point rasterization anyway) will
increase the effective number of processor registers and in this case reduce register
pressure.

4. A CPU may not have SIMD for integers (for example, SSE1 doesn’t have them).
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5. Half precision reduces architectural state by a half and thus more pixels can be
processed in parallel or we may use less transistors for the CPU or, at least, reduce
necessary memory bandwidth. Processors with half precision support for neural
networks are currently becoming popular (for example late ARM and Intel CPUs).

Thus in our experiments we used fixed point for triangle rasterization algorithms and
SIMD floating point operations for pixel processing.

2.2.2 Multi-threaded implementations

Multithreaded implementation of a graphics pipeline is a challenging task. Figure 1
shows it in general. An unknown number of triangles of arbitrary size is fed to the input
of the graphics pipeline in general (so it is hard to say in advance exactly at which stage of
the pipeline there will be the bottleneck). Non uniform work distrubution is easy arising
here. Triangles could significantly overlap each other. Moreover, if alpha blending is
enabled, a certain order of pixel processing for triangles must be preserved: if the triangle
A was filed into the graphics pipeline before the triangle B, then A must be drawn before
B and its pixels must be processed before the pixels of the triangle B. Otherwise, we will
get an incorrect image.

One of the first papers about software rasterization on modern CPUs is [23]. In this
paper, SSE instructions and multithreading capabilities were exploited. Binned imple-
mentations of rasterizer was used (which is known as a “sort-middle” approach [1]). In
this paper, screen is subdivided into large bins/tiles (in size of 64x64, 128x128 or 256x256
pixels). Once all primitives are binned, threads switch over to tiles for rasterization and
fragment processing work. Thus, in this paper, for each bin there is its own queue of
triangles, which is first completely filled with all the threads, and then all the queues are
emptied in parallel. One tile is processed at a time by only one stream. The blocked
version of half-space rasterization was used with 8x8 block size for SIMD processing of
pixels. An advantage of sort-middle approach from [23] is the correct alpha blend support
by default due to each bin is processed in a single thread. The disadvantage is a limited
parallelization capability due to different bins could have significantly different numbers
of triangles and thus some bins will hang for a while in a single thread when all the oth-
ers bins/threads have already finished. A performance growth demonstrated in [23] was
measured on a quite heavy pixel operations (which reduces the described disadvantage)
with shadow mapping, and even in this case was not perfect. Authors of [24] simply split
screen in 4 parts and [25] also didn’t introduce any new technique.

In [18] disadvantages of sort-middle approach was also noted and a solution was pro-
posed that is parallelized almost perfectly — render different frames completely in different
threads. This idea is similar to Nvidia SLI and AMD Cross-Fire GPU solutions [26]. The
reason for such successful results is that this work bypasses the Amdahl law, making se-
quential calculations parallel via pipelining. Unfortunately, it has at least 2 drawbacks.
First, this method of parallelization does not reduce the latency of rendered information.
It makes the animation smoother, but the user sees the information on the screen with
such a delay as if the whole rendering has occurred in a single thread. In automotive and
avionics applications, for example, such disadvantage became serious, because a person
in critical situation may wrong react to displayed information due to a time lag. Second,
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a processor memory bus has limited bandwidth and thus SLI-method has a physical lim-
itation on parallelizability on a single device (so, Nvidia and AMD use it for multi-GPU
setup) due to each thread accesses its’ own frame buffer and the total amount of memory
moved along the bus increases with the number of threads.

Unlike previously discussed papers, an older work GRAMPS [27] uses the approach
which is known as “sort-last”[1]. This approach parallelizes individual operations on
pixels or groups of pixels, and unlike sort-middle does not require screen to be split into
bins. Thus, different triangles can be processed by different threads. The main focus
of [27] was done on prototyping and simulating graphics hardware. So, there was no
information about efficiency of this approach for software implementation on practice.

2.2.3 Hardware solutions: sort-middle vs sort-last

Modern graphics hardware has a tremendous amount of parallellism inside. However,
before fragments/pixels finally got to the frame-buffer they have to be sorted in some way
to form a correct image. This becomes especially important if alpha blending is used.
Current graphics hardware can be divided into 2 large classes based on what stage of the
graphics pipeline this sorting takes place: sort-middle and sort-last [1].

Desktop GPUs have a high memory bandwidth and uses sort-last approach imple-
menting the ordering of fragments inside Render Output Unit (“ROP”) hardware units.
Same units are known to be used for atomic operations in GPGPU, so, ROPs are useful
units anyway. Mobile GPUs are aimed more at energy efficiency than at performance
and use a sort-middle method (except Nvidia Tegra). This approach is more energy ef-
ficient because it allows performing fewer operations to DRAM keeping a small piece of
framebuffer (for example 64x64) in the on-chip memory (cache). The disadvantage of
sort-middle approach for GPUs is lower performance with a large number of triangles due
to vertex shader and triangle set up executes several times (thus multiplying the cost of
geometry stages with the number of tiles).

2.2.4 Software rasterization on GPUs

First succesfull software GPU implementation “in compute” (i.e. without using ded-
icated rasteriszation units) was proposed in [12]. This implementation was a three-level
(bin-raster, coarse-raster, fine-raster) and used sort-middle on desktop GPUs. More ad-
vanced approach was suggested in [28] which reduces memory transactions in comparison
to [12]. Due to efficient usage of shared memory and the extremely high computing power
of the GPU, good results were obtained in both papers described above. Combined with a
heavy pixel shader software rasterizations may have almost the same speed than hardware
implementation but it may have higher flexibility.

Larabee [29] uses 4x4 blocked half-space with 16-wide vector instructions and the
algorithm was recursive: each triangle evaluates 16 blocks of pixels at a time to figure
out which blocks are even touched by the triangle, then descended into each block that’s
at least partially covered, evaluating 16 smaller blocks within it, continuing to descend
recursively until we had identified all the pixels inside the triangle [16]. Thread paralellizm
used sort-middle approach.
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2.3 PERFORMANCE EXPERIMENTS AND ANALYSIS

We tested various methods on the fixed set of scenes. However, the purpose of our
experiments was to select successful methods for a wide range of scenes. Therefore one of
the most important criteria for an objective study is the correct choice of test scenes.

2.3.1 Test scenes

Our test scenes are presented at fig. 6 and 7. We chose these scenes so that the
bottlenecks are presented in different parts of the graphics pipeline. Here is the description
of these scenes and their rasterization modes/states:

1. T1: 18 triangles, color interpolation with perspective correction and Z-buffer;

2. T2: 8K triangles, color interpolation without perspective correction (2D mode);

3. T3: 92 triangles, texture with bilinear fetch, perspective correction and Z-buffer;

4. T4: 4K triangles, same rasterizer state than a previous one;

5. T5: 37K triangles, same rasterizer state than a previous one;

6. T6: 131K triangles. same rasterizer state, lighting was baked in the texture.

T1 scene is simple in all stages: geometry, rasterization and pixel processing. T2 scene
is simple in pixel and geometry processing, but more complex for rasterizer itself due to it
draws 8K small triangles. T3 scene is complex in pixel processing but simple at geometry
and rasterization stages. T4 (4K triangles) and T5 (36K triangles) scenes are more or
less balanced. T6 scene contains 131K triangles and is positioned as a complex scene for
all stages. T6 scene has baked lighting. Therefore, having a small number of test scenes,
we are able to study different bottlenecks in graphics pipeline ignoring irrelevant details
of a complete OpenGL implementation in the same time.

2.3.2 Investigated and proposed techniques

Thus, we have implemented minimal but useful graphics pipeline subset. Such things
as attribute interpolation, perspective correction and depth buffer during triangle ras-
terization are implied. Pixel processing includes texture mapping with bilinear filtering.
However, we don’t evaluate differentials (dFdx/dFdy [30]) for texture coordinates and
avoid using MIP levels. For each OpenGL state we have implemented code generator
using C++ templates for pixel processing excluding unnecessary code explicitly.
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Scene T1 Scene T2 Scene T3

Scene T4 Scene T5 Scene T6

Fig. 6. Our test scenes rendered in solid mode to demonstrate their actual appearence.

Scene T1 Scene T2 Scene T3

Scene T4 Scene T5 Scene T6

Fig. 7. Our test scenes rendered in wire frame to demonstrate triangles.
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Thus, our pixel processing code doesn’t have any branches except a depth test. For
experiments we used three states/filing modes: (1) 2D color interpolation without texture
(T2 scene); (2) 3D color interpolation with perspective correction and depth test (scene
T1), and (3) 3D mode with texture mapping (other scenes), perspective correction, depth
test and bilinear texture fetch.

Using compiler explorer [31], we have estimated that the first mode consists of ap-
proximately 68 instructions per pixel and the second takes 290 instructions (though each
instruction processes line of 4 or 8 pixels for blocked half-space algorithm) for x64 CPU
architecture (table 6). It may seem that having 68 instructions for just interpolating
colors is too much. This is partly true; here we can see the disadvantage of the blocked
half-space algorithm: it must evaluate half-space distances and baricentrics for all pixels
in block while the iterative half-space evaluates them incrementally. On the other hand,
texture mapping introduces significant amount of computation making this disadvantage
irrelevant.

Rasterization algorithm: scan-line vs half-space. Our first experiment was about
comparison of existing rasterizations algorithms on a single core (table 1). We used SSE
processor instructions to accelerate computations where possible. For scan-line and half-
space columns we vectorized the calculations by coordinates and image channels (we call
such approach “sse1” in table 2). For blocked half-space we used pixel vectorization
(i.e. single command processes a bunch of pixels; we call this approach “simd(sse4)”
and “simd(avx8)” depending on instruction length). Rasterization algorithms themselves
were implemented in a fixed point. We further studied optimal tile size (which is related
to vector length) in our experiments (table 2).

scene half-space blocked half-space scan-line scan-line (fast) fill color

T1 286 FPS 294 FPS 158 FPS 400 FPS 625 FPS
T2 650 FPS 417 FPS 83 FPS 117 FPS 667 FPS
T3 68 FPS 91 FPS 61 FPS 73 FPS 500 FPS
T4 76 FPS 87 FPS 48 FPS 53 FPS 400 FPS
T5 57 FPS 51 FPS 35 FPS 46 FPS 250 FPS
T6 50 FPS 40 FPS 19 FPS 22 FPS 116 FPS

Table 1: Time for different rasterization algorithms. Each implementation was accelerated with SSE
instructions. All numbers (FPS, Frames Per Second) are measured for single thread and 1024x1024
resolution. The higher is better. The last column fill color is a tiled half-space algorithm filling all pixels
with white color (like memset). We consider the performance of this case as the best possible one and
compare the rest with respect to it. For this experiment we have used Intel Core i7 (3770, 3.4Ghz) CPU.

Experimental results show that the scan-line approach does have an advantage over
half-space on large triangles and simple filling modes if a coverage test is removed (table 1,
first row, scene T1). However, this advantage is easily eliminated by increasing block size
in blocked half-space algorithm (table 2, fist row, avx8 column): blocked half-space gives
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448 FPS versus 400 FPS (this comparison, though is not quite correct since the numbers
in tables 1 and 2 were measured on different processors, but we can rely on it because Xeon
with a lower frequency in a single thread is usually slower than the Core-i7 ) for scan-line
(fast). In all other cases, half-space and blocked half-space show absolute advantage over
scan-line approach.

Comparing half-space and blocked half-space approaches we can say that blocked half-
space algorithm is usually better (table 1). The exceptions are scenes T2 and T6 where
common half-space algorithms substantially defeated the vectorized version. This result
is explained quite simply: T2 and T6 scenes contain a lot of small triangles which result
in a large amount of partially-covered blocks for a block based rasterizer.

scene pure cpp simd (sse1) simd (sse4) simd (avx8) fill color (sse4)

T1 147 FPS 297 FPS 427 FPS 448 FPS 588 FPS
T2 108 FPS 204 FPS 102 FPS 96 FPS 137 FPS
T3 35 FPS 61 FPS 83 FPS 92 FPS 500 FPS
T4 35 FPS 65 FPS 74 FPS 62 FPS 323 FPS
T5 26 FPS 44 FPS 42 FPS 33 FPS 119 FPS
T6 17 FPS 36 FPS 16 FPS 13 FPS 30 FPS

Table 2: Frames per second for different acceleration techniques for half-space (pure cpp and sse1) and
tiled half-space (simd(sse4), simd(avx8)) rasterizers. All numbers are measured for single thread and
1024x1024 resolution. The higher is better. The last column fill color (sse4) is a tiled half-space algorithm
filling all pixels with white color (like memset). We consider the performance of this case as the best
possible one. For this experiment we have used Intel Xeon (5-2690 v4 2,6Ghz) CPU.

Combined approach. Such a result encourages us to combine sse1 and sse4 imple-
mentations: if a block is fully-covered, we used vectorized pixel processing; if a block is
partially-covered we render its pixels subsequently using vectorization by coordinates or
color channels (table 3, column “sse1+sse4”). It can be seen from table 3 that combined
approach is good in average, but was not the best in all cases. We explain this by saying
that blocked half-space implementation (and combined algorithm as follows) is much more
complicated for branch prediction and speculative execution mechanisms. So, combined
approach can be further improved: for triangles with small area use simple half space
(sse1) and for other — cobmined (sse1+sse4) algorithms. This approach allowed us to fix
performance for scenes with a large number of small triangles (T2 and T6).

Threads: sort-middle vs sort-last. As can be obvious from the previous work, most
existing implementations use straitforward sort-middle approach subdividing image into
bins. This approach supposes that pixel work dominates over geometry and rasterization
itself. We also began with sort-middle approach but we have found that adding bins is
in itself introducing essential overhead (table 4, second column). This happens due to
essential duplicating of triangles that overlapped several bins and it becomes noticeable on
geometrically-heavy scenes (T2, T5 and T6). Then we decided to try a different approach.
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Having 4x4 blocked half-space algorithm, we decided to use spin-locks for 4x4 tile and
thus implemented sort-last. We used std::atomic flag [32] for spin-lock implementation.

The sort-last, in general (if we do not take into account the locks), should scale better
due to it processes separate triangles in parallel. An additional advantage of this algorithm
is locality and cache efficiency for triangles data: rasterized triangles are formed on the
top the stack (or triangle queue) memory and they are in the cache.

If go further, sort-last could be optimized in such a way that it reads data directly
from user input pointers, rasterizes triangles and immediately discards them (thus turning
into a memory-compact and cache-effitient way). However, we did not do this because
OpenGL has tremendous amount of ways for input user data layout.

scene pure cpp simd (sse1) simd (sse4) simd (sse1+sse4) fill color (sse4)

T1 147 FPS 297 FPS 427 FPS 430 FPS 588 FPS
T2 108 FPS 204 FPS 102 FPS 197 FPS 137 FPS
T3 35 FPS 61 FPS 83 FPS 84 FPS 500 FPS
T4 35 FPS 65 FPS 74 FPS 79 FPS 323 FPS
T5 26 FPS 44 FPS 42 FPS 46 FPS 119 FPS
T6 17 FPS 36 FPS 16 FPS 31 FPS 30 FPS

Table 3: Comparison of suggested combined implementation (sse4+sse1). All numbers are measured for
single thread and 1024x1024 resolution. The higher is better. The last column fill color (sse4) is a tiled
half-space algorithm filling all pixels with white color (like memset). We consider the performance of this
case as the best possible one. For this experiment we have used Intel Xeon (5-2690 v4 2,6Ghz) CPU.

Although, the sort-last can be implemented in different ways, we used the simplest
approach: a thread performs lock of 4x4 tile, processes pixels and then immediately
unlocks the tile. For parallel processing of triangles we used a lock-free concurrent queue
[33]. Some threads act as producers and push triangles into queue (1 or 2), while the others
act as consumers, taking out triangles from the queue and performing rasterization. We
did not limit the size of the queue, although we believe that for better cache efficiency it
is worth doing, switching producer threads to consuming triangles when a limit has been
exceeded.

Fig. 8 shows our experiment results. The sort-middle approach, as expected, was
better for pixel-heavy scenes. However, for cases where pixel work was not enough, sort-
last approach has won. The exception is T6 scene. This result seemed strange for us,
especially in combination with the fact that sort-last has shown almost linear scaling on
T2 scene. Nevertheless, this result may be explained. Scene T2 consists of 8K small
random triangles (which bounding boxes overlap only slightly) where each next triangle
is located at random position on the screen. Scene T6 consists of successive triangle strips
and also triangle bounding boxes overlap much more. We were able to achieve a slight
performance increase (15-20%) by increasing the pulling portion size for the consumer up
to 4 triangles (this reduces conflicts of threads if they process a single trip). However,
threads that handle different strips still conflict much. Moreover, T6 scene is heavier for
pixel processing than T2, so sort-middle has won here.
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Fig. 8. Multithreading experiment. X axis — number of threads. Intel Xeon (5-2690 v4 2,6Ghz, 14
cores) CPU.
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At last, we should make a note that in our comparison, a sort-last approach used pitch-
linear buffer, and the sort-middle used a binned/tiled one. After comparing these two
methods (pitch-linear vs tiled) in next subsection we can state that a sort-last approach
can be even more efficient if it uses a tiled frame-buffer.

Framebuffer layout: pitch-linear vs tiled. Our next experiment was targeted to
investigate memory subsystem efficiency when access frame buffer data. We assumed
that frame buffer (and also depth buffer) access can be a bottelneck due to these buffers a
priori can not be fit into the cache. Thus, some tiled frame buffer layout might be helpful
because of less cache misses when accessing different rows (fig. 9).

We have investigated 4 different implementations (table 4):

1. pitch-linear frame and depth buffers layout. Default layout of 2d image by rows.

2. pitch-linear + binning overhead. This implementation has the same memory layout
as a prevous one. However, it has bins for different 64x64 tiles and thus triangles
that overlap several tiles should be duplicated. This implementation will show use
binning overhead.

3. big tiles (64x64), i.e. bins. For this layout we split screen into 64x64 bins. For each
bin inside we used pitch-linear layout.

4. Two-level tiling. At the first level, we split screen into 64x64 bins. At the second
level we split each bin into 16x16 tiles thus making address linear inside the whole
tile. Such layout will also allow wide vectors (for example, AVX512) being used for
the whole 4x4 tile.

scene pitch-linear pitch-linear + bins bins (64x64) bins (64x64) + tiles (16x16)

T1 340 FPS 345 FPS 444 FPS 476 FPS
T2 113 FPS 103 FPS 147 FPS 145 FPS
T3 98 FPS 99 FPS 161 FPS 169 FPS
T4 99 FPS 82 FPS 132 FPS 141 FPS
T5 85 FPS 46 FPS 82 FPS 91 FPS
T6 40 FPS 20 FPS 33 FPS 34 FPS

Table 4: Comparison of pitch-linear and tiled frame buffer layouts. The higher is better. Blocked half-
space algorithm was used (4x4). For this experiment we have used single thread and Intel Xeon (5-2690 v4
2,6Ghz) CPU. First column shows a default pitch-linear framebuffer layout. Second column demonstrates
overhead we got from binned approach by itself: some triangles are duplicated due to they overlap several
bins. Third column shows performance for binned approach and the last one — for two-level bins (64x64)
+ small tiles (4x4) approach.

Thus, memory layout has an extremely large impact on performance and tiled layout
sould be definitely used.
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Fig. 9. Different framebuffer layout illustration. On this image, a bin size is shown to be 8x8, however
on practice it was 64x64. Default pitch-linear is shown at top left image. Binned/tiled — top right.
Two level (64x64 bins + 4x4 tiles) layout is shown at bottom left and Morton code layout [34] is shown
at bottom right. With algorithmic point of view, the last one has better 2D locality [34]. However,
Morton code evaluation is expensive and will also complicate half-space distances evaluation. At the
same time, we would like to guarantee that all pixels in line have a subsequent addresses. This allow us
reading/writing line of pixels with the single instruction and easily change length of instruction to test
both SSE (for 4x4 tiles) and AVX (for 8x8 tiles).

CPU architecture: In Order vs Out Of Order. Our last experiment was aimed
to study efficiency of different processor architectures for software graphics pipeline and
rasterization. A trade off between performance and other CPU characteristics (such as
energy efficiency, heat dissipation and cost) is essential for embedded systems. It is
well known that the most significant performance gained on modern CPUs gives super
scalar Out Of Order execution pipeline. This mechanism, at the same time, is the most
expensive one. Our assumption is that with a large number of vector operations and
independent instruction flow, software graphics pipeline should work well even on an in-
order processor. Another reason we make this comparison is that in-order processors
are more easily implementing precise exceptions which are important for safety-critical
applications.

Since our blocked half-space algorithm is implemented via platform-independent light-
weight vector library, we could easily port it to ARM. Unfortunalely our SSE1 imple-
mentation is heavily platform dependent (though, various options are exists [35]), so in
this experiment we tested only pixel vectorization (blocked half-space algorithm). Using
compiler explorer [31], we have counted instructions for different arhitectures and pixel
processing modes (table 6). This information would allow us to more accurately evaluate
how well the pipeline was loaded by the arithmetic instructions.

For this test we have selected several CPUs (table 7). First two processors (A83T
and Cortex A53) are 2-way super scalar in-order machines. The i.MX6 (Cortex A9) has
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scene pitch-linear bins (64x64) bins (64x64) + tiles (16x16)

T1 340 FPS 444 FPS 476 FPS
T2 113 FPS 167 FPS 164 FPS
T3 98 FPS 161 FPS 169 FPS
T4 99 FPS 150 FPS 155 FPS
T5 85 FPS 102 FPS 114 FPS
T6 40 FPS 60 FPS 63 FPS

Table 5: Comparison of pitch-linear and tiled frame buffer layouts without binning overhead. The
higher is better. Half-space block (4x4) algorithm was used. For this experiment we have used single
thread and Intel Xeon (5-2690 v4 2,6Ghz) CPU. First column shows a default pitch-linear framebuffer
layout. Second column shows performance for binned approach and the last one — for two-level bins
(64x64) + small tiles (4x4) approach.

2-way super scalar out of order pipeline. The Core-i5 2410M (Sandy Bridge) has 4-way
super scalar out of order pipeline. In addition to a wider pipeline, Sandy Bridge has many
floating point ALUs, so it can execute 16 single precision floating point operations per
clock (4 SIMD instructions per clock, each of 4 floats).

CPU arch/mode Colored2D Colored3D Textured3D

x86/x64 68 100 290
ARMv7 79 110 500
ARMv8 60 86 250

Table 6: Comparison of instruction count per pixel for different rasterization states and CPU architec-
tures. GCC compiler. 4x4 tiles were used. Colored2D includes color interpolation only. Colored3D —
color interpolation with the perspective correction and a depth test. Textured3D adds bilinear texture
fetch and perspective correction of texture coordinates to the previous mode. We have observed a signif-
icant increase in the number of instructions for ARMv7 and Textured3D mode due to spilling registers
to memory. We used GCC 5.4.0 for both ARM cases.

We further introduce a special metric (equation 10, fig. 10) to compare in-order vs
out of order from measured frames per second (table 7). We do this because in our ex-
periments we used different CPUs with different architectures, manufacturing technology
(for example 14 and 28 nm) and frequency. Our reason is straitforward: we don’t want to
compare the absolute performance values for different processors like table 7 does. Instead
of that, we would like to approximately match instructions per clock for different CPUs to
know whether out of order gives a benefit for our problem or not. Thus, if for a some CPU
we have more instructions than for the other, we do not consider this a disadvantage for
our comparison and we also do not want to take into account any inefficiencies introduced
by the compiler. For this reason, the instruction count is in the numerator. At the same
time frequency should be in denominator to bring all measures to a single frequency.
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scene A83T(ARMv7) Cort.A53(ARMv8) i.MX6 (ARMv7) Core-i5 (x86/x64)

pure cpp SIMD pure cpp SIMD pure cpp SIMD pure cpp SIMD
T1 16,7 17,5 26.3 35,9 13.9 19.2 96 191
T2 17,9 21,2 33,2 19,0 14,1 6,6 79 77
T3 5,8 6,5 7,4 14,5 4,5 6,3 27 67
T4 6,0 6,2 8,0 12,2 4,8 5,1 28 55
T5 4,5 4,6 6,1 7,0 3,7 3,0 22 33
T6 2,8 2,2 3,6 2,7 4,1 1,3 14 13

Table 7: Performance of a single-pixel (pure cpp) and vectorized (SIMD) versions. Frames Per Second
(FPS). Single thread, 1024x1024 and offscreen rendering. Binned frame-buffer (64x64 pixels) is used.
A83T and Cortex A53 are in order machines; i.MX6 and Core-i5 are out of order ones. For this test we
have used a laptop version of Core-i5 CPU (2410M, 2.3 GHz).

Efficiency =
FPS ∗ Instructions

Frequency
. (10)

Fig. 10. Relative CPUs efficiency (equation 10). This efficiency could be thought as a relative instruction
per clock (IPC). All histogram columns were obtained from SIMD columns of table 7.

Fig. 10 shows that the out of order (OOO) execution mechanism in itself gives only
a very little benefit in average (compare A83T over i.MX6 — they both have 2-way
execution pipeline, but i.MX6 have OOO and the A83T don’t have it). The loss of the
i.MX6 on T2 and T6 scenes can be easily explained — this is a result of expensive pipeline
flush for the out of order CPU due to large amount of branch misprediction and complex
code path in the blocked half-space algorithm; we rendered partially covered blocks with
common (not vectorized) C++ code and therefore branch misprediction forces the CPU to
flush pipeline and start executing another piece of code. Core-i5 has speculative execution
mechanism and thus amortizes this problem. At the same time, in-order machine with
greater amount of registers (ARMv8) shown better IPC (fig 10). Therefore, more registers
combined with better code density for ARMv8 in Cortex A53 shown much better absolute
performance than OOO execution added to ARMv7 in i.MX6 CPU (table 7).
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2.3.3 Comparison with other implementations

We have compared our implementation to Mesa on A83T (ARMv7) and Mesa-OpenSWR
on Intel Core-i7 CPUs (x86/x64). For Core-i7 we used high performance OpenSWR [6]
implementation on Windows 7 and for A83T we used default Mesa 10.5.4 software ras-
terizer on Ubuntu Linux 16.04.6 LTS (xenial), BPI-M3 dev-board [36]. All comparisons
were done in 1024x1024 resolution for windows and in 1024x640 for Linux on BPI-M3
due to maximum resolution limitation; please also note that this time (table 8) we have
to include frame buffer display time into the comparison and therefore our numbers for
A83T CPU in tables 8 and 7 are slightly differ.

Scn/CPU A83T(ARMv7), 1 and 4 threads Core-i7, 4 threads
Scn/OGL Mesa (1 thread) Ours (1 thread) Ours, 4 threads OpenSWR Ours

T1 5.6 FPS 7.0 FPS 16.5 FPS 400 FPS 240 FPS
T2 4.2 FPS 5.7 FPS 15.0 FPS 136 FPS 150 FPS
T3 1.0 FPS 6.7 FPS 14.8 FPS 270 FPS 210 FPS
T4 0.77 FPS 7.5 FPS 8.2 FPS 220 FPS 101 FPS
T5 0.45 FPS 5.0 FPS 6.1 FPS 110 FPS 63 FPS
T6 0.26 FPS 3.3 FPS 4.8 FPS 33 FPS 40 FPS

Table 8: Comparison of our implementation to Mesa and OpenSWR OpenGL implementations. In this
comparison, we used several optimizations altogether (such as tiled frame buffer and multithreading).

On x86/x64 our implementation [37] could not beat OpenSWR on pixel-heavy scenes
(table 8). However, we were faster on T2 and T6 scenes where our combined approach
(sse4+sse1, section 2.3.2) has shown its advantage. Our code was designed to quickly test
the maximum number of different rendering techniques. So, considering that OpenSWR
is made by Intel for the x86/x64 architecture only (and it simply can not run on the
others), it would be naive to expect excellence from our experimental implementation for
all cases. We believe that OpenSWR generates better vectorized code (processing a half
of 4x4 tile with a single AVX instruction, for example). Also OpenSWR could proceed
better with multithreading due to our experiments revealed problems for both studied
methods (sort-middle and sort-last).

On the other hand, with the same software implementation, we can significantly out-
performs default Mesa rasterizer on ARM which was the only avaliable software solution
for BPI-M3 board during our work with it; according to our information there is no work-
ing graphics driver for Ubuntu Linux on BPI boards and therefore the whole rendering
is performed actually in the software. Many other developent boards suffer the same
problem on practice (along with patent issues [38]).

3 CONCLUSIONS

In this article we investigated various high performance graphics rasterization algo-
rithms and techniques to be accelerated on different modern processor architectures. Prac-
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tical and scalable solutions for software implementation of OpenGL graphics pipeline on
modern multicore CPUs were elaborated.

The experimental results demonstrated unexpected results — even on fairly simple test
scenes popular methods (sort-middle and blocked half space) substantially lost to rarely
used ones (sort-last and simple half space). Relying on these results, a combined approach
(blocked half-space + half-space) accelerated with SIMD instructions was introduced that
have beaten extremely optimized OpenSWR implementation for 2 scenes. At the same
time our implementation outperform default Mesa rasterizer on ARM CPUs an order of
magnitude, which demonstrates the relevance of this area of research. We also offered a
special metric for benchmarking relative Instructions Per Clock (IPC) for different CPUs
without special tools, and this metric shows relatively low efficiency of the out of order
mechanism itself for pixel processing. The more particular conclusions are shown further:

1. Half-space rasterization methods are absolutely better than scanline ones;

2. SIMD pixel processing for blocked half-space rasterizer gives essential benefit, but
has limitations:

(a) small triangles degrade performance, so the combined approach should be used;

(b) wide vectors on architectures with low amount of vector registers may not
have benefit due to high register pressure, increased number of instructions
and spilling intermediate results to memory (table 7).

3. Even in such a computationally intensive task as pixel processing during rasteriza-
tion (where the ratio of computational instructions to memory operations is greater
than 100:1), memory access is still a seriously performance limit. Tiled frame buffer
and depth buffers layouts increase performance up to 60%;

4. Despite our multithreading implementation is far from perfect (we don’t have linear
acceleration for most cases), we believe that the sort-last approach is more perspec-
tive, although it is non trivial.

5. For the considered problem out of order (OOO) machines have essential benefit if
the OOO machine has significantly larger maximum instructions per clock than an
in order one. It is more essential to have larger maximum thoroughput of floating
point instructions (i.e. have for floating point ALUs).

When we first started our work, we were sure that it would be more technical and that
all the research that could be done in this area had already been done due to the popularity
of GPUs today. However, on practice, everything turned out to be differently. We could
not find a single optimal approach for the implementation of software rasterization and
graphics pipeline. Moreover, we found that with the advent of GPUs, researchers mostly
ignore real-time software rendering. At the same time, processors were actively developing,
so we believe that this field is the fertile ground for the future performance research.
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Аннотация. В настоящее время неэкстенсивная статистическая механика Тсаллиса ус-

пешно применяется к космическим системам с дальним силовым взаимодействием, кото-

рое и является причиной их аномальности (стататистической и термодинамической неад-

дитивности). Известно, что гравитационная неустойчивость является фундаментальным 

процессом фрагментации гравитирующего допланетного облака. В конечном счете, имен-

но она  вызывает формирование устойчивых астрофизических объектов, таких как звезды, 

туманности, допланетные пылевые сгущения, аккреционные диски и т. д. При этом в слу-

чае нормальных звезд большую роль играет давление излучения как фактор их гидроста-

тического равновесия.  

В данной работе на основе кинетики Тсаллиса рассмотрена  проблема гравитационной 

неустойчивости Джинса для протяженного самогравитирующего плазменного облака, за-

полнявшего все пространство прото-солнечной системы, с учетом влияния неэкстенсив-

ности среды, вращения и магнитного поля на критическую длину волны возмущения, ве-

дущей к неустойчивости.  Обобщённые критерии гравитационной неустойчивости Джин-

са найдены из соответствующих дисперсионных соотношений, полученных как для ней-

трального вещества, состоящего из смеси совершенного q -газа и чернотельного излуче-

ния, так и для плазмы. Определены функциональные зависимости критического значения 

длины возмущающей волны от энтропийного индекса деформации q , размерности  про-

странства скоростей D  и коэффициента  , характеризующего долю излучения в полном 

давлении системы. Эти свободные параметры должны задаваться в каждом конкретном 

случае из статистических или экспериментальных данных. Показано, что и радиационное 

давление стабилизирует вещество неэкстенсивных допланетных облаков. Для вращаю-

щейся намагниченной плазмы  критерии неустойчивости Джинса модифицируются силой 

Кориолиса  и магнитным полем только в поперечном режиме распространения волн воз-

мущения. Полученные здесь результаты помогут, по мнению автора, лучше понять неко-

торые астрофизические проблемы, связанные, в частности, с моделированием процессов 

образования звезд и экзопланет из звездных туманностей. 
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Summary. At the present time, non-extensive statistical mechanics of Tsallis is successfully ap-

plied to space systems with long-range force interaction, which is the reason for their anomaly 

(statistical and thermodynamic non-extensity). It is known that gravitational instability is a fun-

damental process of fragmentation of gravitating cosmic matter. It causes the formation of stable 

astrophysical objects, such as stars, nebulae, pre-planetary dust condensations, accretion disks, 

etc. Wherein, in the case of normal stars, the radiation pressure as a factor in their hydrostatic 

equilibrium plays an important role. 

It is on the basis of statistical mechanics of Tsallis that the paper considers the problem of 

Jeans gravitational instability for an extended self-gravitating plasma cloud that fills the entire 

space of the proto-solar system, taking into account the influence of medium nonextension, rota-

tion, and magnetic field on the critical wavelength of the perturbation leading to instability. The 

generalized criteria for Jeans' gravitational instability are found from the corresponding disper-

sion relations obtained both for a neutral substance consisting of a mixture of perfect q -gas and 

blackbody radiation, and for plasma. The functional dependences of the critical value of length 

of the perturbing wave on the entropy strain index q , the dimension of the velocity space D , 

and the coefficient  , characterizing the fraction of radiation in the total pressure of the system 

are determined. These free parameters should be specified in each case from statistical or exper-

imental data. It was shown that radiation pressure stabilizes the matter of non-extensive pre-

planet clouds. For a rotating magnetized plasma, the Jeans instability criteria are modified by the 

Coriolis force and magnetic field only in the transverse mode of propagation of perturbation 

waves. The results obtained here will help, according to the author, a better understanding of 

some astrophysical problems related, in particular, to modeling the processes of formation of 

stars and exoplanets from stellar nebulae. 
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ВВЕДЕНИЕ 

Как теперь стало понятно, статистическая механика Больцмана−Гиббса и классическая ста-

тистическая термодинамика не являются вполне универсальными теориями, поскольку они 

имеют ограниченные области применимости. Это связано, в частности, с тем, что в основе 

этой статистики лежит гипотеза молекулярного хаоса. А это, в свою очередь,  означает, что 

любой выделенный объем приобретает по истечении времени настолько хорошо развитую 

хаотическую структуру, что при t его точки могут располагаться в произвольной части 

фазового пространства. Таким образом, фазовое пространство в классической статистике не 

содержит запрещенных состояний и обладает обычными свойствами непрерывности, гладко-

сти, евклидовости. При этом стохастический процесс имеет марковский характер, а гипотеза 

перемешивания, дополненная предположением о бесконечном числе степеней свободы, при-

водит, в конечном счете, к каноническому (экспоненциальному) распределению вероятности 

состояний Больцмана−Гиббса, из которого следует свойство аддитивности экстенсивных тер-

модинамических переменных, таких как внутренняя энергия, энтропия и т.п., а в случае кине-

тической теории - к максвелловскому распределению скоростей. 
Вместе с тем, в физике и в других естественных науках, использующих методы статистиче-

ской механики, известны многочисленные примеры аномальных систем с дальним силовым 

взаимодействием, фрактальным характером фазового пространства и значительными корре-

ляциями между отдельными их частями. Сложная пространственно-временная структура по-

добных систем приводит к нарушению принципа аддитивности для таких важнейших термо-

динамических величин, как энтропия или внутренняя энергия. Моделирование эволюции по-

добных систем, обладающих произвольным фазовым пространством, возможно, в частности, 

в рамках так называемой неэкстенсивной статистической механики Тсаллиса, важным пре-

имуществом которой является асимптотический степенной закон распределения вероятно-

стей.   

В настоящее время теории разнообразных неэкстенсивных систем развиваются в ускорен-

ном темпе, при котором появляются новые идеи, позволяющие глубже понять их природу, 

возможности и ограничения. Каждая такая теория имеет широкий спектр важных приложе-

ний, связанных с физикой статистических систем, вероятностные свойства которых описыва-

ются не гиббсовыми (и не гауссовыми), а степенными распределениями. В частности, неэкс-

тенсивная статистическая механика успешно применяется к космическим системам с дальним 

силовым взаимодействием, которое и является причиной их аномальности (стататистической 

и термодинамической неэкстенсивности).  

Как известно, при неустойчивости неравновесных систем (в частности, различных аст-

рофизических газопылевых объектов) возникает динамический хаос, что делает возмож-

ным образование более сложных упорядоченных (в общем случае фрактальных) структур. 

Возникновение фрактальных структур подтверждается для многих астрофизических сис-

тем, в частности, у звезд, межзвездных молекулярных облаков, аккреционных допланет-

ных дисков и т.д. При учете сильного гравитационного поля в моделях эволюции подоб-

ных аномальных структур возникают принципиальные трудности, поскольку для них тра-

диционные газодинамические и термодинамические методы описания часто неприемле-

мы. Преодоление этих трудностей требует нового подхода к решению эволюционных за-

дач в космогонии. Один из возможных подходов к моделированию эволюции космогони-

ческих систем может быть основан на методах неэкстенсивной статистической механики 
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Тсаллиса
i)
, как раз и предназначенной для описания эволюции газопылевых сред с даль-

ним (сильным) гравитационным воздействием, которое и является причиной их аномаль-

ности (см., например, [1-16]). Важным отличием неэкстенсивной статистики Тсаллиса от 

классической статистики Больцмана−Гиббса является наличие асимптотического степен-

ного закона распределения вероятностей (появляющегося при максимизации параметри-

ческой энтропии Тсаллиса), который не зависит от экспоненциального поведения, обу-

словленного распределением Гиббса. Тем не менее, основанная на параметрической эн-

тропии неэкстенсивная статистика Тсаллиса представляет собой всё же обобщение, а не 

альтернативу статистике Больцмана−Гиббса, поскольку она распространяет область при-

менимости классической статистической теории на неэкстенсивные системы только путём 

расширения математической формы их энтропийного функционала. 

Самогравитирующая среда становится гравитационно-неустойчивой, если возникшие в 

ней сколь угодно малые возмущения плотности неограниченно растут со временем вслед-

ствие тяготения и равновесие нарушается, если соответствующие длины волн превышают 

определенное значение. В частности, с  джинсовской гравитационной неустойчивостью 

связан процесс фрагментации самогравитирующего околозвёздного облака. Именно она 

вызывает, в конечном счете, образование и эволюцию астрофизических объектов, таких 

как аккреционные диски, допланетные пылевые сгущения, планетезимали и т. д. (см., [18-

24]). Проблеме гравитационной неустойчивости космических объектов в последнее время 

посвящено большое число публикаций, среди которых можно выделить следующие пуб-

ликации [25-50]. Во всех  этих работах рассмотрены различные аспекты джинсовской не-

устойчивости самогравитирующих газовых сред как в рамках классических уравнений 

Навье−Стокса и МГД-уравнений, так и на основе бесстолкновительного уравнения 

Больцмана при наличии гравитационных полей и уравнения Пуассона. 

Вместе с тем в работах [6,7,9,10,12,14-16] были развиты термодинамический и газоди-

намический (на основе модифицированного кинетического уравнения с интегралом 

столкновений в форме Бхатнагара−Гросса−Крука) подходы, позволяющие моделировать 

эволюцию космогонических систем в рамках формализма деформированной статистиче-

ской механики Тсаллиса. С учетом полученных в них результатов в представленной работе 

выполнено в рамках неэкстенсивной кинетики Тсаллиса рассмотрение влияния радиации на 

гравитационную неустойчивость Джинса для допланетного вращающегося плазменного 

облака (точнее его экваториальной части, в которой практически все излучение является 

длинноволновым, поскольку оно уже успело пройти через многократное поглощение и пере-

излучение частицами среды). Именно в этой области возможно существование локального 

термодинамического равновесия, при котором температура частиц практически совпадает с 

температурой черного тела.  

 

 

 

 

                                                
i)
 Обзорам исследований в рамках неэкстенсивной статистики Тсаллиса посвящены многочисленные 

журнальные статьи, сборники и монографии. Кроме этого, имеется постоянно обновляющаяся полная 

библиография (Nonextensive statistical mechanics and thermodynamics: Bibliography/ 

http://tsallis.cat.cbpf.br/biblio.htm), которая на сегодняшний день состоит из более 5600 ссылок [17]. 
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1.  ИСХОДНЫЕ УРАВНЕНИЯ q - ГИДРОДИНАМИКИ 

Рассмотрим далее газообразную динамическую неэкстенсивную систему с нормиро-

ванным распределением частиц ( , )f tr,c  в геометрическом пространстве r  и в простран-

стве скоростей c  с размерностью D . Предлагаемое Тсаллисом обобщение статистической 

механики (в случае статистики Курадо−Тсаллиса) лучше всего описывается следующими 

двумя аксиомами [4,6,]: 

Аксиома 1. Функционал энтропии, связанный с нормированным распределением 

функции вероятностей ( , )f tz  равен 

    ( ) ( )
1

q
q

k
f d f f

q
 


 z z z ,                                                                                     (1) 

где q  − параметр деформации – число, связанное с фрактальной размерностью, а для не-

экстенсивных систем, являющееся мерой их неаддитивности [3]; ( , )z r c  − элемент объё-

ма фазового пространства; Dd d dz r c , где D  − размерность пространства скоростей; k  

− постоянная Больцмана. 

Аксиома 2.  Экспериментально измеряемое значение любой макроскопической вели-

чины q   (термодинамической характеристики q -системы) задаётся соотношением  

 ( , ) ( )
q

q d t f    z r z ,                                                                                                   (2) 

где ( , )tr − соответствующая микроскопическая величина. 

Важно подчеркнуть, что энтропия ( )q   двух независимых систем не является ад-

дитивной термодинамической переменной при 1q  , поскольку [3] 

1( ) ( ) ( ) (1 ) ( ) ( )q q q q qk q     . 

Несмотря на это обстоятельство, в литературе было показано, что существует значи-

тельное количество обычных статистических и термодинамических свойств, которые q -

инвариантны, т. е. справедливы для любого q . К ним, в частности, относятся свойство 

выпуклости энтропии, структура равновесных канонических ансамблей, неаддитивная 

термодинамика, структура преобразования Лежандра и многое другое (см. [17]. 

Основные определения. Энтропия Тсаллиса влечёт за собой не только обобщение ста-

тистической физики и термодинамики, но и обобщение физической кинетики и гидроди-

намики [12,51,52]. Простейшей макроскопической величиной является q -плотность числа 

частиц, которая определяется соотношением  

 ( , ) ( ) Dq

qn t f d r z c .                                                                                                         (3) 

Тогда массовая q -плотность равна ( , ) ( , )q qt mn t r r . Поскольку частица, движущаяся со 

скоростью c , обладает импульсом ,mc  то выражение 
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 ( ) ( ) / ( )Dq
q qt m f d t u r, c z c r,                                                                                      (4) 

определяет гидродинамическую скорость элемента объёма. Величина 

21

2
( ) [ ( )] Dqm

q q qt f d   r, c u z c                                                                                   (5) 

является удельной внутренней q -энергией (на единицу массы) неэкстенсивной системы. 

Потоки 

( ) ( )( )[ ( )] Dq
q q qt m f d  r, c u c u z c ,                                                                           (6) 

2
1
2

( ) ( )[ ( )] Dq
q q qt m f d  r, c u c u z c                                                                         (7) 

представляют собой соответственно тензор давлений и поток тепла. Гидростатическое q -

давление определяется как 

 
2

1 1
3 3

( ) : ( ) Dq
q qp t m f d  r, c u z c ,                                                                    (8) 

где  − единичный тензор второго ранга. В частности, если сдвиговые напряжения равны 

нулю, а нормальные напряжения равны между собой, то q qp .  

Система уравнений q  гидромеханики. В рамках неэкстенсивной статистической ме-

ханики Тсаллиса в работах [12,51] было проведено методом моментов конструирование 

гидродинамических и квазигидродинамических уравнений на основе модифицированного 

кинетического уравнения Больцмана
ii)

 с интегралом столкновений в форме Бхатнага-

ра−Гросса− Крука): 

 
  (0)( , , ) ( , , )

( , , )

qq

q
q

f t f t
f t

t

         
  

с

r c r c
с r c .                                    (9) 

Здесь / / /x x y y z zc c c         с i i i ; ( , ) / ( , ) q qt m grad t  r f r  − не зависящая от 

скорости внешняя сила (сила тяжести) отнесённая к единице массы; f − сила негравитаци-

онного происхождения (например, электромагнитная сила Лоренца);

( , ) [ ( , )] dq
q

m
t G f t   


r z z

r r
 − гравитационный потенциал, удовлетворяющий урав-

нению Пуассона ( ) 4 Dq
q G mf d   r c ; G  − гравитационная постоянная;   − положи-

тельный параметр, который интерпретируется как характерное время релаксации произ-

вольной функции распределения  f  к обобщённому локально- максвелловскому распре-

делению (величина   совпадает по порядку величины со средним временем свободного 

                                                
ii) В цитируемой работе кинетическая теория была основана на операторе столкновений Бхатнаге-

ра−Гросса−Крука (BGK), который был обобщён для произвольного значения параметра q. 
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пробега частиц в системе). Равновесное распределение (0)( , )f r c , в случае когда 1q  , оп-

ределяется следующей формулой (см., например, [10]) 

1/ 1/(1 )/2 2
(0)

,

( )
( , ) 1 (1 )

2 2
D

D
q q

q q
q

q q

mm
f c q

m k T k T

        
              

c u
r c ,                                 (10)  

где  

/2

1
,

1 2

(1 ) ( )

( )

D

D

q

q
q q D

q

q
c





 


 
;   1

0
( ) ex tx t dt

      − Гамма-функция. 

В результате были получены следующие моментные уравнения q - гидродинамики, ко-

торые являются обобщением на произвольное значение параметра q  обычных гидроди-

намических уравнений Навье−Стокса: 

( ) 0
q

q q
t


  


u ,                                                                                                         (11) 

 
( )q q

q q q q q q qn
t

 
    



u
u u f ,                                                                    (12) 

 
( )

: 0
q q

q q q q q q
t

  
     


u u .                                                                      (13) 

Уравнения (11)-(13) не является в общем случае замкнутыми, поскольку отсутствует 

необходимая связь (определяющие соотношения) потоковых величин ( q  и q ) и ска-

лярных характеристик течения ( q , qu  и qT ). Эта связь может быть найдена с помощью 

решения модельного кинетического уравнения (9) методом Чепмена−Энскога при исполь-

зовании общего асимптотического разложения функции распределения по числу Кнудсе-

на. Этот метод был использован, в частности, в работе [51]; в результате были найдены 

определяющие соотношения, замыкающие систему (11)-(13). В случае приближения нуле-

вого порядка, когда распределение (0)f f  (т.е. является обобщённым локально-

максвелловским распределением (10)), было показано, что тензор напряжения q  сво-

дится к шаровому тензору
(0)

q qp , а поток тепла 0q  . При этом внутренняя энер-

гия q  и гидростатическое давление qp  определяются соотношениями 

1

2
1 (1 )

2

q D
D

q

k T
q

m


     ,                                                                                             (14) 

2

2

[1 (1 ) ]

q q
q q qD D

k T
p

m q


   

 
.                                                                                          (15) 
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Заметим, что поскольку определение температуры в q -кинетике Тсаллиса достаточно 

произвольно (оно зависит от довольно произвольного определения температуры с точки 

зрения множителей Лагранжа (см., например, [10]), то далее величина qT  интерпретирует-

ся как обобщённая температура сложной неаддитивной системы. Естественно, что эта 

температура, в корне отличается от абсолютной термодинамической температуры T , ха-

рактеризующей интенсивность хаотизации (т.е. беспорядочного движения) частиц систе-

мы. Заметим, что если определить формулой 
2

/ 1 ( 1) D
effT T q      эффективную темпе-

ратуру q -системы, то для величины q  получим соотношение / 2 0effDq kT m   (совпа-

дающее при 1q   и 3D   с определением внутренней энергии в статистике Больцма-

на−Гиббса), которое соответствует равному распределению энергии идеального газа по 

степеням свободы для всех q . Если сохранить обычные представления температуры и для 

обобщённой температуры qT , то тогда неравенство 0q   накладывает жёсткое ограни-

чение на величину параметра деформации q : в этом случае энтропийный индекс удовле-

творяет неравенству 1 1 2 /q D   . 

В приближении первого порядка определяющие уравнения для потока тепла q  и тен-

зора вязких напряжений q q qp   имеют вид: 

( , )q qt T  r ,                                                                                                             (16) 

2
( , ) ( )

3

T
qt
 

       
 

r u u u ,                                                                               (17) 

где  
1 / 2

1 (1 )(1 / 2)

q
q

D

D

k p

m q


  

  
  и  

2
[1 (1 ) ]

q
q q D

k T
p

m q


    

 
 − соответственно коэф-

фициенты теплопроводности и сдвиговой вязкости. 

2.  ЗАМКНУТАЯ СИСТЕМА УРАВНЕНИЙ q -ГИДРОДИНАМИКИ  

ДЛЯ ДОПЛАНЕТНОГО ОБЛАКА С РАВНОВЕСНЫМ ИЗЛУЧЕНИЕМ  

В эволюции многих астрофизических объектов большую роль играет давление излуче-

ния, как фактор их гидростатического равновесия. Впервые анализ неустойчивости в ак-

креционных дисках относительно осесимметричных возмущений с учетом давления излу-

чения был проведен в работе Шакуры и Сюняева [30]. В последующих работах рассмат-

ривались общие политропные модели [31], учитывались неосесимметричные возмущения 

[53], звуковые и эпициклические колебания [24,54] и т.д.  

Ниже мы используем приведенную выше систему уравнений q - гидродинамики для 

моделирования неустойчивости околосолнечного допланетного облака (толстого диска), 

вещество которого состоит из смеси с q -газа и чёрнотельного изотропного излучения при 

температуре ,T  распространяющегося по всем направлениям. Будем предполагать, что 

допланетное облако оптически толстое и распределение поля излучения близко к равно-

весному. Подчеркнём также, что облако в значительной мере обладает осевой симметри-
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ей, что является следствием его вращения вокруг центральной звезды. Далее будем также 

предполагать, что облако- самогравитирующее, для которого вертикальная структура 

(вдоль оси вращения) определяется балансом сил давления и гравитации самого диска. 

В случае пренебрежения гидродинамическими диссипативными процессами и нагре-

вом космического вещества, обусловленным диссипацией и процессами ионизации и воз-

буждения, исходная система q -уравнений, состоящая из аналога уравнений Эйлера и 

уравнения Пуассона, имеет вид
iii)

 (см., например, [10]):  

( ) 0
t


    


u ,                                                                                                                (18) 

1d
P

d t
   



u
,                                                                                                            (19) 

4 G    ,                                                                                                                        (20) 

    


u
Qd P d

dt d t
.                                                                                                          (21) 

где соотношением / / ( )d d t dt   u  определяется полная производная струк-

турной величины ( , )tr по времени. Здесь  

4( ) / 3radq qP ,t p p p aT   r ,                                                                                       (22) 

4( , ) /radq qt aT       r                                                                                           (23) 

− соответственно полное давление и полная внутренняя энергия (на единицу массы) смеси 

идеального q -газа и чёрнотельного излучения; / QQd dt    ; Q − суммарный век-

тор теплового потока, учитывающий в принципе все термодинамически обратимые про-

цессы, которые могут уносить тепло из элемента среды при его движении;  

( , )
( , ) ( , )

2 (1 )
q vq

D

D

k T t
t c T t

q m
  

 

r
r r  − внутренняя энергия (на единицу массы газо-

вой составляющей допланетного диска); 4/rad aT    − энергия излучения чёрного тела, 

находящаяся в единице массы; 
2 2

( , ) ( , ) ( , )
2 (1 )

q q
D D

k
p t T t t

q m
   

 
r r r  − газовое 

давление в неэкстенсивной дисковой системе (аналог закона состояния в кинетической 

теории идеальных газов); T  − абсолютная температура; 4/ 3radp aT  − лучевое давление; 

                                                
iii

) Здесь и далее индекс “q” у ряда гидродинамических и термодинамических переменных мы будем 

опускать. 
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a  − постоянная излучения Стефана−Больцмана; 
( , )

( , )
V

t
t G d


  




r
r r

r r
 − гравитацион-

ный потенциал, являющийся решением уравнения Пуассона (8) (интеграл здесь берётся по 

всему объёму ,V  занимаемому допланетным облаком); G  − гравитационная постоянная; 

2 (1 )
vq

D

D

k
c

q m


 
 − удельная изохорная теплоёмкость газовой составляющей смеси. 

Определим также показатель адиабаты газового вещества диска, как отношение 

/q gas pq vqc c    . Тогда  2 2 /q gas Dq      ,    1 ) /(2 D D   .  

Уравнение для полной внутренней энергии смеси (21) удобно переписать, используя 

уравнение неразрывности (18), в форме первого начала термодинамики 

/ / /Qd d t d d t Pdv d t  , которое  остаётся справедливым и для неэкстенсивных систем 

[10, 11], или в виде тождества Гиббса  

/ / / /QTd d t d dt d d t Pdv d t   ,                                                                             (24) 

выражающего скорость /d d t  изменения энтропии  (на единицу массы) дискового ве-

щества и излучения при движении элемента среды вдоль его траектории  (здесь 

( , ) 1/v t  r  − удельный объём). 

Изоэнтропические изменения в среде, содержащей q -газ и радиацию. Далее мы бу-

дем рассматривать такие движения космического вещества (находящегося в состоянии 

идеального q -газа) и чёрнотельного излучения, для которых энтропия каждой частицы 

среды остается в первом приближении постоянной на протяжении всего пути частицы, т.е. 

/ / 0d d t t     u . Подобные обратимые и адиабатические движения являются 

изоэнтропическими. Для них энергетическое уравнение (21) сводится к уравнению  

/ 0d d t P   u ,                                                                                                         (25) 

выражающему тот факт, что скорость изменения полной внутренней энергии движущего-

ся элемента среды равна работе по сжатию этого элемента, совершаемой окружающей 

средой.  

Вместе с тем, для астрофизических целей часто удобно использовать другие формы 

уравнения (25) (которые впервые были выведены Эддингтоном [55] и Чандрасекхаром 

[20]. Эти формы справедливы, когда давление P  и внутреннюю энергию  можно вы-

числить из соответствующих уравнений состояния как функций от удельного объёма v  и 

температуры T  (или энтропии ) в зависимости от исследуемого процесса. Для «мед-

ленного» процесса, характеризуемого временем, много большим времени теплопередачи, 

любые возмущения профиля температуры будут успевать релаксировать. Следовательно, 

этот процесс можно рассматривать как изотермический, при котором 0( ) ( )P P v,T P v  . 

«Быстрый» процесс (по сравнению с процессом теплопереноса) можно считать адиабати-

ческим в силу нехватки времени для обмена теплом двух соседних областей: 
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0 const  и 0( ) ( )P P v, P v  . 

Из энергетического уравнения (25) для квазистатического процесса следует 

v T

dT dv Pdv
T v

    
     

    
12 (4 ) .

vq
rad q rad q

pq vq

cv
p p dT p p dv

T c c

 
   

  

             (26) 

Следовательно, для изоэнтропических изменений имеем 

1
12 ln (4 ) ln 0.

1
rad q rad q

q

p p d T p p d v
 

    
   

                                                         (27) 

Введём теперь адиабатические показатели смеси вещества и излучения 1 2,   и 3  со-

отношениями  

1ln ln
d d

P
dt dt

   ,                                                                                                            (28) 

2
3

2

1
ln ( 1) ln ln

d d d
T P

dt dt dt

 
    


,                                                                          (29) 

которые могут быть использованы вместо энергетического уравнения (25). С учётом 

уравнения состояния «идеального q -газа» (15) можно записать 

( ) (4 ) ln lnrad q rad q qdP d p p p p d T p d v     .                                                          (30) 

Следовательно, (28) есть не что иное, как 

1

4 ( )
0

rad q rad q qp p p p p
d T dv

T v

   
   
 

.                                                                 (31) 

Из (27) и  (31) следует, что  

1

1

12 ( 1) 4

4 ( )

rad q q rad q

rad q rad q q

p p p p

p p p p p

   


   
.                                                                    (32) 

Введём теперь в рассмотрение величину /gasp P   − коэффициент, характеризующий 

долю вещества в полном давлении системы
iv)

. При использовании этого параметра, соот-

ношение (32) можно переписать в виде: 

                                                
iv) На особую важность отношения (1 )  для теории звездной структуры впервые указал Эддингтон. 

В известном отрывке из его книги «Внутреннее строение звезд» Эддингтон связывал это отношение с «яв-

лением звезды» («happening of the stars»). 
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2

1

(4 3 ) ( 1)

12( 1)(1 )

q

q

   
   

    
,     ( 1 1 2 /q Dq     ).                                                   (33) 

Можно легко показать, что имеют место следующие соотношения  

1
2

1

(4 3 )( 1)(4 3 )
1

3(1 ) 3( 1)(1 )(4 )

q

q

     
   

       
, 

1 1 2
3

2

(4 3 )( 1)( 1)
1 1 1

4 3 12( 1)(1 )

q

q

       
      

       
.  

Если rad qp p , то все обобщённые показатели адиабаты j  для « q -газа + излучение» 

совпадают с показателем адиабаты чистого q -газа  2 / 2q D q    , а когда присутству-

ет одно лишь излучение абсолютно чёрного тела ( q radp p ), то они равны 4 / 3 . Таким 

образом, для смеси «идеального q -газа» и радиации обобщенные показатели адиабаты 

принимают промежуточные значения от 4 / 3  до q . 

3. ДЖИНСКОВСКАЯ ГРАВИТАЦИОННАЯ НЕУСТОЙЧИВОСТЬ 

В НЕЭКСТЕНСИВНОЙ КИНЕТИЧЕСКОЙ ТЕОРИИ 

Рассмотрим сначала простейшую задачу возникновения неустойчивости в бесконечной 

покоящейся сферически однородной газовой среде. Напомним, что при рассмотрении 

гравитационной неустойчивости Дж. Джинс рассматривал однородное состояние 

самогравитирующей среды в состоянии покоя, что не совсем корректно, так как такое 

состояние не является состоянием равновесия. Тем не менее, его вывод критерия 

неустойчивости можно рассматривать как первое приближение, которое в наиболее 

простых случаях дает правильный порядок нижней критической длины волны 

возмущения, ведущего к неустойчивости (см., например, [22,24]. 

Линеаризованные основные дифференциальные уравнения (18)-(21) для случая чисто 

радиального сферически симметричного движения с учетом допущений, что невозмущен-

ное состояние является равновесным 0 0( , 0)u u u u    и что уравнение Пуассона (20) 

можно применить лишь к возмущениям плотности (условие 0 0   называют иногда 

«мошенничеством» Джинса [18,19], имеют вид: 

0 0
u

t r

 
 

 
,                                                                                                                   (34) 

0

2

0 0

1u P P

t r r r

      
  

     
,                                                                                               (35) 
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1,0

0 0

d P d

dt P dt

    
    

   
,                                                                                                       (36) 

2

2
4 G

r

 
  


.                                                                                                                     (37) 

Здесь  и далее индекс « 0 » относится к невозмущенным величинам. 

Уравнение (36) тривиально интегрируется. Выбирая постоянную интегрирования так, 

чтобы 0P   при 0  , получим 

0 1,0 0/ ) /P P     .                                                                                                             (38) 

Допустим теперь, что характерная длина, связанная с пространственными изменениями 

величин 0P  и 0 , велика по сравнению с другими характерными длинами задачи (это так 

называемое приближение коротковолновой акустики), т.е. можно пренебречь производ-

ными 0 /P r   и 0 / r  . При этих дополнительных упрощающих предположениях урав-

нение неразрывности, импульса и энергии легко объединить в одно уравнение для адиаба-

тической звуковой волны
v)

 [56] 

2 2
2

, 02 2
4 0S q G

t r

    
     

 
v .                                                                                           (39) 

Здесь возмущенная производная давления /P r   выражается, согласно (38), через воз-

мущенную производную плотности / r   в виде 
,

2

1,0 0 0( )/ / / /
S q

P r P r r         v , 

где  

1

2
00 0

, 1,0 3,0

0 0 0

4 3
1 ( 1) 

    
      

     

q

S q

pP
v  

1

2 2
00

2

0 0 0/2

(4 3 ) ( 1)1
1

( 1) 12 ( 1)(1 )

      
   

           

q

q qD

k T

m
                                                             (40) 

− адиабатическая (или лапласова) скорость звука в неэкстенсивной радиационной гидро-

динамике. При написании (40) учтено, что 

,0 ,0 ,0 0 00

0 0 0 0 0 0( /2 /2

1 1 1 1 1

1) 1 (1 )

q rad q

q D D

p p p k T k TP

m q m


   

         
.                       (41) 

                                                
v)

 Отметим, что при изучении возмущённых состояний самогравитирующего космического вещества  

часто приходится иметь дело с разновидностью звуковых волн.  
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В частном случае, когда 1q   и 3D  , имеем 1 5 / 3   (классический идеальный одно-

атомный газ). Тогда из (40) следует, что  
1

2 2
0

,1 0

0 0

2(4 3 )
1

3 (8 7 )
S

k
T

m

    
   

     
v .                                                                                    (40

*
) 

Если излучение также отсутствует, то 
0,1 1 ,1 1 0( ) /S gas k T m    v v  − адиабатическая 

скорость звука в идеальном газе.  

В случае когда 1q   (идеальный q -газ), а излучение отсутствует ( 0 1  ), будем иметь  

0

1 1
2 2

0 0
, 1

/ 2

2 2 2 /
( )

( 1) (1 ) 1

q

S q

q

D

D D

k T k T q

m m q
 

    
           

v .                                                  (40
**

) 

Уравнение (39) является линейным и однородным уравнением в частных производных, 

следовательно, к нему применим метод нормальных колебаний (метод мод). Решая урав-

нения (39) для возмущенной плотности в виде exp( k )i t i r    , описывающем волны 

с угловой частотой  , волновым вектором k  в направлении r vi)
 и длиной волны 

2 / kr   , получим следующее дисперсионное уравнение для бегущей волны  

,02 2 1,0 0 0
0

0 0 0

1
k 1 1 4 4 0

4 3

qp
G

     
         

      
,                                                      (42) 

которое с учетом соотношений (40) и (41) принимает  «стандартный» вид 

2 2 2

, 0k 4S q G    v .                                                                                                          (42
*
) 

Здесь адиабатическая скорость звука ,0Sv  определяется формулой (40).  

Для устойчивых волн с частотами   имеем 
2 0  , тогда как неустойчивость соответ-

ствует условию 
2 0  . Эти два класса разделяет случай нейтральной устойчивости 

2 0  , что соответствует модам с критической длиной волны возмущения 

2 / kсr сr   ,   2 2 2k / Sqсr сr  v ,   
2

04сr G    .                                                                 (43) 

Из уравнения (42
*
) следует, что граничное значение k kсr  разделяет устойчивые 

(k k )сr  и неустойчивые (k k )сr  пульсации плотности. При малых k  (длинные волны) 

пульсации будут расти со временем и появляется нестабильность Джинса, а коротковол-

                                                
vi) Следует заметить, что линеаризованное уравнение импульса требует, чтобы скорость u  была 

параллельна волновому вектору k  [56]. Следовательно, скорости частиц жидкости, связанные с 

адиабатическими звуковыми волнами, параллельны направлению распространения волн. 
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новые пульсации плотности (большие k , малые длины волн) колеблются, т.е. распростра-

няются в виде звуковых волн. 

Таким образом, критическая длина волны возмущения 

1

2 22

0 0

2

0 0 0 0 0

2 2 1 (4 3 )

1 12 ( 1)(1 )

Sq Sq

q q

сr

сr D

k T

G mG

       
      

              

v v
                             (44) 

 

является размером мельчайших «капель» рассматриваемой «фрактальной» газовой среды 

с излучением, которые могут удерживаться вместе собственным гравитационным притя-

жением. Следовательно, модифицированный в рамках неэкстенсивной кинетической тео-

рии критерий неустойчивости Джинса для смеси q -газа и чернотельной радиации будет 

выглядеть следующим образом: длина неустойчивой волны возмущения r  должна удов-

летворять неравенству 

1

2 2
00

2

0 0 0 0 0

(4 3 ) ( 1)2
1

( 1) 12 ( 1)(1 )

q

Sq

q q

r cr
D

k T

G mG

       
       

             

v .                     (45) 

В традиционной литературе длину  

1
2 2

0
1

0 0

gas k T

G mG

  
    

  

v
,                                                                                          (46) 

соответствующую размеру области сжатия самогравитирующего идеального газа, назы-

вают длиной Джинса. С учетом (45) критерий неустойчивости Джинса в неэкстенсивной 

кинетике может быть переписан в виде:  

1

2 2
0

2

1 0 0 0

(4 3 ) ( 1)1 2
1

( 1) 12 ( 1)(1 )

Sq q

gas q q

r

D

       
     

            

v

v
  

1

2 2
0

2

1 0 0 0

)

) )

1 2 / (4 3 ) (1 2 /
1 .

(1 2 / 12 (1 2 / (1 )
q

D D

DD

q

q q

      
     

          
                                    (45

*
) 

Отсюда следует: 

1. Если 1q  (при этом 1 1 2 / D   ), то фактор 

1

2 2
0

1 2

1 0 0 0

1 (4 3 ) 2 /
1 1

24 (1 ) /

D

D

   
     

     
.                                                                           (47) 
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Следовательно, критическая длина волны возмущения r  в рассматриваемом случае 

больше джинсовской длины волны  , т.е. благодаря давлению излучения облачная среда 

стабилизируется, причем равенство соответствует предельной устойчивости. 

2. Если 1q  , но излучение отсутствует 0 1  , то фактор  

1

2

1

1 2 /
2 /

1 2 /
q

D
D

Dq

  
    

    
,    0 1 2 / Dq   .                                                          (48) 

В этом случае критерий гравитационной неустойчивости зависит от численных значе-

ний индекса энтропийной деформации q  и размерности пространства скоростей D . При 

этом возможна ситуация, при которой гравитационно-устойчивое (на основе классической 

статистики Больцмана−Гиббса) облако газа, будет неустойчивым согласно неэкстенсив-

ной статистики Тсаллиса [14,15]. 

Связанная с cr  критическая масса (масса, содержащаяся внутри сферы диаметром cr )  

определяется соотношением  

3 3

0( / 6)cr cr      ,                                                                                              (49) 

где  

3/2

3 1 0
0 0

0

( / 6) ( / 6)
k T

mG

  
        

 
                                                                         (50) 

− критическая масса Джинса. Возмущения с массой r , превышающей критическую 

массу Джинса ( 1)   могут расти, формируя гравитационно-ограниченные структу-

ры, в то время как возмущения с массой r  меньше  не растут и ведут себя как аку-

стические волны. При этом для самогравитирующих неэкстенсивных сред с излучением 

критические значения длины волны и массы явно зависят от энтропийного индекса q , 

размерности пространства скоростей D  и коэффициента  , которые, являясь свободными 

параметрами, должны определяться в каждом конкретном случае эмпирическим путем из 

экспериментальных данных. Это позволяет при исследовании неустойчивости самограви-

тирующих космических объектов в рамках неэкстенсивной статистики более обосновано 

моделировать реально складывающуюся ситуацию.  

Заметим, что дальнейшее развитие предложенного здесь подхода может быть связано с 

учетом влияния на джинсовскую неустойчивость вращения среды, магнитного поля, вяз-

кости и других диссипативных эффектов. 
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4. ГРАВИТАЦИОННАЯ НЕУСТОЙЧИВОСТЬ ВРАЩАЮЩЕГОСЯ  

ПЛАЗМЕННОГО ОБЛАКА С ЧЁРНОТЕЛЬНЫМ ИЗЛУЧЕНИЕМ 

Поскольку вращение космогонических плазменных объектов является весьма распро-

страненным феноменом во Вселенной, возникает вопрос: как эти факторы  действует на 

джинсовскую неустойчивость? В связи с этим рассмотрим в упрощенной постановке про-

блему влияния силы Кориолиса на гравитационную неустойчивость неэкстенсивной сре-

ды допланетного плазменного облака с излучением. Исходные бездиссипативные уравне-

ния в этом случае состоят из следующих уравнений: уравнений Эйлера в q -

гидродинамике, уравнения Пуассона и уравнения магнитной индукции:  

( ) 0
t


    


u ,                                                                                                              (51) 

1
( ) 2

P

t с

 
        

  

u
u u u Ω j ,                                                                (52) 

3( 1)
T T

T
t t

  
       

   
u u ,                                                                             (53) 

2 4 G    ,                                                                                                                      (54) 

( )
t


  


u ,    0  .                                                                                            (55) 

Здесь x x z z  Ω i i ; 0 0 z  i  − магнитное поле; c  − скорость света; 
4

c
 


j  − 

сила тока;  3

(4 3 )( 1)
1

12( 1)(1 )

q

q

   
  

    
 −  адиабатический показатель смеси вещества и 

чёрнотельного излучения; 
1

/ 2q gas pq vq

D

D
c c q

 
      

 
 − показатель адиабаты газо-

вого вещества диска.  

Для изучения малых возмущений линеаризуем систему (51)-(55). Для этого представим 

входящие в эту систему переменные в виде сумм равновесных и возмущенных величин. В 

предположении, что для невозмущенного облака состояние его среды является однород-

ным и равновесным 0 0( , 0)  u u u u  и что уравнение Пуассона (65) можно применять 

только к возмущениям плотности, линеаризованные уравнения (51)-(55) принимают вид: 

0 0
t


   


u ,                                                                                                                (56) 

0 0 0
0

0 0 0 0 0

4 3 1
2 ( ) 0

4

P T

t T

           
                

         

u
u Ω ,             (57)  
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0
3,0

0

( 1) 0
T T

t t

  
   

  
,                                                                                                  (58) 

2 4 0G       ,                                                                                                               (59) 

0( ) 0
t


  


u ,   0  .                                                                                   (60) 

Здесь  

1

20 0
3,0

0 0
,

4 3
( 1) 1

q
S q

p


    
    

    
v − адиабатическая скорость звука в неэкстенсив-

ной газовой среде с излучением; 0 0 0

0 0 /21 (1 )D

kP T

m q




  
;   2 2 , 2 , 0y xu u     u Ω . Ве-

личины 0 0 0, ,T P , 0u , 0  и 0  описывают некоторое стационарное решение системы (56)-

(60), а величины , ,T  u ,   и   − суть малые возмущения магнито-гидродинамических 

параметров, слабо нарушающих невозмущенное состояние.  

В результате объединения уравнений (57) и (58) будем иметь  

0
0

2
,

1
2 ( ) 0

4
S q

t


           

 

u
u Ω v .                                                  (61) 

Система уравнений (56), (59)-(61) описывает развитие малых адиабатических возмуще-

ний во фрактальной плазменной среде с излучением на фоне основного решения в про-

странстве и во времени. Она является системой линейных и однородных уравнений в ча-

стных производных, следовательно, к ней применим метод нормальных колебаний (метод 

мод). Предполагая далее цилиндрическую симметрию движения ( )x x z zu u   u i i
vii)

, а так-

же что возмущенные параметры , ,   u  и  , эволюционируют по закону

exp( k k )x zi t i x i z    , где   ─ частота гармонических колебаний (в общем случае 

комплексная величина), а
2 2k kx z k  ─ волновое число, в результате получим: 

0 0    k u ,                                                                       (73) 

                                                
vii)

 Известно, что проблему устойчивости самогравитирующего газового облака в принципе нельзя 

описывать в рамках двумерного приближения, поскольку оно заведомо является сильно неустойчивым (см., 

например, [24]). Однако при наличие сильного внешнего гравитационного поля с цилиндрической геомет-

рией и с образующей вдоль оси вращения облака, возможно обеспечить его устойчивость в случае, когда 

угловая скорость вращения достаточно велика. В этом случае структура допланетного облака вдоль оси 

вращения будет определяться исключительно его самогравитацией. Разумеется, этот случай искусственный, 

поскольку в реальных астрофизических системах такие цилиндрические поля если и встречаются, то без 

вложенных дисков. Вместе с тем, рассмотрение такого вложенного в цилиндр самогравитирующего газового 

диска представляет определённый математический интерес, поскольку только в этом случае можно выде-

лить эффекты, к которым приводит самогравитация в чистом виде. Именно такие модели рассматривались в 

большинстве классических работ по астрофизическим дискам (см., например, [27,28,57]. 
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2 0
0 ,0 02 (k k ) k 0

4
S x x z z x y z yvi                   

u u Ω k k i i       (74) 

2
4 0,G     k                                                                       (75) 

0 0x z xk u    ,   0 0y z yk u    ,   0 0z x xk u    ,   0x x z zk k   .        (76) 

Система  уравнений (73)-(76)  является исходной  для дальнейшего анализа динамики  

малых возмущений в модели вращающегося плазменного облака с радиацией. 

Дисперсионные уравнения в изэнтропическом плазменном облаке. Условие суще-

ствования нетривиальных решений системы (73)-(76) приводит к следующему дисперси-

онному уравнению 6-го порядка относительно комплексной величины ( ) k : 

     2 2 2 26 4 2 2 2 2 2
,0 0 ,0 02

4
4 k 4 4z S SG G

                

Ω k k k
k

v v v  

    
2 2 22 2 2 2 2 2

,0 0k k k 2 4x x z z z S G         
  

k kv v v  

 24 4 2
,0 0k 4 0z S G    kv v ,                                                                                            (77) 

где  0 0/ 4 v  − альфвеновская (магнитогидродинамическая) скорость волн, обу-

словленных квазиупругим натяжением магнитных силовых линий.  

Методом Кардана возможно получение точного решения этого алгебраического урав-

нения (кубического относительно величины 
2n   ). Однако это решение, к сожалению, 

не приводит к наглядным формулам для различных показателей роста. Вместе с тем каче-

ственный анализ системы уравнений (73)-(76) возможен на основе рациональной аппрок-

симации отдельных их членов.  

Исключая с этой целью из системы уравнений (73)-(76) возмущенные параметры ,    

и  , в результате получим следующее алгебраическое соотношение 

22 2 2
,0 0 2

2 ( ) 4 ( ) 0S z zVvi G u


               
k u

u u Ω k k u k k u i
k

.                          (78) 

При использовании векторного тождества 
1

)


 
2 2

k(k u )
u + k ×(u ×k

k k
 [58], принимаю-

щего для продольных звуковых волн в жидкости следующий вид 


 
2

u = k(k u ) /k  (см. 

сноску «VI»), соотношение (77) можно переписать следующим образом: 

2 22 1 2 2
0 , 02 ( ) 4 ( ) 0S q z zi G u                u u Ω k u u k u iv v .                              (78

*
) 

Проанализируем теперь это уравнение. 
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1. Рассмотрим сначала случай самогравитирующего незаряженного газового облака. 

Тогда 

22 2

, 04 2( )S q G i          u k u u u Ωv .                                                                        (79) 

При скалярном умножении этого соотношения на возмущенную скорость u  получим 

дисперсионное соотношение для звуковых волн во вращающемся облаке 

22 2

, 04 0S q G     k v ,                                                                                                 (80) 

 

из которого следует, что кориолисова сила не преодолевает стабилизирующего эффекта 

излучения для вращающегося облака, поскольку в этом случае справедлив рассмотренный 

выше критерий неустойчивости Джинса (42
*
) для самогравитирующего газового облака с 

излучением. 

Если волна возмущения распространяется в плоскости xz перпендикулярно направле-

нию оси вращения облака z Ω i  , то из (79) следует алгебраическое соотношение: 

2 2 2 22 2 2 2 2
, 0( 4 ) 4 ( ) ( ) 4S q G               u k u Ω u Ω u Ωv ,                                 (81)   

   

записанное здесь с использованием условия 0  u Ω  и формулы векторной алгебры 
2 2 2( ) ( ) ( )     a b a b a b a b  [58]. Из (81) вытекает следующее дисперсионное уравнение 

2 24 2 2 2 2 2

0 , 0 ,+2 (4 2 )+(4 ) 0S q S qG G          k kv v ,                                               (82)  

   

Пусть 
2

1  и 
2

2  −  корни уравнения (82); тогда  

22 2 2 2

1 2 , 02( +4 2 )S q G        k v ,     
22 2 2 2

1 2 , 0( 4 )S q G     k v .                              (83)  

Отсюда следует, что условие неустойчивости облака 2

1,2 0   для совокупности волн 

возмущения имеет вид 

22 2

, 04 2S q G    kv .                                                                                                      (84) 

В этом случае критическая длина волны возмущения 2 / kcr cr    и критическое вол-

новое число kсr cr
 k , разделяющее устойчивые (k k )r сr  и неустойчивые (k k )r сr  воз-

мущенные волны, определяются соотношениями 

 
1/2 1/2

2
1/2

2 0
0 2

, , 0

1
4 2 2 1

2cr
S q S q

G
G

G

     
              

k
v v

,                                             (85) 

1/22 2
,

0 0

2
1

2

S q

cr

cr
G G


   

    
   k

v
.                                                                                 (86) 
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Следует иметь в виду, что критерий (84) имеет смысл только в случае, если выполняет-

ся условие 
2

0/ 2 1G     (условие устойчивости вращающегося облака по Тумре [57]). 

Таким образом, для критерия джинсовской неустойчивости вращающегося газового 

облака с учетом излучения для волн возмущения распространяющихся в направлении 

перпендикулярном направлению оси вращения облака, получим следующее представле-

ние: 

1/2 1/2
2 2

, ,

0 0 0 0

1 1
2 2

r cr S q S q
G G G G

 

      
         

        
v v ,                                   (87) 

которое, с учетом формулы (46) для длины Джинса,  может быть записано в виде 

1/2
2

,

0

1
2

S qr

J gas G



  
   

   

v

v
  

1/2 1/22 2
0

2

1 0 0 0 0/2

(4 3 ) ( 1)1 1
1 1

( 1) 12 ( 1)(1 ) 2

q

q qD G


        

      
                

.                                   (88) 

2. Пусть теперь  вращение плазменного облака отсутствует. Тогда из (77) следует 

2 22 2 2
,0 02 2

( ) ( )
4 ( ) 0S z zG u

  
         

k k u k k u
u k k u i

k k
v v ,                                   (89) 

Рассмотрим два простых случая:  

a). Для поперечного распространения волн возмущения (когда k kx , 0zu  ) уравнение 

(89) сводится к простому дисперсионному соотношению (сравни с (42
*
)) 

2 2 2 2 2
,0 0k k 4 0x S x G      v v ,                                                                                       (90) 

для которого, с учётом (42
*
), критерий гравитационной неустойчивости самогравитирую-

щей плазмы с магнитным полем и радиационным давлением принимает вид: 

2
02 2 0

02
0 0 0

/2

(4 3 ) ( 1)1
k 1 4

( 1) 12 ( 1)(1 )

q
x

q q
D

k T
G

m

      
      

           

v .                                 (91) 

b). В случае продольного (к направлению магнитного поля) распространения пульсаци-

онных волн (для которых k kz  , k 0x  ) уравнение (89) записывается следующим обра-

зом: 

 2 2 2 2 2
,0 0(k ) 4 k 0S z z z z z z z zu G u u           u i i u iv v .                                                (92) 

Отсюда для волны возмущения, направленной вдоль направления вектора магнитного по-

ля ( )z zu u i , получим дисперсионное соотношение 

2 2 2
,0 0k 4 0S z G     v .                                                                                                   (93) 

196



A.V. Kolesnichenko. 

 

Если 0zu  , то из (92) следует 

2 2 2k 0z  v .                                                                                                                 (93) 

Таким образом, в поперечном режиме распространения волны возмущения критерий 

неустойчивости Джинса для плазмы модифицируется магнитным полем и радиационным 

давлением. В случае продольного режима магнитное поле не влияет на джинсовский кри-

терий, поскольку этот режим обеспечивает Альфвен-режим движения отдельно от грави-

тационного режима. 

ЗАКЛЮЧЕНИЕ 

Имея в виду большое космогоническое значение проблемы гравитационной неустойчи-

вости, в представленной работе в рамках неэкстенсивной кинетики исследовано влияние 

неэкстенсивности среды на критерий гравитационной неустойчивости Джинса для само-

гравитирующего допланетного облака, вещество которого состоит из смеси идеального q

-газа и чёрнотельного излучения. Выведены дисперсионные уравнения, на основе которых 

выполнен анализ осесимметричных колебаний космических самогравитирующих объек-

тов с излучением и размерностью пространства скоростей. Для неэкстенсивных сред по-

лучены модифицированные критерии гравитационной неустойчивости Джинса как для 

бесконечной покоящейся сферически однородной среды, состоящей из идеального q -газа 

и излучения, так и для бездиссипативной намагниченной плазмы с учётом вращения и ра-

диационного давления.  

Рассмотренный здесь подход к описанию в рамках неэкстенсивной кинетики эволюции 

относительно простых (модельных) астрофизических объектов может быть распространён 

на более реалистичные  физические ситуации, связанные, в частности, с учетом динамики 

возмущений в неоднородных и неизотропных дисковых фрактальных средах, с исследо-

ванием гравитационных возмущений диссипативных дисков, с исследованием собствен-

ных частот колебаний вертикально неоднородных магнитных дисков и т.п. (см.[24] ). Это 

позволяет более обоснованно моделировать реальные астрофизических газо-пылевые 

структуры и находить соответствующие критерии их гравитационной неустойчивости. 

Поскольку физический смысл и численные значения индекса энтропийной деформации 

q  играют существенную роль в понимании эволюции многих аномальных астрофизиче-

ских объектов, то проблема их определения представляется чрезвычайно важной. К сожа-

лению, эта проблема всё ещё остаётся открытой. Вместе с тем, в настоящее время имеют-

ся серьёзные успехи в современной гелиосейсмологии, которая надёжно исследует внут-

реннюю структуру и динамику Солнца [59]. В солнечной атмосфере установлены и изуче-

ны миллионы резонансных мод колебаний. Их частоты измерены с достаточно большой 

точностью, что позволяет исследовать внутреннюю структуру Солнца на больших глуби-

нах [60]. Эти результаты позволяют решить не только некоторые известные проблемы 

космологии, но и поднимают ряд теоретических вопросов, ответы на которые необходимы 

для понимания того, как на самом деле эволюционирует обычная звезда. В частности, ге-

лиосейсмология позволяет, вообще говоря, найти экспериментальные доказательства при-

сутствия неэкстенсивных эффектов в недрах звезды по определяемым скоростям звука. 

Следовательно,  есть уверенность, что в самое ближайшее время можно будет получить 

астрономические данные по численным значениям параметра q , отличным от единицы.  
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Summary. The article briefly presents the life and scientific activities of an outstanding 

mechanical scientist, a major scientist, corresponding member of the RAS, honored professor 

of Lomonosov Moscow State University Vladimir Vasilyevich Beletsky. He is rightly 

considered one of the founding fathers of the Soviet and Russian school of space flight 

dynamics in the theory of rotational movements of artificial and natural celestial bodies. 

1 INTRODUCTION 

In 2017, Vladimir Beletsky (Fig.1), an outstanding scientist and unsurpassed teacher, the 

corresponding member of the RAS, honored Professor of Moscow state University, passed 

away. He is rightly considered one of the founding fathers of the Soviet and Russian school of 

space flight dynamics in the field of the theory of rotational movements of artificial and 

natural celestial bodies. 

Vladimir Vasilyevich was born on may 2, 1930 in Irkutsk. He spent his childhood in this 

city and in the villages on the banks of the Angara and lake Baikal. At the age of 12, he lost 

his hearing after a severe form of meningitis. In the postwar years, the family moved to 

Smolensk, where Bielecki graduated from the 7th high school with a gold medal. In 1949, he 

entered the mechanics and mathematics faculty of Moscow state University. In 1954 he 

graduated with honors from the faculty of mechanics and mathematics of Lomonosov 

Moscow State University. In the same year, V.V. Beletsky was assigned to work in the 

Department of Applied Mathematics of the Steklov Mathematical Institute of the USSR AS 

USSR, created by M.V. Keldysh (now the Keldysh Institute of Applied Mathematics of 

RAS). This determined his scientific destiny as one of the galaxy of brilliant scientists - 

representatives of the world-recognized school of space flight dynamics, founded by 

M.V. Keldysh and D.E. Okhotsimsky. In his book "Theoretical mechanics and modern 

technology" A.A. Kosmodemyansky wrote: "I Think that for some well-known nowadays 

scientists interest in certain problems of modern mechanics arose as a result of work in 

scientific circles and seminars of the mechanics and mathematics faculty of Moscow State 

University. I can name, for example, the following comrades: corresponding members of the 

USSR Academy of Sciences D.E. Okhotsimsky and T.M. Eneev, doctors of physical-

mathematics sciences V.A. Egorov, V.V. Beletsky, V.A. Sarychev...". 

Here is how Vladimir Vasilyevich himself wrote about that time: "I felt that I was in the 

midst of the brewing events in space exploration and that these events are not least maturing 
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thanks to the authoritative, businesslike and purposeful activity of M.V. Keldysh. He defined 

the style of research direction of the dynamics of space flight and in General the scientific 

program of space research. This was done by M.V. Keldysh at all levels, up to the state. After 

all, he was Chairman of the Interdepartmental Commission on space research, and then 

President of the USSR Academy of Sciences. Later E.L. Akim, A.K. Platonov came to our 

team, and in 1957 M.L. Lidov was appeared". Characteristic of all his work was the practical 

direction of research. Most of the results of spacecraft orbit design were implemented in 

specific missions. Perhaps for this reason, the direction in which the employees of the 

Keldysh - Okhotsmskiy school acted was called as the "applied celestial mechanics". 

 

 

Fig. 1. V.V. Beletsky (02.05.1930-20.07.2017) 

Academician D.E. Okhotsimsky wrote about that time: "When in 1953 the Department of 

applied mathematics of Steklov Moscow Institute Academy Sciences USSR was organized, 

Mstislav Vsevolodovich offered me to go to the Institute together with the team as the head of 

the Department. Research on our subject has always been carried out here; first, it was aimed 

at the development of missile technology, and then, when the air blew the possibility of space 

launches, we joined in these cases from the very beginning. In 1954, when it became clear 

that the time of the space age was approaching, she was already knocking at the door, 

Mstislav Vsevolodovich convened a meeting of scientists and leaders of missile technology. 

Apparently, as a result of the discussion at this meeting with academician P.L. Kapitsa, 

Dmitry Evgenievich had the idea of passive gravitational stabilization of artificial earth 

satellites, i.e. orientation of satellites at the expense of natural forces without any fuel costs 
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for orientation control. The fifties years – the years of preparation and implementation of the 

breakthrough into space – were years of unprecedented takeoff initiated and led by 

M.V. Keldysh research in the Department of D.E. Okhotsimsky. 

2 SCIENTIFIC ACHIEVEMENTS 

The first researches of V. V. Beletsky became known and recognized by specialists. 

Speaking on September 14, 1956 at a meeting of the Presidium of the USSR Academy of 

Sciences, M. V. Keldysh in his report, talking about the stability of the relative equilibrium of 

the satellite in orbit, said: "... This interesting problem of solid mechanics was solved by a 

very young employee V. V. Beletsky in the Department of applied mathematics". The results 

of these studies are summarized in the monograph of 1965, which, being translated into 

English, and is now a Handbook of specialists. 

In the introduction to his monograph V.V. Beletsky indicates that the theory of motion of 

celestial bodies near the mass center in classical mechanics has developed with respect to 

specific bodies (Earth, Moon) and therefore used a number of simplifications. In this case, the 

influence of gravitational moments was mainly considered. The problem of the rotational 

motion of artificial space objects is much more complex, because "due to the arbitrariness of 

the shape and mass distribution of the object, the arbitrariness of the initial data, the many 

factors affecting the movement. In addition to the gravitational moments should take into 

account more aerodynamic and electromagnetic moments. 

V.V. Beletsky practically opened a new branch of the celestial mechanics, simplifying the 

classical formulation of problems and received as a result of such simplification the main 

"scrolls" for the mechanics of rotational motion of satellites. On successful examples, he 

showed how they should be used, came up with the number of interesting problems outside 

these schemes, solved for the first time standard problems in the new situation. In this sense, 

Vladimir Beletsky has being brilliantly solved a number of such problems, and become the 

father-founder for a whole area of such problems solving, giving the scientific community the 

tools for such solving. 

The main results of this cycle of work are as follows. A theorem on the stability conditions 

of the relative equilibrium of a satellite in a gravitational field is proved. The theory of 

oscillations of a satellite in an elliptical orbit under the action of the gravitational moment was 

developed. The problems has been formulated and the theory of the evolution of satellite 

rotation under the influence of disturbing moments caused by the gravity gradient, the 

influence of the Earth’s magnetic field, atmosphere and light pressure forces has been 

developed. This theory has been applied to describe the motion of a number of the particular 

artificial satellites. 

V.V. Beletsky was the first who posed and considered the problem of the dynamics of the 

orbital tethered bodies as a system with release from coupling. 

In the same years, V.V. Beletsky for the first time in the world has been setting the general 

task of determining the actual orientation of the satellite and clarifying the parameters of the 

perturbing acting moments based on the results of processing the measurements of the 

orientation sensors installed on Board. He developed and applied an effective method of 

solving this problem (the third Soviet satellite, the “Proton” satellite, the “Electron” 

satellites). This approach has been successfully used today. 
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Since the early 1970s, V.V. Beletsky has conducted a series of studies of nonlinear 

problems of the dynamics of rotational motion of artificial satellites and planets, taking into 

account the existing resonances in their orbital and rotational motion, as well as the effect of 

energy dissipation (tidal effect) on the formation of a modern picture of the rotation of 

planets, taking into account the probability of capture in existing resonances [11]. The 

resonance theory of "generalized Cassini's laws" of planetary rotation was developed by him, 

which gives a rigorous justification of the empirical Cassini's laws for the moon's 

rotation (1693). 

The main results of Beletsky's scientific activity also include deservedly the theory of tidal 

evolution of the rotational motion of celestial bodies; the solution of the optimal problems of 

spacecraft’ flights with low-thrust engines; the formulation and analysis of problems of the 

orbital tether systems dynamics; the construction of models and the study of the of bipedal 

devices dynamics. 

3 RESULTS 

Here is how briefly V.V. Beletsky presented his main scientific achievements, with links to 

his own anthology. 

1. A theorem on the stability conditions of the relative equilibrium of a satellite in a 

gravitational field is proved [1], [2]. This result is used in the theory and practice of 

the passive gravitational stabilization of artificial satellites. 

2. The theory of oscillations of a satellite at the elliptical orbit in the gravitational field is 

developed [1], [2], [3], [4]. 

3. The problem is posed and the theory of evolution of satellite rotation under the 

influence of disturbing moments of forces (gravitational, magnetic, aerodynamic, light 

pressure) [5],[2], the moment of tidal forces [11] is developed. 

4. The problem of determining the actual orientation of satellites and the acting moments 

by on-Board measurements is posed and solved [6], [2], [7]. 

5. The theory of orbital tether system motion and motion randomization is formulated 

and developed [8], [9], [10]. 

6. A resonant theory of generalized “Cassini's laws of rotation” of the natural and 

artificial celestial bodies has been created [12], [13]. This theory, in particular, 

justifies the empirical laws of J.D. Cassini, established more than 300 years 

ago (1693). 

 

Vladimir V. Beletsky, as a chief scientific officer of the KIAM of RAS, was the Member 

of his Scientific Council, also has been a Member of the specialized dissertation councils of 

KIAM RAS and mechanics and mathematics faculty of Lomonosov Moscow State 

University, a Member of the Russian National Committee on Theoretical and Applied 

Mechanics (1976). In 1997 he was awarded the title corresponding member of RAS. He was a 

Full member of the International Academy of Astronautics (1992) and a Full member of the 

Russian Academy of cosmonautics (1994), was a Member of the editorial Board of the journal 

“Regular and chaotic dynamics”. V.V. Beletsky prepared 26 candidates and 5 Doctors of 

Sciences. 

Beletsky's scientific achievements are highly appreciated in Russia and abroad. He was 

awarded Honored Professor of Lomonosov MSU (2002), and laureate of A. von Humboldt 
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prize (Germany). He honored the F.A. Tsander prize of RAS. The minor planet No. 14790 

(discovered July 30, 1970) has been named after V.V. Beletsky “Beletskij” (Fig.2). 

 

Fig. 2. Small planet № 14790 (opened July 30, 1970), named after V.V. Beletsky 

Summarizing, it can be argued that V.V. Beletsky practically opened a new the scientific 

school and the branch of the celestial mechanics, simplifying the classical formulation of 

problems and developed in such simplification main "science scrolls" to describe the 

mechanics of the rotational motion of a satellites and planets. 
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Аннотация. В статье кратко представлена жизнь и научная деятельность выдающегося 

ученого-механика, крупного ученого, члена-корреспондента РАН, заслуженного 

профессора МГУ имени М.В.Ломоносова Владимира Васильевича Белецкого. Он по 

праву считается одним из основателей советской и российской школы динамики 

космических полетов в теории вращательных движений искусственных и естественных 

небесных тел. 

1 ВВЕДЕНИЕ 

Владимир Васильевич Белецкий (Рис.1.) родился 2 мая 1930 года в городе Иркутске. 

Детство его прошло в этом городе и в деревнях на берегах Ангары и Байкала. В 12-

летнем возрасте потерял слух после перенесённой им тяжёлой формы менингита. В 

послевоенные годы семья переехала в Смоленск, где Белецкий закончил 7-ю среднюю 

школу с золотой медалью. 

В 1949 году он поступил на механико-математический факультет МГУ. В 1954 г. он 

окончил с отличием механико-математический факультет МГУ им. М.В. Ломоносова. 

В том же году В.В. Белецкий был распределен на работу в Отделение прикладной 

математики МИАН СССР, только что созданное М.В. Келдышем (теперь Институт 

прикладной математики им. М.В. Келдыша РАН). Это определило его научную судьбу 

как одного из плеяды блестящих ученых - представителей всемирно признанной школы 

динамики космического полета, основанной М.В. Келдышем и Д.Е. Охоцимским. В 

своей книге «Теоретическая механика и современная техника» А.А. Космодемьянский 

писал: «Думаю, что для некоторых известных в наши дни ученых интерес к 

определенным проблемам современной механики зародился в результате работы в 

научных кружках и семинарах механико-математического факультета МГУ. Я могу 

назвать, например, следующих товарищей: члены-корреспонденты АН СССР 

Д.Е. Охоцимский и Т.М. Энеев, доктора физ.-мат. наук В.А. Егоров, В.В. Белецкий, 

В.А. Сарычев…».  
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Рис. 1. В.В.Белецкий (02.05.1930-20.07.2017) 

Вот как сам Владимир Васильевич писал о том времени: «Я почувствовал, что попал 

в самую гущу назревающих событий в исследовании космоса и что эти события не в 

последнюю очередь зреют благодаря авторитетной, деловитой и целеустремленной 

деятельности М.В. Келдыша. Он определял стиль направление исследований динамики 

космического полета и вообще научной программы исследования космического 

пространства. Это делалось М.В. Келдышем на всех уровнях, вплоть до 

государственного. Ведь он был председателем Межведомственной комиссии по 

исследованию космоса, а потом и президентом Академии наук СССР. Несколько позже 

в наш коллектив пришли Э.Л. Аким, А.К. Платонов, а в 1957 г. появился М.Л. Лидов». 

Характерным для всего его творчества была практическая направленность 

исследований. Большая часть результатов по проектированию орбит космических 

аппаратов была реализована в конкретных полетах. Может быть, по этой причине 

направление, на котором действовали сотрудники школы Келдыша - Охоцимского, 

получило название "прикладная небесная механика". 

Академик Д.Е. Охоцимский писал о том времени: «Когда в 1953 г. организовывалось 

Отделение прикладной математики, Мстислав Всеволодович предложил мне перейти в 

ОПМ вместе с коллективом в качестве руководителя отдела. Исследования по нашей 

тематике здесь проводились всегда; сперва они были направлены на развитие ракетной 

техники, а затем, когда в воздухе повеяло возможностью космических запусков, мы с 

самого начала подключились к этим делам. В 1954 г., когда уже стало ясным, что 
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приближается время космической эры, она уже стучится в дверь, Мстислав 

Всеволодович созвал совещание ученых и руководителей ракетной техники. Видимо, в 

результате дискуссии на этом совещании с академиком П.Л. Капицей у Дмитрия 

Евгеньевича родилась идея пассивной гравитационной стабилизации искусственных 

спутников Земли, т.е. ориентации спутников за счет природных сил без всяких затрат 

топлива на управление ориентацией. Пятидесятые годы – годы подготовки и 

реализации прорыва в космос – были годами невиданного взлета инициированных и 

руководимых М.В. Келдышем научных исследований в отделе Д.Е. Охоцимского. 

2 НАУЧНЫЕ ДОСТИЖЕНИЯ 

Уже первые исследования В.В. Белецкого приобрели известность и признание 

специалистов. Выступая 14 сентября 1956 г. на заседании президиума Академии наук 

СССР, М.В. Келдыш в своем докладе, рассказывая об устойчивости относительного 

равновесия спутника на орбите, заметил: "... Эта интереснейшая задача механики 

твердого тела была решена совсем еще молодым сотрудником В.В. Белецким в 

Отделении прикладной математики". Результаты этих исследований подытожены в 

монографии 1965 г., которая, будучи переведенной на английский язык, и сейчас 

является настольной книгой специалистов. 

Во введении к монографии В.В. Белецкий указывает, что теория движения небесных 

тел около центра масс в классической механике развивалась применительно к 

конкретным телам (Земля, Луна) и посему использует ряд упрощений. При этом 

рассматривалось в основном влияние гравитационных моментов. Задача о 

вращательном движении искусственных космических объектов гораздо более сложна, 

поскольку «обусловливается произвольностью формы и распределения масс объекта, 

произвольностью начальных данных, многочисленностью факторов, влияющих на 

движение. Кроме гравитационных моментов следует учитывать ещё аэродинамические 

и электромагнитные моменты. 

В.В. Белецкий практически открыл новую отрасль механики, упростив классические 

постановки задач и получив в результате такого упрощения основные «скрижали» для 

механики вращательного движения спутников. На удачных примерах он показал, как 

их надо использовать, придумал ряд интересных задач вне этих схем, впервые решил 

стандартные задачи в новой ситуации. В этом смысле Владимир Васильевич Белецкий, 

с блеском решив ряд указанных задач, явился отцом-основателем целого направления 

по решению подобных задач, дав научному сообществу инструментарий для их 

решения. 

Основные результаты этого цикла работ состоят в следующем. Доказана теорема об 

условиях устойчивости относительного равновесия спутника в гравитационном поле. 

Развита теория колебаний спутника на эллиптической орбите под действием момента 

градиента силы тяжести. Выполнена постановка проблема и разработана теория 

эволюции вращения спутников под влиянием возмущающих моментов, вызванных 

градиентом силы тяжести, влиянием магнитного поля Земли, атмосферы и сил 

светового давления. Эта теория нашла свое применение для описания движения целого 

ряда конкретных спутников. 

В.В. Белецкий впервые поставил и рассмотрел проблему динамики орбитальной 

"связки тел" как системы с освобождающей связью. 
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В эти же годы В.В. Белецкий впервые в мире поставил общую задачу об 

определении фактической ориентации спутника и уточнения параметров действующих 

на него возмущающих моментов по результатам обработки измерений датчиков 

ориентации, установленных на борту. Он разработал и применил эффективную 

методику решения этой задачи (третий советский спутник, спутник "Протон", спутники 

"Электрон"). Этот подход успешно используется и в наши дни. 

С начала 1970-х годов В.В. Белецкий провел цикл исследований нелинейных 

проблем динамики вращательного движения искусственных спутников и планет с 

учетом существующих резонансов в их орбитальном и вращательном движении, а 

также влияния диссипации энергии (приливной эффект) на формирование современной 

картины вращения планет с учетом вероятностей захвата в существующие резонансы 

[11]. Им создана резонансная теория "обобщенных законов Кассини" вращения планет, 

которая дает строгое обоснование эмпирических законов Кассини вращения 

Луны (1693). 

В.В. Белецкий опубликовал свыше 200 научных работ, в том числе 11 монографий, 

переиздававшихся в стране и за рубежом. Его работы легко читать, потому что они 

написаны с любовью к читателю и сочетают в себе строгость анализа и прекрасный 

стиль изложения. 

К числу замечательных научных достижений В.В. Белецкого относится его 

монография "Очерки о движении космических тел" (второе издание в 1977 г.), 

переведенная на многие языки. В этой книге, написанной живым и красочным языком, 

ясно и доступно излагались как классические, так и современные результаты 

исследований многих учёных (и самого автора) в области небесной механики. 

К основным результатам научной деятельности В.В. Белецкого заслуженно также 

относятся: теория приливных эффектов во вращении и ориентации небесных тел; 

решение оптимальных задач космических перелетов с двигателями малой тяги; 

постановка и анализ проблем динамики орбитальных тросовых систем; построение 

моделей и исследование динамики двуногоходящих устройств. 

3 ИТОГИ 

Вот как вкратце сам В.В. Белецкий представлял свои основные научные достижения 

со ссылками на собственную антологию. 

1. Доказана теорема об условиях устойчивости относительного равновесия спутника 

в гравитационном поле [1], [2]. Этот результат используется в теории и практике 

систем пассивной гравитационной стабилизации спутников. 

2. Развита теория колебаний спутника на эллиптической орбите в гравитационном 

поле [1], [2], [3],[4]. 

3. Поставлена проблема и разработана теория эволюции вращения спутников под 

влиянием возмущающих моментов сил (гравитационных, магнитных, 

аэродинамических, светового давления) [5],[2], момента приливных сил [11]. 

4. Поставлена и решена проблема определения по бортовым измерениям 

фактической ориентации спутников и действующих на него моментов [6], [2], [7]. 

5. Поставлена и развита теория движения орбитальной тросовой системы и 

хаотизации движения [8], [9], [10]. 
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6. Создана резонансная теория обобщенных законов Кассини «вращения» 

естественных и искусственных небесных тел [12], [13]. Эта теория, в частности, 

обосновывает эмпирические законы Дж. Д. Кассини, установленные более 300 лет тому 

назад (в 1693г.). 

 

Рис. 2. Малая планета № 14790 (открыта 30 июля 1970 г.), названная именем В.В. Белецкого 

Владимир Васильевич Белецкий, будучи главным научным сотрудником ИПМ им. 

М.В. Келдыша РАН, состоял Членом его Ученого совета, являлся также Членом 

специализированных диссертационных советов ИПМ им. М.В. Келдыша РАН и 

механико-математического факультета МГУ им. М.В. Ломоносова, Членом 

Российского национального комитета по теоретической и прикладной механике (1976). 

Он был избран Членом-корреспондентом РАН (1997), являлся Действительным членом 

Международной академии астронавтики (1992) и Действительным членом Российской 

академии космонавтики (1994), состоял Членом редколлегии журнала “Регулярная и 

хаотическая динамика”. 

Научные достижения В.В. Белецкого высоко оценены в России и за рубежом. Он 

был удостоен звания Заслуженный профессор МГУ (2002), стал лауреатом премии 

А. фон Гумбольдта (Германия), лауреат премии РАН им. Ф.А. Цандера. Малая планета 

№ 14790 (открыта 30 июля 1970 г.), названа именем В.В. Белецкого “Beletskij” (рис. 1). 

Резюмируя, можно утверждать, что В.В. Белецкий практически открыл новую 

отрасль механики, упростив классические постановки задач и получив в результате 

такого упрощения основные «скрижали» для описания механики вращательного 

движения спутников и планет. 
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Это был блистательный учёный и непревзойдённый учитель. Его по праву считают 

одним из отцов-основателей советской и российской школы динамики космического 

полёта в области теории вращательных движений искусственных и естественных 

небесных тел. Владимир Васильевич Белецкий скончался 20 июля 2017 г. Владимир 

Васильевич похоронен на Троекуровском кладбище в Москве. 
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