APYIITBO MATEMATUYAPA 11 OU3NYAPA [IPHE I'OPE
[MPUPOJIHO-MATEMATNYKU GAKYJ/ITET
YHUBEP3UTETA IIPHE 'OPE

MATEMATHUKA IIPHE I'OPE

KIBUT'A XXVIIT

MATHEMATICA MONTISNIGRI

VOLUME XXVIII

UDK 51 ISSN 0354 2238

TTOJITOPUIIA, 2013.



MATHEMATICA MONTISNIGRI
Vol XXVIII (2013) 5-121

CONTENTS

Mathematics

Huxona MuxaneBud. ACHMOTOTHKA COOCTBEHHBIX 3HAUYEHUH OTiepaTopa THUIla
[ITypma-JInyBUIIISL C HIEPEMEHHBIM 3AMA3IBIBAHMEM . . ... .veeeeneeeeennneeennnneeennneeennns 5

Gleb V. Fedorov. The greatest order of the divisor function with increasing dimension. 17

Mathematical modeling

A.B. bepe3un, A.A. Kprokos, M.b. Mapkos, b./l. [1ntomenkoB. Beiuncnenue
AIIEKTPOMArHUTHOTO TIOJIS C 33/IaHHBIM BOJTHOBBIM (DPOHTOM Ha HEPETYJISIPHOU CeTKe... 25

C.1. Tkauenko, B.A.I'acunos, A.FO.KpykoBckuii, O.I'.OnbxoBckas, W.IL.LpIrBuHLEB.
BrruucnurenbHas MOJIeTb U pe3yIbTaThl YUCICHHOTO aHANIM3a JIEKTPOB3PhIBA TOHKUX
RN 151: 05 (S8 0 11 010): 10011507 10 ) : T 39

A.V. Tolokonnikov. Investigation of the boundary conditions influence on the ground
state properties of a two-electron atom in a Cavity..........ocoiviiiiiiiiiiiiiiii e, 62

IL.T". Arees, A.B. Konngo6a, 1.B. I'acunosa, H.}O. [Toeemenko, M.B. SIko6oBckwii,
C.J. Tkauenko. KomruiekcHasi MOZI€NIb OTKIIMKA IJIACTA HA TJIA3MEHHO-UMITYJILCHOE
1110131 (51 (v N2 (=P 75

Computer science applications

Dusan S. Jokanovi¢, M. Marina. Zirojevi¢. Using “Wolfram mathematica 9.0” to
simulate probability problems......... ..o, 99

S. Scepanovic, I. Vukotic. Rip V. Eigrp......ccooiiiiiiiiiiiiiiiiiceeceee e, 107



MATHEMATICA MONTISNIGRI
Vol XXVIII (2013) 99-106

USING “WOLFRAM MATHEMATICA 9.0” TO SIMULATE
PROBABILITY PROBLEMS
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e-mail: marina.zirojevic@gmail.com

Summary. The topic and objective of this paper is to illustrate how Wolfram Mathematica 9,
through her symbolic programming environment, can be used to simulate probability
problems. Apart from the general discussion of its uses, several examples of Mathematica's
application will be shown. The examples will clarify Markov Chains and Queues whose
simbolic representation in this software makes visualisation the process, simulation process
path and computation the stationary distribution much easier.

1 INTRODUCTION

Consider a family of random variables X; defined on a common probability space ({2, F, P)
and indexed by a parameter t € T. If the parameter set T is a subset of the real line (most
commonly Z,Z*, R or R"), we refer to the parameter t as time, and to X; as a random
process. If T is a subset of a multi-dimensional space, then X; called a random field.

In a random process {X(t),t € T}, the values assumed by X(t) are called states, and the set
of all possible values forms the state space E of the random process. If the index set T of a
random process is discrete, then the process is called a discrete-parameter (or discrete-time)
process. If T is continuous, then we have a continuous-parameter (or continuous-time)
process. If the state space E of a random process is discrete, then the process is called a
discrete-state process, often referred to as a chain. If the state space E is continuous, then we
have a continuous-state process.

2 CHARACTERIZATION OF RANDOM PROCESSES

Consider a random process X(t). For a fixed time t, X(t;) = x; is a random variable, and
its distribution function Fy(x4,t;) is defined as F,(xq,t;) = P{X(t;) < x;}. Fx(x4,t;) is
known as the first-order distribution of X(t). In the same way, if we consider two random
variables X(t;) =x; and X(t,) =X, then their joint distribution functions is known as
second-order distribution of X(t) and is defined by F (x4, x5, t;,t,) = P{X(t;) < x4, X(t;) <
X, }. In general, we define the nth-order distribution of X (t) by

Fx(xl' Xty tn) = P{X(tl) < Xq,0c ﬂX(tn) < xn}- M
If X(t) is a discrete-time process, then X (t) is specified by a collection of pmf's:

2010 Mathematics Subject Classification: 60J10, 60K35, 97R20.
Key words and Phrases: Random Processes, Markov Chain, Brownian bridge
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Pr(X1, . X, by, t) = PIX(t) = xq,...,X(t,) = x,} ()
If X(t) is a continuous-time process, then X (t) is specified by a collection of pdf’s:
aan(xlf Xy by, tn)
- 0x,0x, -+ 0xy, '

The mean of X(t) is defined by w,(t) = E[X(t)] where X(t) is treated as a random
variable for a fixed value of t. A measure of dependence among the r.v.'s of X(t) is provided
by its autocorrelation function, defined by

R.(t,5) = E(X(£)X(s)). “

It is clear that R,.(t,s) = R, (s, t) and R, (t,t) = E[X?(¢)].
The autocovariance function of X (t) is defined by

Ky (t,s) = Cov[X(t), X(s)] = E{[X(t) — ux(O][X(s) — px(s)]} =
= Rx(t' S) - .ux(t).ux(s)- ©)

The variance of X(t) is given by
o7 (t) = Var[X ()] = E{[X(®) — ux(®]*} = K, (¢, 1).

3 CLASSIFICATION OF RANDOM PROCESSES

fx(xl;"'xn' tl'”'rtn) 3)

3.1 Stationary Processes

A random process {X(t), t € T} is said to be stationary if, for all n and for every set of
time instants (t €T, i = 1,2,...,n)

Eo(oy, - X ty, oo tn) = E(Xg, o, Xty + T, , 6 + T) (5)

for any 7. Hence, the distribution of a stationary process will be unaffected by a shift in the
time origin, and X (t) and X(t + 7) will have the same distributions for any 7.

If stationary condition of a random process X (t) does not hold for all n but holds for n <
k, then we say that the process X (t) is stationary to order k. If X(t) is stationary to order 2,
then X (t) is said to be wide-sense stationary.

3.2 Independent Processes

If in a random process X (t), X(t;) fori = 1,2,...,n are independent r.v.'s, so that for n =
2,3,...,n

n
Fx(xlx“';xn:tlx"':tn) = an(xilti) (6)
i=1

then we call X(t) an independent random process. Thus, a first-order distribution is sufficient
to characterize an independent random process X (t).
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3.3 Processes with Stationary Independent Increments

A random process {X(t),t = 0} is said to have independent increments if whenever 0 <
t) <t, <<ty
Xo, X(t1) — X(0), X(tz) — X(ty), -+, X(£n) = X(tn — 1) Q)
are independent.
If {X(t),t > 0 has independent increments and X (t) — X(s) has the same distribution as

X({t+h)—X(s+h)foralls,t,h > 0,s < t, then the process X(t) is said to have stationary
independent increments.

4 MARKOYV PROCESSES

Markov process is a random process whose future probabilities are determined by its most
recent values. A random process (X(t),t > 0) is said to be a markov process if

P{X(tn+1) < Xpp1|X (1) = x40, X(t2) = x3, -+, X () = xp,}
= P{X(tns1) < Xns1lX(tn) = %} ®)

whenever t; <t, < - <t, <ty
A discrete-state Markov process is called a Markov chain. For a discrete-parameter
Markov chain {X,,, n = 0} we have for every n

P(Xn+1 :f|Xo =10, Xy =1y, Xp = i) = P(Xn+1 :f|Xn = i)- )

Let {X,,,n = 0} be a homogeneous Markov chain with a discrete infinite state space E =
(0,1,2,...). Then

Pij = PXns1 =jlXp =1}, i20,j20 (10)
regardless of the value of n. A transition probability matrix of {X,, n = 0} is defined by
Poo DPo1 Poz
Pio P11 P12z -
pP=1{p.l= 11
{PU} P20 P21 P22 (b
where the elements satisfy
pl] ZOJ ZPU = 1; l = 0; 112)”' (12)
j=0
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Wolfram Mathematica 9 provides cohesive and comprehensive random process support.
Using a symbolic representation of a process makes it easy to simulate its behavior, estimate
parameters from data, and compute state probabilities at different times.

There is additional functionality for special classes of random processes such as markov
chains. Some of these functions will be illustrated throught the following examples.

EXAMPLE 1. In order to simulate Markov chain we use Wolfram Mathematica function
CountinuousMarkovProcess[po,q] where po is initial state probability vector, and q is
transition rate matrix. These function allows q to be an n X n matrix where q; < 0 and q;; =

0 for i # j with rows that sums to 0, po is a vector of length n of non-negative elements that
sum up to 1. We <can wuse these function with other functions such as
MarkovProcessProperties, PDF, CDF, Probability, RandomFunction ect. The example below

shows simulation of countinuous-time and discrete-state Markov process.
-4 1 1 1

1
In[16]:= mc = ContinuousMarkovProcess [{7, o, 0, 0, E},
2 2

P RRR
o
S
R
'S
R R
P RRR

In[17:= podaci = RandomFunction [mc, {0, 15}]
In[18:= ListLinePlot [%17]
5-

out[18]= 3|

12 14

2 4 6 8 10
In[19}:= PDF [mc[t], k] // PiecewiseExpand
et (-1+e°%) k=2||k=3| k=4

Out[19}= e®*(3+2e°%) k=1||k-=

o I
;h_.mr-\

True
In[22]:= Graph [mc]
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Out[22]=

In[24}= RandomFunction [mc]
In28]:= simplepath =

RandomFunction [Cont inuousMarkovProcess [{l ,0,0,0, E } ’

{{-4,1,1,1, 1}, {1, -4, 1, 1, 1}, {1, 1,2-4, 1, 12},

(1, 1, 1, -4, 1}, {1, 1, 1, 1, -4}}], {0, 2}] // Normal
In[30:= ListPlot [simplepath, Filling -» Axis, FillingStyle

- LightRed, PlotRange - All]

5 e . .

Outf30}= 3f .

2.0

0.5 1.0 1.5
In[31:= StationaryDistribution [mc]

1 B 1
In[32]:= CDF[ProbabilityDistribution [— Boole [:_: == 1] + — Boole
5 5

[:.: 2] v = Boole [x 3] + 1 Boole [’.‘ == 4] + g Boole[:'l: =

{x,1 5, 1}] ]

1 1<x<2
5
2 2<x<3
5
3
ougz= § _ 3=x<4
£ 4<x<5
5
1 x=5
L 0 True
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5 COUNTING PROCESSES

A random process {X(t), t = 0 is said to be a counting process if X(t) represents the total
number of "events" that have occurred in the interval (0,t). The most important types of
counting processes are Wiener process and the Poisson process.

5.1 Wiener Process

A random process (X (t),t = 0) is called a Wiener process if

1. X(t) has stationary independent increments.

2. The increment X(t) — X(s) (t > s) is normally distributed.
3. E[X(t)] =0.

4. X(0) = 0.

The Wiener process is also known as the Brownian motion process, since it originates as a
model for Brownian motion, the motion of particles suspended in a fluid. These process is an
example of an independent stationary increments process. For 0 < s <t the increment
X(t) — X(s) is a Gaussian random variable with zero mean and variance t — s.

A random process (X(t),t = 0) is called a Wiener process with drift coefficient u if

1. X(t) has stationary independent increments.

2. X(t) is normally distributed with mean ut.

3. X(0) = 0.

EXAMPLE 2. Simulation of a Wiener process is enabled by functions
WienerProcess[u, o], where u represents drift and o is volatility. The parameter u can be any
real number and the parameter ¢ can be any positive real number. The use of these functions
is exemplified by the following example. The example shows simulatation of Brownian

motion in two dimensions.
In[11= SeedRandom[151] ;

sample = RandomFunction[WienerProcess[], {0, 1, .001}, 2] ["States"];
ListLinePlot [Transpose@sample, ColorFunction » "Rainbow"]

0.8"

out11]=

A process X(t) on a probability space ({2, F, P) is a Brownian motion process if and only
if:

1. Sample paths X, (t) are continuous functions of t for almost all w.

2. X,(0) = 0 for almost all w.
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3. For0 < s < t, the increment X(t) — X(s) is a Gaussian random variable with zero
mean and variance t — s.
4. Random variables X (t,), X(t;) — X(to), -+, X(t;,) — X(ty—,) are independent for
everyk > land0 = ¢, <t; <...Z ¢.
An R%-valued process X(t) = (X1(¢t),--,X%(t)) is said to be a (standard) d-dimensional
Brownian motion if its components X(t),---,X%(t) are independent one-dimensional
Brownian motions.

A Brownian bridge is a continuous stochastic process with a probability distribution that is
the conditional distribution of a Wiener process given prescribed values at the beginning and
end of the process. A function which is used for simulating Brownian bridge is
BrownianBridgeProcess|o, {t;, a}, {t,, b}]. This function represents the Brownian bridge
process from value a at time t; to value b at time t, with volatility o. The following
example displays displays 10 paths of a Brownian bridge process connecting two values, at
the beginning (which is 0) and at the end (also 0).

‘ ) ‘ \‘ ry ‘Y 'W
WSy %\ \”\ mm“: :,

Figure 1: Brownian bridge

5.1 Poisson Process

The Poisson process is one of the two most fundamental stochastic processes. The other
one is Brownian motion, with which Poisson process shares a number of common properties
(both are examples of a Levy process).

A counting process X (t) is said to be a Poisson process with rate (or intensity) A > 0 if

1. X(0) =0,

2. X(t) has independent increments,

3. The number of events in any interval of length t is Poisson distributed with mean
At, that is, forall s,t > 0
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P[X(t+s)—X(s) =n] =e"1x(/1ng,n=0,1,2,---. (13)

From the condition 3 it follows that a Poisson process has stationary increments and that
E[X(t)] = At. (14)
EXAMPLE 3. This example shows sample trajectories of seven Poisson processes with

intensity 4 = % The function which is used here is PoissonProcess[u]. PoissonProcess[u]

simulate a continuous-time and discrete-state random process and allows u to be any positive
real number.
In75k= p = RandomFunction[PoissonProcess[.5], {0, 100}, 7]

Outf75]= TemporalData[ 7 }
Inf76l= ListLinePlot[%75]
50;
40?—
ouprer 30f
20;

10F
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