Посвящаем 80-летию профессора В. И. Гаврилова

О МЕДЛЕННО РАСТУЩИХ СУБГАРМОНИЧЕСКИХ ФУНКЦИЯХ

Ж. С. ОГАНЕСЯН*

*Гюмриский филиал НПУА Гюмри, Армения e-mail: math gyumri.seua.am

Ключевые слова: теоремы Хеймана, субгармонические функции, неванлинновский дефект, разреженное множество.

Анотация. Доказаны аналоги Хеймана для субгармонических R^2 функций, для которых $B(r) = O(\log r)^2$ и которые имеют $\delta_u = 1 - \overline{\lim_{r \to \infty}} \frac{N(r)}{T(r)}$ неванлинновский дефект.

ABOUT SLOWLY INCREASING SUBHARMONIC FUNCTIONS ZH. S. HOVHANNISYAN*

* Gyumir branch NPUA Gyumri, Armenia

e-mail: math gyumri.seua.am

Summary. It is proved of in for subharmonic functions which and they have Nevalnin defect.

2010 Mathematics Subject Classification: 30D35, 31A05.

Key words and Phrases: Haiman's theorems, subharmonic functions, Nevalnin defect.

1 ВВЕДЕНИЕ

Рассматриваем субгармонические в R^2 функции u(x), удовлетворяющие условию

$$\int_{|x|\geq 1} \frac{d\mu}{B(|x|)} < \infty , \tag{1}$$

где $\mu(x)$ - мера Рисса и $B(r) = \max_{0 \le 9 \le 2\pi} u(re^{i\theta})$.

Пусть на $(1,+\infty)$ задана функция $\omega(r) > 0, \omega \uparrow$; множество $e \subset R^2$ называем ω - разреженным (в ∞), если $\exists q > 1$ так, что для

$$e_n = e \cap (q^n \le |x| < q^{n-1})$$
$$\sum_{n=1}^{\infty} \omega(q^n) c(e_n) < \infty$$

емкость с компакта e определяется в виде

$$c(e_n) = \left(\inf_{\mu} \left(\iint_{e \times e} \log \frac{|x|}{|x - \xi|} d\mu(x) d\mu(\xi) \right) \right)^{-1} \sup p(\mu) \subseteq e, \mu(e) = 1.$$

Всегда предполагаем, что B, ω таковы, что для некоторого q > 1

$$\frac{B(qr)}{B(r)} = O(1), \ \frac{B(qr)}{B(r)} = O(1), \ (r \to \infty).$$

В [1] рассматриваются субгармонические в R^2 функции u(x), удовлетворяющие условию

$$B(r) = O(\log r), \int_{|x| < \infty} d\mu(x) < \infty$$
 (2)

или условию

$$B(r) = O(\log r)^2 \tag{3}$$

(сходимость интеграла в (2) легко получить из первого условия в (2)).

Множество $e \subset R^2 / (|x| < 1)$ называется множеством, если его можно покрыть кругами радиусов r_n с центрами x_n $(n \ge 1)$ так, что

$$\sum_{n=1}^{\infty} \frac{r_n}{|x_n|} < \infty.$$

Можно показать, что 1 разреженное множество является C множеством и \exists не 1 разреженное C -множество; если e-C - множество, то

$$\bigcap_{0 < r < \infty} \left\{ \frac{x}{|x|}, x \in e, |x| \ge r \right\} \tag{4}$$

имеет лебегову меру нуль, и если e-1 разрежено, то (4) имеет логарифмическую емкость нуль.

Теорема (Хейман, [1]). Если для u(x) выполнено (2), то $\exists C$ -множество e так, что

$$u(x) = B(|x|) + o(1) (x \notin e, x \to \infty).$$

Если для u(x) выполнено (3), то $\exists C$ -множество e так, что

$$\lim_{x \notin e, x \to \infty} \frac{u(x)}{B(|x|)} = 1.$$

Эта теорема использована в [2].

2 ОСНОВНЫЕ РЕЗУЛЬТАТЫ

Условие (1) выполнено, если

$$\int_{1}^{\infty} \frac{B(e^{r})}{r^{3}} dr < \infty \tag{5}$$

и, в частности, когда

$$B(r = O(\log r))^{\alpha}, 1 \le \alpha \le 2$$
 (6)

(нам известно, следует ли (1) из (3). Но (3) (или (5)) не является необходимым для выполнения (1).

Лемма. Если для чисел $\lambda, p \ge 1$ и $\lambda \le p+1$ \exists постоянные $c_1, c_2 > 0$ так, что

$$c_1(\log r)^{\lambda} \le B(r) \le c_2(\log r)^p \tag{7}$$

то (1) выполнено. Если для некоторого $\lambda > 1$

$$B(r^{\lambda}) = O(B(r))(r \to \infty) \tag{7}$$

то (1) выполнено.

Понятно, что из (7) следует

$$\overline{\lim_{r\to\infty}} \frac{\log B(r)}{\log r} = 0$$

то есть u(x) имеет порядок 0; нам известно, выполняется ли (1) для \forall функции порядка 0.

Относительно неравенств типа (9), см. [3] с. 262.

3. Используем обозначения

$$u_{\mu}(r) = \mu(|x| \le r), \ N(r) = \int_{0}^{r} \frac{n_{\mu}}{t} dt,$$

$$\Delta_{u} = \lim_{r \to \infty} \frac{N(r)}{B(r)}, \ \delta_{u} = 1 - \overline{\lim_{r \to \infty}} \frac{N(r)}{T(r)} (0 \le \Delta_{u} \le 1).$$

Здесь O -неванлинновская характеристическая функция u(x); δ_u - неванлинновский дефект; в [1] показано, что из (3) следует

$$\lim_{r\to\infty}\frac{N(r)}{B(r)}=1$$

то есть $\Delta_u = 1$.

Теорема 1. Если для u(x) выполнено (2), то для \forall функции ω^{\uparrow} такой, что

$$\int_{|x|\geq 1} \omega(|x|) d\mu < \infty$$

существует ω -разреженное e так, что

$$u(x) = B(|x|) + o(1) (x \notin e, x \to \infty),$$

Теорема 2. Если для u(x) выполнено (1), то для $\forall e > 0$ и $\omega \uparrow$ такой, что

$$\int_{|x| \ge 1} \frac{\omega(|x|)}{B(|x|)} d\mu < \infty$$

существует ω -разреженное e так, что

$$\lim_{x \notin e, x \to \infty} \frac{u(x)}{B(|x|)} \ge \Delta_u - \varepsilon (1 - \Delta_u).$$

Следствие 1. Если для u(x) выполнено (6), то для $\forall \beta > 2 - \alpha \ \exists e \ \text{так}$, что

$$\sum_{n=1}^{\infty} n^{\beta} c(e_n) < \infty,$$

$$u(x) = B(|x|) + o(B(|x|)), (x \notin e, x \to \infty).$$

Следствие 2. Если u(x) выполнено (2), то $\forall e$ такая, что

$$\sum_{n=1}^{\infty} nc(e_n) < \infty,$$

$$u(x) = B(|x|) + o(B(|x|)), (x \notin e, x \to \infty).$$

Следствие 3. Если μ -мера в R^2 , $\mu(R^2) < \infty$ То $\exists e$ так, что

$$\sum_{n=1}^{\infty} nc(e_n) < \infty, \tag{8}$$

и для $x \notin e, x \rightarrow \infty$

$$\int_{|\xi| < \infty} \log |x - \xi| d\mu(\xi) = n_{\mu}(|x|) \log |x| + O(1)$$

при условии, что интеграл слева не равен $\equiv -\infty, o \notin \sup p(\mu)$.

После отображения $x \to (x-\xi)^{-1}$ (8) преобразуется в критерий Винера для иррегулярности точки ξ , то есть следствие 3 является некоторым аналогом (для логарифмического потенциала) теоремы А. Картана о непрервности потенциала Ньютона в тонкой топологии.

Теорема 3. Если для u(x) выполнено

$$\int_{|x|\geq 1} \frac{d\mu(x)}{T(|x|)} < \infty,$$

то для $\forall 0 < \varepsilon < 1$ и $\forall \omega \uparrow$ такой, что

$$\int_{|x|\geq 1} \frac{d\omega(x)}{T(|x|)} < \infty ,$$

 $\exists \omega$ - разреженное e так, что

$$\lim_{x \notin e, x \to \infty} \frac{u(x)}{T(|x|)} \ge \varepsilon - \frac{\delta_u}{\varepsilon}.$$

Следствие 4. Если в предположениях теоремы 3 Т- медленно изменяющаяся функция и $\delta_u = o$, то где F - фильтр, образованный дополнениями к 1-разреженным множествам: откуда следует: $\exists 1$ -разреженное e так, что

$$\lim_{x \notin e, x \to \infty} \frac{u(x)}{B(|x|)} = 1.$$

REFERENCES

- [1] J W. K. Hayman, Slowly growing integral and subharmonic functions. Comment Math Helv, 34, No1,75–84 (1960).
- [2] J. M. Anderson, J. Clunie, Slowly growing meromorphic functions. Comment Math Helv, 40, No4, 267–280 (1966).
- [3] Голдберг А. А., Островский И. В. Распределение значений мероморфных функций. М., 1970.

Поступила в редакцию 10.11.2014.