
MATHEMATICA MONTISNIGRI
Vol XXXIX (2017)

ANALYSIS OF PARALLEL MOLECULAR DYNAMICS FOR MPI,

CUDA AND CUDA-MPI IMPLEMENTATION

A. V. UTKIN

Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian

Academy of Sciences

Institutskaya 4/1, 630090 Novosibirsk, Russia

e-mail: utkin@itam.nsc.ru

Summary. In the framework of current study, three implementations of parallel MD algo-

rithms were compared. The first approach was based on design of parallel program for a com-

puter cluster with distributed memory using Message Passing Interface (MPI). The second type

of parallel algorithms was implemented on CUDA based General Purpose GPUs by NVIDIA.

It should be noted, that modern high performance computing systems are a combination of MPI

clusters equipped with GPGPUs, what turns them into so-called heterogeneous computing clus-

ters. In this case MPI technology is used for internode communications, while all computations

are carried out by GPUs. Thus, the third approach to the parallelization discussed in this study

was based on design of a CUDA-MPI algorithm. The detailed studies and comparison of all

three approaches (MPI, CUDA and CUDA-MPI) were performed in order to define optimal

parameters and conditions of applicability of each algorithm.

1 INTRODUCTION

The method of molecular dynamics (MD) offers a good possibility of detailed investigations

of specific features of the nanostructure formation mechanism at the submolecular level and

provides thermal and mechanical characteristics of nanostructures [1, 2].

One of the most complicated aspects in MD modeling is a long time required for computa-

tion even for comparatively small systems of atoms. The main method of solving this problem

is implementation of highly efficient parallel programs [3]. Using high-performance parallel

clusters and stations, one can study systems consisting of tens of millions of atoms, i.e., having

a qualitatively different scale as compared to systems whose dynamics can be calculated on a

personal computer.

Traditional and well-developed area is the use of parallel codes based on MPI (Message Pass-

ing Interface) technology for parallel computing. Another promising and fairly efficient way is

to create algorithms and codes that will perform calculations on CUDA capable GPUs [4–10].

Design of hybrid computational clusters gave rise to the development of new algorithms, which

use the CUDA technology for resource-consuming computations, whereas the MPI technology

ensures communications between different GPUs that physically belong to different nodes of

the cluster.

2010 Mathematics Subject Classification: 65Y05, 65Y10, 65Y20, 65Z05.

Key words and phrases: molecular dynamics, CUDA, MPI, parallel computations.

MATHEMATICAL MODELING

101



A. V. Utkin

At the present moment LAMMPS package is the most widely used software for molecu-

lar dynamics simulation and it also can exploit GPU. The main idea of GPU utilization ap-

proach there is dynamic load balancing of force calculation between CPU and GPU. Fraction

of particles assigned for GPU calculation could be fixed or could be based on CPU and GPU

timings [11–13].

But despite the GPUs are efficient computing units and heterogeneous supercomputers are

presented among TOP50 supercomputers, the number of GPU-enabled applications remains

relatively low (not only MD-related applications). It should be noted that majority of exist-

ing GPU-enbaled applications have poor cluster-wide scalability; either single GPU per node

is exploited or the OpenMP technology is used to establish inter-GPUs communications and

hence scalability is limited to the size of a node. We believe that the main reason is induced

by complexity of transformation of existing and well-tested MPI applications to CUDA tech-

nology. The aim of this work was to show that existing baseline MPI code can be successfully

translated into the CUDA-enabled one.

The present paper describes such a hybrid algorithm, which allows the CUDA and MPI

technologies to be combined in one code written for microscopic-level simulations of various

phenomena within the framework of the MD method. The efficiency of this code is compared

both with a code using only the MPI and with a CUDA code designed for operation with only

one GPU.

All CUDA versions of Molecular Dynamics algorithms discussed below are implemented

using PGI Fortran as the programming language [14].

2 PHYSICAL MODEL AND COMPUTATION ALGORITHM

The numerical algorithms and programs were first tested on a sufficiently simple physical

model, which was a rectangular reservoir filled with a gas (argon). The reservoir size was 2500×

2500× 3000 Å (503000 atoms) or 2500× 2500× 12550 Å (2516100 atoms). Interaction of

atoms with the reservoir wall was described by the reflection model, and interatomic interaction

was simulated by the Lennard-Jones potential [1, 2].

After that more complicated physical systems were studied. They described an impact of

two copper clusters (figure 1) and uniaxial tension of copper nanorods (figure 2). Interaction of

copper atoms was described by the embedded atom model (EAM) [15].

The equations of motion were integrated with the use of the second-order Verlet scheme in

terms of the time step [1, 2]. The time step in these numerical simulations was 5×10−16 s for

the gas and 10−16 s for copper.

All functions from EAM potential (electron density, pair potential and embedding function)

were tabulated and B-spline interpolation was used for force and energy calculation.

102



A. V. Utkin

Figure 1: Longitudinal section of the collided clus-

ters. Structure types: green—fcc, red—hcp, blue—

bcc, grey—unknown coordination structure [16–18].

Figure 2: Uniaxial tension of copper nanostructure.

Structure types: green—fcc, red—hcp, blue—bcc,

grey—unknown coordination structure [16–18].

The calculation of interatomic interaction forces is the most computationally expensive task

in MD simulations because the contributions of all neighboring atoms should be taken into

account in calculating the forces acting on the i-th atom.

There are several commonly used methods for optimizing force computations, which ensure

significant reduction of the computational time. As it will be demonstrated below that the choice

of a particular technique can play a key role, it seems reasonable to consider the most popular

methods of optimization [3].

2.1 Verlet list method

If a large system of atoms is studied and the cutoff radius rc is smaller than the computational

domain, some of the atoms do not contribute to the force acting on the i-th atom. In this method,

an additional cutoff radius rv (greater than rc) is introduced. Before the computations, a list of

neighboring atoms within a sphere with the radius rv is formed for each i-th atom. When the

forces acting on this atom are calculated, however, only the neighboring atoms from this sphere

are taken into account. The interval between updating of the Verlet list of neighbors is usually

10–20 time steps or is determined automatically [19].

2.2 Cell-linked list method

An alternative method for effective determination of atom neighbors in sufficiently large

systems is the cell-linked list method (CLLM). A three-dimensional computational domain is

divided into rectangular cells (in the classical version) whose size is slightly greater than or

equal to the cutoff radius rc of the atomic interaction potential. An array containing the list of

numbers of neighbors of each cell is generated at the beginning of computations. Each atom

interacts only with atoms from its own cell or with atoms from the neighboring cells (26 cells).

103



A. V. Utkin

One of the additional advantages provided by the cell-linked list method is the possibility of

using the third Newton’s law in force calculations: Fi j = −Fji. As a result, it is possible to

avoid double computations of the force in the pair of the i-th and j-th atoms and to reduce the

number of the neighboring cells from 26 to 13, which substantially decreases the computational

time [1].

2.3 Various hybrid combinations of the CLLM and Verlet list (hybrid Verlet list)

The most obvious hybrid combination is the method where the Verlet list for the i-th atom is

generated on the basis of the analysis of the distances to the atoms in the cell to which the i-th

atom belongs and the distances to the atoms in 26 neighboring cells rather than on the basis of

considering all atoms of the system. Thus, one of the major problems in constructing the Verlet

list is eliminated [1].

3 OPTIONS OF THE COMPUTATIONAL STRATEGY

3.1 Code implementation with the use of the MPI technology based on one-dimensional

parallelization

An important aspect of programming for cluster systems with distributed memory is correct

organization of data exchange between the nodes and its synchronization.

In the present study, we use the method of splitting of the computational domain into sub-

domains in one of the geometric directions (one-dimensional parallelization). This approach

offers the following advantages: particles “assigned” to one CPU interact with each other, and

data transfer between different CPUs is performed only because it is necessary to exchange

information between geometrically neighboring subdomains. However, successful application

of this algorithm is only possible in sufficiently homogeneous media, because uniform loading

of CPUs should be provided [20]. In studying physical properties of spatially nonhomogeneous

systems characterized by significant gradients of atomic concentration, it is necessary to use

an additional algorithm of dynamic balancing. This algorithm corrects the size of the computa-

tional subdomains by means of shifting the boundaries and ensures more or less uniform loading

of CPUs.

3.2 Code implementation of the parallel algorithm for graphics processing units (GPUs)

based on the CUDA NVIDIA technology

A specific feature of program implementation on GPUs is performing an identical set of

instructions by each computational processor (one atom–one thread or atom decomposition

scheme) [9, 10]. It should be noted that the bottleneck of using GPUs is a low speed of data

transfer from the main memory of the computer to the GPU memory. Thus, the main challenge

is to minimize data exchange between the computer RAM and GPU memory. Two versions of

the GPU code were developed. The first version is based on the CLLM, whereas the second

104



A. V. Utkin

version of the computational code employs a hybrid combination of the CLLM and Verlet list.

3.3 Code implementation with the use of the MPI and CUDA NVIDIA technologies

The computational code was developed on the basis of a previously tested MPI-based pro-

gram. This code is based on dividing the system of atoms in space (one-dimensional paral-

lelization with an additional algorithm of dynamic load balancing). As the computation of force

interactions is the most computationally expensive part of the process, it was this part that was

transferred from the CPU to GPU. As the operation of data copying from the CPU to GPU

takes a long time, it was decided to apply the CLLM directly on the GPU rather than to copy

already available arrays from the computer memory. Correspondingly, the GPU computations

were performed with the use of the CLLM.

An obvious drawback of this scheme is the necessity of copying a large amount of informa-

tion from the CPU to GPU and vice versa at each step of computations in order to organize data

exchange between GPUs concerning the motion of atoms inside the computational domain. As

the number of atoms NCPU on each CPU core is different at each computational step, it is not

necessary for simple potentials to use the Verlet lists by virtue of their definition given above.

4 COMPARATIVE ANALYSIS OF ALGORITHMS AND CODES

The computations were performed on the following computational systems:

System No. 1 Hybrid parallel cluster NKS 30-T in Siberian Supercomputing Center SB RAS

(40 nodes, each node has two sixcore Xeon X5670 (2.93 GHz) CPUs and 3 NVIDIA Tesla M

2090 GPUs.

System No. 2 PC with a Tesla C1060 GPU and i7-920 CPU.

4.1 Physical system based on the Lennard-Jones potential

Comparative testing of the above-mentioned programs was performed. The total computa-

tional time was 0.05 ns, i.e. 100000 steps of 5×10−16 s. It follows from the time dependences

presented in table 1 that the program based only on the CUDA technology and hybrid Verlet lists

employs the smallest amount of computational resources (the program was run on one GPU).

If only the CLLM is used, the computational time is significantly longer (almost by a factor

of 5) because it is necessary to process additional information from the neighboring cells. The

code based on the MPI+CUDA hybrid scheme provides a shorter computational time than the

MPI code (the program was run on 9 CPUs and 9 GPUs). The force computation speedup

was almost by a factor of 4, but computational time was supplemented with the time of data

exchange between the CPU and GPU, which is almost equal to the time spent on the force

computation on the GPU. The code based only on the CUDA technology and hybrid Verlet

lists ensures faster computations than the MPI+CUDA code (almost by a factor of 8). It should

be noted that the MPI+CUDA algorithm inherits all drawbacks inherent in the MPI algorithm,

105



A. V. Utkin

MPI MPI+CUDA CUDA CUDA CUDA

(9 CPUs)1 (9 CPUs + 9 GPUs)1 (1 GPU)1 (1 GPU)1 (1 GPU)2

Total computational

time 11600 6840 4379∗/4853∗∗ 839∗/5096∗∗ 1602∗/11477∗∗

Total time of force

computation 2100 548 3996∗/3996∗∗ 137∗/138∗∗ 199∗/202∗∗

Data exchange between

the CPU and GPU 507

Sorting method CLLM CLLM CLLM CLLM + Verlet list

(26 neighboring cells)

1 System No. 1.
2 System No. 2.
∗ Updating of the list of neighbors every 20 steps.
∗∗ Updating of the list of neighbors at each time step.

Table 1: Task computation time (seconds).

Number of atoms MPI MPI+CUDA CUDA CUDA

(9 CPUs)1 (9 CPUs + 9GPUs)1 (1 GPU)1 (1 GPU)2

243644 14792 4234 5269∗ 10238∗

709214 32081 8218 16970∗ 30429∗

Sorting method CLLM CLLM CLLM+Verlet list

(26 neighboring cells)

1 System No. 1.
2 System No. 2.
∗ Updating of the list of neighbors every 20 steps.

Table 2: Task computation time (seconds).

which are primarily associated with the necessity of data exchange between CPU nodes and

with their nonuniform loading. As was mentioned above, the Verlet lists should not be used

because of the permanently changing number of atoms in each node, which further aggravates

the situation.

However, despite all these drawbacks, the resultant code will ensure effective modeling of

physical systems consisting of a large number of atoms. The reason is that an increase in the

number of atoms will inevitably lead to higher requirements to the memory for information

storage.

A situation may arise where the code based only on the CUDA technology and hybrid Verlet

lists will require more computational resources than the GPU can provide (such a situation

occurred in computations with a large system consisting of 2516100 atoms). Fortunately, such a

situation is little probable in the case of using the MPI+CUDA hybrid code because the amount

106



A. V. Utkin

#GPU
0 10 20 30 40 50

0

5000

10000

15000

20000

A

B

time,s

Figure 3: Total computational time (seconds) of the MPI+CUDA program (A) and total time of force computation

versus the number of GPUs used (B).

4 8 12 16

0

2000

4000

6000

8000

10000 A

B

time,s

C

#GPU / #CPU #GPU / #CPU
4 8 12 16

0

10000

20000

30000

40000 A

B

time,s

C

Figure 4: Total computational time (seconds) ver-

sus the number of GPU/CPU used. A—MPI-code.

B—MPI+CUDA code, C—force computation in

MPI+CUDA code. 168941 atoms.

Figure 5: Total computational time (seconds) ver-

sus the number of GPU/CPU used. A—MPI-code.

B—MPI+CUDA code, C—force computation in

MPI+CUDA code. 659381 atoms.

of the required resources is inversely proportional to the number of GPUs and CPUs used.

Figure 3 shows the time dependences for the system consisting of 2516100 atoms.

4.2 Physical system based on the embedded atoms model (EAM)

The next stage was testing of the code that ensures a microscopic-level description of the col-

lision of copper clusters and uniaxial tension of copper nanostructure. The total computational

time was 0.005 ns—50000 steps of 10−16 s. It follows from the results of table 2 for cluster

collision that the MPI+CUDA hybrid code, similar to the code based on the Lennard-Jones

potential, ensures faster computations than the MPI-based code (speedup almost by a factor

of 2). The code based only on the CUDA technology and hybrid Verlet lists provides slightly

slower computations than the MPI+CUDA code for the system consisting of 243644 atoms, but

the difference in the computation speed becomes more pronounced for the system consisting

of 709214 atoms. The same dependences were observed for copper nanorods uniaxial tension.

Figures 4–7 show results for algorithm scalability. Strong scaling results are presented for sys-

107



A. V. Utkin

#GPU
10 20 30 40 50 60

400

800

1200

1600

2000 A

B

time,s

#GPU
20 40 60 80

400

800

1200

1600

2000

A

B

time,s

Figure 6: Weak scaling results with 18700–18750

atoms per node. A—MPI+CUDA code, B—force

computation in MPI+CUDA code.

Figure 7: Weak scaling results with 14020–14080

atoms per node. A—MPI+CUDA code, B—force

computation in MPI+CUDA code.

tem of 168941 atoms (100×20×20 lattice cells along X , Y and Z coordinate axes, respectively

figure 4) and for system of 659381 atoms (100× 40× 40 lattice cells, figure 5). One can see

that MPI+CUDA hybrid code is much faster that MPI-based code. Weak scaling results (fig-

ures 6 and 7) are obtained for the set of systems consist of 168941, 337041, 505141, 673241

and 1009441 atoms.

5 CONCLUSIONS

A parallel hybrid algorithm was developed and tested. This method ensures computations

on the GPU and CPU (CUDA + MPI). Comparisons with similar algorithms implemented only

with the use of the MPI or CUDA technology demonstrated fast performance of the hybrid

code. The developed algorithms and codes were used for molecular dynamics modeling of

microscopic-level phenomena both in solids subjected to intense external loading and in gas

media.

Acknowledgments: The paper is based on the proceedings of the XXXII International Confer-

ence on Interaction of Intense Energy Fluxes with Matter, which was held in Elbrus settlement,

in the Kabardino-Balkar Republic of the Russian Federation, during March 1–6, 2017.

REFERENCES

[1] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Science Publications, New
York, NY, USA, 2000).

[2] D. Frenkel and B. Smit, Understanding Molecular Simulation, Second Edition: From Algorithms to
Applications (Computational Science) (Academic Press, 2001).

[3] A. Y. Kuksin, A. V. Lankin, I. V. Morozov, G. E. Norman, N. D. Orekhov, V. V. Pisarev, G. S. Smir-
nov, S. V. Starikov, V. V. Stegailov, and A. V. Timofeev, Program Systems: Theory and Application
5, 191–244 (2014).

[4] D. J. Auerbach, A. F. Bakker, C. Lutz, W. J. Paul, W. E. Rudge, and F. Abraham, J. Phys. Chem. 91,
4881 (1987).

108



A. V. Utkin

[5] J. E. Stone, D. J. Hardy, I. S. Ufimtsev, and K. Schulten, J. Mol. Graphics Modell. 29(2), 116–125
(2010).

[6] J. A. Anderson, C. D. Lorenz, and A. Travesset, J. Comput. Phys. 227(10), 5342–5359 (2008).
[7] M. S. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston, S. Legrand, A. L. Beberg, D. L. Ensign,

C. M. Bruns, and V. S. Pande, J. Comput. Chem. 30(6), 864–872 (2009).
[8] I. V. Morozov, A. M. Kazennov, R. G. Bystryi, G. E. Norman, V. V. Pisarev, and V. V. Stegailov,

Comput. Phys. Commun. 182, 1974–1978 (2011).
[9] M. S. Ozhgibesov, A. V. Utkin, V. M. Fomin, T. S. Leu, and C. H. Cheng, Int. J. Comput. Mater. Sci.

Eng. 1(1), 1250007 (2012).
[10] M. S. Ozhgibesov, A. V. Utkin, V. M. Fomin, T. S. Leu, and C. H. Cheng, Comput. Continuum Mech.

5(3), 265 (2012).
[11] W. M. Brown, P. Wang, S. J. Plimpton, and A. N. Tharrington, Comput. Phys. Commun. 182, 898–

911 (2011).
[12] W. M. Brown, A. Kohlmeyer, S. J. Plimpton, and A. N. Tharrington, Comput. Phys. Commun. 183,

449–459 (2012).
[13] W. M. Brown and M. Yamada, Comput. Phys. Commun. 184, 2785–2793 (2013).
[14] T. P. Group, PGI CUDA Fortran Compiler, URL: http://www.pgroup.com/resources/cudafortran.htm.
[15] A. F. Voter, The embedded atom method, in: Intermetallic Compounds: Principles & Practiceedited

by J. H. Westbrook and R. L. Fleischer, (John Wiley and Sons, London, 1994), 77.
[16] J. D. Honeycutt and H. C. Andersen, J. Phys. Chem. 91(19), 4950–4963 (1987).
[17] A. Stukowski, Modell. Simul. Mater. Sci. Eng. 20(4), 45021 (2012).
[18] A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2009).
[19] L. Verlet, Phys. Rev. 159(1), 98–103 (1967).
[20] Y. Deng, R. F. Peierls, and C. Rivera, J. Comput. Phys. 161(1), 250–263 (2000).

Received June 13, 2017

109




