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Summary. Two methods are suggested to reduce noise in images obtained by a
bi-directional stochastic ray tracing.

The first one uses filtering of the ratio of the ray-traced noisy image to the noise-free
“pivot” image obtained by a deterministic ray tracing. After back multiplying the filtering
result by the “pivot” image one gets a fine-detailed image with much reduced noise.

The second one uses filtering, but not of the resulting image but of the effective
illumination, integrated into ray tracing.

In most cases both methods do not destroy fine details while much reduce noise. The
first method is computationally cheaper, but for some scenes it may produce artifacts.
The second method is more universal, but requires more memory.

ABBREVIATIONS

MCRT = Monte Carlo ray tracing

FMCRT = forward Monte Carlo ray tracing. It is tracing of rays from light sources
toward scene objects accumulating of illumination on scene objects. Usually it is
used to calculate the secondary (indirect) illumination.

BMCRT = backward Monte Carlo ray tracing. It is tracing of rays from camera
through virtual screen toward scene objects. Usually it is used to get the virtual
scene image.

BDF = bi-directional scattering function. It describes surface luminance as a function
of the illumination and observation direction

BDD = backward diffuse depth. It is a specific parameter of a hybrid ray tracing, when
FMCRT calculates illumination and BMCRT is used to convert it to the observed
luminance. In this method the backward ray usually has a limited “length” and
terminates after BDD diffuse events.
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1 INTRODUCTION

Images calculated with the bi-directional Monte Carlo ray tracing usually contain
substantial noise, which vanishes only after large run time. Depending on the peculiarities
of the method used to calculate the image, the noise can be different: either a rather
homogeneous random fluctuations, or isolated rare bright points or clusters consisting of
dozens of bright points. In either case small-scale or low contrast image elements can be
completely obscured by that noise.

A usual denoising method is filtration but even a bilateral filter can distort small-
scale details. Therefore many efforts were spent on the search of an “optimal” filter that
reduces noise without distortion of small scale image structure.

Filtering was used long ago [1], [2] but its results were not that good. The noise was
reduced by averaging over a neighborhood of the target point, thus strong noise reduction
required averaging over a large “window” that kills high-frequency components of the
signal. A good reviews can be found in [3] and [4].

Therefore for the traditional linear filters (which convolve the signal with the aver-
aging “kernel”) reduction of noise and keeping small details are incompatible. Possible
approaches to overcome that include expansion by wavelet, Laplace pyramid (level of de-
tail) etc, see e.g. [5]. Besides there is a well-known bilateral filter which is nonlinear and
its kernel vanishes where the input signal deviates too much from its value in the target
point (filter center). As a result it keeps the boundaries between different object well.
But a low contrast texture such as foliage can be completely destructed.

Recently this filter had been revisited and extended in [6], [7], [3]. The key idea
is to add a criterion of point exclusion. In the original bilateral filter it was just the
difference in brightness. But besides it one can use the difference of the gradient or another
accompanying information. For images obtained by ray tracing it can be the normal field
[6]. However using the noisy signal (say nothing about its gradient) as a criterion does not
work when the noise level is comparable or exceeds the “regular” difference. A possible
remedy is that the criterion compares not the original signal but some pre-filtered one or
histograms [6].

At last it can be good to compare not the pointwise values but their spatial distribution
in some neighbor areas. For example, when filtering a noisy image of a printed text we
compare “windows” of the size of a text letter. If the window around a point differs
too much from that around the central point, all points in that window are effectively
excluded from averaging. Then ideally this filter will average all pixels of one letter “a”
over the matching pixels of another “a” entries, even if they are spatially distant. Since
averaging goes over windows with the same regular distribution, it does not destroy any
detail. And if there were many entries of the “a” letter, they will be completely denoised.
Such a filter is described in [7].

For periodic or quasi-periodic images like wallpaper it works excellently: in the noisy
source image the wallpaper texture is completely indistinguishable while the filtered image
shows it with all detail and fine contrast. But for a completely irregular texture like foliage,
fur, etc. the results are much worse, although still much better than for the traditional
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convolving filters.
Filters based upon such nonlinear and nonlocal averaging are popular now, and many

possible ways of improvements were suggested [6]. But even they do not work well in all
cases. Besides, they are computationally expensive because the averaging area is large
and for each point the whole image area is processed even if eventually the criteria assigns
zero weight for most of pixels.

One can apply filters not to the image itself, but to the ray paths [8] as well. The
method from [9] is in a sense similar: a Monte Carlo ray trajectory depends on several
random (and usually independent) variables used to choose the scattering direction, etc.
As a result, the image part is also a function of such random parameters, and the idea is
to reconstruct this dependence and then use fewer samples for the same noise level.

A promising direction is to approximate a surface BDF via some analytic models that
admit fast ray tracing but such that the difference from the exact BDF is a slowly varying
function that can be filtered [10].

Another class of methods is based upon the usage of the additional “image layer”.
This is possible not always, but for the images calculated by ray tracing usually one can
obtain a plenty of that additional layers that help in effective denoising. For example,
let us imagine a textured plane under illumination that changes slowly along it, such as
a newspaper illuminated by skylight. Its ray traced image can be strongly noisy, but it
is known that the exact image (to be obtained by denoising) is a product of a slowly
varying illumination by a high-frequency modulator (texture). That texture is known a
priori or can be obtained by a noise-free deterministic ray tracing. Then filtered must
be only the illumination, and because it is slowly changing, even traditional convolving
filters proceed it well and fast. Then the result is multiplied by the known texture and
we obtain the denoised image with all details [11]. Other decompositions of the original
image into several components are also possible, see e.g. [5].

Depending on the ray tracing method the scene and so on advantageous are different
decompositions. This class of methods is not a pure filtration, because it is integrated
into the Monte Carlo ray tracing. To some extent mutations of the ray trajectories also
can be related to this area. Although mutations are mainly used in the Metropolis Light
Transport [12], they can be also applied in the “standard” Monte Carlo ray tracing.

Filtering of the luminance of a turbid medium (sun-lit clouds, etc.) in [13] also utilizes
an additional information, which here is a gradient of the density of medium.

This paper describes a two filter-like methods that advance the above ideas.
The former filter uses decomposition of the original noisy image into a product of

a noise-free small-scale “pivot” image and a noisy large-scale function that thus can be
efficiently filtered [11]. It can be thought of as an evolution of [14] but using ambient
illumination instead of their “virtual flash light” coming from camera.

The second approach operates not the luminance image, but “effective illumination”
assuming the indirect illumination is smooth. In the bi-directional Monte Carlo ray tracing
indirect illumination of a camera ray hit point is calculated by emitting a BMCRT ray from
that point and tracing it gathering FMCRT hit points in each its scattering event. This
can be termed “effective illumination”. This filter operates just that effective illumination
and is advantageous when the reflected BMCRT rays rarely hit well illuminated areas. It
is integrated into the bi-directional Monte Carlo ray tracing engine instead of processing
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the final image [15]. It can be thought of as an evolution of [8] which averaged over
ray trajectories. Our approach adds compensation for fast variation of the normal, BDf,
texture etc.

Both methods work good for a large class of scenes, but in complex cases the first one
sometimes produces artifacts. The second method processes these cases correctly, but
it is more computationally expensive. Besides, as being integrated into the ray tracing
process, it must be started from the very beginning.

2 BRIGHTNESS OF PIXEL IN BI-DIRECTIONAL RAY TRACING

For the further explanations we have to describe how the luminance in a pixel is
calculated in our variant of bi-directional ray tracing for scenes like shown in Figure 5.
It must be emphasized that camera ray does not undergo any specular events before the
first diffuse hit. This luminance is

L(v) =

(ˆ
fA(v)(v,u;nA(v))(u · nA(v))d

2u

)
× 1

NBNF

NB∑
i=1

NF∑
j=1

fB(v,ui)(ui,V j;nB(v,ui))
χi,jEj

πR2
i

(1)

where i enumerates camera (BMCRT) rays, traced through this pixel, and j enumerates
FMCRT rays from lights. Then, v is the direction of the first segment of camera ray
which we assume fixed for all rays traced through this pixel, u being the direction of its
second segment (already random). Direction of the FMCRT ray segment is denoted V j

and the ray energy in the segment end as Ej.
Then, A(v) and B(v,ui) are the first and the second diffuse hits of that camera ray.

The former is fixed while the second is already random because after diffuse reflection
the ray direction becomes random. The normal to a surface in the point X is denoted
nX . BDF in luminance factor units in point X is fX(v,u;n), where v is direction of
observation and u is direction of illumination.

It should be noted that if there are specular surfaces in the camera ray path, it becomes
random after the vertex A(v), and thus B(v,u) is a stochastic function of v and u.

The indicator function χi,j is 1 if the j-th FMCRT ray hits integration sphere around
B(v,ui), and 0 otherwise. If the camera ray does not have a second diffuse hit, χi,j = 0.
At last Ri is the radius of the integration sphere around B(v,ui).

In our MCRT direction u of the reflection of the camera ray is sampled according to
BDF and thus its angular density is

ρ(u|v,nA(v)) =
fA(v)(v,u;nA(v))(u · nA(v))´
fA(v)(v,u;nA(v))(u · nA(v))d2u

(2)

If contribution of the i-th camera ray (and all FMCRT rays) is

F (v,ui) ≡
1

NF

NF∑
j=1

fB(v,ui)(ui,V j;nB(v,ui))χi,j
Ej

πR2
i

(3)
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then the increment of the pixel luminance from the i-th ray can be written as

∆L(ui) =
1

NB

(ˆ
fA(v)(v,u;nA(v))(u · nA(v))d

2u

)
F (v,ui) (4)

3 OBSERVED LUMINANCE OF SCENE

The expression (3) is the estimate of luminance observed in direction ui from the point
A(v).

Indeed, the expectation of the value (3) over the set of FMCRT rays (but fixed camera
ray path!) is

〈F (v,ui)〉 = a(ui)LB(v,ui)(wi) (5)

where a(ui) is attenuation (volumetric or by specular surfaces) along this camera path,
started from A(v) in direction ui and ended in B(v,ui) while having direction wi, and
LB(v,ui)(wi) is luminance of the point B(v,ui) in direction wi. Let us note that if there
are no specular surfaces in the camera ray path, B(v,ui) is fixed and wi = ui. If there
are specular surfaces in that path, B(v,ui) and wi are random.

The expectation of (5) with respect to the camera ray trajectory after reflection in
A(v) in the given direction u is

〈〈F (v,u)〉〉 = LA(v)(u) (6)

where LX(u) is the luminance of the whole scene seen from X in direction u.
The expectation of the pixel luminance, i.e the average of (1) over both FMCRT and

BMCRT sets can then be written as

〈〈L〉〉 =

ˆ
fA(v)(v,u;nA(v))(u · nA(v))LA(v)(u)Θ((u · nA(v)))d

2u (7)

4 IMAGE-BASED FILTER

The first of the suggested methods processes the noisy image after completion of ray
tracing.

The main idea behind it is the usage of the “pivot” image obtained by a deterministic
ray tracing under a unit ambient illumination. The original noisy image is firstly divided
by that pivot and then this ratio (usually it is a smooth large-scale function unless noise)
is processed by a usual filter like bilateral. After multiplying the result back by the pivot
image one obtains the denoised image which retains the fine structure.

This filter can be applied for both direct and caustic illumination as well, but is most
advantageous for the diffuse (secondary) illumination.

4.1 What to filter: “pseudo-brightness”

Let dependence of the BDF on space point be just its modulation by single texture t.
In this case (7) reduces to
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〈〈L〉〉 = tA(v)

ˆ
f(v,u;nA(v))(u · nA(v))LA(v)(u)Θ((u · nA(v)))d

2u (8)

In the image part which does not contain boundaries of the scene objects, small-scale
components of luminance are caused by either texture, or variation of normal (relief), or
caustic illumination.

Frequently the reason is texture, so (8) is a product of a deterministic modulator t
and a slowly changing integral.

While ray tracing we get the hit point A(v) and thus can obtain the texture value in
it. Dividing the (noisy) image by it we get a noisy estimate of a slowly changing field´
f(v,u;nA(v))(u · nA(v))LA(v)(u)Θ((u · nA(v)))d

2u, which thus admits efficient filtering
with a “conventional” image filter, e.g. bilateral. Back multiplying the result by the
texture one gets the denoised image which retains the small-scale details.

This algorithm is computationally inexpensive as compared to that described in Sec-
tion 5 concerning both memory and time. It has, however, stronger limitations: does not
work with multiple textures or surface relief, see Section 7.

There is a slight modification that does not require extension of tracer to retrieve
texture. In some cases it provides better results, e.g. for multiple textures (when the
surface BDF is a sum of several ones, each modulated with own texture), although formally
this is not supported.

Instead of texture it uses the so-called “pivot” image calculated with a deterministic
method for a uniform ambient illumination. Pixel luminance under this illumination is

La = tA(v)

ˆ
f(v,u;nA(v))(u · nA(v))Θ((u · nA(v)))d

2u (9)

Usually both this and the “main” image have the same small-scale structure, the
difference being rather slowly varying brightness (due to different illumination), see Figure
1. That is, the ratio

z =
L

La

is a noisy function with slowly changing expectation. Indeed, if the fast variation of
luminance is due to texture, then the integrals in both (8) and (9) are smooth fields, the
more so being their ratio 〈〈z〉〉. The field z is termed “pseudo-brightness”.

After filtering this z with a “usual” image filter (e.g. bilateral) and back multiplying
the result by La one obtains the denoised image which retains the small-scale texture
details.

Steep changes of 〈〈z〉〉 which would result in image distortion are possible in case of

� large gradients of illumination, e.g. in highlight spots, caustics, boundaries of shad-
ows or near light sources. In most cases, though, the secondary illumination varies
slowly and the above effects are not fatal for filtering;

� fast variations of the normal field, e.g. for surface relief.

83



S. V. Ershov, D. D. Zhdanov, A.G. Voloboy, V.A. Galaktionov 

 

 
 

Figure 1: The effect of illumination. The left image was calculated with bi-directional ray tracing for 
the real illumination. The right image was calculated by a deterministic rendering assuming unit 
ambient illumination. 

84



S. V. Ershov, D. D. Zhdanov, A.G. Voloboy, V.A. Galaktionov

Figure 2: Filtering area and its 4 quadrants.

A natural remedy against the above is to exclude pixels where 〈〈z〉〉 is not smooth enough.
For example, use only areas where it admits a local linear or parabolic fitting. The
difficulty is that we do not have 〈〈z〉〉 but only z where it is difficult to distinguish between
the noise and large gradients.

4.2 Local approximation to z(x, y)

Filtering of a noisy function over the area R(x0, y0) around the target pixel (x0, y0)
can be formulated as construction of a smooth approximation in that area so that its
value at (x0, y0) gives the filtered function.

In our case the filtering area is always a square R(x0, y0) with centre at (x0, y0), see
Figure 2. How the size of the square is chosen is described in Section 4.3.

For both the whole square and its 4 quadrants we calculate the best-fit plane Z =
ax+ by + c: ∑

x,y

wa(x, y)(ax+ by + c− z(x, y))2 = min!

where (x, y) are the pixel coordinates and wa is the weight somewhat similar to that in a
bilateral filter:

wa(x, y) ≡ exp

(
−k |z(x, y)− 〈z〉(x, y)|

〈z〉(x, y)
− σ(x, y)− (x− x0)2 + (y − y0)2

R(x0, y0)

)
(10)

〈z〉(x, y) ≡ 1

N

∑
x,y

z(x, y)

Here R(x0, y0) is the “radius” of filter, i.e the size of the square, σ(x, y) is the estimated
variance of the value to fit. The above fitting includes only the “good” pixels i.e. those
where the noise σ(x, y) is below the allowed threshold.
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The best fit plane for the whole square is denoted Z(x, y), while Zm(x, y) is the one
for the m-th quadrant.

The final approximation to z(x, y) is then defined as

z(x0,y0;x, y) =
Z(x, y) + wmZm(x, y)

1 + wm

(11)

where m is the index of the quarter which includes (x, y), and the weight wm is defined
as

wm(x0,y0;x, y) = max

(
Z(x, y)

Zm(x, y)
,
Zm(x, y)

Z(x, y)

)8

(12)

4.3 Choosing radius of filter

The search for the optimal size of the square begins with 5 × 5 pixels, increasing it
until one of the stop criterion is satisfied:

� The size achieved is sufficient to reduce noise below the target value.

� The size reached allowed maximum.

� Too strong variation of luminance over the area, e.g. the area includes shadow
boundary. This criterion means that the difference between Z(x0, y0) and four
Zm(x0, y0) defined in Section 4.2 exceeds allowed maximum.

If none of the above criteria is satisfied we increase the size by one pixel and check again.
It should be noted that strong variation of normal and discontinuities in the projection

of the visible scene geometry are not stop criteria. Instead the pixels where these variations
are too strong are effectively excluded from fitting.

4.4 Two stages of averaging and the filtered value

Usually the filtered value in (x0, y0) is calculated by finding the smooth fitting in the
filter area around (x0, y0) and evaluating the fitting function in (x0, y0).

We however use slightly different method. Again, we find the best-fit smooth function
(11). But then it is evaluated in all pixels in the filter area and these values are added
to the accumulated result of filtering with weight (12). Therefore, the resulting filtered
image is a weighted sum over all filter squares R(x0, y0) that include the given pixel (x, y):

ζ(x, y) =
∑

x0,y0: R(x0,y0)3(x,y)

w(x, y; x0, y0)z(x0,y0;x, y) (13)

In most cases this method allows to decrease the error of approximation. For example,
let us apply filtering to a noise-free 1D function f(x) = x2. An ideal filter should yield that
same function, but a real one slightly distorts it. The linear approximation in a cell of size
∆ has accuracy about ∆2

12
. Therefore, when calculating the value of the filtered function

in the center of cell we introduce distortion about ∆2

12
. Meanwhile if it is calculated as an

average over all cells including the target point, this value has smaller deviation from the
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Figure 3: Approximation of illumination for a saw-teeth profile. Illumination of each even face of a tooth
is approximated only from illumination of even faces (i.e. half of area) while illumination of an odd face
is approximated only from that of another odd faces.

exact x2. If the averaging weight is constant this deviation is exactly 0 and for a variable
weight it is still much less than ∆2

12
.

The above example is not a proof, but usually the approach described is really advan-
tageous and it is used to calculate the filtered image.

The weight w(x, y; x0, y0) ranges from 0 thru 1. It is defined as a product of the base
weight (12) and several additional components:

� The term due to the difference of normals:

�

wn(x, y; x0, y0) =

{
((n(x, y)·n(x0, y0))4, (n(x, y)·n(x0, y0) > 1

2

0, (n(x, y)·n(x0, y0) ≤ 1
2

This component allows to have sharp boundaries of scene objects and well approxi-
mate a saw-teeth profile like shown in Figure 3. Illumination of each even face of a
tooth is approximated only from illumination of even faces (i.e. half of area) while
illumination of an odd face is approximated only from that of another odd faces.

� The component wb for a boundary of a scene object. An example of an object
boundary as a step profile is shown in Figure 4. When approximating the point
A the domain in the bottom half has zero weight, i.e. is effectively excluded. Be
the weight unit, the step would visually disappear because illumination would be
smoothed to nearly uniform, while the luminance factor (BDF) for both halves is
the same. As a result the filtered luminance is constant across the step. Therefore
wb = 0 near projections of the boundaries of the scene objects.

� The component to not intermix different “parts”. In rendering, adjacent pixels can
be projected onto different objects, or to different parts of the same object which
have different optical properties. Besides, in scenes with specular elements, while
looking at the partially specular floor camera sees both that floor and also reflection
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Figure 4: Approximation of illumination near a boundary of a scene object.

of the rest scene in it. In this case this weight component ranges from 1 when all
visible objects and their parts in pixels (x0, y0) and (x, y) are the same to 0 when
they are different.

After processing all central pixels (x0, y0) we obtain the filtered field ζ(x, y) given by
(13). It is then back multiplied by the pivot image La

L(x, y) = La(x, y)ζ(x, y)

This is the final denoised image.

5 RAY TRACING FILTER

The second of the suggested methods is integrated into the process of bi-directional ray
tracing with the use of photon maps. It affects only the secondary (diffuse) illumination
component of the image. While formally it can also be applied to the direct and caustic
components, the gain is very limited.

The basic idea behind the method is that pixel luminance is calculated using camera
rays traced through neighbor pixels, i.e. it is somehow similar to mutations of ray paths.
The part of the path before the first diffuse hit is taken for this pixel, while the rest
part (after it) is from a neighbor pixel. The luminance is then calculated for this glued
trajectory.

5.1 Scenes where this method is most advantageous

The method is rather universal and can work with a wide class of scenes, including
those where the camera ray undergoes multiple specular scattering. However it can be
better explained for a scene like shown in Figure 5.

Camera sees the right cylinder directly. The camera ray reflects from it and then
either leaves the scene or hits the left cylinder illuminated by diffuse light and there
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Figure 5: Example scene consisting of two diffuse cylinders, camera and lights (not shown). Red rays are
from lights. Green rays are from camera. Dashed rays are those which do not contribute to the image.
In this example BDD=1.

collects illumination brought by those FMCRT rays which hit its integration circle. The
first hit point (in the right cylinder surface) collects only direct and caustic illumination
which we suppose does not reach that surface.

The noise in a scene of such type mainly arises because

� many camera rays after reflection miss the 2nd cylinder and thus do not contribute
to the image.

� the density of FMCRT hits for the left cylinder is low and thus even those camera
rays which reach it estimate illumination with too high variance.

5.2 Filter

Filter area consists of the central pixel p and the “periphery” {p′} = Fp around it.
Now let that whenever a reflected camera ray brings luminance to p, it is also applied

to all peripheral pixels in Fp incrementing their luminance.
Let its contribution to the luminance of p itself be wp←p(ui)∆Lp←p(ui) where

∆Lp←p(ui) is given by (4), the wp←p(ui) being the yet unknown “self-weight”. Let also
the contribution of that same ray to the luminance of a pixel p′ ∈ Fp be

∆Lp′←p(ui) = wp′←p(ui)Cp′←p(ui)∆Lp←p(ui)

where

Cp′←p(u) =
fA(v′)(v

′,u;nA(v′))(u · nA(v′))

fA(v)(v,u;nA(v))(u · nA(v))
Θ((u · nA(v′))) (14)

and wp′←p(ui) is an “inter-pixel” weight that can depend on any camera ray parameters
for these pixels, such as positions of their first hit points, the normals to the surface in
the first hit points, BDF, directions of segments of the camera ray, etc., The step function
(Θ(x) = 0 for x < 0 and 1 otherwise) ensures that only those camera rays which are above
the local horizon of p′ are used, i.e. those for which (ui · nA(v′)) ≥ 0.
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As a result, a camera ray fired through p′ increments the luminance of p by
wp←p′(u

′
i)Cp←p′(u

′
i)∆Lp′←p′(u

′
i) so its luminance accumulated after tracing of NB BMCRT

rays and NF FMCRT rays is

L̃p =

NB∑
i=1

wp←p(ui)∆Lp→p(ui)

+

NB∑
i=1

∑
p′∈Fp

wp←p′(u
′
i)Cp←p′(u

′
i)∆Lp′←p′(u

′
i)Θ((u′i · nA(v)))

In view of (4) this can be rewritten as

L̃p =

(ˆ
fA(v)(v,u;nA(v))(u · nA(v))d

2u

)
1

NB

NB∑
i=1

wp←p(ui)F (v,ui)

+

(ˆ
fA(v′)(v

′,u;nA(v′))(u · nA(v′))d
2u

)
×
∑
p′∈Fp

1

NB

NB∑
i=1

Cp←p′(u
′
i)wp←p′(u

′
i)F (v′,u′i)Θ((u′i · nA(v)))

where {u′i} and {ui} are the directions (of the 2nd segment) of camera rays fired through
p′ and p, respectively.

The FMCRT ray set is independent from our new rule of the luminance calculation.
Averaging over that set and over the trajectory of the camera ray after the first diffuse
hit in A(v), one obtains with the help of (6) that

〈L̃p〉 =

(ˆ
fA(v)(v,u;nA(v))(u · nA(v))d

2u

)
1

NB

NB∑
i=1

wp←p(ui)LA(v)(ui)

+

(ˆ
fA(v′)(v

′,u;nA(v′))(u · nA(v′))d
2u

)
×
∑
p′∈Fp

1

NB

NB∑
i=1

wp←p′(u
′
i)Cp←p′(u

′
i)LA(v′)(u

′
i)Θ((u′i · nA(v)))

Directions {ui} and {u′i} are those of really traced rays after reflection in A(v) or
A(v′), respectively. Therefore they are distributed with density ρ(u|v,nA(v)), respectively
ρ(u′|v′,nA(v′)), given by (2). Averaging over that directions and applying (14) for swapped
pixels p↔ p′, one arrives at
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〈〈L̃p〉〉 =

ˆ
wp←p(u)fA(v)(v,u;nA(v))(u · nA(v))LA(v)(u)d2u

+
∑
p′∈Fp

ˆ
wp←p′fA(v)(v,u;nA(v))(u · nA(v))LA(v′)(u)Θ((u · nA(v)))d

2u

=

ˆ
fA(v)(v,u;nA(v))(u · nA(v))L̃A(v)(u)d2u

Comparing the last line with (7) we recognize the luminance of p under filtered illumina-
tion

L̃A(v)(u) ≡ wp←p(u)LA(v)(u) +
∑
p′∈Fp

wp←p′LA(v′)(u)Θ((u · nA(v))). (15)

If illumination of the surface of the right cylinder varies slowly, the difference between
LA(v)(u) and LA(v′)(u) can be neglected and then

〈〈L̃p〉〉 ≈
ˆ wp←p(u) +

∑
p′∈Fp

wp←p′(u)Θ((u · nA(v)))


fA(v)(v,u;nA(v))(u · nA(v))LA(v)(u)d2u

For this to match the exact value (7) it suffices that

wp←p(u) = 1−
∑
p′∈Fp

wp←p′(u)Θ((u · nA(v))) (16)

The term Θ means that for directions u that could not be emitted for p′ and thus
come only from p itself, the self-weight is 1, while for directions that could come from
another pixel, the self-weight must be reduced to avoid overestimation from summing
both contributions.

Usually, wp←p′(u) is symmetric against the two pixels and is defined so that it vanishes
when

� the distance between A(v) and A(v′) is too large

� nA(v′) is too different from nA(v)

� fA(v)(v,u;nA(v))(u·nA(v)) is too different from fA(v)(v
′,u′;nA(v′))(u

′·nA(v′)); notice
the BDFs are taken in the same space point because otherwise filtering can be
effectively disabled in case of modulation by a texture

and besides, the weight is a descending function like Gauss of a distance between the
image points p′ and p. Therefore, the weight can be defined as e.g.
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wp←p′(u) = C exp
(
−α ‖p− p′‖2

)
exp

(
−β(1− (nA(v′) · nA(v)))

)
× exp

(
−γF 2

)
(17)

F ≡ max

(
fA(v)(v

′,u′;nA(v′))(u
′ · nA(v′))

fA(v)(v,u;nA(v))(u · nA(v))
,

fA(v)(v,u;nA(v))(u · nA(v))

fA(v)(v′,u′;nA(v′))(u′ · nA(v′))

)
The constant C and two first terms are independent from the direction of scattering u

and therefore are named the “fixed part” of the weight. They can be calculated in advance
and kept. The last term is the “variable part” which can decrease weight depending on
the direction of the scattered ray.

The constant C < 1 is chosen so that wp←p(u) calculated from (16) should be not too
small (say, at least 0.5) even for the fixed part of weight:

C
∑
p′∈Fp

exp
(
−α ‖p− p′‖2

)
exp

(
−β(1− (nA(v′) · nA(v)))

)
<

1

2

and then wp←p(u) > 1
2

for the full weight (17).

6 RESULTS FOR THE IMAGE FILTER

Results of the filter are presented in Figures 6 and 7. The top panel shows the reference
image, the bottom left panel is the noisy image obtained with bi-directional ray tracing,
and the bottom right panel is the filtered image.

Figure 6 is for the well-known scene Cornel Box with textures on the walls. Figure 7
is for a room interior.

One can see that the noise is strongly reduced with small-scale details, textures and
boundaries of objects are not distorted.

7 RESULTS FOR THE RAY TRACING FILTER

Results of the application of this method are demonstrated for three scenes.

7.1 Plane with relief

Scene is a 2 × 2 meter square, illuminated by a point light in a matte (pure diffuse
scattering) spherical shade of radius 10 cm located 1.5 meter above the square centre.
The square surface has a random relief and a Gaussian BRDF (integral reflectance 0.9
and width 90◦), modulated by texture of three letters “ABC”.

Figure 8 shows the reference image obtained by ray tracing in 4000 seconds without
filtering, the original image (obtained by bi-directional stochastic ray tracing in 200 sec),
and the results of application of the two suggested filters to this calculation. Radius of
both filters was 30 pixels. One can see that both filters greatly reduced noise, but the
“image filter” blurred the sharp boundaries of the relief facets and overestimated the
brightness of the texture letters “ABC”.
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Figure 6: Scene Cornell Box with textures on the walls. Top to bottom: the reference image, the noisy 
image obtained with bi-directional ray tracing, the filtered image. Next to each image an enlarged 
ceiling rectangle is shown. 
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Figure 7: Scene for interior of a room with partially specular oor. Top to bottom: the reference image, 
the noisy image obtained with bi-directional ray tracing, the filtered image. Next to each image an 
enlarged ceiling rectangle is shown. 
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Figure 8: Top row: reference image, original image. Bottom row: denoising with the image filter, 
denoising with the tracing filter. 
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7.2 Double textured plane

Scene is a 5×5 meter size square, illuminated by a point light in a matte (pure diffuse
scattering) spherical shade of radius 30 cm located 1.5 meter above the square centre.
BDF of the surface is a sum of Lambert component (albedo 0.5) and Gaussian compo-
nent (integral reflectance 0.5). The Lambert component is modulated by the chessboard
texture, and the Gaussian component is modulated by the texture of periodically repeated
text “FRONT”.

Figure 9 shows the reference image obtained by ray tracing in 4000 seconds without
filtering, the original image (obtained by bi-directional stochastic ray tracing in 100 sec),
and the results of application of the two suggested filters to this calculation. Radius
of both filters was 30 pixels. One can see that both filters greatly reduced noise, but
the “image filter” produced some artifacts: first, halo around the white squares of the
chessboard and second, overestimated the contrast of text in the upper part.

7.3 Scene with specular reflections

This is a well known test scene “Cornell Box” with surface attributes changed. Now
there is 20% of mirror-like BRDF and about 60% of Gaussian BRDF of width 60◦. For
the two front boxes the diffuse BRDF is modulated by the texture of letters “ABC”.

Figure 10 shows the reference image obtained by ray tracing in 7000 seconds without
filtering, the original image (obtained by bi-directional stochastic ray tracing in 140 sec),
and the results of application of the two suggested filters to this calculation. Radius of
both filters was 40 pixels. One can see that both filters greatly reduced noise, but the
“image filter” produced more artifacts (it is more spotted).

8 PROCESSING OF SPECULAR EVENTS

In the initial formulation of our methods we assumed that there are no specular events
in the camera ray path before the first diffuse hit. However frequently this is not so, e.g.
when we look through a window glass or see reflections in a glossy floor. In this case
the camera ray hits a specular surface where it can reflect or refract and then travels to
different paths. The reflected or refracted rays may in turn hit a specular surface and
reflect/refract there and so on.

Both our methods take this effect into account in a similar way.
In stochastic ray tracing we choose reflection or refraction event at random and then

continue this one ray. In deterministic rendering used to obtain the “pivot” image both
reflected and refracted rays are traced further. Then each of them can be later split in
two on the next specular surface. As a result instead of a single path we have a tree. The
number of rays grows exponentially so we limit the number of specular events processed.

It is possible that a surface can have a mixture of specular and diffuse properties as
it is for a lacquered table. In this case the luminance of a pixel is a sum over all specular
paths plus the “own” luminance of the diffuse part.

Similarly the “exact” image which differs from the pivot in illumination is a sum over
all specular paths. Each type of specular path (e.g. “reflection–transmission–reflection–
reflection”) yields a “partial” image. The same is true for the pivot image.
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Figure 9: Top row: reference image, original image. Bottom row: denoising with the image filter, 
denoising with the tracing filter. 
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Figure 10: Top row: reference image, original image. Bottom row: denoising with the image filter, 
denoising with the tracing filter. Shown is only the image component related to diffuse (secondary) 
illumination. 
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Each deterministic “partial image” has its counterpart as the stochastic partial image;
they have the same camera ray path before the first hit. But since the “exact” image is
an infinite sum, there is also the “remainder” which is caused by specular paths whose
length is beyond the limit allowed for the deterministic rendering.

Denoising methods from Sections 4 or 5 are then applied to each “partial image”
independently and successively. Obviously only a finite number of them can be processed;
the rest are left unfiltered. This does not have a strong effect because since the infinite
sum converges, the remainder is small.

Therefore both BMCRT and deterministic rendering keep the partial images instead
of summing them on the fly as usual.

The final result is the sum of the filtered partial images and the unfiltered remainder.

9 CONCLUSION

As shown above, both filters well denoise images obtained by bi-directional Monte
Carlo ray tracing while preserving fine details. So they allow to reduce the time needed
to compute image of the same quality by an order of magnitude.

The image-based filter has more limitations and can produce artifacts in case of mul-
tiple textures or surfaces with relief. But for most of “usual” scenes it works good while
requires a few extra resources (time and memory). It can be turned on any time when
needed.

The ray-tracing filter is more universal and can process correctly those scenes where the
image-based filter produces artifacts. But it is more computationally expensive; besides,
it must be turned on in the beginning of ray tracing and can not be turned on in arbitrary
moment later.
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