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Summary. INMOST is a software platform for the development of parallel numerical models 

on general polyhedral grids. In this paper we present the INMOST platform as the powerful 

tool for numerical modelling. The place of INMOST platform among other modern 

widespread libraries and numerical modelling packages is shown. A brief overview of tools 

that help in implementation of each stage of mathematical modelling is presented. Examples 

of INMOST application demonstrate appealing features of INMOST-based numerical 

modelling. 
 

1 INTRODUCTION 

The amount of software for unstructured mesh generation, numerical modelling and 

graphic visualization is huge. Along with the development of modern parallel computer 

systems, there is a need to use parallel algorithms with distributed mesh data. All these 

applications undoubtedly have a common set of needs for representing and manipulating 

distributed unstructured meshes. However, a large number of mesh representations are in use 

in the computational community each tailored to a specific application. Therefore, to gain 

widespread acceptance it is important to have a full mesh framework which allows 

applications to operate with all types of mesh data including the general polyhedral grids. At 

the same time, the infrastructure should be lightweight and efficient to have sufficient utilities 

for real-world numerical modelling applications. In addition, such an infrastructure should 

provide an opportunity for convenient assembling of systems of linear and nonlinear 

equations, their solving, as well as analysis and visualization of obtained solutions. 

INMOST is a software platform for the development of parallel numerical models on 

general polyhedral grids [1, 2, 7, 9]. In this paper we present the INMOST platform as the 

powerful tool for numerical modelling. The examples of INMOST application demonstrate 

appealing features of INMOST-based numerical modelling. 

In fact, the INMOST software platform does not include ready-made numerical models or 

even ready-made discretization schemes (such as finite volumes and finite elements). 

INMOST is just a software “platform” on the basis of which scientific researchers or 

developers of industrial codes can build their general-purpose grids distributed across 

processors, apply their discretization schemes and perform calculations for their numerical 

models. The presented examples of INMOST application demonstrate appealing features of 

INMOST-based numerical modelling. However, in view of the above reasoning, in this paper 

there is no direct comparison with the results of calculations using other packages. 
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It is worth noting that at present there is a development (see, for example, [6]) presenting 

the extension of parallel platform INMOST using the Ani3D package [16], which allows the 

construction of adapted tetrahedral meshes along with the use of a large number of finite 

element discretizations (see INMOST Ani_Inmost examples [6]). 

The present paper is organized as follows. Section 2 contains a brief description of 

INMOST platform functionality and shows the place of INMOST among other modern 

widespread libraries and numerical modelling packages. A detailed review of specific 

approaches to construction of numerical models is given in Section 3. In Section 4 we present 

several INMOST-based numerical models and their computational performance. The 

conclusion summarize the research. 

 

2 INMOST SOFTWARE PLATFORM 

 The main purpose of INMOST platform is to provide to the user all the necessary tools for 

development and exploration of various numerical models. This involves wide functionality,  

i.e. operations for general distributed mesh data, convenient interface for assembling and 

solving systems of nonlinear and linear equations, with built-in or plugged-in linear algebra 

packages. INMOST software platform was developed to meet the following criteria: 

 wide functionality; 

 efficiency; 

 reliability; 

 universality; 

 ease of use; 

 portability; 

 open source code. 

At present, it is very difficult to find software packages that satisfy all of the above 

requirements. There are many alternative solutions, such as the FMDB library (Flexible 

distributed Mesh DataBase) [36], the MOAB library (Mesh-Oriented datABase) [37], the 

MSTK library (MeSh ToolKit) [38], the STK library (Sierra ToolKit) [39], Salome package 

[40], OpenFOAM package (Open Source Field Operation And Manipulation CFD ToolBox) 

[41] and others that do not fully meet the stated criteria. Existing solutions do not always have 

easy portability between different platforms (Windows, Linux), existing implementations are 

not always reliable, it is impossible (in some packages) or difficult to implement user's 

discretization schemes. However most of publicly available packages are the best choice for 

the solution of a particular problem. For instance, packages ParMETIS [42] and Zoltan [43] 

distribute and redistribute a general mesh and graph data across processors, while libraries 

PETSc [21] and Trilinos [22] solve distributed systems of linear equations. 

These considerations motivated a group from INM RAS to develop a comprehensive set of 

software tools that provides the necessary functional capabilities and allow the use of 

ParMETIS, Zoltan, PETSc, and Trilinos packages. These tools form the INMOST (Integrated 

Numerical Modelling and Object-oriented Supercomputing Technologies) software 

platform [9]. 

The main modules of the platform are: 

 mesh operations module (INMOST Mesh); 

 mesh data balancing module (INMOST Partitioner); 
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 automatic differentiation module (INMOST Automatizator); 

 module for assembling and solving linear systems (INMOST Solver). 

In the near future, visualization (INMOST DrawGrid) and parameter optimization tools 

(INMOST TTSP (Tool for Tuning Solver Parameters), INMOST OptimizerSolve example) 

will also be added as separate modules. 

The main objective of INMOST is to support data structure and distributed mesh 

operations (INMOST Mesh) demanded by grid generators and numerical implementations of 

physical models. Consistent computational grids may contain cells with arbitrary numbers of 

faces, each face may be formed by an arbitrary number of edges. Thus, INMOST supports 

polyhedral cells of arbitrary configuration. 

The grid balancing module (INMOST Partitioner) is responsible for automatic and 

efficient distribution of a computational grid among processors. External ParMETIS and 

Zoltan partitioners can be exploited as well as internal parallel paritioner based on K-means 

clustering. Upon grid distribution, the user can determine ghost cells along the interfaces of 

mesh subdomains where data of neighboring processors are synchronized. The number of 

layers of ghost cells is defined by the user who can also assign ghost cells explicitly. The last 

option is useful for complex discretization stencils. Importantly, the MPI exchange library is 

hidden from the user and compilation of the sequential single-processor version of INMOST 

is easy. 

The automatic differentiation module (INMOST Automatizator) is developed to help in 

implementation of nonlinear numerical models, automatic generation and assembling of 

Jacobian matrices and nonlinear residuals appearing in Newton type linearizations. This 

module simplifies discretizations of new mathematical models. 

The module (INMOST Solver) for assembling and solving systems of linear equations has 

the following appealing features: 

 convenient and efficient assembling of a linear system matrix via addressing by the 

global row and column indices (INMOST MatSolve example); 

 variety of built-in linear solvers based on threshould incomplete triangular 

factorizations as well as linear solvers from external packages, such as PETSc and 

Trilinos; 

 the user can switch between linear solvers independently of the matrix assembling 

procedure. 

 

3 NUMERICAL MODELLING STAGES AND ASSOCIATED TECHNOLOGIES 

Numerical modelling is used both in academic and industrial purposes. The design of a 

numerical model consists of the following stages: 

 Physical model; 

 Mathematical model; 

 Discretization; 

 Solution methods; 

 Computer program; 

 Post-processing and analysis of the results. 

Physical model. Understanding of underlying physical phenomena is crucial: advection, 

diffusion, reaction or decay processes; heat or density transfer; elasticity or rheology effects, 
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etc. Chosen physics implies a list of primary physical quantities to be measured and/or 

simulated: pressure, velocity, concentration, temperature, probabilities, etc. 

Mathematical model is represented by a system of differential or integral equations 

describing the chosen phenomena and involving the chosen physical quantities. Often, 

formulation of boundary and initial conditions is required. Apart of problem formulation, 

analysis of solution existence and uniqueness is important. In some cases the analysis is not 

available though this does not inhibit the numerical solution.  

Mathematical description involves governing equations and domain geometry. For 

academic models in parallelepipedal domains it is sufficient to specify the length-width-

height parameters only. In more realistic cases the domain geometry can be presented as a set 

of unions or intersections of primitives: spheres, cylinders, cones, half spaces, parallelepipeds, 

etc. The most complex geometries for industrial applications can be constructed with one of 

the following tools: AutoCAD [10], 3DS Max [11], Sketchup [12], OpenCascade [13], etc. 

Discretization of a mathematical model includes discretization of the domain and the 

equations. Discretization of the domain implies generation of a computational mesh. A priori 

or runtime local mesh refinement near solution gradients crucially affects the solution 

accuracy. Accurate approximation of domain boundaries is also important. A lot of mesh 

generation and refinement tools (commercial or open source) are available: Tetgen [14], 

GMSH [15], ANI3D [16], INMOST OctreeCutcell [9], etc.  

The type of the computational grid correlates with the method for discretization of 

differential equations: finite differences (FD) imply structured grids, finite elements (FE) 

imply tetrahedral or hexahedral meshes, while finite volumes (FV) fit to general polyhedral 

meshes.  

Discretization results in a system of linear or nonlinear algebraic equations. The total 

number of equations is proportional to the number of mesh elements (cells, faces, edges, 

nodes) and ranges from thousands to billions. 

Solution methods. For the solution of systems of nonlinear algebraic equations, the 

following approaches can be used: Newton method, Picard method, line search method, trust 

interval method and others. Examples of nonlinear solver packages are: SUNDIALS [17], 

Trilinos NOX [18]. Automatic differentiation capabilities of INMOST allow for easy 

assembly and solution of the nonlinear system with the Newton method.  

The solution of a nonlinear system is based on its linearization which results in a large 

system of sparse linear equations. For solution of the system the following methods are 

applicable: direct factorization, Krylov's iterative methods with different preconditioners such 

as incomplete factorization, algebraic multigrid methods, domain decomposition methods, 

etc. A variety of advanced software packages can be used for this purpose: SuperLU [19], 

MUMPS [20], PETSc [21], Trilinos [22], Hypre [23], ILUPACK [24], INMOST Solve [9], 

etc. 

Computer program. To design the computer program and connect the required software 

packages, one exploits computer languages C, C++, Fortran, Python, etc. To utilize 

parallelism of modern computers including various accelerators, one may use computer 

libraries and languages: OpenMP [25], MPI [26], OpenCL [27], CUDA [28], etc. In some 

cases the number of computer languages within a numerical model may reach 4 or 5. 

For computer program debugging the following tools are available: gdb [29], valgrind [30], 

drmemory [31], etc.  

Post-processing and analysis of results. Computation of required metrics, plotting of 
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graphs and diagrams, generation of pictures and videos facilitate analysis of the computed 

results. Useful visualization tools are ParaView [32], VisIt [33], General Mesh Viewer [34], 

gnuplot [35], INMOST DrawGrid [9], etc. 

 

4 INMOST-BASED NUMERICAL MODELS 

In this section we review several applications of INMOST platform in numerical 

modelling. 

4.1 Incompressible fluid flow 

We first consider the incompressible fluid flow. The problem is described by the Navier–

Stokes equations: 
 

 

 

div

div 0.

Tρ + ρ μ + p = ,
t

=


 



u
uu u I 0

u
 (1) 

Here u={u,v,w}
T
 is the unknown fluid flow velocity, p is the unknown pressure, ρ  is the 

constant density and μ  is the dynamic viscosity. The system of Navier–Stokes equations is 

augmented by the boundary conditions. On the boundary we can impose no-slip or slip 

condition, Maxwell–Navier friction, do-nothing condition, condition for the normal stress 

(fixed pressure).  

  

 

Figure 1. FV solutions: flow over the backward step (top-left), flow in the lid-driven cavity (top-right), 

flow in a channel with obstacles (bottom). 

 

Figure 2. Decomposition of a computational domain for 92 processors 

79



I.N. Konshin, K.M. Terekhov, and Yu.V. Vassilevski 

Both the momentum and the continuity equations are discretized by the finite volume 

method. The unknowns are collocated at the cell centers. To avoid checkerboard patterns in 

the discrete pressure due to the Ladyzhenskaya–Babushka–Brezzi instability, we stabilize the 

discretization by eigen-splitting of the part of the flux that corresponds to the pressure and the 

incompressibility condition, by analogy with the approach [44]. The FV system is nonlinear 

due to the convective term and the numerical scheme is stable even for large time steps. 

In Figure 1 (top row of pictures) visualization of the flow for the solutions to two 

benchmark problems are shown: the steady flow over the backward step and the steady flow 

in the lid-driven cavity. In the bottom picture of Figure 1 we present the unsteady flow in a 

channel with cylindrical obstacles in the case of high Reynolds number (Re~1000). Figure 1 

demonstrates physically adequate absolute velocity solution for a relatively small number of 

cells using finite volume discretization scheme. The presented examples make the full use of 

the INMOST programming platform, i.e. they exploit the general mesh data structure, the 

sparse matrix structure and automatic differentiation for the Jacobian system assembly and 

built-in sparse parallel linear solvers. Thanks to INMOST the flow model may be run in 

parallel. Decomposition of a computational mesh in a channel for 92 processors is 

demonstrated in Figure 2. The solution times of steady Pousielle flow problem for 36 and 92 

MPI processes were 2.51 and 1.25 seconds, respectively, which implies feasible parallel 

efficiency. 

The presented incompressible fluid flow model was complemented with the blood 

coagulation model [7] using INMOST multiphysics extension. This extension is currently 

under active development. It allows to couple the flow model with a reaction-advection-

diffusion model triggering coagulation into a joint nonlinear system which is solved on each 

time step. 

4.2 Free surface fluid flow 

We solve numerically the problem of fluid flow with a free surface on dynamically adapted 

octree grids. The problem is guided by the coupled solution of the system of incompressible 

Navier–Stokes equations and the level set equation: 

 

 

 

div

div 0,

div 0,

| | 1,

Tρ + ρ μ + p = ρg z,
t

=

φ
+ φ =

t

φ =


  









u
uu u I

u

u

 (2) 

where u={u,v,w}
T
 and p are unknown velocity and pressure, ρ  is the density, μ  is the 

dynamic viscosity, g  is the gravitational constant. In this problem the velocity is staggered on 

cell faces and the pressure is collocated at cell centers. The Navier–Stokes equations are 

augmented with the boundary conditions listed in Section 4.1. The unknown level-set 

function φ , satisfying the Neumann boundary condition, is passively advected with fluid and 

reinitialized by the solution of the Eikonal equation. The level-set function is prescribed at 

mesh nodes, its sign separates the domain into two parts: the fluid domain and the empty 

domain, see Figure 3 (left). The boundary condition at the interface accounts the surface 
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tension:  

 
.

2

T
+

μ + p = σκ
 


u u

n n n  (3) 

Here σ  is the surface tension coefficient, κ  is the surface curvature computed from the level-

set function, n is the surface normal. More implementation details can be found in [45] and 

references therein. Figure 3 (right) shows the surface tension induced water crown as a splash 

from falling drops into a pool filled with the fluid.  

Currently, the numerical model relies on the sparse matrix structure, automatic 

differentiation and linear solvers from INMOST tackling the diffusion problem and pressure 

projection problem. However, the octree mesh data structure of the model is not based on 

INMOST tools limiting parallelization of the model to OpenMP technology. The parallel 

general mesh adaptivity functionality is already developed [8, 46], and the transition of the 

code to the INMOST mesh data structure is underway. 

  

Figure 3. Computational domain (left) and the computed water crown (right) 

4.3 Oil and gas modelling 

The flow of the mixture of fluids subject to the Darcy law is used for simulation of primary 

or secondary oil and gas recovery from a heterogeneous anisotropic fractured reservoir. The 

black oil model equations for unknown pressure and saturations are [50]: 

  

  

 
  

  

div
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w w
w w w
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t

ρ θ RS +S
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t

λ p Pc ρ g z = q


   




    




    



    

K

K

K

K

 (4) 

Here K is the permeability of the rock, R is the gas solubility, θ  is the porosity, ρ  is the 

density dependent on pressure, /rλ= ρk μ are phase mobilities dependent on pressure and 

saturations for water, oil and gas, q are sources and sinks representing the wells guided by the 
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Peaceman formula [49]. The no-flow boundary condition is imposed on all the boundaries. 

Various FV discretization methods for the Darcy problem may be used for the numerical 

solution of system (4) [51]. In Figure 4 (left) we present an example of water saturation field 

in a reservoir with complex geology defined through a general mesh adapted to geological 

structures. In Figure 4 (right) we demonstrate water saturation in a network of fractures. 

  

Figure 4. Water saturation field and general mesh in a reservoir (left); water saturation in a fracture 

network (right) 

The numerical model uses the mesh data structure, sparse matrix structure, automatic 

differentiation and linear solvers from INMOST. 

4.4 Mechanics of deformable bodies 

The model describes the elastic deformation of bodies from heterogeneous anisotropic 

material. The model is given by the elasticity equations :( ( ) ) / 2Tσ = + , C u u  div( ) 0.σ =  

Here u={u,v,w}
T
 is the displacement field, σ  is the 3x3 stress tensor, C is the 4-th rank 

material stiffness tensor, “:” is the contraction operator. The system is augmented by Diriclet, 

Neumann or roller type boundary conditions. 

   

Figure 5. Stress components under load (left), stress magnitude under twisting (middle), and 

bending (right) 

The numerical implementation is based on the FV method described in [47]. Figure 5 

demonstrates the application of the model to benchmark problems: three components of stress 

in perforated infinite strip under load (left), magnitude of stress in a beam under twisting 

(middle) and bending (right) on structured and unstructured grids. 
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The numerical model uses the mesh data strucutre, sparse matrix structure, automatic 

differentiation and linear solvers from INMOST. 

4.5 Poromechanics 

The last example describes a solid body saturated with the fluid. The model is used for 

analysis of land subsidence and Earth fissuring due to water pumping into or out of the 

ground, as well as bed failure under constructions. It couples the solid mechanics problem 

(Section 4.4) with the fluid filtration problem guided by the Darcy problem (Section 4.3), the 

interaction between solid and fluid being described by Biot coupling terms [52]. For the 

single phase flow with unknowns u, v, w, and p it reads as: 

 

 

1
div

div : .
2

T

p
p ρg z = q,

M t t

+
p = ρg z

  
     

  

  
   

 
 

u
K B

u u
S B

 (5) 

Here p is the fluid pressure, u={u,v,w}
T
 is the displacement of solid, S is the material 

compliance tensor, inverse of the stiffness tensor, ρ  is the density, B is the Biot coefficient 

tensor, M is the Biot modulus, 1/M is the specific storage coefficient. The boundary 

conditions are similar to those discussed in Sections 4.3 and 4.4. 

 

Figure 6. Computational mesh and the pressure field for poromechanics problem 

Figure 6 demonstrates the pressure field for the poromechanics problem due to oil recovery 

from the Norne oil field, the elastic properties are synthetic. The grid is unstructured with 

faults, the system (5) is discretized by the FV method [48]. 

The numerical model uses the mesh data structure, sparse matrix structure, automatic 

differentiation and linear solvers from INMOST. 
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CONCLUSION 

The present paper presents the INMOST platform as a powerful tool for numerical 

modelling. INMOST provide a wide functionality of operations for general distributed mesh 

data, convenient interface for assembling and solving systems of linear and nonlinear 

equations, as well as analysis and visualization of obtained solutions. The description of the 

most important modules of INMOST is given. An overview of numerical modelling stages 

along with the tools that help in their implementation is presented. The place of INMOST 

platform among other modern widespread libraries and numerical modelling packages is 

shown.  

For a specific application in numerical modeling, it may turn out to be the most optimal 

choice of a special grid generator, as well as the sampling method for this type of grid. This is 

the main reason that these modules are not included in the INMOST software platform. For 

the same reason, it is difficult to make a full comparison of INMOST with other popular 

numerical modelling packages, which mainly use the simplest semi-regular types of grids, 

allowing the direct use of certain types of discretization, for example, two-point finite-volume 

ones. Conversely, INMOST software platform focuses on support for operation with general 

type grids. Despite this, the presented examples of INMOST application demonstrate 

appealing features of INMOST-based numerical modelling. Especially, this includes a wide 

range of its application for solving problems from gas hydrodynamics and problems with a 

free surface to problems of mechanics of a solid and deformable bodies, as well as problems 

of subsurface flow, including problems of poromechanics. 
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