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Summary. This work is devoted to the application of a generalized computational 

experiment for a comparative assessment of numerical methods accuracy. A generalized 

computational experiment allows one to obtain a numerical solution for a class of problems 

determined by the ranges of defining parameters variation. The applications of such approach 

in the presence of a reference solution and in its absence are discussed. An example of error 

surfaces constructing is given when the solvers of  the OpenFOAM software package are 

compared. The classic inviscid problem of oblique shock wave is used as a basic task. 

Variations of the key parameters of the problem — the Mach number and angle of attack — 

are considered. In addition to the OpenFOAM solvers, the comparison included the WW 

method, which has a second order of accuracy in time and space and an adjustable artificial 

viscosity. The problem of flow around a cone at an angle of attack with varying Mach 

number, cone angle and angle of attack is also considered. The concept of an error index is 

introduced as an integral characteristic of deviations from the exact solution for each solver. 

1 INTRODUCTION 

Throughout the history of the development of computational mathematics and 

mathematical modeling, problems of verification of numerical methods have occupied a 

special place. When creating a new numerical method or modifying an existing one, the 

authors had to show the efficiency of their developments and evaluate their accuracy before 

proceeding with solving practical problems. A huge number of works are devoted to these 

studies. As an example, we can point to the works [1-12]. Verification of the obtained results 

and assessment of the accuracy of the applied numerical method was an obligatory part of 

research in the field of mathematical modeling of physical processes. 

As a rule, a comparison of the numerical results was carried out with some reference 

solution, in the role of which the exact solution was used if available or the available 

experimental data. A separate problem is the estimation of the accuracy of numerical methods 

in the absence of a reference solution. 

The relevance of the problems of verification of numerical methods and calculations based 

on them is also evidenced by the presence of federal standards, both foreign [13,14] and 

recently appeared Russian [15]. Such standards determine the direction of research in this 

area. However, all these methodological documents are focused on verification in relation to a 

specific task with fixed values of key parameters. 
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It should be noted that at present the relevance of verification problems is steadily 

increasing due to the widespread use of open and commercial packages for solving various 

problems of mathematical modeling. As a rule, such packages provide the user with a certain 

set of numerical methods presented in the form of solvers integrated into the software 

package. In this case, the user is faced with the problem of choosing a solver. And here a 

number of difficulties arise. Not all solvers undergo comprehensive testing before being 

implemented into a software package. Commercial packages do not provide complete open 

information about the implemented numerical methods and their properties. Various 

development teams can add solvers to open source packages, but they often cannot provide 

full testing. Therefore, research in the field of verification and comparative evaluation of 

numerical methods is becoming more and more necessary. 

Historically, verification in problems of computational aerogasdynamics consisted of two 

parts. The first is modeling a qualitative flow pattern containing discontinuities, separated 

flows, vortices, etc. The second is to ensure the accuracy of the calculation of quantitative 

characteristics. Here it was necessary to rely on a reference solution - experimental, accurate, 

or obtained by calculations using other methods. 

Verification was usually carried out for one separate task. By default, it was assumed that 

with a small variation in the governing parameters of the problem (velocity, viscosity, time 

scales, thermophysical characteristics of the medium, geometric parameters), the numerical 

method under consideration will be applicable and provide a similar accuracy. 

At the present stage, researchers need more comprehensive estimates of the accuracy of 

numerical methods. For example, the researchers need to have an assessment of accuracy, not 

for a single task, but for a class of tasks. By a class of tasks we mean a basic task considered 

in the ranges of change in the set of key parameters. In computational aerodynamics   

characteristic numbers that determine flow velocity, viscosity, thermophysical properties of 

the medium, geometric parameters, etc., can serve as such parameters.  An opportunity of 

getting solution for a class of problems is provided by the construction of a generalized 

computational experiment. Also, a generalized computational experiment can be very useful 

in assessing the accuracy in the absence of a reference solution. In this case, it is possible to 

estimate the accuracy using an ensemble of solutions obtained by various numerical methods. 

The variation of the solver is considered as a parameter and the parametric problem is solved 

using a generalized computational experiment. 

The concept, basic methods and approaches of a generalized computational experiment, as 

well as a number of software tools for its implementation were developed in Keldysh Institute 

of Applied Mathematics RAS. The main aspects of constructing a generalized computational 

experiment and examples of its implementation are described in detail in [16–23, 28-30]. 

2 GENERALIZED COMPUTATIONAL EXPERIMENT 

The emergence of the concept of a generalized computing experiment is associated with 

the development of high-performance computing clusters and parallel technologies. In 

problems of computational aerodynamics, parallel technologies usually provide the ability to 

quickly calculate on detailed grids. However, parallel technologies provide us with another 

important opportunity. This is the ability to simultaneously calculate on different nodes the 

same task with different input data. As a rule, such a calculation is performed in multitasking 

mode. 
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This opens up the possibility of implementing a generalized computational experiment. 

The key parameters of the problem under consideration are divided in certain ranges with a 

certain step, forming a grid partition of a multidimensional box in a multidimensional space 

of key parameters. The basic problem is solved using parallel technologies at each point of the 

grid partition. The obtained results represent multidimensional data volumes. Processing, 

analysis and visual presentation of this data is carried out using methods of visual analytics 

and scientific visualization. This computing technology is the most general description of a 

generalized computing experiment. 

Obviously, such a concept can be applied to a wide range of tasks. This range includes 

parametric studies, optimization problems. A generalized computational experiment is an 

effective tool for solving inverse problems. 

A large number of different applications of a generalized computational experiment are 

described in detail in [16-23, 28-30]. The concept of a generalized computational experiment 

was applied to a wide range of both model and practical problems. 

These tasks include the analysis of the interaction of a viscous supersonic flow with a jet 

barrier, the flows in the wake of the body, the problems of the interaction of jets, the problem 

of flowing around a cone at an angle of attack, the problem of oblique shock waves, and many 

others. The approach to constructing a generalized computational experiment was applied to 

the problem of finding the optimal three-dimensional shape of the blades assembly for a 

power plant in terms of power loads.  

Also, this approach was applied to the problems of verification of numerical methods. A 

comprehensive comparative analysis of a number of solvers of the OpenFOAM open software 

package [24] was carried out in [20-23, 29, 30]. As basic tasks, we used problems that have a 

reference solution (exact solution or experimental data). These tasks include the problem of a 

supersonic inviscid flow around a cone at an angle of attack and the problem of an oblique 

shock wave formation. In both cases, a class of problems was considered, formed by key 

parameters variations of the problem in question.  

3 THE APPROACH OF ACCURACY ESTIMATION ON THE ENSEMBLE OF 

SOLUTIONS  

The estimation of the accuracy of numerical methods in the absence of a reference solution 

is a separate problem.  

Undoubtedly, at present, the understanding of the need to estimate the calculation error is 

present in the field of CFD and is even formulated as standards [13-15]. However, the 

methods proposed there are based mainly on the convergence of the solution over the grid 

(according to [2], this approach goes back to C. Runge) and on Richardson's extrapolation. 

Both of these approaches are based on the asymptotic behavior of the lowest (in the expansion 

in terms of the grid step) term of the approximation error and, accordingly, do not provide 

strict inequalities in the error estimation. For convergence “by adhesion” (Runge), the 

difference of two solutions (on coarse and fine meshes) is used as an estimate of the error. In 

Richardson's method, this difference between the solutions is refined using a coefficient that 

depends on the order of approximation. An additional problem in the field of CFD, which 

complicates the application of the Richardson method, is the space-variable order of 

convergence of different algorithms. In particular, on the shock wave for schemes of any 

approximation order, the convergence order demonstrates values around unity. To take this 
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effect into account, the generalized Richardson method is used, which allows one to estimate 

the local order of convergence. Unfortunately, this method is significantly unstable and 

requires at least four successive mesh refinements, which creates huge computational 

problems. 

One of the alternatives in this case is the estimation of accuracy on the ensemble of 

solutions. The ensemble of solutions obtained by various numerical methods on the same grid 

allows us to estimate the location of the exact solution and to divide the obtained numerical 

solutions into clusters of different levels of accuracy. This direction is being actively 

developed at present and is presented in [25-27]. A natural drawback of this approach is the 

need for researcher to have at his disposal a certain number of solvers that implement 

numerical methods with different computational properties. 

In general, a fairly large volume of numerical experiments [25-27] confirms the possibility 

of estimating the approximation error on an ensemble of independent numerical calculations, 

which cannot but arouse interest in the analysis of this approach. It seems likely that the 

transition from a single numerical solution to an ensemble of independent solutions opens up 

opportunities for the implementation of non-standard concepts of a numerical solution.  These 

topics need deeper analysis and development. However, if successful, one can hope for the 

creation of computationally efficient algorithms that ensure the verification of numerical 

solutions even in the absence of reference solutions. An important role in this can be played 

by the construction of a generalized computational experiment, where the parameter is the 

choice of the solver, and the numerical solution is implemented in parallel mode 

simultaneously for the solvers participating in the calculation. In this case, in the presence of a 

certain number of independent solvers providing an ensemble of solutions, the construction of 

a generalized computational experiment can dramatically speed up the estimate. 

 

4 COMPARATIVE ACCURACY ESTIMATION USING REFERENCE SOLUTION 

This section provides two examples of constructing a generalized computational 

experiment for a comparative assessment of numerical methods accuracy. As examples, we 

use the numerical results described in detail in the authors' works [20, 23, 29, 30]. In these 

papers, two classes of computational gas dynamics problems were considered.  

The first class of problem describes a supersonic inviscid flow around a cone at an angle of 

attack. 

The second class describes the incidence of an inviscid supersonic gas flow onto a flat 

plate at an angle of attack. Both of these problems are fairly well known. The first problem 

has a tabular solution [36], used as a reference solution. The second problem has an exact 

solution. We consider the first class of problem for 3D statement. The second class is 

considered as 2D problem. 

Let’s consider the first class of problems. We solve the problem of a supersonic gas flow 

around a cone at an angle of attack. Variable parameters are angle of attack α = 0°, 5°, 10°, 

Mach number M = 3, 5, 7 and cone half-angle β = 10°, 15°, 20°. The flow scheme is shown in 

Figure 1. The conditions of the incoming stream at the input are indicated by the index “∞”, 

and at the output, by the index ξ, since the solution is self-similar and depends on the 

dimensionless variable. 
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For calculation, the Euler system of equations is used. The system is supplemented by the 

ideal gas equation of state. 

Three solvers were selected from the OpenFOAM software package: rhoCentralFoam 

(rCF), sonicFoam (sF), and pisoCentralFoam (pCF). Solver rhoCentralFoam is based on a 

central-upwind scheme which is a combination of central difference and upwind schemes 

[31,32]. Solver sonicFoam is based on the PISO algorithm (Pressure Implicit with Splitting of 

Operator) [33]. Solver pisoCentralFoam is a combination of a central-upwind scheme with the 

PISO algorithm [34]. This solver is not included in the standard set of  OpenFOAM solvers. It 

was created by independent team of developers at the Ivannikov Institute for System 

Programming RAS. All the calculations were performed using the OpenFOAM version 2.3.0. 

We solved the problem with each solver for the entire set of variable parameters. Thus, we 

obtained a set of numerical solutions. The exact solution was obtained by interpolating the 

table solution from [3]. Then we found the error of the solution in the norms L1 and L2. Since 

different solvers implement different numerical methods, the errors were markedly different 

from each other. The initial and boundary conditions, as well as the settings of the solvers, 

were set similarly to [26, 28]. 

Fig. 2 shows the steady-state solution for the pressure field obtained by interpolating the 

tabular solution from [36], cone half-angle β = 20°, angle of attack α = 10°, Mach number M 

= 3. 

Figure 3 shows the error surface in L2 norm for this problem with the variation of the 

solver and the half-cone angle at fixed Mach number 3 and fixed angle of attack 5°. It can be 

seen that the deviation from the exact solution increases with the growth of the half-solution 

angle. One can also see that the rhoCentralFoam and pisoCentralFoam solvers are 

approximately equally accurate, while the sonicFoam solver accuracy is much lower. 

Figure 4 shows the error surface for the same problem with variation of solvers and angle 

of attack at a Mach number of 5 and a cone half-angle of 15°. 

Figure 5 shows the error surface (deviation from reference solution) for the angle of attack 

5° and a cone half-angle 20° with variation of solvers and Mach number. 

Thus, analyzing Figures 3, 4, 5 we see that for all solvers, the error increases with 

increasing the angle of attack, the angle of the cone half-angle and Mach number. 

So, we have here the accuracy assessment for all three solvers participating in this 

research. This is the result of constructed generalized numerical experiment for the class of 

problems in question. 

It is easy to see that in this case the numerical result of the generalized computational 

experiment is the error function in the L2 norm of 4 variables (Mach number, angle of attack, 

cone half angle, solver number): 

                

A complex visual representation of such a function is a separate task and is not considered 

in this article. 

For the considered class of problems, the construction of a generalized computational 

experiment provided a full-fledged comparative estimate of the accuracy of the three selected 

solvers of the OpenFOAM package in the range of variation of the determining parameters. 
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Fig. 1. Flow scheme.  

 

 
Fig. 2. Pressure field for steady flow. 
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Fig. 3. Image of the error surface for the Mach number 3 and the angle of attack 5° with variation 

of solvers and half-cone angle. 

 

 

Fig. 4. Image of the error surface for the Mach number 5 and a cone half-angle 15° with variation 

of solvers and angle of attack. 
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Fig. 5. Image of the error surface for the angle of attack 5° and a cone half-angle 20° with variation 

of solvers and Mach number. 

 

 

Fig. 6. Error surfaces with variation of the Mach number and angle of attack for the oblique shock 

wave [29]. 
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Let’s consider another class of problems. In this case we use well-known problem of 

oblique shock wave formation. We consider this problem in 2D statement. 

A supersonic gas flow falls on the plate at an angle. Reflecting from the plate, the flow 

forms an oblique shock wave. The problem has exact solution. In the problem, the Mach 

number M and the angle of incidence of the supersonic flow β varied, similarly to [29,30]. 

Figure 6 shows the error surfaces for this problem for 4 solvers: rhoCentralFoam (rCF), 

sonicFoam (sF), pisoCentralFoam (pCF), QGDFoam (QGDF). Now we include into 

consideration a new solver QGDFoam (QGDF). This solver is based on a system of quasi-

hydrodynamic equations. The solver was also created by independent developers [35]. 

Carrying out similar calculations for several numerical methods implemented in the solvers 

of the open software package OpenFOAM, makes it possible to build several such surfaces on 

one drawing. This opens up the possibility of a deep and clear comparative analysis of the 

accuracy of the studied numerical methods. The construction of such a generalized 

computational experiment involves the creation of computational technology from solving a 

direct problem up to visual analysis of the results.  

This technique allows carrying out a detailed visual comparison of deviations from the 

exact solution. It can be seen that in our case, all error surfaces change in the same way. The 

error increases with the growth of key parameters. The best accuracy in this class of problems 

is provided by the rCF and pCF solvers, for which the error surfaces are almost identical. 

Thus, the construction of a generalized computational experiment allows us to conduct a full-

fledged comparative accuracy assessment for four solvers of the OpenFOAM software 

package in the class of problems. The class of tasks in this particular case is determined by the 

basic task (oblique shock wave) and the ranges of variation of the key parameters of the 

problem — the Mach number and angle of attack. 

The use of a generalized computational experiment makes it possible to involve new 

numerical methods in research on the comparative assessment of accuracy. This problem was 

also solved for the numerical WW-method [37], which does not belong to OpenFOAM 

solvers, but is implemented as a separate software package. It’s ADI-method [38] 

modification using hybrid implicit finite difference scheme. The review describing hybrid 

schemes is presented in [39]. The scheme [37] has second order accuracy in space and time. 

Also the scheme (we’ll call this scheme as WW-scheme) is unconditionally stable and simple 

for programming. Except these properties WW-scheme has one interesting and useful feature. 

When non-linear problem with strong shocks is solved, one has to reduce undesirable solution 

oscillations. There are two ways for this. The first way is concerned with procedure of 

smoothing between time-steps. The second way consists in adding some terms with artificial 

viscosity to basic equations. Both ways require more calculations and complicate algorhytm. 

The present numerical method doesn’t need these ways. Needed for stabilization of solution 

artificial viscosity is an internal property of WW-scheme. One can regulate the artificial 

viscosity by the choice of weight parameters. This property is quite suitable for practical 

applications. It should be noted that QGDFoam solver [35] also has regulated artificial 

viscosity. This opens up prospects in the future for studying the effect of artificial viscosity on 

the comparative assessment of accuracy for similar numerical methods. 
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Fig. 7. Error surfaces with variation of the Mach number and angle of attack for the oblique shock 

wave for OpenFOAM solvers and WW-method. 

 

Figure 7 presents the error surfaces for OpenFOAM solvers with addition such surface for 

WW-method. One can see that for WW-method, the error increases with an increase in the 

Mach number and the angle. You can also notice that the error surface for the WW-method is 

located much higher than the similar surfaces for OpenFOAM solvers. However, this 

discrepancy can presumably be reduced using artificial viscosity parameters. 

 

The images of error surfaces presented in Figures 6, 7 give a fairly clear idea of the com-

parative accuracy of numerical methods in the class of problems. However, for a more 

complete assessment, we enter an integral characteristic for each surface. We will call this 

characteristic the Error Index (EI). The error index is defined as follows. 

Let we have K key parameters. Each of them has its own grid partition, and A  - the 

deviation from the exact solution at each point of the grid partition. We denote the total 

number of points in the resulting multidimensional space as N.  Then the error index is 

defined as: 

 

          
(1) 
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First, we calculate the Error Index for the problem of flow around a cone at an angle of 

attack. 

Solver rCF pCF sF 

Error Index 0.13336 0.13366 0.24086 

Table 1. Error Index values for the problem of flow around a cone at an angle of attack 

 

Next, we calculate the values of the error index for the problem of oblique shock 

formation. 

 

Solver rCF pCF QGDF sF WW 

Error Index 0.037734 0.038751 0.0453406 0.058216 0.14888 

Table 2. Error Index values for the problem of oblique shock formation 

 

Tables 1 and 2 show that the values of the error index EI fully correspond to the relative 

positions of the numerical results presented in figures above. Therefore, the calculated error 

index can serve as a characteristic of the accuracy of numerical methods in the selected class 

of problems. 

 

5 CONCLUSIONS 

The application of a generalized computational experiment to the problems of comparative 

estimation of the accuracy of numerical methods is considered. A generalized computational 

experiment allows simultaneous calculations of the same problem with different input data 

based on parallel technologies in a multitasking mode. The obtained multidimensional results 

are examined using visual analysis tools. 

Two examples of constructing a generalized computational experiment for classes of 

problems are presented - flow around a cone at an angle of attack and the formation of an 

oblique shock wave. For both cases the class of problems is formed on the basis of the basic 

problem and variations of the determining parameters of the problem. For both classes of 

problems, a comparative assessment of the accuracy of the solvers of the software package  

OpenFOAM. For the case of oblique shock wave WW-method is added to comparison. This 

method does not belong to OpenFOAM solvers and is implemented as a separate software 

package. An example of constructing error surfaces is given. The concept of a numerical 

method error index for a class of problems is introduced. Such indexes are computed for all 

cases in this research. The calculated error indexes can serve as a characteristic of the 

accuracy of numerical methods in the selected class of problems. 

The construction of a generalized computational experiment can serve as an effective tool 

for verification problems.  
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